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We present an analysis of the typical features of shear Alfvén waves in tokamak plasmas
in a frequency domain ranging from the “high” frequencies (w = v4/2qRo; v4 being the Alfvén
speed and qRy the tokamak connection length) of the toroidal gap to the “low” frequencies,
comparable with the thermal ion diamagnetic frequency, wyp; and/or the thermal ion transit
frequency wy; = v4;/qRo (vy; being the ion thermal speed).

1. IDEAL MHD TAE SPECTRUM IN ITER

In the recent years, the shear Alfvén wave spectrum in laboratory plasmas has been extensively
analyzed due to the possible excitations of these waves by resonant interactions with energetic
particles such as charged fusion products and ions accelerated by plasma heating or current-drive
systems. In particular, great attention has been devoted to the plasma eigenmodes near — or

close to - the frequency gap [1] in the shear Alfvén continuous spectrum, i.e., Toroidal Alfvén
Eigenmodes [2] (TAE) and Kinetic TAE [3] (KTAE), respectively.

Although a numerical approach to TAE and KTAE linear stability in a realistic plasma
equilibrium is necessary, there still remain some concerns about the actual solution of this
problem. In fact, in a tokamak reactor of major radius Ry and minor radius a, the most unsta-
ble Alfvén modes will be characterized by toroidal mode numbers n in the range a/prr2 n
ea/prr > 1, with e = a/ Rg and prg the energetic particle Larmor radius. The large mode num-
ber is what creates serious resolution problems for conventional numerical simulations of these
instabilities. Thus, significant insights can still be obtained with studies based on analytical-
theoretical methods. Previous analyses — using a 2D-WKB code [4] — have studied this problem
either for (s,a) [5] (s being the magnetic shear and & = —¢?R3') model equilibria or for more
general (but still model) equilibria, including possible shaping of magnetic flux surfaces [6]. In
the former case, the fairly simple model equilibrium allowed us to focus on the details of the
energetic particle dynamics and, thus, on the destabilization mechanism due to wave particle
interactions. In the latter case, instead, a more precise description of the wave spectra in re-
alistic geometries was obtained at the price of neglecting the energetic particle drive and all
wave-particle resonant interactions; i.e., the result consist of calculations of a marginally stable
set of global eigenmodes.

These investigations have confirmed that, under certain plasma conditions, TAE’s can be
shifted downward in frequency and out of the toroidal frequency gap in the Alfvén continuum.
As a consequence, there is a great increase of mode damping due to finite coupling to the
continuous spectrum. For high-n and the (s, a) model equilibrium [5], this has been shown to
occur for a > a.(s) [7, 8, 9], i.e., above a critical threshold in the thermal plasma pressure
gradient. In the present work, we further extend the approach of Ref. [6] and investigate the
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FIG. 1. Constant 1 and constant poloidal angle contours for the considered I'TER equilibrium,
indicated as I'TER reference scenario #2 for TAF stability studies.

ideal MHD spectrum of high-n TAE modes in ITER, in order to explore the possibility of having
plasma equilibria free of TAE modes. The ideal MHD assumption clearly prevents us from the
computation of excitation thresholds, but allows us to analyze the conditions for enhanced TAE
continuum damping in a realistic and completely general ITER equilibrium with shaped flux
surfaces.

The plasma equilibrium we consider here is shown in Fig. 1 and is characterized by Ry =
8.14 m, a = 2.90 m, magnetic axis position (R,7) = (8.44 m, 0.66 m), elongation x = 1.73,
By = 5.68 T, plasma current / = 20.9 MA, volume average < 3 >= 0.027, poloidal 3, =
0.69, ¢(0) = 0.84 and ¢(a) = 4.47. Meanwhile, Fig. 2 shows the corresponding boundaries of the
toroidal gap in the shear Alfvén continuous spectrum (i.e., the geometric loci of its accumulation
points in the high-n limit). Here, and in the following of this section, frequencies are normalized
to the Alfvén frequency on axis wgq = Bo/Ro\/47 po.

The frequency spectrum of TAE modes is found by solving the global dispersion relation [9]

$ 0 (50) d(ng(r)) = @2p+w) | (1)

where 0, = k,/nq’ is the WKB eikonal entering in the expression of the radial envelope of the
mode [9], p is the radial mode number and w is an integer defined in the following. The WKB
eikonal 6 is a function of the radial position, as it may be obtained from the solution of the
local TAE dispersion relation

F(r,0;w) =0, (2)

which is parameterized by the mode frequency w. Furthermore, the integration in Eq. (1) is
extended to a complete periodic orbit (at fixed w) in the (r,6x) phase-space, and w is either
w = 0 for phase-space rotations or w = 1 for phase-space oscillations. Incidentally, we note that,
in the up-down asymmetric equilibrium of Fig. 1, 8 = 0 and #;, = 7 are not WKB turning points
— as in the general symmetric case — and that turning point positions need to be determined
numerically from Eq. (2).
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FIG. 2. Radial profile of boundaries of the toroidal Alfvén gap in the continuous spectrum.

Numerical solutions of the global mode dispersion relation are shown in Fig. 3 for the
toroidal mode number n = 20. Each global mode is represented by an horizontal segment
delimited by the WKB turning point positions, which give an estimate of the corresponding
radial mode width. Different eigenmodes are labeled by the radial mode number p.

2. ENERGETIC PARTICLE MODES DYNAMICS

Besides the existence of eigenmodes of the thermal plasma, like TAE and KTAE, it has been
shown that other instabilities may be spontaneously excited by a sufficiently strong energetic
particle drive [10, 11]. These Energetic Particle Modes [10] (EPM), due to the non-perturbative
contribution of particle dynamics in determining mode structures and frequencies, have linear
and nonlinear behaviors which are different from those of TAE and KTAE. In particular, it has
been demonstrated that, when the particle drive is large enough to exceed the EPM threshold,
a strong redistribution in the energetic particle source can take place, yielding potentially large
particle losses and, eventually, mode saturation [6]. Previous results from numerical simula-
tions [6, 12] indicated that the EPM excitation threshold can be fairly high at low toroidal
mode numbers n, although the tendency of the threshold to decrease for increasing n was also
emphasized, in accordance with theoretical expectations [13], which predicted a minimum in the
excitation threshold for n2 ea/prg.

Recalling that the linear excitation threshold of EPM corresponds also to the level above
which a strong redistribution in the energetic particle source can take place, it becomes a crucial
issue to investigate whether, for higher mode numbers n, the EPM excitation threshold can
become comparable with the values which are relevant for an ignited plasma. In the present
section, we present new results on this problem with the help of self-consistent numerical sim-
ulations (moderate-n; n < 16) using a gridless finite-size-particle modified version [14] of the
original three-dimensional PIC hybrid MHD-gyrokinetic code [12].

Figure 4 shows the typical dependence of the EPM growth rate (normalized to w4) on
the energetic particle g on axis, Ogo, for different n’s. Here, fixed parameters are ¢ = 0.1,
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FIG. 3. Ideal MHD global TAF mode frequency spectrum for n = 20. The toroidal gap boundaries
are also shown.

q(0) = 1.1, ¢(a) = 1.9, prr/a = 0.01 and L,g/Ro = €(a/r)*/16, with L = |Vpg|/pg. The
existence of an excitation threshold, ﬁglo, is apparent, above which the EPM growth rate rapidly
increases with Ggpq.

The dependence of ﬁ%ho on the toroidal mode number n is shown in Fig. 5 and it clearly
indicates that a minimum of 3% 22 7.5 x 1073 in the excitation threshold is reached for n 2 8,
for the present simulation parameters.

3. EXCITATION OF ALFVENIC ITG MODES

When the EPM frequency — because of either thermal plasma or energetic particle compression
effects [6, 11, 15] — becomes so low to be comparable with the ion diamagnetic frequency wyy;
and/or the thermal ion transit frequency wy = vy;/qRo, the Energetic Particle Mode acquires
all the characteristics of the so called Beta Induced Alfvén Eigenmode [16] (BAE) and it may be
considered as a good candidate to explain some experimental observations [17]. Actually, it has
been demonstrated that, for w,,; =~ wi;, BAE/EPM modes cannot be considered separately from
modes of the Kinetic Ballooning Mode [18] branch resonantly excited by energetic particles, since
they are two (generally coupled) branches of the shear Alfvén wave in this frequency range [19].

The BAE/EPM and KBM/EPM dispersion relation generally reads

iA (i) = §W; + oW | (3)

Wi;

where W, is the ideal MHD potential energy and éWEg is the contribution of energetic parti-
cles [19, 20]. Here, A(w/wy;) is the renormalized plasma inertia in the presence of finite w,,; and
wyi; 1.e. [19]

Az) = B? {$2 (1 - “Tp) +¢%a [(1 - “’—”) F(z) - %G(m) - 7;&?] }1/2 ()
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FIG. 4. Normalized EPM growth rates vs. Brq, for different toroidal mode numbers; n = 1(<),
n=4(c), n=8(0), n = 12(A) and n = 16(x).

with
F(z) = z(2*+3/2)+ (z*+ 22+ 1/2)Z(2) ,
G(z) = z(a* +224+2)+ (25 +2*/2+ 27 +3/4)7Z(2) ,
N = (122 o+ (/24 ) 2(@) - 2L (/24 27) + (14 + 5 2(2)]

(%) (1 + %) + (1 - %) Z(z) - %[m +(2* - 1/2)Z(2)] (5)
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Z(x) =m M2 [ e™" /(y—x)dy being the plasma dispersion function. In Eq. (3), the excitation
condition for EPM’s of either the BAE or the KBM branch is ReédWg < 6Wy.

Another interesting feature of Eq. (3) is that it predicts that modes of the shear Alfvén
branch may be excited even in the absence of an energetic particle drive. In fact, for §Wg = 0,
it may be shown that the shear Alfvén continuous spectrum can have an unstable accumulation
point (6W; = 0) in the presence of a sufficiently strong thermal ion temperature gradient [19,
21, 22]. This fact, which stretches Eq. (3) beyond its applicability limit, is the clear indication
that a discrete Alfvénic mode must exist below the marginal stability threshold for ideal MHD
modes [19, 23]. In fact, the existence of a solution of A(w/wy;) = 0 with Imw > 0, demonstrates
that, at the ideal MHD marginal stability boundary (6W; = 0), there still exists a free energy
source to be tapped by instabilities, provided that VT; is sufficiently strong.

Since, at W, = 0, the mode structure tends to become highly localized in the radial
direction (singular within ideal MHD), finite ion Larmor radius (FLR) and finite drift-orbit
width (FOW) effects become crucial to demonstrate that unstable discrete modes can actually
exist for 6W; > 0. In fact, it is possible to show that these instabilities may be interpreted
as a discretization of the unstable continuum due to FLR and FOW effects [23]. Since they
are characterized by a shear Alfvén polarization and require VT; to exceed a threshold value,
they may be called shear Alfvén VT, eigenmodes [23] (AITG), in analogy to their electrostatic
counterpart. Using the (s, @) [5] model equilibrium for tokamak plasmas with shifted circular
magnetic flux surfaces, we studied the problem of AITG excitation for §W; > 0, using a set of
integral eigenmode equations (quasi-neutrality and vorticity), which allow us to handle arbitrary

kip; (FLR) and kjpq (FOW).
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FIG. 5. Dependence of the FPM excitation threshold ﬁglo on the toroidal mode number n.

Numerical solutions of the coupled integral equations for the two fields <5q§, 5A||) indicate

that the growth rate of AITG is maximum for kgpr; & 0.3 [24], with kg the poloidal wave vector
and pr; the thermal ion Larmor radius. Figures 6 and 7 show [24], respectively, the real and
imaginary parts of the AITG mode frequency, normalized to w,;, vs. a for three different values
of §; = 0.5,1.0,2.5. Fixed parameters are s = 1, ¢ = 1.5, kgpr; = 0.3, T./T; = 1, n./n; = 1 and
Lyi/Ro = 0.057, with L;il = |Vp;|/pi. For reference, also the “electrostatic” ITG is shown for
n; = 2.5.

It is apparent that the AITG instability can exist well below a..;; = 0.62 the stability
threshold for ideal ballooning modes [5] and that it is actually stronger than the usual electro-
static ITG for 0.4 +0.55 o/ S 1. This fact can be explained with the stabilizing influence of
magnetic field line bending. In fact, approaching MHD marginal stability, line bending stabiliza-
tion is nearly balanced by the ballooning destabilization and the AITG mode is unstable because
of the free energy available at the unstable continuum accumulation point. For a < ag.;, i.e.
dWy > 0, line bending stabilization becomes more and more effective, and the AITG mode is
eventually completely stabilized.

Line bending, as it is well known, can also explain the finite-3 stabilization of the e.s. ITG
mode. In fact, for increasing « (), the coupling to the e.m. shear Alfvén branch also increases
while, at the same time, the stabilizing influence of line bending diminishes (since the ideal
marginal stability is approached). As a consequence, the stabilizing influence on the e.s. ITG
branch is expected to be strongest somewhere in between o« = 0 and & = a4, as it appears to
be the case from Fig. 7. It could be argued that this should also be the point around which the
most unstable mode should become that with an e.m. shear Alfvén polarization, although the
e.s. ITG cannot be generally expected to be completely stabilized.

As a concluding remark, it is worth to emphasize that low frequency (w = wip = wy)
shear Alfvén instabilities may have significant implications to both energetic and thermal particle
transports. In the former case, as EPM’s of either the BAE or the KBM branch, they may be
candidates to explain the experimental observation [17] of large energetic ion losses due to
Alfvén waves with frequencies lower than that of TAE’s. In the latter case, the AITG modes
described in this section can be expected to affect, particularly, electron transports, since they
are characterized by magnetic fluctuations and, contrary to electrostatic ITG, are not stabilized
by finite-g effects.
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FIG. 6. Real mode frequencies of the AITG are shown vs. « for three different values of
n; = 0.5(0),1.0(0),2.5(¢). Fized parameters are s = 1, ¢ = 1.5, kgpr; = 0.3, T./T; = 1,
ne/ni =1 and Ly;/Ro = 0.057. The e.s. ITG (o) is also shown for n; = 2.5.
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FIG. 7. AITG mode growth rates are shown vs. « for three different values of n; =
0.5(0), 1.0(0),2.5(¢) for the same parameters of Fig. 6. The e.s. ITG (e) is also shown for
n; = 2.5.
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