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To aid in understanding the internal transport barrier (ITB) being formed in reversed mag-
netic shear experiments, in addition to the well known shear 
ow e�ect, we point out an im-
portant nonlocal e�ect and/or �nite size e�ect which comes from the complex behavior of the
nonlocal mode over a �nite radial region around the minimum q(safety factor)-surface. The
nonlocal mode changes its structure depending on the sign of the magnetic shear and due to
this fact, the nonlocal modes are weakly excited across the qmin-surface. This leads to a dis-
continuity or gap which disconnects the phase relation in the global wave structure across the
qmin-surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and
therefore a transport barrier can be expected near the qmin-surface. We con�rm the existence
of this discontinuity using a toroidal particle simulation.

1 INTRODUCTION

The turbulent structure of drift waves in a toroidal geometry is becoming clearer due to recently
developed toroidal simulations [1-4] and theory [5-6]. According to these analyses, the linear
drift waves in a toroidal geometry form a radially extended nonlocal structure whose width �r
is approximately given by

�r ' (�iL=ŝ)
�; with � ' 0:5 (1)

i.e. the geometrical mean between the ion Larmor radius �i and the equilibrium scale length
L (such as L � a : plasma minor radius or L � LT � �(@ lnTi=@r)

�1 : ion temperature scale
length). Here, ŝ[� r(d ln q=dr)] represents the local magnetic shear for a given safety factor q(r).
Although the mode width is a�ected by the plasma rotation, the results suggest that nonlocal
e�ect and/or �nite size e�ect of the plasma are important to understand various transport
properties. Among them, the internal transport barrier (ITB) observed in a reversed magnetic
shear con�guration shows remarkable features and has been widely studied. Since the nonlocal
modes sensitively depend on the magnetic structure, it is essential to know how the nonlocal
modes behave in weak and/or reversed magnetic shear plasma.

In the paper, we investigate the drift waves [mainly the ion temperature gradient (ITG)
mode] in such circumstances using a theory and a toroidal particle code. At �rst, we describe
the 2-dimensional (2D) mode structure in toroidal geometry based on our theory [6] and discuss
how the modes are in
uenced by the change of magnetic shear and by the plasma shear 
ow. The
theoretical aspects in a weak magnetic shear plasma are compared with the simulation results.
In a reversed q-pro�le, since the magnetic shear becomes extremely weak around the minimum
q surface (hereafter qmin-surface) and changes its sign, the e�ect of the toroidal coupling is
weakened and the nonlocal modes are weakly excited. This leads to an idea of the formation
of a discontinuity (or gap) which disconnects the phase relation of the modes excited inside
and outside the qmin-surface. Once such a discontinuity is formed, the transport suppression
and therefore the transport barrier can be expected near the qmin-surface. To check the above
hypothesis, we perform a toroidal simulation with a reversed q-pro�le.

In Sec.2, we present a theory for 2D drift wave structure and discuss the properties. The
ITG modes in the reversed magnetic shear plasma is discussed in Sec.3 and numerical results
are presented in Sec. 4. Concluding remarks are added in Sec.6.
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2 Two Dimensional Toroidal Drift Wave Structure

2.1 Theory of 2D drift wave structure and characteristics

Here, we expand the drift wave eigen-function around the mode rational surface r = r0 as
�(r; �) = exp(im0�)

P
j �j(r) exp(ij�), where the toroidal and poloidal mode number (n;m0)

satis�es q(r0) = m0=n. Furthermore, we rewrite the amplitude �j(r) as

�j(x; t) = A(x)�0(x; t� j) exp(ij�0) ; (2)

where x � n(@q=@r)r0(r�r0) = k� ŝ(r0)(r�r0) denotes the lowest order variation due to magnetic
shear. Here, �0(t� j) is the zeroth order eigen-function which has a ballooning symmetry, and
the corresponding eigen-value ! � !r + i
 is determined. The 2D structure is then obtained by
�nding the appropriate envelope function A(x) and the phase shift �0 between adjacent rational
surfaces referred to the "Bloch angle". A(x) and �0 are determined by solving a global dispersion
relation of order x=n so that the obtained eigen-function is well localized in the radial direction.

If we apply the above argument to the electrostatic drift wave where the eigen-frequency
is given by !r(�0; t) ' !r(r0) � !0

r(r0)x, assuming a linear pressure pro�le around r = r0 and

(�0; x) = 
̂0 cos �0 from the 1D ballooning theory, we obtain the envelope function as follows :

A(x) � exp

�
�
(@!r=@x+ @!f=@x)

2
̂0 sin �0
x2
�
= exp

�
�

k� ŝ

2
̂0 sin �0

�
@!r
@r

+
@!f
@r

�
r2
�

; (3)

where !f � k�V� + k'V' is the doppler shift frequency due to plasma rotation, and (V�; V') are
the poloidal and toroidal rotation velocity where the diamagnetic component is excluded. The
nonlocal mode (rm) width �r is then given by

�r '

����� 2
̂0 sin �0
k� ŝ(@!r=@r + @!f=@r)

�����
1=2

=
(�r)rm���1 + !0

f=!
0
r

���1=2 ; (4)

where "0" denotes the derivative with respect to "r", and (�r)rm ' j2
̂0 sin �0=k� ŝ!
0
rj
1=2 is

the mode width in the absence of plasma rotation (i.e. @!f=@r = 0). The Bloch angle �0
is determined so that the wave function Eq.(3) is well localized in the radial direction. The
condition is �rst given as �� < �0 < 0 for ŝ(!0

r + !0
f ) > 0 and 0 < �0 < � for ŝ(!0

r + !0
f ) < 0.

Since the rapid decay of the envelope happens when �0 ! 0, the growth rate near �0 ' 0 is
given by 
 ' 
̂0(cos �0 � �= sin �0) and � � (@!r=@x)=2
̂0 = !0

r=2k� ŝ
̂0. Taking the derivative,
we see that the maximum growth rate occurs roughly at

(�0)max ' �

����(@!r=@r + @!f=@r)

2k� 
̂0ŝ

����
1=3

= �(�0)rm

�����1 +
!0
f

!0
r

�����
1=3

; (5)

where (�0)rm ' j(@!r=@r)=2
̂0k� ŝj
1=3 is also the Bloch angle in the case of @!f=@r = 0. The �

sign in Eqs.(4) and (5) corresponds to the cases ŝ(!0
r+!0

f ) > 0 and ŝ(!0
r+!0

f ) < 0, respectively.

Note here that the corresponding growth rate is given by 
 ' 
̂0 cos(�0)max, which is smaller
than that obtained from the local analysis, 
̂0. The stabilizing e�ect comes from the spatial
inhomogeneity of plasma equilibrium (or precisely speaking, the e�ect of the �nite diamagnetic
shear @!r=@r � @!d=@r 6= 0, where !d � k��iVi=R0 is the magnetic drift frequency). Here, we
describe some important properties deduced from Eqs. (4) and (5).

(I). In the absence of plasma 
ow shear ( @!0
f=@r = 0), the 2D structure is characterized

by the two parameters (�r, �0) as shown in Fig.1 (a), which are approximately given by �r /
jLT�i=ŝj

1=2 and (�0)max / �j1=ŝnj1=3. Here, we have simply used the relation @!r=@r ' !d=LT

(LT � jd lnTi=drj
�1), and 
̂0 � !r � !d. This shows an existence of the radially extended

nonlocal mode as already discussed in Eq.(1). Here, �0, corresponds to a "tilting angle" of
the nonlocal mode from the mid-plane (�0 = 0). The result shows that when the magnetic
shear becomes weak, although the mode width is extended as shown in Fig.1 (c), the tilting
angle increases, and then the growth rate is expected to decrease according to the relation

 ' 
̂0 cos(�0)max.
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Figure 1: Shematic Picture of 2-
dimensional drift wave stucture in
each strength of magnetic shear.

Figure 2: Schematic picture of 2-dimensional
drift wave structure in the presence of plasma
shear 
ow. (a) is the case where the direction of
shear 
ow is the same direction as that of dia-
magnetic shear rotation and (b) is the opposite
case.

(II). From Eqs.(4) and (5), it is found that the shear 
ow plays a similar role as that of the
diamagnetic shear as shown in Fig.2. From Eq.(5), when the plasma 
ow shear is applied in the
same direction as that of diamagnetic shear (i.e. !0

r < 0 and !0
f < 0), the tilting angle increases

in the negative direction [see Fig.2 (a)], so that an asymmetry of the mode is enhanced and
the growth rate is reduced. On the other hand, when the 
ow shear is applied in the opposite
direction to that of the diamagnetic shear (!0

r < 0 but !0
f > 0) [see Fig.2 (b)], the initial

tilted angle �0 < 0 is once corrected as �0 ' 0 and/or 1 + !0
f=!

0
r ' 0, so that the symmetry

of the mode structure is recovered and the growth rate is increased. Namely, the e�ect of the
diamagnetic shear is cancelled by that of the 
ow shear. When the 
ow shear is strong enough
as that 1+!0

f=!
0
r < 0, the mode is tilted in the positive direction and the growth rate once more

decreases. Note that the sign of the tilting angle is changed depending on that of the magnetic
shear as shown in Fig.1(a) and (b) and this is essential in forming a transport barrier as we
discuss later. These dependences have been numerically investigated [2,6].

(III). The toroidal mode is stabilized when the 
ow shear makes j�0j � �=2 or j�j � (!0
r +

!0
f )=2k� ŝ
̂0 � 1 and this leads to the condition for stabilizing the toroidal modes from Eq.(5):


0 �
1

2k� ŝ

����@!r@r
+
@!f
@r

���� ' 1

2ŝ

������ !d
(k��i)

�
�i
LT

�
+

(
V�
L�

+

�
k'
k�

�
V'
L'

)����� ; (6)

where the last term is estimated by introducing the scale length of poloidal and toroidal 
ow,
L� � (@ lnV�=@r)

�1 and L' � (@ lnV'=@r)
�1, and k�=k� = r=R0q. Here, L� and L' have a sign.

We note that the stabilizing e�ect is inversely proportional to the magnetic shear ŝ, so the 
ow
shear e�ect is enhanced in the weak magnetic shear region. If we neglect the diamagnetic shear
term, the relation becomes 
0 � j@!r=@rj=2k� ŝ. The stability condition of Eq.(6) which results
from the linear, but nonlocal analysis might be compared with the shearing rate by Hahm and
Burrell [7,8] which is derived from the nonlinear decorrelation for the 
ute-like modes.

2.2 Simulation study of magnetic shear dependence on "nonlocal modes"

We investigate the above theory by a toroidal particle simulation. In the simulation, full kinetic
ions and adiabatic electrons are employed. The ion temperature is initially given by an arctan-
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Figure 3: Potenial structure in poloidal cross section for the linear q-pro�le: (a) normal shear,
(b) negative shear, (c) normal, but weak shear, and (d) extremely weak shear case.

pro�le [Fig.5(c)] and the density is almost 
at to simulate a typical ITG mode. Basic parameters
are < �i > =a ' 0:01 , R0=a = 0:325, and < Te=Ti >= 1 ( <> : volume average), and the
maximum pressure gradient �r�(� r�=a) locates around �r� ' 0:4. The temperature gradient is
chosen to be favorable for excitation of the ITG mode.

Here, we employ a linear q-pro�le by changing the gradient for three di�erent cases; (a)
normal shear case with ŝ ' 0:6 around r = r�, (b) negative shear case with ŝ ' �0:6, (c) normal
but weak shear case with ŝ ' +0:3, and (d) extremely weak normal shear case ŝ ' +0:15 . In
Fig. 3, the contours of the electrostatic potential in (r; �) poloidal cross section are shown in the
linear stage before saturation. It is shown in Fig. 3(a) that typical nonlocal modes which have
a prominent ballooning structure are observed. The poloidal angle which gives the maximum
growth rate is shifted to the negative direction (�0 < 0), but when the magnetic shear is reversed,
the angle shifts to the positive direction (�0 > 0). These are consistent with the theory. When
the magnetic shear is further decreased [Fig. 3(c)], the tilted angle increases in the negative
poloidal direction, but the radial structure is maintained. In the extremely weak shear case, the
nonlocal modes are hardly sustained and found to disintegrate as shown in Fig.3(d).

3 Drift waves in reversed magnetic shear con�guration

In this section, we investigate how the toroidal modes behave in reversed magnetic shear con-
�gurations based on the theory in Sec.2. Here, we model the reversed shear plasma by choosing
a parabolic q-pro�le as shown in Fig. 4(a), which has a qmin-surface inside the plasma column.
Note that for the toroidal mode number n, the poloidal harmonic given by j = m0 has two
rational surfaces around r = rmin, but no rational surface for the harmonics with j � m0 � 1,
satisfying (m0 � 1)=n < qmin. This means that it is no longer possible to have the wave func-
tion form �j = �0(t � j) [ ballooning symmetry : see Eq.(2)] for the mode with j � m0 � 1.
Therefore, toroidal coupling becomes di�cult below m0 � 1 and will result in the rapid decay
of the amplitude of the corresponding poloidal harmonics [Fig. 4(a)]. Then, it is expected that
the nonlocal modes are hardly excited around the qmin-surface and there occurs a discontinuity
and/or gap at the minimum qmin-surface in the global mode structure.

We here utilize the Bloch angle argument in Sec.2. Since the q-pro�le is reversed at r = rmin,

the Bloch angle has an opposite sign for the inside and outside modes with �
(in)
0 > 0 and �

(out)
0 < 0

as schematically shown in Fig.4(b). This leads to a slippage in the poloidal phases given by

��0 = j�
(in)
0 � �

(out)
0 j. When the slippage angle ��0 becomes of order unity [i.e. ��0 ' O(1)],

the formation of a global wave across the qmin-surface is greatly reduced due to the substantial
phase mismatch. We note that the slippage angle is a function not only of the magnetic shear,
but also of the plasma shear rotation as discussed in Sec.2. Thus, we can simply estimate the
condition to have a discontinuity from Eq.(5) :

j��0j � 2j�
(in)
0 j � 2

���� (@!r=@r + @!f=@r)

2k� 
̂0ŝ

����
1=3

� O(1) : (7)
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Figure 4: Relation between a reversed q-pro�le and
corresponding mode rational surface distribution.
For given toroidal number n, the mode m0 has t-
wo rational surfaces, but the mode m0-1 is non-
resonant.

Figure 5: Radial variation of (a) safe-
ty facor q(r),(b) magnetic shear s,
and (c) ion temperature. The maxi-
mum pressure gradient correspond to
r*.

Here, the magnetic shear is estimated by expanding the q-pro�le around the qmin-surface as
ŝ ' (2c1�r

2
m=qm)(�r � �rm) � 2c1�r

2
m(LT�i)

1=2=qmrm, assuming jr � rmj � (LT�i)
1=2.

4 Toroidal Simulation in Reversed q-pro�le

In order to investigate the formation of the discontinuity and the related transport barrier, we
perform the troidal simulations in reversed q-pro�le. In sec. 4.1, we present the self-consistent
simulation which includes the (m;n) = (0; 0) component. In sec.4.2, we show the case where
the radial electric �eld is externally applied by removing the (0; 0)-mode from the simulation.

4.1 self-consistent simulation with (0,0)-mode

In the simulation, the q-pro�le is chosen as q(r) = qmin + c1(�r � �rmin)
2, where �r = r=a and

�rmin = rmin=a [pro�le (I) in Fig. 5(a) and (b)]. The pressure pro�le is the same as the one
used in Fig. 3 and the qmin-surface is chosen so that it is located outside the maximum pressure
gradient surface as r� < rmin. Note that this positional relation is generally observed in the
JT-60U reversed shear experiments [9].

In Fig. 6, we show three di�erent snap shots of electrostatic potential for the q-pro�le of (I)
in Fig. 5(a) and (b) [parameters are c1 = 4:14, �rmin = 0:5 and qmin = 0:888]. As seen in Fig.6,
the ITG modes are �rst excited inside the qmin-surface and this results from the steep pressure
gradient in the negative shear region [Fig.6(a)]. The heat 
ux induced by the waves advances to
the qmin-surface. Then, due to the weak toroidal coupling, the waves are partially damped so

Figure
6: Potential structure
in poloidal cross section
at three di�erent time
steps for a reveresed q-
pro�le in (I) in Fig.5,
i.e. weak curvature case
at q-minimum case.
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Figure 7: Poten-
tial structure in poloidal
cross section at three d-
i�erent time steps for a
reveresed q-pro�le in (I-
I) in Fig.5, i.e. strong
curvature case at q-
minimum case.

that the heat is prevented to corss the qmin-surface. However, the damping is not enough, and as
seen in Fig.6(b), some waves are excited around r = rmin and a part of the heat is ejected from
the inside region to the outside. In later time [Fig.6(c)], although the ITG modes are excited
in the overall region, the phase relation between the inside and outside modes is disconnected,
suggesting the existence of a discontinuity and/or gap in the phase as we discussed in Sec.3.
Outside the qmin-surface, the waves with a long radial correlation length are observed. This
is a result of the weak magnetic shear and the long scale length of the temperature pro�le, as
predicted from Eq.(4).

Figure 7 shows similar snapshots to Fig.6, but the curvature of the q-pro�le at the qmin-
surface is increased by choosing c1 = 10:9 with the same �rmin and qmin values [pro�le (II) in
Fig. 5(a) and (b)]. The ITG modes are excited both inside and outside the qmin-surface. In
this case, however, the inside and outside regions are coupled and radially extended modes
occur across the qmin-surface. Once these kind of modes are excited across the qmin-surface,
the heat is also ejected and the temperature pro�le rapidly relaxes. In the quasi-steady state,
the waves across the qmin-surface disappear and the discontinuity is once more recovered. The
excited modes that appear across the qmin-surface are considered to be from a di�erent type of
eigen-function which does not result from the usual toroidal coupling.

4.2 Simulation with externally driven shear 
ow

In order to have a discontinuity which works well as a transpont barrier, the waves excited
around the qmin-surface as seen in Fig. 7(a) must be suppressed. The self-generated radial
electric �eld is included in these simulations, but the resulting zonal 
ow shear is not strong
enough to suppress these waves. Therefore, in order to investigate the e�ect of plasma shear

ow on the discontinuity formation, we turned o� the (m;n) = (0; 0) mode in the simulation
and externally imposed the radial electric �eld shown in Fig.8(a), with resulting poloidal shear

ow given by V�(r) = cEr(r)=B (where the toroidal �eld is chosen to be B = �B'̂).

The direction of the shear 
ow is same to that of diamagnetic shear (!
0

r=!
0

f > 0) for the

case (I) (solid line in Fig.8(a)) around the qmin-surface, but opposite (!
0

r=!
0

f < 0) for the case

(II) (dotted line in Fig.8(a)). Note that the case (I) and (II) correspond to Fig.2(a) and (b),
respectively. Figure 9 shows snapshots for the case (I). The mode excited inside the qmin-
surface was seen to be damped around the qmin-surface [Fig.9 (a) and (b)], and in later time,
a clear discontinuity was observed as seen in Fig.9 (c). Since the heat 
ux is dammed up near
the discontinuity, the temperature pro�le becomes steeper around the qmin-surface as seen in
the dashed line in Fig. 8(b), showing the emergence of transport barrier. On the other hand,
Fig.10(a) shows the snapshot for the case (II). As seen in the �gure, the discontinuity is weakened
(or it disappeared) so that the mode is excited across the qmin-surface. This is due to the fact
that the e�ect of diamagnetic shear is cancelled by the 
ow shear as discussed in Sec.2 so that the
phase di�erence between the inside and outside modes becomes small. Figure 10(b) shows the
time history of the 
uctuation energy for the case (I) and (II). It is found that the 
uctuations
are more suppressed for the case (I) than that for the case (II), supporting the above idea. Thus,
the active control of the radial Er �eld is found to be e�cient for the control of such a transport
barrier.

The width of the gap will depend on the toroidal mode number n or the rational surface
interval, becoming smaller with increasing n. When we approximate the gap width as the
rational surface interval, we have (�r)gap � (�r)rs ' 1=sky. For the JT-60U discharge with
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Figure 8: (a) Radial pro�les of externally driven
radial electric �eld Er employed in the toroidal
simulation in Fig.9 and (10). The 
ow shear
with di�erent direction is applied around the
q-min. surface. (b) Intial temperature pro-
�le (dashed line) and temperature pro�le at the
quasi-steady state for the case (I) in Fig.(a).
Owing to the discontinuity, steepening of the
temperature pro�le is observed.

Figure 9: Poten-
tial structure in poloidal
cross section at three d-
i�erent time steps for
case (I) in Fig.8 (a)

Figure 10: (a) Po-
tential structure in
poloidal cross section
for the case (II) in
Fig.8 (a). (b) Time
history of the 
uctu-
ation energy for the
case (I) and (II) in
Fig.8(a), respective-
ly.

�i � 0:3cm near the ITB, (�r)gap provides almost the same value for the radial extent where the
condition jŝj � 0:22 is satis�ed. Thus, the observed discontinuity (or gap) plays a crucial role in
forming the ITB near the q-minimum region, and it tends to reduce the growth rate associated
with the weak/negative magnetic shear.

5 CONCLUSION

Based on the nonlocal theory, which solves the �rst order ballooning equation and also on
the toroidal particle simulation, we investigated the drift wave structure in weak and reversed
magnetic shear plasma. In these situations, since the magnetic shear becomes extremely weak
or zero, the toroidal coupling which is the origin of the radially extended nonlocal modes is
weakened and disappears and then the discontinuity is expected. The formation of such a
discontinuity is con�rmed via toroidal particle simulation and it is found that the formation
sensitively depends on the magnetic structure, speci�cally, on the curvature of the q-pro�le at
the qmin-surface.

From the simulation, weak curvature is found to be preferable to form the discontinuity,
which is consistent with the theory. However, in some cases, we observed the waves which are
excited across the qmin-surface. Once such modes are excited, the discontinuity deteriorates
and heat is ejected from the inside region to the outside. Owing to this kind of mode activity,
the transport sometimes becomes intermittent, repeating the formation and destruction of the
discontinuity. These results suggest that the reversed magnetic shear con�guration allows the
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excitation of various types of eigen-modes with di�erent linear growth rates over a �nite radial
region across the qmin-surface. Candidates for these modes are, in addition to the toroidal
modes which are connected through the nonresonant mode as we discussed in Sec.3, a trapped
ion mode which is insensitive to the magnetic shear and localizes at larger pressure gradient
region[13], and/or a recently investigated slab mode referred to as a "global mode" or "double
mode" [14]. In addition to this, whether the discontinuity is established depends on the relative
positional relation between the qmin-surface and the maximum pressure gradient surface, and
the strength and direction of the plasma shear rotation. It is also found that the discontinuity
e�ciently works as a thermal barrier when the qmin-surface is located outside the maximum
pressure gradient position, which is consistent with experimental results. Furthermore, when
the 
ow shear is applied to the same direction as that of the diamagnetic shear, the discontinuity
condition is easily obtained.
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