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Abstract

A feed-forward neural network is used to forecast major and minor disruptions in TEXT
tokamak discharges. Using the experimental data of soft X-ray signals as input data, the neural net is
trained with one disruptive plasma discharge, while a different disruptive discharge is used for
validation. After proper training, the networks with the same set of weights, it is then used to forecast
disruptions in two other different plasma discharges. It is observed that the neural net is capable of
predicting the onset of a disruption up to 3.12 ms in advance. From what we observe in the predictive
behavior of our network, speculations are made whether the disruption triggering mechanism is
associated with an increase in the m = 2 magnetic island, that disturbs the central part of the plasma
column afterwards, or the initial perturbation has first occurred in the central part of the plasma
column and then the m = 2 MHD mode is destabilized.

1. INTRODUCTION

Artificial neural networks are computer algorithms which simulate, in a very simplified form,
the ability that brain neurons have to process information. Within each unit of the network, all the
input weighted signals are summed and an excitatory or inhibitory signal is then fired to the next
layer’s units, depending whether the result of the sum has reached a certain threshold value or not.
These weights are adjusted (or educated) to minimize errors in prediction (back propagation [1]).

Observing the time delayed vector of a physical quantity X at time t, of the tokamak data:
Xt = [xt, xt-�, xt-2�, ... , xt-n�] then it is reasonable to suppose that the future state of the system, at time
t+�, could be predicted by a smooth non-linear function F: xt+� = F (Xt) where � = 0.04 ms
corresponds, in this work, to the sampling rate of the CAMAC acquisition system.

However, since the function F is not known, the idea is to alternatively use a neural network
to approximate F and, therefore, predict the future evolution of the system. This is done by training
neural first, that is, by finding the correct set of weights for all connections.

In a single-step process the soft X-ray data points are predicted one time step ahead only
(� = 0.04 ms), while in multi-steps predictions the predicted output at time t + � is fed back into the
input and is used to predict a new output at time t + 2�, which is fed back into the input together with
the values previously predicted, in order to predict a new output at time t + 3�,  and so on.

The neural net architecture used in this work had the configuration (15 - 9 - 3 - 1), that is, 15
neural units in the input layer, 9 units in the first hidden layer, 3 units in the second hidden layer and
only one unit in the output layer. The activation functions were chosen to be g(x) = tanh(x) for all the
hidden units and g(x) = x for the output unit. The training of the network and the disruption prediction
was carried out over the last 200 ms of the plasma discharges.



2. DISRUPTION FORECAST

In order to find the adequate weights for all the connections between the neural units, two
different disruptive plasma pulses have been used: the training set and the validation set. The single
and multi-step forecasting processes are performed, afterwards, over two others disruptive pulses,
distinct from the ones used for training and validation.

In Fig. 1 the basic experimental signals, related to the first one of the plasma disruptive
discharges used for forecasting, are shown. This pulse corresponds to an Ip � 170 kA plasma discharge
that disrupted at t � 470 ms. About 18 ms before the major
disruption a minor disruption occurred, as observed in the
Mirnov magnetic signal (Fig. 1c), causing a significant drop
on the average electron density (Fig. 1f) and electron
temperature as observed through the X-ray emission signals
(Fig. 1d). This same feature, that is, the major disruption
being preceded by a minor disruption just before the plasma
current collapse, is also observed on the plasma discharges
used for validation and for training the net.

The result of the forecasting process for this plasma
shot is shown in Fig. 2. As it can be observed, for one time
step-prediction (Fig. 2a) the result obtained from the neural
network agrees almost perfectly with the experimental
signal. By increasing the forecast time interval, i. e., the
number of time-steps, as showed in Fig. 2b for 25 time-steps,
the shape of the sawteeth oscillations is observe to be
somewhat deformed but the net is still capable of accurately
predicting the instance of the minor disruption that takes
place at t � 452 ms. The longest forecasting time achieved is
obtained for 63 time-steps (Fig. 2c) for which the net still
accurately predicts the occurrence of the minor disruption.
This corresponds to a forecasting of the disruptive instability
2.52 ms before it actually takes place for the medium sized
TEXT tokamak. For time-steps longer than that, the net
continues predicting the disruption but now with a time shift
delay, as shown in Fig. 2d for a 90 time-steps forecasting.

Examining in detail the result obtained for the 63 time-steps forecast (Fig. 2c), it can be
observed that in order to make this prediction, the net used 15 experimental data points that are
positioned around t � 449.5 ms. This particular time interval is located exactly in the oscillatory
region of the last “typical” sawtooth oscillation, when  our  eyes are  unable to  perceive  any  peculiar
occurring in the soft X-ray emission which would signal that an instability has started at that point (or
before) and that a disruption in coming soon. Only after the crash of this sawtooth at t � 450.0 ms,
when an strong fluctuation starts to build up afterwards, one can say that a disruptive instability
indeed has been triggered.

As another test for the neural network, exactly the same set of weights obtained and used
above is now used to forecast the disruption that occurred in a second plasma discharge, with Ip � 170
kA, which disrupted at t � 424 ms. Differently from the first discharge analyzed, however, in this
particular plasma discharge the major disruption was not preceded by any minor disruption.

fig.1 -TEXT disruptive discharge used
for forecasting. The major disruption
was preceded by a minor disruption.



The results of the multi-step forecasting
analysis done for this discharge show that the
net is able to accurately predict the disruption
time up to time-step 78 (Fig. 3). This
corresponds to a forecast of the occurrence of
the major disruption 3.12 ms in advance, value
which is nearly triple the time that has been
obtained previously using only magnetic data to
feed the neural networks [2]. For larger time-
steps, once again a time shift in prediction
appears between the experimental signal and
the result provided by the network.

Interestingly, in both prediction cases
the experimental data points used by the net to
accurately forecast the minor and major
disruption (Fig. 2c and Fig. 3) are located in
time prior to the amplitude increase of the
magnetic fluctuation signals, as can be seen in Fig. 4.

Since the neural networks was able to forecast disruptions using data points related to some
particular instances of time before the observation of an increase in amplitude of the MHD activity,

fig.2 -Comparation of the neural net results (in black) with the experimental data (in green) for
several time-steps. The best prediction is obtained for 63 time-steps.

fig.3 - Neural net results for a second TEXT plasma.
Now, the major disruption was not preceded by a
minor disruption. The best result is obtained for the
78 time-steps prediction.



this observation might suggest that it is not the growing magnetic islands related to the q = 2 magnetic
surface that would consequently disturb the inner island at q = 1 magnetic surface. The results
obtained in this work suggest that it is probably the other way around, i. e., some disturbance
phenomena would develop first around the central part of the plasma column (visualized by the soft
X-rays central detector) and then the plasma region within the q = 2 magnetic surface would be
affected, destabilizing the m = 2 MHD mode. This interpretation reminds us the works already done
in tokamaks suggesting that the disruptive instabilities would be caused by a “cold bubble” moving
towards the plasma center [3,4]. However, some more careful and further investigations must be done
in order to give more confidence about the reality or not of this process.

Finally, as a continuation to this work, a recurrent Elman type of neural network is being used
to forecast plasma disruptions, using soft X-ray as input signals. The preliminary results already
obtained have shown a significant improvement, due to the network's recurrent feature, over the
capability of the feed forward neural net in identifying the diruption precursor oscillations.

3. CONCLUSION

It has been shown that feed-forward neural networks can be effectively used to forecast both
minor and major disruptive instabilities in tokamaks. Our forecasting time of minor or major
disruptions is almost three times the one based on magnetic data [2]. We also note that the future
larger tokamaks have longer plasma time scales than the medium size machines such as TEXT. This
opens up a possibility of using feed-back controlled auxiliary systems to avoid the occurrence of the
upcoming disruption or at least to minimize its harmful effects. Observing that the soft X-ray
experimental data points used by the net in the best forecasting cases are located prior to the instance
of the amplitude increase in the Mirnov magnetic signals, this might suggest that the perturbation
which triggers the disruptions first initiates in the central part of the plasma column where the q = 1
magnetic surface is located and only afterwards this instability would reach the outer part of the
plasma column, destabilizing the m = 2 MHD mode. The neural net may be employed in predicting
and controlling plasma behavior in disruption and in perhaps more general dynamics as well.
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fig.4 - Soft X-ray intensity (a) and Mirnov magnetic signal (b) close to the disruption time. As can be
observed, the experimental data used by the net in its best performance, for both cases analyzed, are
located in time just before the MHD activity starts increasing in amplitude.
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