M. Ono, S. Kaye, M. Peng, G. Barnes,
W. Blanchard, M. Carter1, J. Chrzanowski,
L. Dudek, R. Ewig2, D. Gates, R. Hatcher,
R. Majeski, T. Jarboe2, S. Jardin, D. Johnson,
M. Kalish, R. Kaita, C. Kessel, H. Kugel,
B. McCormack, R. Maingi1, J. Manickam,
J. Menard, D. Mueller, B. Nelson1,
B. Nelson2, C. Neumeyer, G. Oliaro,
F. Paolletti3, R. Parsells, E. Perry,
N. Pomphrey, S. Ramakrishnan, R. Raman2,
G. Rewoldt, J. Robinson, A. L. Roquemore,
P. Ryan1, S. Sabbagh2, D. Swain1,
E. J. Synakowski, M. Viola, M. Williams, J. R. Wilson, and
the NSTX Team
Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2 University of Washington, Seattle, Washington, USA
3 Columbia University, New York, N.Y., USA
Abstract. The National Spherical Torus Experiment (NSTX) is being built
at PPPL to test the fusion physics principles for the ST concept at the MA
level. The NSTX nominal plasma parameters are
R0 = 85cm,
a = 67cm,
R/a 1.26,
BT = 3kG,
Ip = 1MA,
q95 = 14, elongation
2.2,
triangularity
0.5, and plasma pulse length of up to 5 sec. The
plasma heating / current drive (CD) tools are High Harmonic Fast Wave
(HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and
Coaxial Helicity Injection (CHI). Theoretical calculations predict that
NSTX should provide exciting possibilities for exploring a number of important
new physics regimes including very high plasma beta, naturally high plasma
elongation, high bootstrap current fraction, absolute magnetic well, and
high pressure driven sheared flow. In addition, the NSTX program plans to
explore fully non- inductive plasma start-up as well as a dispersive
scrape-off layer for heat and particle flux handling.
IAEA 2001