Full Paper
Contents  Return  Previous Page  Next Page  Index


Return To: Session ITERP1 - ITER EDA 1
Prev Page: (ITERP1/13) 2D Modelling and Assessment of Divertor Performance
Next Page: (ITERP1/15) Integration of Diagnostics into the ITER Machine


(ITERP1/14) Characterization of Disruption Phenomenology in ITER

R. Yoshino1, D. J. Campbell3, E. Frederickson4, N. Fujisawa2, R. Granetz5, O. Gruber6, T. C. Hender7, D. A. Humphreys9, N. Ivanov8, S. Jardin4, A. G. Kellman9, R. Lahaye9, J. Lister10, S. Mirnov11, A. W. Morris7, Y. Neyatani1, G. Pautasso6, F. W. Perkins2, S. Putvinski2, M. N. Rosenbluth2, N. Sauthoff4, S. Tokuda1, P. Taylor9, T. Taylor9, K. Yamazaki12, J. Wesley2

1 JAERI, Naka, Ibaraki, Japan
2 ITER Joint Central Team
3 The NET Team, Garching, Germany
4 PPPL, Princeton, NJ, USA
5 Plasma Fusion Center, MIT, MA, USA
6 Max-Planck IPP, Garching, Germany
7 Euratom/UKAEA, Culham, Abingdon, UK
8 Kurchatov Institute, Moscow, RF
9 General Atomics, San Diego, USA
10 CRPP, Lausanne, Switzerland
11 TRINITI, Moscow, Russian Federation
12 NIFS, Toki, Japan

Introduction.

Disruptions terminate tokamak discharges by thermal quench and current quench. Vertical instability, in-vessel halo currents and conversion of plasma current to runaway electron current typically follow. In ITER, disruptions and their consequences have implications for the design of the first wall, divertor targets and torus vacuum vessel. This paper summarizes disruption, halo current and runaway electron data compiled by the ITER Expert Group on Disruption, Plasma Control and MHD to support ITER design. Methods for avoiding disruptions or for mitigating their consequences have also been assessed. There is progress in the characterization and avoidance/effect-mitigation studies, and disruption avoidance and effect mitigation methods have been demonstrated in present experiments.

Read the full paper in PDF format.


IAEA 2001