D. R. Ernst, S. Batha1, M. Beer,
M. G. Bell, R. E. Bell, R. V. Budny, B. Coppi2,
W. Dorland3, P. C. Efthimion, T. S. Hahm,
G. W. Hammett, R. J. Hawryluk, K. W. Hill,
M. Kotschenreuther4, F. M. Levinton1, Z. Lin,
D. K. Mansfield, R. Nazikian, M. Porkolab2,
G. Rewoldt, S. D. Scott, E. J. Synakowski,
M. C. Zarnstorff and the TFTR Team
Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
1 Fusion Physics and Technology Inc., Torrance, California USA
2 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3 University of Maryland, College Park, Maryland, USA
4 Institute for Fusion Studies, University of Texas-Austin, Texas, USA
Abstract. Turbulence suppression by radial electric field shear
(
Er) is shown to be important in the enhanced confinement of
TFTR supershot plasmas. Simulations of supershot ion temperature
profiles are performed using an existing parameterization of transport due to
toroidal ion temperature gradient modes, extended to include suppression by
Er shear. New spectroscopic measurements of
Er differ
significantly from prior neoclassical estimates. Supershot temperature
profiles appear to be consistent with a criterion describing near-complete
turbulence suppression by intrinsically generated
Er shear. Helium
spoiling and xenon puffing experiments are simulated to illustrate the role of
Er shear in the confinement changes observed.
IAEA 2001