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Abstract

Experimental observations suggest that toroidal plasma rotation can play a crucial role in
determining the stability of a tokamak. Conventional MHD stability analysis ignores rotation.
Results from analytic and numerical analysis of a number of tokamak stability issues including
toroidal plasma rotation are reported. Depending on the plasma and rotation profiles, its net
effect can be either stabilizing or destabilizing; it also has substantial effect on the observed mode
structure. The localized interchange, the double kink mode, low   n resistive MHD modes and the
effect of sheared rotation on magnetic island structure are discussed.

1.ÊINTRODUCTION AND SUMMARY

The effect of rotation and rotational shear on the ideal and resistive MHD stabilities has
been studied. For the ideal MHD modes, a large rotation shear introduces Kelvin-Helmholtz drive
to localized plasma interchanges (Mercier modes) and can reduce the pressure gradient threshold
of the ideal localized interchange. However, a small rotation shear modifies the magnetic well and
when the rotational pressure gradient is larger than the kinetic pressure gradient, can have a
stabilizing effect on the localized interchange. For the double kink mode, rotation shear enhances
the side band coupling and provides further destabilization of the mode. A numerical study
utilizing the MARS code show that shear flow in general provides stabilization to resistive MHD
modes. A self-adjoint variational principle with a constraint relation is shown to be related to the
ideal MHD stability of the plasma. This affords easy adoption by present ideal MHD codes for
the study of general plasma equilibria with flow. Finally, the effect of rotational shear coupled
with the plasma viscosity can significantly affect the shape of the magnetic islands.

2.ÊANALYTIC STUDY

Plasma rotation  modifies the plasma equilibrium, providing an extra source of free energy
for known plasma instabilities to enhance their growth rate through the Kelvin-Helmholtz
process. These give rise to two different effects on plasma stability.  We first study the Kelvin-
Helmholtz modification to the Mercier criterion, by focusing on the region close to the rational
surface and assuming the plasma to be imparted with a small toroidal rotation but with a large
shearing rate. Frieman and RotenbergÕs variational principle [1] is applied to localized plasma
motion around the mode rational surface. Modification of the localized interchange stability
criterion is obtained by maximizing the growth rate. Rotational shear couples to both the Alfv�n
and sound waves, reducing the stabilizing effect of these waves. These two couplings give rise to
two different new terms in the modified localized interchange (Mercier) stability criterion

  
DIrot < 0  [2].

DIrot
= D1 + 1
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Here,   D1 < 0  is the interchange stability criterion for a general plasma equilibrium without flow
[3], A is a geometric factor due to plasma surface up-down asymmetry, C  is a geometric factor
related to the coupling of the sound wave with the Alfv�n wave, and M* is the Alfv�n wave
Mach number based on the shear flow. This criterion is a direct generalization of that of
Bondeson et al. [4] to the case of toroidal geometry and both of the two new terms indicate
destabilization. As pointed out by Bondeson et al. [5], the term proportional to C  is expected to
be strongly modified by kinetic effects and should result in Landau damping. Numerical evaluation
of the term     1 / 4(M*

2 +AM*4 )  indicates that in present day tokamaks, this effect is not large
enough to destabilize the interchange mode in the strongly rotating NCS region.

The above result, derived for general geometry, is incomplete and neglects the effect of the
centrifugal force. This modification to plasma equilibrium effect is studied by using the equations
of motion directly [6] for a low β  large aspect ratio circular tokamak. The centrifugal force,
which always points in the direction of the major radius; when averaged over the plasma surface
can act as a magnetic well. It modifies the localized Mercier stability condition to
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where s = (r / q)(∂ q / ∂ r),     αp = − (2R0q
2 / B2 )(∂P / ∂ r ) , and     DΩ = αp(r / R) [M

2 / (ηT + 1)]

    [(αΩ / αp )(ηT + 1 ) − 1+ M 2(ηT − 1)]. Here, M  is the Mach number of the toroidal rotation,

    αΩ = −(2R0q
2 / B2 )  (∂ρ R0

2Ω 2 / 2) / ∂ r  and ηT = (ρ∂T ) / (T∂ρ). Effects of finite toroidal
rotation on the Mercier criterion thus depends on the sign of DΩ . The centrifugal pressure
gradient will be stabilizing if    αΩ / αp ≥ [1 / (ηT + 1)] − M 2 [(ηT − 1) / (ηT + 1)] .

We turn our attention next to plasma global modes. Because the plasma rotation frequency
is smaller than the Alfv�n frequency, substantial modifications of the ideal MHD stability of the
tokamak only occurs in weak magnetic shear tokamak plasmas with a q  value close to being
rational. To facilitate analytic tractability, we specialize to a large aspect ratio circular plasma
with low β  and examine the double kink mode [7] which is localized at a local minimum in   q
between two rational surfaces. The analysis of Ref. [7] for the double kink in a large aspect ratio
circle is extended to include toroidal rotation. The result [6] from the minimization of δWrot
given by Waelbroeck [8] is

δ Wrot = δ WGHH + δ WΩ , (3)

where 
    
δWGHH ∝ (8 / 15)(m2 − 1)∆ 2+ (r / R) αp(1− 1 / q

min
2 ) − Λα2∆ 1/2,   δWΩ = DΩ + TΩ , and

    
TΩ = − ∆ 1/2Λ (αΩ

2 + 2αΩαp ) . Here m  is the poloidal mode number, ∆ = (1− nqmin / m) , Λ  is a
number which encapsulates information regarding the poloidal sideband harmonics m ±1. T h e
first two terms in     δWGHH  which contribute to the stability of the plasma are the effects due to
field-line bending, and the magnetic well. The third term which is destabilizing comes from the
effect of side band coupling. New effects appear in the two terms in δ WΩ . DΩ   (discussed above)
acts as a modification to the magnetic well. TΩ  enhances the side band coupling and is in general
destabilizing. Thus, the overall effect of rotation on the double kink mode is more destabilizing
than the effect on the interchange mode. The stability diagram in     αΩ − M 2  space for a case
where     δWGHH = 0,     r / R = 0.1,   αp = 0.1, and     q

2(qmin∆ / 2rminq)
1/2Λ = 0.5 is shown in Fig. 1.

3.ÊNUMERICAL STUDY

For the numerical study, the MHD equilibria are computed with the inclusion of sheared
toroidal rotation effects. The low mode number, MHD stability of these rotating equilibria is
determined by an extended version of the MARS code [9], which solves for the complex growth
rates of these modes. New effects included in this extended version of the MARS code include
inertial effects of the equilibrium and toroidal rotation shear within the plasma. Of these two
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FIG. 1.ÊThe effect of rotation on the double kink mode where     q
2(qmin∆ / 2rminq)

1/2∆ = 0.5 ,
    r / R = 0.1,     αp = 0.1.  At small   M 2 , only the region in which   αΩ < 0  shows a stabilizing effect.

effects, the stability of the plasma is affected most by the Doppler shift of the rotation frequency
between different flux surfaces due to rotational shear.

Results from the above analytic study indicates that the effect of rotation on ideal MHD
modes is generally destabilizing. Here we concentrate on resistive MHD modes. Another practical
reason for focusing on resistive modes is that relatively large resistivity can be utilized to attain
the required resolution around singular surfaces. The tokamak geometry is chosen with an aspect
ratio 2.5, elongation 1.8, triangularity 0.8. The q  profile is assumed to be of an NCS plasma with
q0 = 2.9, qmin = 1.9 , q95 = 5.1, and the qmin  is located at ψ = 0.5 , where ψ  is the normalized
flux function. βn  is assumed to range between 0. and 3.0. An external conducting wall is assumed
to be located at 1.3 times plasma radius. At low βn ≤ 0.5  the classical double tearing mode for
this plasma is readily stabilized by an increase in βn  or flow shear. At higher βn  the plasma
develops a resistive interchange and a global resistive double kink. The plasma is found to be close
to marginal stability around βn = 2.5 , depending on external wall distance and resistivity of the
plasma. Plasma shear flow can have a substantial stabilization effect on the resistive kink mode.
Close to marginal stability the resistive interchange and the external resistive kink may interact
with each other. For instance, with   βN = 2.5, and with the external wall at     rw = 1.325  plasma
radius, the growth rate (  γ τA , here   τA  is the Alfv�n transit time) of the resistive external kink is
reduced from   2 × 10−2  to   8.6 × 10−3 by sheared toroidal rotation with profile   Ω = Ω0(1− ψ )  and
the central Mach number Ω0 = 0.3. When the external wall distance is slightly reduced to

    rw = 1.3 , the growth rate of the mode is reduced to 1.36 ×10−3 , and the mode structure is
modified to exhibit peaking at the inner q = 2  surface characteristic of the resistive interchange.

4.ÊA SELF ADJOINT VARIATIONAL

Frieman and Rotenberg [1] showed that for an ideal plasma with flow   
r
v , the perturbed Lagrangian

displacement   
r
ξ  satisfies the equation of motion       ργ 2

r
ξ + 2 iργr

v ⋅
r
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ξ ); here ρ  is the mass

density,   
r
F  the force operator, and   

r
v ⋅

r
∇  is the Doppler frequency shift operator. This equation is

associated with a variational which determines the complex growth rate γ . Due to its non-self-
adjointness, in contrast to the MHD energy principle without flow, this variational principle has
not been used extensively. However, the real growth rate g , which is related to γ  through
γ = ± g − iλb , satisfies an auxiliary equation of motion
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with the constraint for the displacement   
r
ξ  as
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It is obvious from Eq. (4) that g2  satisfies a self-adjoint variational principle δ Wrot  which
is obtained by multiplying Eq. (4) with   

r
ξ * and integrating over the plasma volume. Also, Eq. (5)

is satisfied when g2  is minimized with respect to λb , while maximized with respect to   
r
ξ  in Eq.

(4). At marginal stability or for a plasma without flow, the   
r
ξ  determined by Eq. (4) coincides

with that given by the exact equation of motion. The constraint condition Eq. (5) determines the
observed rotation frequency. At this frequency, the displacement   

r
ξ  satisfies the requirement of

(angular) momentum balance. Since the method for finding the eigenvalues of self-adjoint energy
functionals for ideal MHD has been well established and incorporated into many ideal MHD
codes, the present formulation Eq. (5) could be easily incorporated into these codes to study the
ideal MHD stability of tokamaks with rotation.

5.ÊMAGNETIC ISLAND DEFORMATION DUE TO SHEAR FLOW AND VISCOSITY

In tokamaks, one of the criteria for identifying the presence of a magnetic island is the
characteristic 180 degrees phase shift of the temperature fluctuations across the magnetic island.
However, in a rotating tokamak, this phase shift has been observed to deviate from 180 degrees,
giving rise to an ÔÔanomalyÕÕ and difficulty in interpretation. This anomaly is explained
quantitatively in terms of the combined effect of plasma viscosity and flow shear across the
magnetic island. In two dimensional geometry, in which the magnetic field is represented by

  
r
B = r

z ×
r
∇ψ + Bz

r
z , and the flow velocity represented by   

r
V = r

z ×
r
∇U , the two dimensional plasma

equilibrium equation for the flux function ψ  is given by [10]

∆ψ + F(ψ ) − µ0ρ ′U ∆U = µ0ν ∇ψ ⋅ z × ∇∆U

(∇ψ )2 . (6)

Here, F(ψ ) = Bz ′Bz + µ0 ′H , with H  being the enthalpy function and ν  the kinematic
viscosity. By inspection, it is seen that the term on the right hand side of Eq. (6) gives rise to an
effect of distorting the plasma surface as shown in Fig. 1. The boundary condition or this
equation should reflect the coupling of magnetic fluctuations on neighboring singular flux
surfaces. An analytic estimate, which was verified by detailed extensive numerical solutions of
Eq. (6) shows that the phase shift anomaly is given by 8kν(dV / dr)wµ0G / δB2 , where k  is the
wavelength of the magnetic perturbation along the lengthwise direction of the magnetic island, w
is width of the magnetic island, dV / dr  is the gradient of  flow on the island separatrix and G  is a
quantity approximately 1. For a rotating island located at the outer resonant surface of a DIIIÐD
NCS plasma where R = 1.7  m, B0 = 2  T, with dV / dr = 10  km/s , δ B = 5 G, ν / ρ = 1 m2/s, an
island wave number of k = 7 /m gives rise to a phase shift anomaly of 20 degrees across the
magnetic island in agreement  with experimental observation.
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