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Abstract
A scenario for the L to H mode transition in tokamaks due to heat ux is presented. The

mechanism is stabilization of a strongly ballooning resistive edge mode by the ion diamagnetic
drift. We �nd that this stabilization may occure before that of poloidal rotation as a function
of increasing ion temperature gradient at the edge. We have also found a new type of toroidal
condensation instability which is found to dominate transport in the H-mode edge of tokamak
plasmas when the temperature gradient is steeper than the density gradient. A particle pinch
develops at the edge in agreement with experimental observations and the transport can be
dominated by the ion or electron channel.
Introduction

It is evident that the leading candidates for core transport, i.e. �i and trapped electron
modes are not able to produce the increase in transport coe�cients with radius observed in,
L modes in the edge region. In H mode1, on the otherhand, the observed particle pinch2 has
been di�cult to explain. It is thus essential to look for other transport mechanisms that may
dominate at the edge.In the present work we focus our interest on MHD type modes in the
collision dominated edge. The presence of an electrostatic resistive ballooning mode with an
ideal MHD growthrate was pointed out in Ref. 3. Such a mode occurs when the resistivity is
strong enough to prevent electron motion along the �eld lines.

In the present work we focus on e�ects of temperature gradients and perturbations. We
expect temperature gradients to be particularly important in transitions from L to H modes
since such transitions occur for strong plasma heating. We then expect a situation with � =
Ln=LT > 1 to develop. A generalization of the new resistive ballooning mode branch with MHD
growthrate found in Ref. 3 then leads to an FLR type stabilization at a critical �i. Since this
stabilization is likely to occur for a smaller �i than the stabilization by rotation, we will, in the
following, focus attention on the FLR type e�ects and, for simplicity, omit e�ects of rotation.
In the local limit this system is 2 dimensional due to collisions. It is very similar to the system
derived in Ref.4 where trapping made a part of the electrons two dimensional. In this system a
transition to an H-mode was obtained in predictive simulations due to FLR stabilization of the
�imode for large �5i . The stabilization of the resistive ballooning mode, however, occurs at much
smaller �i. In H-mode, �i and �e increase further at the edge due to the improved con�nement.
We expect that this would stabilize also the drift type resistive modes6;7. In the H-mode barrier
we �nd an MHD type (2d) mode which has the character of a toroidal condensation instability8.
This mode, which is symmetric in ion and electron dynamics, is not stabilized by large tempera-
ture gradients and gives a particle pinch. It has both real frequency and growthrate of the order
of the magnetic drift frequency and thus requires a careful treatment of the energy equation. For
the real eigenfrequency, the symmetry in ion and electron quantities is shown in a propagation
in the electron drift direction when the ion temperature gradient is steeper than the electron
temperature gradient and vice versa. The mode can be stabilized by parallel conductivity but
this e�ect is not as strong as for the resistive ballooning mode.
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Formulation
We consider a strongly resistive edge region where the parallel conductivity is weak. In this

regime the dynamics is essentially only perpendicular to the magnetic �eld. In H-mode the
driving instabilities have small growthrates and, as we will see, of the order of the magnetic drift
frequency. We will thus carefully retain magnetic curvature also in the energy equation. We
thus use the advanced uid formulation from Refs. 4 and 5 but add parallel conductivity.
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Eq. (1) de�nes the truncation of the uid hierarchy. The momentum equation leads to the
usual low frequency uid drifts
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where ~� = (ek � r)ek is curvature vector.
We consider a collision dominated case where collisions are strong enough to make the

parallel electron motion subdominant. This means that electromagnetic e�ects also should be
weak and we will for the low � edge completely ignore them. We will, however, include parallel
electron motion as a small term in order to see when it becomes important. We note that the
ion dynamics now is the same as for the toroidal �i mode in Ref.4. When collisions are strong
enough to completely eleminate parallel electron motion we obtain the same description for the
full electron population as for the trapped electrons in Ref. 4. This means that we in this,
local, limit can recover our system by taking the trapped fraction equal to 1 in Ref. 4, 5. In the
general case we may write the parallel electron current as

jke = n e De êk �
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De = Te=(0:5�eime) Temperature perturbations enter through curvature terms of the type
(7) and through jke. We introduce �e = LTe=Ln, LT = �T=dT=dr, Ln = �n=dndr We have

ignored k4kD
2
e terms since parallel electron motion is assumed to be subdominant. The ion

response is analogous to the electron response but without parallel thermal conductivity. Also
ion sound e�ects have been ignored in the following but can easily be added. In order to obtain

an eigenvalue equation we make the replacement k2k ! � 1
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@2

@�2
The modes we study here are

now of an MHD type and the eigenvalue equation is derived from the condition

r �~j = 0 (3)

We will only consider the strong ballooning regime and will thus not operate on !D with kk.
We then obtain an eigenvalue equation which is quartic in !.

So far no ordering has been assumed for �i, �e or �n. In a uid treatment we must always
assume k2?�

2
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Edge Ordering
We will now introduce a speci�c edge ordering. The most general edge ordering is �n � 1

which is almost always ful�lled. This separates the frequencies into \High" frequency of � !�
and low frequency � !D . For strong heating !�T will de�ne the highest drift frequency in the
system. When !�iT becomes comparable to MHD the system goes over to H mode for which
 � MHD. As it turns out the FLR stabilization due to !�iT will also be e�ective on resistive
drift modes with ! � !� but a mode with ! � !D will remain. This mode corresponds to the
trapped-electron-etai mode in the enhanced con�nement state of Ref.5 and is mathematically
identical if we assume all electrons to be trapped in Ref.5 and take the local limit in the present
work.
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For the resistive ballooning mode, with growthrate of the order of the interchange frequency
we ignore the electron temperature perturbations and gradient. Then using the ordering of �n
we reduce the relation to second order in !. By making a strong ballooning approximation we
can then derive the dispersion relation
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can easily include electron temperature gradients by adding ��e to �. The expression for the
damping due to thermal conduction, D however gets considerably more complicated.
The strong ballooning approximation can easily be ful�lled for edge parameters. The fastest
growing mode is obtained at k��s = 0:15. Below this value the conductivity damping (shear
damping) is large and above it the FLR stabilization dominates. When we include the electron
temperature gradient, complete FLR stabilisation typically occurs at �i between 3 and 5. A
stabilisation due to neoclasical poloidal rotation v� = �iv� can be estimated at
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Here we balanced the shearing rate with the growthrate, taking LT i as the shearing length
scale. For �n ' k2��

2

i this threshold is typically around 8. We thus expect the FLR stabilisation
to occur before that of sheared rotation in a scenario where the transition is caused by increased
heat ow.
We note that a similar transition was previously obtained in a system of eta-i modes and trapped
electron modes in predictive transport simulations. The growthrate (local) in that system was
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where � = 1� ft+ k2�2s and ft is the fraction of trapped electrons. For ft = 0:65 the transition
ocurred at �i = 15. For ft = 1 we recover the local limit of our edge mode for large eta. We
may thus unify the descriptions of core modes and edge modes by interpreting ft as the fraction
of electrons that for various reasons, i.e. trapping, collisions, induction, do not move along the
magnetic �eld lines. The H-mode transition in the drift wave system gave an H-factor of about
2.5.

In the enhanced con�nement state we have eliminated modes with growthrates of the order
of the diamagnetic drift frequency. We may, however, still have modes with growthrate of the
order of the magnetic drift frequency. This is the reason why we have kept all the magnetic drift
terms in our uid description. Thus, while our general system is of fourth order in ! we can
now ignore the two highest orders thus again obtaining a quadratic dispersion relation in the
strong ballooning limit. Keeping the conductivity damping term from the analytical solution of
the eigenvalue problem we obtain.
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The expression for D is quite complicated but for the edge ordering we are using it is, in
the strong balloning case, considerably smaller than !D. Its is thus relevant and interesting to
consider the local limit where D is ignored.

In the local limit the solution is symmetric in electron and ion quantities. The mode thus
propagates in the electron drift direction when �i > �e and vice versa if Te = Ti. We also note
that a necessary condition for instability is:
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In the local limit jke � 0 and r � ~V�i � 0. Eq. (3) then reduces to the condition

�p = 0 (10)

The instability is thus of the condensation type. It can be seen as a usual thermal instability
where, due to the condition � > 1, the electron convective temperature perturbation through
the divergence of the diamagnetic ux gives the dominant contribution to �n. This relation
replaces the Boltzmann equation for electrons in the eta-i mode and thus makes � inversely
proportional to �e in the ion feedback loop and to �i in the electron feedback loop. This is why
�i and �e appear in the denominators of � and � and this is why a further increase in �i and/or
�e does not FLR stabilize this mode. We also note that r � ~q� gives a uid resonance for the
temperature perturbation. In this way it gives the necessary phase shift for instability (with-
out it one ! factors out). The inclusion ofr�~q� is thus necessary for the condensation instability.

Transport
We may use the transport coe�cients from Ref. 4,5 where we take the trapped fraction,

ft = 1. The e�ective di�usion coe�cients are obtained by using quasilinear theory, Ficks law
and by balancing the growthrate with the E�B convective nonlinearity for the saturation level.
Using the present ordering and taking � � 1 we have
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N is de�ned as the magnitude squared of the denominator of the electron density response.
It is
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Since N is always positive and since j � j< 1 for positive � we always have a particle pinch.
The thermal uxes are, however, generally outward.

We believe that the present mode has a high potential for explaining several experimental
observations in H-mode in addition to the particle pinch. In particular the thermal di�usion can
be carried mainly by the ion or electron channel depending on the relative strength of electron
and ion heating. The damping D also supports an improvement in con�nement with current
and ion mass2. We also note that the assumption of large � means that the L to H mode tran-
sition is triggered by a strong heat ow. The present results again emphasizes the importance
of toroidal e�ects and the perpendicular dynamics. Similar phenomena may occur in widely
di�erent parameter regimes where parallel dynamics can be impeded by very di�erent physics
e.g. particle trapping, electromagnetic e�ects or resistivity.
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