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Abstract

THEORY FOR ANGULAR MOMENTUM GENERATION AND THE PROBLEM OF POLOIDAL
ROTATION.

Results of the investigation of two basic problems involving the rotation of magnetically con�ned
plasmas are presented. In the toroidal direction, signi�cant plasma rotation has been produced in plasmas
subject to ion cyclotron RF heating, in the absence of any evident direct angular momentum source. The
theoretical model proposes the excitation of two classes of intrinsic magnetosonic whistler-like modes. The
�rst, \contained" modes, has toroidal momentum in the same direction as that of the plasma current and
is radially localized in the outer region of the plasma column, r > 0:4a. The other class is nonlocal and
convects radially outwards, carrying the angular momentum in the counter-current direction to particles
near the edge of the plasma column that are then scattered out of the plasma. Thus, rotation of the
central part of the plasma column can be induced, with a velocity radial pro�le that is consistent with the
anomalous transport of angular momentum resulting from the additional excitation of velocity-gradient-
driven modes. The question of poloidal rotation and the evolution of poloidal 
ows in a torus is also
examined. Results from the numerical simulation of MHD and two-
uid plasmas shows that compressional
and other e�ects are important in the plasma response to rotation and provide an e�ective mechanism
for damping poloidal 
ows in a torus on relatively fast time scales. The two-
uid response to rotation
can be di�erent than in MHD, due to di�erences in the symmetries of the equations, but they experience
similar break-up of the poloidal rotation.

1. TOROIDAL ANGULAR MOMENTUM GENERATION

1.1. Symmetry breaking internal modes and generation of toroidal torque

We consider the process for the generation of torque on a plasma from balanced ICRF
inputs[1, 2] to be related to the existence of a special class of magnetosonic-whistler modes at
frequencies of the order of the ion cyclotron frequency and above, that can be excited by the
injected waves. This class of modes is characterized by a strong asymmetry in the direction of
poloidal propagation in that there are two types of modes, one convective and one standing. The
contained modes, which propagate around magnetic 
ux surfaces but form standing modes in
the radial direction, can be con�ned within a narrow radial layer located in the outer region of
the plasma column[3]. For a realistic range of plasma parameters, including those of the Alcator
C-Mod experiments, only modes with a poloidal phase velocity in the ion cyclotron direction
are radially con�ned. This �xes the sign of their poloidal mode number m.

Radially con�ned modes can deposit their angular momentum on the plasma background
as they damp against the plasma. In contrast, modes having the opposite phase velocity convect
outward toward the edge of the plasma column, scattering particles that have angular momentum
in the counter-current direction. In turn, these particles can lose their angular momentum to
the outer viscous layer of the plasma column. When the current is increased, these particles
are better con�ned and the rate of loss of angular momentum to the outer region decreases.
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This is consistent with the experimental observation in the Alcator C-Mod experiment, that the
induced plasma rotation diminishes as the plasma current is increased.

It is di�cult to �nd contained modes that propagate primarily along the magnetic �eld
(i.e., with large kk) in the range of parameters that characterize the experiments. For modes
propagating nearly perpendicular to �eld, the direction of the toroidal phase velocity is correlated
with that of the poloidal phase velocity due to the magnetic �eld geometry, through the condition
n0 ' m=q. Here q is the inverse rotational transform, which in the limit of a cylindrical plasma
is given by q = rB�=R0B�. The resulting net torque applied to the plasma is in the direction
of the plasma current, consistent with experimental observations. Through the sign of q, the
toroidal mode number for these modes changes sign if the current is reversed. The analysis
therefore focuses on modes with nearly perpendicular propagation, k2k / (1� n0q=m)2 � 1.

To display the di�erent features of contained modes from those of the uncon�nedmagnetosonic-
whistler waves, we consider the form of the e�ective potential Ve� for the two di�erent types of
modes. The radial eigenfunction of the standing modes is given by the equation

d2 ~Bk

dr2
� Ve�(r; !) ~Bk ' 0 (1)

where

Ve� ' �
!2

v2A + k2kD
2
H

�
k?!

r(v2A + k2kD
2
H)

d

dr
(DH) + k2?; (2)

vA is the Alfv�en velocity, and DH = B=�0ne. The wave vector components kk and k? can be
approximated as k? ' k� = �m=r and kk ' �(m=Rq)(1 � n0q=m), where m and n0 are the
poloidal and toroidal mode numbers, respectively.

The contained mode frequency, if positive, is roughly ! ' jk?jvA = jmjvA=r0, where r0 is
the mode localization radius. For typical experimental parameters contained modes exist only
for m positive; the poloidal phase velocity is in the ion cyclotron direction. If we consider the
\quasi-
ute" limit where (1�n0q=m)2 � 1 and k2kD

2
H � v2A, that is k

2

kd
2
i � 1 where di � c=!pi,

the modes are found to be clustered around a nearly unique radial surface r = r0 which is
determined by the density pro�le and the parameter di=a, a being the radius of the plasma
column.

For plasma parameters typical of the Alcator C-Mod machine[4], r0 ' 0:7a. In Fig. 1a
the e�ective potential is shown for the two cases m = 6, n0 = 3 and m = �6, n0 = �3. The
corresponding frequencies are 2.03 
i and 1.66 
i, respectively.

Thus for quasi-
ute modes n0 ' m=q(r0) and the propagation along ê� is correlated in sign
to that in the poloidal direction. There are also modes with n0=m > 0 that are not of the 
ute
type, in the sense that j1� n0q=mj >

� 1, and modes with n0=m < 0 that are never of the 
ute
type. For su�ciently high frequencies, non-
ute modes are excluded from only a relatively small
region close to the plasma core. In the low frequency regime, quasi-
ute modes, which have a
distinctive dependence of their radial eigenmodes on the component of propagation parallel to
the equilibrium magnetic �eld, are easier to excite.

The origin of the asymmetry in poloidal propagation is the Hall term in the Ohm's law,
~E + ~ui � ~B = ~J � ~B=en. As shown in Ref. [3], signi�cant propagation along the equilibrium
magnetic �eld tends to reduce the asymmetry between modes with opposite phase velocities
and reduces the importance of the Hall e�ect in shaping the mode solutions. As a result, the
asymmetry in the radial mode structure with respect to the direction of the poloidal phase
velocity is greatest for modes which propagate nearly perpendicular to the equilibrium magnetic
�eld.
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FIG. 1. a) E�ective potential Ve� for modes propagating in the ion cyclotron (m > 0, solid line) and
electron cyclotron directions (m < 0, dashed line). b) Radial pro�le of the toroidal velocity in the Alcator
C-Mod experiments, from [2].

1.2. Angular momentum generation and transport

Let E be the RF energy acquired by the contained modes. Then we can argue that these
modes will have toroidal angular momentum

L� ' En0=!; (3)

where n0 is the toroidal mode number and the frequency is roughly ! ' jk?jvA = jmjvA=r0,
with n0 ' m=q. For the plasma parameters of the Alcator C-Mod experiments, contained modes
exist only for m > 0, so that the poloidal phase velocity is in the ion cyclotron direction. The
toroidal phase velocity is in the same direction as the equilibrium toroidal current. For positive
q, B�=B� > 0, this is also the direction of the toroidal �eld.

For a given toroidal velocity pro�le v�(r), the plasma angular momentum is LP� = V R0mi

hniv�i, where h i denotes a volume average, R0 is the major radius, and V the plasma volume.
Characteristic parameters for the Alcator C-Mod experiments are a ' 0:22 m, R0 ' 0:67 m,
n0 ' 1020 m�3, B0 ' 5:3 T, and q(r0) ' 2, where the radius of localization is r0 ' 0:7 a. The
ellipticity is � <

� 1:8. During ICRF heating, the core density increases up to 2:5 � 1020 m�3.
For a deuterium plasma, the Alfv�en velocity is vA ' 8200 km/s. The peak plasma temperature
is about 2 keV and the deuterium thermal velocity is about 450 km/s. For a peak rotation
velocity of 100 km/s, excluding the diamagnetic velocity contribution, with a sharply peaked
velocity pro�le as shown in Fig. 1b, the angular momentum is estimated to be LP� ' �L10

�3

J-s, where �L <
� 1.

The loss rate of angular momentum is then LP� =�L ' �L10
�2(10�1=�L) J where �L is the

angular momentum loss time. On the other hand, the rate of supply of angular momentum to
contained modes can be estimated as �WPW =(qvA=r0), where PW is the total ICRF power and
�W is a small parameter. Therefore for PW ' 2 MW, this quantity is about 2�W J and we can
see that �W can be adequately small.

The transport of angular momentum is observed to be anomalous. Furthermore, induced
rotation is seen only in regimes where the anomalous ion thermal energy transport is depressed.
Thus we argue that when ion temperature gradient driven modes are strongly excited, for
example before the H-mode regime is established, the 
ux of angular momentum is given by

�J ' �Dth

i

�
dJ

dr
+
dTi
dr

Ron

vw

�
; (4)
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where J is the angular momentum density, Dth
i the e�ective di�usion coe�cient produced by ion

temperature gradient driven modes that also carry angular momentum outwards [5], and vw is
a characteristic wave velocity. When the ion thermal transport is large, the angular momentum
that is deposited in the outer region of the plasma column does not induce signi�cant plasma
rotation. In contrast, when a thermal transport barrier forms, as in the case of the H-mode
regime, a net radial in
ux of angular momentum is produced at the edge of the region that is
not a�ected by contained modes. In the absence of outward transport, unrealistically peaked
pro�les of J would develop. It is therefore reasonable to assume that velocity gradient driven
modes are excited. If the gradient of J is limited by the e�ects of such modes, then

�JvJ �DJ
dJ

dr
' 0; (5)

where the term proportional to DJ indicates the transport of angular momentum resulting from
the velocity gradient driven modes. Here, vJ vanishes at r = 0 and is �nite at r = rQ, the edge
of the quiescent region that is una�ected by contained modes. Thus Eq. (5) can produce the
desired pro�les.

1.3. Experimental observations

Toroidal rotation induced by balanced ICRF heating has been observed in experiments
carried out by the Alcator C-Mod machine [2]. There vi� for the deuteron species may be
estimated as

Er �
1

c
vi�B� �

Ti
nie

dni
dr

� �T
1

e

dTi
dr

' 0; (6)

where �T � 1, recognizing that the component nidTi=dr of the pressure gradient is nearly
compensated by a poloidal velocity, according to neoclassical transport theory. The impurity
(argon) poloidal velocity vI� was found to be below the threshold of observation. Thus we
can argue that the bulk ion diamagnetic velocity contributed considerably less than half of the
toroidal 
ow velocity.

Similar experiments have been performed on the JET machine[1], and observations of
induced rotation in the direction of the plasma current were attributed to the diamagnetic
velocity. The radial pro�le of the velocities was not measured, but the line average of the

uid 
ow at 20{30 cm below the magnetic axis indicated a toroidal velocity of up to 50 km/s.
During ICRH and while H-mode con�nement was maintained, the toroidal 
ow of the plasma
accelerated at a uniform rate of 15 km/s2. The plasma parameters for these experiments were
a ' 0:95 m, R0 ' 2:95 m, B0 ' 2:8 T, I ' 3 MA and Zeff ' 2:5.

Finally, we point out that direct experimental evidence for the existence of contained
modes produced by an injected population of high energy particles appears to have been provided
recently by the START machine[6].

2. POLOIDAL ROTATION

Radial electric �elds are also associated with plasma rotation in the poloidal direction.
Due to the lack of symmetry in this direction, detailed theoretical understanding is di�cult.
Nevertheless, both theory and experiment indicate that poloidal rotation is directly related to
fundamental questions of plasma con�nement [7][8]. Analyses carried out so far, e.g., [9][10][11],
have neglected the full e�ects of compressibility and toroidal geometry, by using aspect ratio
expansion and a local approximation in the radial coordinate. The present study considers the
behavior of 
uid models, using the the 3D, toroidal initial value code, MH3D-T [12], and �nds
that these factors are signi�cant.

Only strict toroidal axisymmetry is considered here, as a �rst approximation. The time
scales of interest are shorter than the collisional ones on which damping is to be expected
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FIG. 2. Formation of a stationary poloidally asymmetric density perturbation in an MHD torus with
R=a = 20, a) Initial m = 1 density perturbation, �n=n <

� 0:1, with a small v�( ) > 0 (counterclockwise)
motion applied to a stationary equilibrium. Equally spaced contours in a vertical cross section, with
positive values are solid lines, negative dashed. The axis of symmetry is to the left. b) Density and c)
temperature perturbations balance in the �rst steady state, as jvj ! 0. Apparent poloidal motion of the
density blob ceases by � 440�A, but v� continues to decay. After a thermal �k is applied to this state, the
d) density and temperature (similar contours, not shown) nearly return to the original symmetric state,
j�n=nj < 0:004 relative to the initial equilibrium, j�T=T j smaller.

(e.g., ion viscosity and neoclassical e�ects). Some e�ects of resistivity are considered, since it is
intimately connected to 
uid rotation [13].

2.1. Equilibrium

The basic picture of rotational equilibrium and stability in a torus is as follows. An ideal
MHD equilibrium exists with temperature T , I = RB� , and electrostatic potential � as functions

of 
ux  , for special velocity pro�les v = (K( )=n)B +R
( )�̂, where K and 
 are arbitrary
functions of 
ux. Resistivity allows P�rsch-Schl�uter convective cells with a 
ow toward the
outside of the torus along the midplane and an associated, enhanced density radial out
ow.
Resistivity also causes an acceleration of existing poloidal plasma motion [13], up to a limiting
value related to the diamagnetic or sound speeds, depending on the plasma model used, unless
damped by viscosity or other dissipation. In practice, these processes are found to be strongly
a�ected by compressional and other e�ects, not usually included in the theoretical analysis.

When the plasma evolves from a poloidally rotating state, the plasma density and the (ion)
temperature can remain as poloidally asymmetric functions of space as the poloidal velocity
goes to zero, particularly at large aspect ratio. The asymmetries may then decay on longer,
collisional time scales. Steady state in MHD (without neoclassical e�ects) requires that the
pressure be a function of 
ux, which implies that the density and temperature perturbations
must balance. Poloidally asymmetric densities and ion temperatures can still occur when the
electron temperature is assumed to remain close to a 
ux function, due to the rapid electron
thermal equilibration along the magnetic �eld lines.

In a simple 
ux-averaged surface picture, which neglects most radial e�ects, poloidal
plasma 
ows are directly related to poloidally asymmetric variations of the plasma density, which
act as both response and drive [11]. The unstable density perturbations are basically m = 1
and unbalanced across the horizontal midplane. Figure 2 illustrates a poloidally asymmetric
steady state resulting from an initial m = 1 density perturbation and a small poloidal velocity,
for R=a = 20. Applying a large thermal �k that rapidly equalizes the temperature on a 
ux
surface then causes the asymmetric stationary state to evolve to a second stationary state with
poloidal symmetry, close to the original state, after passing through a transient rotating phase.

In most cases of interest, only Te has a rapid isotropization along the magnetic �eld lines.
Considering the explicit thermal conductivity to represent the part that operates in addition to
the sound and Alfv�en wave e�ects that are always present in the 
uid equations, the two-
uid
results show that nonzero electron �ke with ion �ki = 0 is closer to the MHD case with total
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�k = 0 than to �k � �ke, for time scales shorter than the ion-ion collision time. Thus the
MHD-consistent assumption that the total temperature T � p=n remain close to a 
ux function
gives an arti�cially strong constraint on the pressure.

A further equilibrium result is that the resistively driven radial density out
ow in a torus,
the sum of the classical and P�rsh-Schl�uter 
ows, can reverse to a density in
ow under para-
magnetic conditions, i.e., when the induced poloidal J� is positive so that its contribution to
the equilibrium radial pressure gradient, J � B = rp is positive, J� � B� > 0 (the toroidal
current, whose contribution J� �B� is always negative, is balanced by an applied toroidal elec-
tric �eld E� = �kJ� and does not contribute to radial 
ow). A large positive J�, for example,
occurs in high �eld experiments. The neoclassical PS di�usion enhancement is proportional to
the pressure gradient contribution from J�. A density in
ow is readily demonstrated by MHD
and two-
uid simulation at low beta. It is accompanied by a similar temperature in
ow. The
in
ow is continuous and must be balanced by an anomalous outward di�usion in equilibrium.
In practice, the radial di�usion due to realistic collisional resistivities is small, except perhaps
near the plasma edge.

2.2. Toroidal equilibrium 
ows

Tests of the MHD steady state with applied toroidal or parallel 
ows show that impulses of
toroidal momentum are subject to compressional e�ects that require dissipation to suppress. In
general, oscillations in the perpendicular (? �) velocity are triggered, which rapidly degenerate
into �ne scales unless they are damped by su�ciently strong dissipatiion (�, �?, etc.) Applying
a velocity perturbation v� or vk of the expected steady state functional form to a stationary
MHD equilibrium causes an outward (large R) shift of the plasma mass due to the centrifugal
e�ects of the v� motion. The reaction and compressional forces produced by the encounter with
the �xed plasma boundary produces poloidal and radial velocity components, which begin to
oscillate radially. The oscillations propagate radially outward over the rotating region. The
orientation and convective cell structure are reminiscent of the m = 1 P�rsh-Schl�uter convective
cells, but are more radially localized and oscillate in sign. (The oscillations of the poloidal v� are
oriented vertically and those in v , related by v?� ' ru� �̂, horizontally.) At small resistivity,
they rapidly degenerate into small scales in space and time, on an MHD time scale. Only in the
presence of su�cient dissipation, such as resistivity or perpendicular (thermal) di�usion, do the
velocity oscillations remain macroscopic in scale and damp, leaving steady state plasma 
ows
of the expected form. The oscillatory nature of transient poloidal and toroidal 
ows in a torus,
due to compressional e�ects, is a characteristic feature.

2.3. Poloidal acceleration

While spontaneous resistive, \Stringer spin-up" acceleration of the poloidal plasma velocity
exists [13][14], due to the typically small values of resistivity it is usually limited to the plasma
edge and easily damped by viscosity and other dissipative processes. Simulation shows that
compressional e�ects are even more e�ective in limiting spin-up, on MHD time scales. Typically,
an unbalanced density perturbation rotates convectively around the outside of the torus until
the positive density approaches the inboard side of the torus, where it stalls on the inboard
midplane as the poloidal velocity reverses, and then gradually breaks up into smaller scales.
This occurs even at relatively large aspect ratio, R=a = 20. At the smaller aspect ratios typical
of experiments, the compressional component of the velocity can couple strongly to an m =
2 harmonic. An acceleration of the initial convective motion of the density with increasing
resistivity can be demonstrated, but has little e�ect on the �nal result, since the motion of the
density soon ceases to be convective. A qualitatively similar scenario is shown in Fig. 3.

A previous MHD numerical simulation clearly demonstrated resistive Stringer spin-up to
near the sound speed [14]. In that case, however, the magnetic �eld was static, @B=@t = 0.
The simulation also saw the oscillatory e�ects of the magnetostatic geodesic acoustic mode [15]
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FIG. 3. Break-up and decay of poloidal rotation driven by density in two-
uids and smaller aspect ratio.
Initial MHD equilibrium and density perturbation as in Fig. 2a, except R=a = 4 and initial vi� = 0.
a) Perturbed density and b) vi� contours and pro�les at t = 120�A, after initial transients disappear.
Early rotation velocities are on the order of jvi�j � jv�ij. c) and d) Same at t = 520�A, when coherent
structure breaks up and rotation disappears. The lower frames show corresponding pro�les, the right
half along � = 0, the outer (right) midplane, and the left half along � = �=2, the upper vertical axis.

due to the ~Er�B� velocity. In the non-magnetostatic case, this mode is often overshadowed by
oscillations associated with the compressional term in the velocity.

2.4. Fluid equation symmetries

A two-
uid model includes the ion gyroviscous stress tensor, the Hall term and electron
pressure gradient in Ohm's law. Separate density and temperature evolution and di�erent ion
and electron parallel thermal conductivities are allowed. For the poloidal rotation problem, some
di�erences from MHD depend solely on the magnitude of the diamagnetic drifts relative to the
applied rotation. Others depend on the breaking of the symmetry of the MHD equations in (�,
�), in a toroidal geometry. Simulation results generally con�rm that the two-
uid steady state
has ion 
uid velocity vi� = 0, in agreement with [9].

In toroidal geometry, the MHD system of equations preserves certain symmetries in the
dependence of the fundamental MHD variables on the two natural angles, in the sense that each
scalar variable has a single well-de�ned sign, in the relation f(�; �) = �f(��;��). A nonrotating
MHD equilibrium, and also typical MHD normal mode perturbations of that equilibrium, has
a speci�c set of signs that de�nes the symmetry of the system. For example, in equilibrium
and for a typical reconnecting mode, the poloidal magnetic 
ux  has a plus sign, while the
velcity stream function u has a negative sign. Toroidal rotation breaks this symmetry, since the
globally rotating part of v� has positive symmetry, but typical perturbations from a stationary
MHD equilibrium would have negative symmetry. For a toroidally axisymmetric equilibrium
this symmetry breaking makes no di�erence, since @=@� = 0. For poloidal rotation, however,
the opposite symmetry terms are signi�cant.

The major two 
uid terms all have opposite symmetry from the MHD terms to which
they add, so that the symmetry-preserving properties of the equations are broken. This makes
certain marginally stable MHD perturbations, which would be stationary in the absence of an
initial applied velocity `kick' in MHD, naturally rotating in two-
uids. An important potential
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example is a poloidally asymmetric density perturbation that is symmetric about the horizontal
midplane, which describes the results of pellet injection along the midplane. Such a density
accumulation has a natural poloidal rotation in two-
uids. In practice, the importance of the
rotation depends on the relative time scales for pellet ablation and parallel symmetrization,
compared to the local diamagnetic velocities.

As an example, the density perturbation case of Fig. 3. is repeated for two-
uids at
smaller aspect ratio, R=a = 4. Here the initial condition on the poloidal velocity is zero applied
rotation, vi� = 0. The equilibrium Te = Ti, with a nonzero electron thermal conductivity �ke,
but ion �ki = 0. A stationary nonrotating state is now approached by the breaking up of
the coherent density and poloidal rotation structure rather than by balancing �n and �Ti. In
two-
uids, the main density perturbation spontaneously moves o� the midplane and, at smaller
aspect ratio, makes a primarily non-convective poloidal excursion around the magnetic axis, as a
compressionalm = 2 mode is excited (not shown), before settling back near the starting point on
the inboard midplane. It gradually breaks up radially and the poloidal velocity develops radial
oscillations and decays in magnitude (Fig. 3d). This type of decay is typical when random initial
density perturbations or poloidal rotation pro�les are applied, in two-
uids and MHD.
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