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Abstract
A number of edge plasma physics phenomena are considered to determine tokamak performance: transport
barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be
causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and
particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited
by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of
core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper
examines these phenomena and their interaction.

1. INTRODUCTION
The H-mode is  the most developed mode of high confinement tokamak operation. Fundamental
to its success  is the transport barrier which is formed close to the plasma edge; this paper is
concerned with the physics of this barrier. We describe MHD instabilities associated with the
steep pressure gradient region: in particular the peeling mode, driven by current density, and the
ballooning mode, driven by pressure gradient. This suggests a model for edge localised instabilities
(ELMs) and an explanation for the difficulty experienced in achieving H-mode in low density
COMPASS-D discharges.   We then apply the analytic ballooning theory techniques developed
for this MHD study to analyse edge drift mode structures, and show that these can, in principle,
drive a plasma flow over a region ~ρ*

2/3a, where ρ* is the ion Larmor radius, normalised to the
plasma minor radius a. Combining this with the assumption that the flow suppresses the plasma
turbulence we obtain an expression for the transport barrier width which, together with the limit
set on the pressure gradient by the MHD instabilities, leads to a prediction for the temperature
pedestal. We close with a discussion of future work.

2. EDGE LOCALISED INSTABILITIES
Two edge-localised instabilities are discussed in the literature: the peeling mode, driven by edge
current density [1] and the ballooning mode driven by pressure gradient [2]. The peeling mode is
highly localised at the plasma surface, while the ballooning mode spans many rational surfaces
and, as we shall see, can be relatively extended. We first review each of these instabilities in turn.
The peeling mode has been addressed assuming a limiter geometry, when it is found to be most
dangerous when there is a rational surface just outside the plasma. In this case, the stabilising
influence of magnetic perturbations in the vacuum can be neglected and a necessary stability
criterion for the mode is [3]:

1 − 4DM > 1 +
1

2π ′ q 

J ||B

R2 Bp
3∫  dl (1)

where DM is the Mercier coefficient; DM<1/4 is the Mercier criterion for stability. We have
defined J|| as the current density parallel to the magnetic field B, Bp is the poloidal field, R is the
major radius, dl is the poloidal arc length element, q is the safety factor and a prime denotes
differentiation with respect to the poloidal flux, ψ; all quantities are evaluated at the plasma
surface. Recalling that DM is proportional to the pressure gradient, Eq (1) demonstrates that this
instability is driven by current density, and stabilised by pressure gradient.
The ballooning mode theory was originally developed for high toroidal mode number n, pressure-
driven instabilities in the core and, in the limit that the toroidal mode number n→∞, stability is
determined by an ordinary differential equation along the magnetic field line: the ballooning
equation [2]. This provides a value for a ‘local’ mode frequency as an eigenvalue which is a
function of the poloidal flux, ie ω2(ψ). Of course in practice n is not infinite, and then the mode
has a finite radial extent. A consistent ordering is developed making use of the different radial
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length scales associated with the equilibrium variation, characterised by ω2(ψ), and the distance
between mode rational surfaces, 1/nq ′. In the region where ψ=ψ0, with ∂ω2/∂ψ|ψ=ψ0=0 (ie the most
unstable region, and therefore the one of interest), the mode is localised, spanning ~n1/2 rational
surfaces. This permits the radial mode structure to be evaluated by developing an expansion in
powers of n-1/2, resulting in a Gaussian radial mode structure and an expression for the true mode
frequency, Ω2= ω2(ψ0)+O(n-1), where the finite n corrections are stabilising. Thus the ballooning
mode properties can be obtained from the leading order ballooning equation, without the need to
address the higher order theory. However, the applicability of the leading order equation relies on
the existence of the higher order theory.
Here we are interested in analysing ballooning mode stability at the plasma edge, in the vicinity
of the H-mode transport barrier. Indeed, this is often the most interesting place to investigate
ballooning modes because this region will have the steepest pressure gradient. In such situations
∂ω2/∂ψ will not be zero in general and the conventional higher order ballooning theory is invalid;
a new ballooning theory has been developed for this situation. In Section 4 we shall illustrate an
application of this theory to study edge drift-ballooning modes; the application to ideal MHD
ballooning modes is covered elsewhere in the literature [3], so here we simply state the results of
this modified theory. Following an expansion in n-1/3, the key results are:
• the leading order ballooning equation is identical to the conventional ballooning equation,

which can be used to derive ω2(ψ,k), where k is the ballooning phase angle;
• as with conventional ballooning theory, k is chosen to maximise the instability;
• the radial mode structure is the tail of an Airy function, spanning ~n1/3 rational surfaces;
• the true mode frequency is related to the local value by Ω2= ω2(ψ0)+O(n-2/3)
Thus, to leading order the conventional ballooning theory can be used to estimate ballooning
stability at the plasma edge, although the radial mode structure and finite n corrections are
different.
Ballooning stability is usually expressed in terms of the s–α diagram where, for a large aspect
ratio, circular cross section equilibrium

α = −
2µ0Rq 2

B2

dp

dr
                                  s =

r

q

dq

dr
= 2 1 −

J||

J||

 

 
  

 
 (2)

Here r is the minor radius and p is the plasma pressure. For this equilibrium, the shear is related to
the plasma current density, J||, as shown in Eq (2), where <J||> is the average current density (ie
plasma current divided by cross-section area). Using this relation we can combine the ballooning
and peeling mode stability criteria on a single diagram as shown schematically in Fig 1.
Figure 1 provides a picture of both the density threshold for the L-H transition observed in
COMPASS-D [4] and ELMs. Thus, in a large aspect ratio, shifted circle equilibrium, the peeling
mode criterion [Eq (1)] can be written in the form:
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Here ∆′ is the radial derivative of the Shafranov shift, and this contribution arises due to the
Pfirsch-Schlüter part of the parallel current (note this is stabilising) and ft is the trapped particle
fraction; the destabilising bootstrap current term is that proportional to ft, while the Mercier
coefficient reduces to the first term on the left-hand side. Only the driven current (eg Ohmic)
appears on the right-hand side of Eq (3). In the banana collisionality regime ft~√ε and the
bootstrap current term dominates the left hand side so that the peeling mode is always unstable.

J ||

J ||

STABLE
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At higher collisionality ft→0 and then the peeling mode can be stabilised by raising α, eg by
increasing the heating power. If one adopts the assumption that it is necessary to stabilise the
peeling mode in order to make a transition from L to H-mode, then this simple picture suggests
that it is not possible to enter the H-mode at low collisionality. This provides an explanation of
the density threshold observed on COMPASS-D: if the density is sufficiently low that the
collisionality ν*<1, then the bootstrap current is large and the trajectory on the stability diagram
is as in Fig2a, so that the peeling mode cannot be stabilised. However, at higher density, the
bootstrap current contribution is weakened, and the peeling mode can be stabilised at sufficiently
high α (or heating power). Data on α versus ν* from COMPASS-D is shown in Fig 3,
demonstrating that the H-mode does indeed correspond to the high α, high ν*  region, with
ELMs close to the ‘stability’ boundary, and L-mode at either low α or low ν*. Note that the
region at high α, low ν* cannot be accessed because the L-mode confinement is too low to
achieve significant edge pressure gradients with the heating power available. For larger tokamaks,
where the current diffusion time is long compared to the thermal diffusivity, one might expect a
trajectory more like that in Fig 2b. Thus, while α may rise relatively fast up to the ballooning
limit, the current takes longer to reach its steady state value, consistent with the rise in α. One
would then expect the transport from the ballooning mode to prevent α from rising beyond αc,
while the current slowly increases to its steady state value. When the current rises so that the
plasma reaches the top corner of the stable ‘triangle’ it must enter the unstable region. The
resulting plasma turbulence would then be expected to reduce the pressure gradient, further
enhancing the instability and leading to a crash event; we interpret this as a Type I ELM.
The ability of this model to qualitatively explain some of the experimental observations
motivates the development of a more quantitative model, allowing for the coupling of the
ballooning and peeling modes. The coupled mode structure and stability must be derived by
solving the full 2-D system of equations; we describe this procedure in the following section.
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Figure 2: Trajectory of parameters as pressure is increased for (a) current and thermal
diffusion time-scales comparable and (b) long current diffusion time-scales compared to
thermal diffusion.

(b)

Figure 3: Data from COMPASS-D
showing the distribution of L-mode
and H-mode discharges. The
measurements were taken with the
HELIOS diagnostic, which uses
optical spectroscopy from a thermal
helium beam [5].
Symbols represent:
  :  L mode

∆:  H-mode with no ELM occurring
      during the measurement
◊:  H-mode with an ELM occurring
      during the measurement



3. COUPLED PEELING-BALLOONING MODES
To illustrate the essential features of the coupled peeling-ballooning mode structure and stability,
we restrict consideration to the large aspect ratio, circular cross section equilibrium model. At
high n the perturbed energy can be expressed in terms of the radial component of displacement,
X, which we Fourier transform in poloidal angle:

X = e −im0θ um(x) eimθ

m
∑ (4)

where x=m0–nq , m 0 is the poloidal mode number associated with the vacuum rational surface
closest to the plasma and θ is the poloidal angle. The Euler equations minimising the plasma
energy then become a set of ordinary, coupled differential equations to be solved for the um(x):

s2 d

dx
(x − m)2 dum

dx
 
 

 
 

− (x − m)2 um + αdMum = αAm , ′ m u ′ m (5)

where Am,m′  involves first order differential operators in x and a sum over m ′ is implied. A
magnetic well has been introduced through the parameter dM where DM=αdM/s2, and α decreases
linearly with radius from the edge. Boundary conditions on these equations are that each of the
um→0 as x→∞ and that at the plasma-vacuum interface (x=∆) they must satisfy

∆ − m( ) −s ∆ − m( ) dum

dx
− 2 − ∆ − m( )[ ]um +

α
2

∆ − m( ) um +1 − um −1( ) 
 
 

 
 
 x = ∆

= Ω2um (6)

where Ω2 is an eigenvalue such that Ω2<0 corresponds to instability (we are interested in marginal
stability here), and m  is a shifted poloidal mode number. The effect of the vacuum energy has
been included in Eq (6) and we have replaced the current density with magnetic shear, s.
From the system of Eqs (5) and (6) one can analytically derive the equations describing both
ballooning and peeling modes. First, employing a local expansion about the single vacuum
rational surface labelled m 0 and taking ∆<<1 gives the peeling mode criterion:

α >
2(2 − s)

−dM

(7)

for stability. Employing the ‘ballooning approximation’ for more radially extended modes,
um(x)=eimku(x-m), we derive the familiar s–α equation, modified for the effect of the magnetic
well [6].  The stability diagram of the coupled peeling-ballooning mode (Fig 4) retains some of
the features of these stability boundaries, but depends on the value of ∆, (for ∆≈1 the stabilising
influence of the vacuum suppresses the peeling mode). We see that for small ∆ the marginal
stability boundary approximately follows the peeling and ballooning mode boundaries, while for
larger ∆ the peeling mode plays no role, and only the ballooning mode boundary matters.
It is interesting to consider how the s–α stability diagram is modified. In particular we are
interested in access to the second stability regime, which is usually gained at low magnetic shear.
However, the peeling mode is unstable at low magnetic shear (see Eq (7)) so it is necessary to
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Figure 4: Marginal stability
contours for the coupled peeling-
ballooning mode system for a
number of different ∆ (dotted
curves) compared with the pure
ballooning mode (full curve) and
pure peeling mode (dashed
curve) stability boundaries.
Parameters are dM=-0.2, q=4,
n=10.



revisit second stability at the plasma edge. Choosing a high value for the magnetic well
parameter, dM=-0.6, we show in Fig 5a the individual peeling (dashed) and ballooning (dotted)
stability boundaries which indicate that although the window to second stability is reduced in size,
it still remains. However, when one calculates the stability of the coupled mode for the same
parameters, one finds that the effect of the coupling is to remove the stable window and so
prevent second stability access (full curves). In order to regain access to second stability it is
necessary to increase the depth of the magnetic well still further, as shown in Fig 5b. Thus
increasing dM=-0.64 one sees a ‘necking’ of the unstable region, which then breaks to give second
stability access at dM=-0.645; further increases in the well depth leads to a separation of the
peeling and ballooning mode boundaries and improved second stability access.
We now consider the radial mode structure. Figure 6a shows a typical peeling mode structure,
which is dominated by the Fourier harmonic associated with the vacuum rational surface closest
to the plasma surface, but with several sideband harmonics which couple because of the toroidal
geometry. Figure 6b shows the ballooning mode structure. Two things are apparent from the
ballooning mode structure: there are many more harmonics involved than for the peeling mode,
and the amplitude is peaked away from the plasma edge. Indeed, the amplitude is fitted well by
taking the Airy function envelope which arises from the approximate analytic theory [3], as
shown by the dashed curve in Fig 6b. This ballooning mode penetrates a large distance ~0.05a
into the plasma, comparable to the H-mode barrier width.

4. EDGE DRIFT-BALLOONING MODES AND REYNOLDS STRESS
The drift mode equation provides an interesting application of the edge ballooning theory
mentioned in Section 2. This equation, which encompasses both the ion-temperature-gradient
(ITG) mode and electron drift wave, can be simplified in a large aspect ratio, circular flux surface
tokamak geometry [7]:

1
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 

  φ = 0 (8)

where φ is the perturbed electrostatic potential, the radial coordinate y=r0-r where r is the minor
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Figure 5: Marginal stability contours in the s–α plane for (a) ideal n=∞ ballooning (dotted),
peeling (dashed) and coupled peeling-ballooning (full) modes (dM=-0.6) and (b) coupled
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Figure 6: Radial mode
structure for (a) peeling
mode (∆=0.01, n=10,
α=1.0, s=1.945) and (b)
ballooning mode (∆=0.9,
n=40, α=1.41, s=2.0).



radius and r0 the reference rational surface, which we choose to be the last one in the plasma, θ is
the poloidal angle and a prime denotes a radial derivative. Other parameters of the model are
α=2ε/bs2, σ=ε/bqs, ε=Ln/Rτ, τ=Te/Ti, b=(kθρi)

2/2, Ω=ω/ω*e, and

Λ =
1

bs 2

Ω −1

1 + τ + η i

− b
 

  
 

  (9)

where Ln is the density gradient length scale, ηi is the ratio of density to ion temperature length
scale, Tj is the temperature of the species j, kθ is the poloidal wave number, ρi is the ion Larmor
radius, ω is the complex mode frequency and ω*e is the electron diamagnetic frequency. We first
use the ballooning transform to write φ in the form:

φ = e imθ

m
∑ dη  e− im0 (θ −η )e −imη

−∞

∞

∫ F y,η( )exp in ′ q (yη − S(y))[ ] (10)

and develop the solution to Eq (8) by defining an extended radial variable z=n2/3y, anticipating
∂F/∂z=O(1) and expanding in n-1/3:

L0 + n−1/3 L1 + n−2 / 3 L2 +⋅⋅⋅ + λ + Λ − λ( )( ) F0 + n−1/3 F1 + n− 2/3 F2 +⋅⋅⋅[ ] = 0 (11)
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                     L2 = − 1

′ q 2
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with k=dS/dy and we assume Λ−λ=O(n-2/3), which will be confirmed later. Thus to leading order
F0=A(z)f0(η) where

(L0 + λ) f0 = 0 (13)
determines the ballooning eigenfunction f0 and the ‘local’ eigenvalue λ(r,k) (applying suitable
boundary conditions in the limit η→∞, ie outgoing wave or bounded). The solubility condition on
the O(n-1/3) equation determines k through the condition

∂λ
∂k

= 0 (14)

which is the same condition as for a conventional drift-ballooning mode. As with the MHD
ballooning mode, the difference arises in the radial mode structure, where the envelope satisfies

1

2 ′ q 2

∂2λ
∂k2

d2 A

dz2 + n2/3 Λ− λ( )A= 0 (15)

Taylor expanding λ about the edge, it has an essentially linear radial dependence, and therefore
Eq (15) is again an Airy equation for the envelope function A(z).
To illustrate the essential features of drift-ballooning modes we simplify the problem to consider
the slab branch of the ηi mode in the limits σ/Ω<<1, α/Ω<<1 and ηi >>1. This allows us to
expand the trignometric functions about η=k, to deduce:
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Using Eq (14), we choose k=0, and the dispersion relation λ≈Λ determines Ω, so that we have:
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Having determined the radial mode structure we can now calculate the Reynolds stress [8]:
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where angled brackets denote an average over the poloidal angle and a star denotes complex
conjugate. It is convenient to calculate this in real space rather than ballooning space, and we
therefore write

φ = e−im0θ eimθ Amum(x)
m=0

∞

∑ (20)

where m 0=nq(r0), Am is the Airy envelope solution to Eq (15) evaluated at the rational surface
labelled by shifted poloidal mode number m  and um(z) is related to the solution of the ballooning
equation:

um(x) = C dη  f0 (η)eiη(x−m)

−∞

∞

∫ = exp − 1− i( )µ2 (x − m)2[ ] (21)

Here x=nq ′(r0–r), C is a normalisation factor and for the ITG branch µ2=(1/(4bs))√(2ε/(sqηi)) (we
have taken s>>q to simplify the expression for µ2; this could represent a feature of separatrix
geometry).  The Reynolds stress can be reduced to the form
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which for the ITG mode branch becomes

Ry = −
4n ′ q 

r
m0 | Am

m= 0

∞

∑ |2 µ 2 (x − m)exp −2µ2 (x − m)2[ ] (23)

For the strong ballooning limit which we considered above, we have µ<<1 so that the sum over m
can be replaced by an integral. This can be manipulated into the form
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n ′ q 

r
m0 dm 

d
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0

∞

∫ | Am |2  exp −2µ 2 (x − m)2[ ] (24)

Making use of the slow variation of  A(m) relative to the exponential factor, and neglecting an
error function contribution (which is localised at the plasma edge where |A|2 is small), we derive

Ry ~
m0

r2 n2 / 3 | A |2
π

8µ2 (25)

This is our final result for the Reynolds stress. Note that we only include the contribution from a
single n, assumed to dominate the spectrum. We have also neglected the contributions from the
tails of ‘core’ drift modes, which are more stable (note λ is averaged over k for these modes,
rather than choosing k to maximise the growth rate as is done for the edge drift modes).
The Reynolds stress provides a poloidal torque which spins the plasma; the magnitude of the flow
depends on a balance between this torque and damping mechanisms such as neoclassical magnetic
pumping or the effect of neutral particles, for example. Clearly the Reynolds stress depends on
the amplitude |A|2, which can only be determined by considering a non-linear saturation
mechanism. This is beyond the scope of this work and therefore we do not address the magnitude
of the flow, but assume it is sufficiently large to suppress turbulent diffusion. Equation (25) then
suggests that a transport barrier will form over the radial extent of the linear mode,
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where L=(λkk/(q′2λx))
1/3 is a typical equilibrium length scale, L~r. Combining this result with the

result from the previous section, that the pressure gradient is tied to a value α=αc by the MHD
ballooning mode, then we obtain an expression for the temperature pedestal, scaling as ρ∗

2/3:
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Of course the dependence of the temperature pedestal on the equilibrium parameters is model-
dependent, and the model we have described here is rather simplistic. However, a robust feature
of all edge drift-ballooning modes is the relation ∆r∝ρ∗

2/3r and therefore, assuming the pressure
gradient rises to the MHD ballooning limit, the temperature pedestal scaling as ρ∗

2/3 is also robust.



5. EFFECT OF FLOW ON MHD
To complete the ‘loop’ and develop a fully self-consistent model of the transport barrier it is
necessary to address the effect of flow on the edge MHD instabilities discussed here. A number of
features associated with the effect of sheared toroidal flow on the ballooning mode have been
addressed. The introduction of plasma flow destroys the ballooning symmetry and the eigenmode
problem is two-dimensional. Two approaches have been adopted in the literature: a conventional
eigenmode approach, where the two dimensions are poloidal angle and radius, and a Floquet
approach, where the two dimensions are time and ballooning coordinate. These yield the same
long-time exponential growth, but the Floquet mode has an additional periodic time dependence
[9,10]. This periodic time dependence is arbitrary when the sheared flow has a purely linear
variation with radius; this arbitrariness is associated with the initial conditions. Introduction of a
small quadratic radial variation of the flow results in a damping of the oscillations, so that after a
time ~n Floquet periods the Floquet mode is identical to the eigenmode (note, the eigenmode can
be considered as a particular Floquet mode, whose periodic time dependence is simply constant).
Thus, the Floquet and eigenmode approaches are essentially equivalent. In the case with small
flow, where it is possible to reduce the eigenmode system to a 1-D problem and evaluate the
eigenvalue ω2 as a function of the ballooning phase angle, k, one generally finds that part of the
region 0≤k≤2π is stable, and part is unstable. For small shear flow one finds that the growth rate
is obtained by averaging ω2 over the unstable region of k, and the stable region plays no role. For
larger flow, coupling to the stable continuum of ideal MHD results in an increased stabilisation
due to a form of ‘continuum damping’, such that the growth rate falls approximately linearly
with increasing flow shear; this surprising result has also been seen in numerical calculations [10].

6. DISCUSSION
We have provided an interpretation of ELMs in terms of well-known MHD instabilities, with an
improved formalism to calculate their stability at the plasma edge. The edge pressure gradient is
limited by the ideal MHD ballooning mode, and the ELMs are interpreted as a consequence of the
edge current density (ie the boostrap and Ohmic currents), which drives the peeling mode; this
could also explain the density threshold for L-H transitions in COMPASS-D. Future work will
quantify the results of this model by including realistic geometry in the stability analyses, and
development of a transport model to investigate the interactions between the different time-
scales. The formation of the transport barrier is assumed to be a consequence of flow shear
generation at the plasma edge, and a possible mechanism, arising from the Reynolds stress
associated with drift-ballooning modes whose structure is modified close to the plasma edge, has
been proposed. The result of this model is that the temperature pedestal scales as ρ*

2/3; it is
interesting to note that this is consistent with measurements made on the JET tokamak [11].
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