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Abstract

Some self-consistent e�ects pertaining to feedback control of neoclassical tearing modes in high tem-

perature large tokamaks are investigated. For the ECRH scheme of local electron heating, it is shown

that the self-consistent bootstrap currents created by the driven pressure gradients within the island are

comparable to those due to the usually considered resistivity change mechanism. Similar self-consistent

currents can also arise from pressure gradients created by density and energy deposition from neutral

beams, thereby o�ering a new possibility of neoclassical mode control. The stabilising current in such an

application of neutral beams is estimated. It is further shown that such a feedback scheme can be made

even more e�ective through appropriate modulation of the beam source to match the phase variation

arising from the island rotation.

I. INTRODUCTION:

Recent long pulse experiments for high beta tokamak discharges have demonstrated the
di�culty of attaining the ideal magnetohydrodynamic (MHD) limit of plasma pressure due to
the onset of low (m;n) resistive modes[1-5]. These instabilities which produce magnetic is-
lands at the low order rational surfaces appear to be well described by the neoclassical tearing
mechanism[1]. In this mechanism, a seed magnetic island at a low (m;n) rational surface attens
the equilibrium pressure gradient locally, thereby switching o� the bootstrap current; this re-
sults in a �-dependent negative current perturbation on the given rational surface which drives
up the amplitude of the magnetic island by the Rutherford nonlinear growth mechanism. If
the island is allowed to grow and saturate at a large width, it can signi�cantly degrade the
overall performance of the discharge. Neoclassical tearing modes are thus a major concern for
future steady state high beta devices like ITER and means of controlling them are a subject
of much current theoretical and experimental interest. At present two schemes are considered
particularly attractive for control of neoclassical tearing modes, namely, through the use of elec-
tron cyclotron current drive(ECCD)[6, 7] and through resonant heating by electron cyclotron
waves[8, 9]. In these methods, waves at the resonant electron cyclotron frequency are used to
drive a current (directly or indirectly by local electron heating) at the O-point of the magnetic
island, thereby suppressing the drive due to current density perturbation induced by the neoclas-
sical mechanism. The existing theories of feedback control of neoclassical tearing modes however
neglect the self-consistent bootstrap currents created by the driven pressure gradients within the
island[8, 9, 10]. This is justi�ed on symmetry arguments since the model equilibrium magnetic
�elds used in these theories retain the lowest order even term in the magnetic shear parameter.
In this paper we reexamine this issue by retaining asymmetric terms in the magnetic shear and
explicitly calculate the self-consistent bootstrap current perturbation at the O point due to the
pressure gradients within the island created by a heat source (such as ECRH). We �nd such a
contribution to be quite signi�cant and comparable to the usual current perturbation calculated
from the resistivity change mechanism. Their combined contribution in the island evolution
equation helps to substantially reduce the saturation width of the island. The self-consistent
contribution turns out to be particularly signi�cant for high beta plasmas.
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We next consider a new possible mechanism of neoclassical tearing mode control - speci�cally
through the application of neutral beams. We show that the beams can act as an e�ective density
and energy source which can also drive pressure gradients within the island and hence provide
an additional stabilizing self-consistent bootstrap current perturbation. The control mechanism
can be made even more e�ective through appropriate modulation of the neutral beam to match
the phase variation arising from the island rotation. We estimate the requirements of a neutral
beam source which may be used for such a stabilization scheme of neoclassical tearing modes in
a large device like ITER.

II. SELF-CONSISTENT BOOTSTRAP CURRENTS DURING LOCAL HEATING:

In the conventional Rutherford theory[11], the nonlinear evolution equation for the island
width is derived from the asymptotic matching condition of the current in the inner layer to
the exterior parameter �0 (the logarithmic jump in the vector potential across the magnetic
surface), namely,
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where Jk is the parallel current in the inner layer,  1 is the perturbed ux function, R is the
major radius, � is the radial coordinate and � � � � �o� is the helical resonant angle formed
from � the poloidal angle and � the toroidal angle and �0 is the rotational transform at the
rational surface. The equilibrium magnetic �eld is represented as ~B = ~r� � ~r� + ~r� � ~r 
where ~r�� ~r� = I ~r� is the toroidal magnetic �eld. In the presence of a magnetic island the
helical ux function is given by
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where  1 is the perturbation amplitude of the island. For m � 2 the constant  approximation
holds so that  1 is a weak function of the toroidal ux. By Taylor expanding the expression in
the integral of (2) the ux function describing the magnetic surface close to the rational surface
can be written down as,
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of the distance away from the rational surface. If  1 is taken to have the same sign as �0o, then
the O-point of the island is located at m�=0 and the X-point at m� =��. The full width of
the island is then approximately given by W = 4

p
	1. Note that the term proportional to x3

in (3) is smaller than the x2 term and is generally neglected. We have retained it for its odd
parity which becomes important when contributions due to the symmetric term average to zero.
Finally the parallel current Jk is assumed to satisfy ~B:~rJk=0 in the vicinity of the island and
hence is taken to be a function of the ux surface, Jk=Jk(	).

In applying the Rutherford prescription to the neoclassical regime, an appropriate modi�ca-
tion of the Ohm's law is made to model the dynamics in the inner layer. As discussed in [12],
the current contributions in this region can be classi�ed in terms of their origin as,

Jk(	) = Jind + Jbs + Jaux (4)
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is the contribution from the inductive electric �eld and
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is the neoclassical contribution giving rise to the perturbed bootstrap current. Here �e is the
electron viscous damping rate and �e is the electron collision frequency. Finally the last term
Jaux allows for an externally controlled driven current which we will discuss shortly. To calculate
the bootstrap current contribution (6) one needs to determine the appropriate pressure pro�le
in the inner region. For su�ciently large magnetic islands, the pressure pro�le in the vicinity of
the rational surface is also a perturbed ux function, p = p(	). It can be obtained by solving
an appropriate di�usion equation which assumes a cross�eld di�usion process with a pressure
source located away from the rational surface and is given by[12],
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where, p0s=
dp
d�
jeq is the equilibrium value of the pressure gradient in the absence of the magnetic

island and � is a step function. This model thus incorporates a at spot inside the island
separatrix that shuts o� the bootstrap current locally and thereby drives the island unstable.
The basic idea in most control schemes is therefore to drive an external current Jaux in this
region by direct or indirect means. The localized heating scheme using ECRH is an indirect
scheme in which the heating induced self-consistent temperature variations cause variations in
the parallel current pro�le through the resistive Ohm's law. The magnitude of this perturbed
current can be easily estimated as,
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where Jk0 = Ek=�0 is the externally driven Ohmic current. To estimate the temperature per-
turbations within the island one needs to calculate the temperature pro�le induced by the local
heating source. Solving a model di�usion equation,

~r:[�?n~rTe] = �ST (9)

where �? is the cross-�eld di�usivity and ST is the local heating source, the temperature pro�le
inside the island has the form,
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where 
 = 16	
W 2 , is the normalized ux surface level and n is the density. For a simple step

function heating pro�le ST = ST0�(
c � 
) with 
c > 1 and uniform �?, the temperature
gradient inside the island is given by,

dTe
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Using the above estimate the temperature perturbation is seen to scale as W 2ST0=8n�?, so that
the corresponding perturbed current inside the island is,

Jaux = �Jk =
3

16
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Substituting the above discussed expressions for Jind; Jbs; Jaux in (1) one can obtain an island
evolution equation in which it has been shown[9, 10, 12] that the Jaux contribution arising from
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the variation in the resistive Ohm's law has a stabilising inuence on the island growth and
leads to a reduced saturated width. However these calculations ignore another contribution of
the driven temperature (pressure) gradient (10), namely, the self-consistent bootstrap current
arising from it. This contribution normally vanishes in the ux averaging process when the
equilibrium ux expression retains only the lowest term of the Taylor expansion. When the
asymmetric x3 term is retained in 	 we obtain a �nite contribution to the bootstrap current
from the driven pressure gradient term within the island. Speci�cally our pressure pro�le model
for the calculation of the neoclassical contribution has the form,
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Evaluation of (1) with this pressure model and the Jk contributions listed in (4) gives us the
following time evolution equation for the island width,
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where � = �s=R is the local inverse aspect ratio. The term proportional to Dbs is the additional
self-consistent bootstrap contribution arising from the pressure gradient within the island in-
duced by the local heating source. Its functional form is similar to the usual resistivity modi�ed
current contribution term proportional to Dheat and its e�ect is also stabilising. The relative
magnitudes of the two contributions are also comparable as can be seen from a comparison of
the two coe�cients.
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Typically this ratio is of the order of �p=
p
� which can be of order unity or larger particularly

for high beta plasmas. From (14) the saturated island width is now given by,
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where Y= 4DheatDnc

(��0�s)2
(1 + G) is a measure of the consolidated e�ect of localized heating. As

is clear the additional bootstrap current contribution helps to reduce the size of the saturated
island width by enhancing the e�ect of Dheat.
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III. FEEDBACK CONTROL USING NEUTRAL BEAMS:

The bene�cial aspects of the self-consistent bootstrap currents from driven pressure gradients
within the island layer have led us to examine other options of locally altering island pressure
pro�les. Modulated neutral beams are an attractive possibility since they can deliver controlled
sources of density, momentum and energy into the plasma at appropriate phase and amplitude to
alter the local plasma properties. With the present available beam energies they can e�ectively
penetrate to the q = 2 to q = 1 surfaces in order to inuence the evolution of the (1; 1); (3; 2)
and (2; 1) tearing modes. Such a scheme has already been proposed for the control of kink and
kink-ballooning precursor modes of major disruption[13] and more recently for the control of
resistive drift tearing modes[14]. Based on our model calculations in the previous section we
sketch a possible scheme for application of neutral beams in the control of neoclassical tearing
modes.

The basic advantage of the neutral beam based scheme is that the contributions to Jaux now
result both from the local heating e�ect and the deposition of external density. The pressure
pro�le within the layer can be decomposed as,
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The density gradient dn=d� can be calculated using a similar model calculation discussed in the
previous section i.e. by solving an appropriate particle di�usion equation,

~r:(D~rn) = �Sn (21)

For a uniform D and Sn = Sn0�(
c � 
) with 
c > 1 the above equation is once again easily
solved. The total pressure gradient inside the island is now given as,
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The corresponding island evolution equation has the same form as before but with enhanced
coe�cients and is given by,
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where, G1 = G(1 + Sn0Te�?
ST0D

) incorporates the e�ect of both the density and heat injection
and can be used to compare the e�ectiveness of the neutral beam scheme to the conventional
ECRH scheme for the stabilisation of the neoclassical tearing modes. A rough measure of this
comparison can be obtained by equating the e�ective source contributions in both schemes,
namely,
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Since the source functions ST ; Sn are proportional to the beam or rf power (24) leads to the
following relation between the respective power requirements,
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where the e�ciency factors �NB;ECRH have been introduced to account for the coupling ef-
�ciencies of the beam and RF waves to the neoclassical tearing mode. The e�ciency of the
geometrical coupling of the neutral beam is proportional to the modal coe�cient of the double
Fourier series expansion of the toroidal dimension LT and poloidal dimension Lp of the beam
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footprint over the spatial periods 2�R and 2�a where a is the minor radius of the tokamak.
Assuming LT � 2�R and Lp � 2�a, the coupling coe�cient �NB can be written as,

�NB � LTLp
4�2Ra

RNB (26)

where RNB is determined by the convolution of the beam deposition pro�le and the spatial
structure of the mode in that direction. An analogous expression holds for the geometric coupling
of the ECRH waves. The ratio of the two coupling terms �NB=�ECRH is therefore proportional
to RNB=RECRH . For a radial injection the coupling of the beam to the mode is relatively
weak[14] and the above ratio can be quite small. However for a poloidal injection of the beam the
convolution would be along a chord (beam line) in the poloidal plane and therefore comparable
to the convolution factor for the ECRH scheme. As to the other terms in (24), the ratio �?=D
can typically vary from unity to rather small values at the tokamak plasma edge. For a large
device like ITER we can approximately take this ratio to be of order unity near the q = 2
surface. Further, writing

ST;NB = EbSN;NB

�
1 +

�q�x
�ion

�
(27)

where �q�x and �ion are the charge exchange and ionisation cross sections for the beam and
Eb is the energy of the beam, we see that the ratio �ECRHPECRH=�NBPNB is of the order
of 1 + (Te=Eb)(1 + �q�x=�ion)

�1 thus making the two schemes comparable in terms of power
requirements. The beam energy required to penetrate to the q = 2 surface in ITER, which is a
distance of about 50 cm from the plasma edge[15], is approximately 100 kev[16] and well within
the present energy range of beams.

Our calculations so far have been restricted to a static island con�guration where the oscil-
lating time variation of the tearing mode has been ignored. As is well known, the mode has a
real frequency which is of the order of the drift frequency and which causes the island to rotate in
time[17]. This poses a problem for any static control scheme and increases their overhead by the
fraction of time that the island is away from their inuence. The neutral beam feedback scheme
can be made more e�ective by modulating the neutral beam source to match the phase variation
arising from the island rotation. To illustrate this scheme, we incorporate a real frequency term
in our model evolution equation (23) and rewrite it as follows,
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= (
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where !0 is the drift tearing frequency and

	 = 	1e
�i!t (29)

is represented in the complex notation with ! = !R+i, C andD are real constants proportional
to the �0 and Dnc terms and w is treated as a constant. The coe�cient F is proportional to the
neutral beam source and is modelled as a complex term F = F0exp(i�) where � is the phase
factor. Eqn.(28) is in the standard form of a linear feedback scheme[13, 14], from which we can
easily get the following two conditions,

!R = !0 + F0cos(�) (30)

and
 = 0 � F0sin(�) (31)

where  = (C=w +D=w2). These two relations demonstrate the nature of control possible with
the help of the phase parameter � and the strength of the amplitude F0. At saturation  = 0
and the size of the island is determined from (31). This �xes the quantity F0sin(�) but allows
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some freedom in the choice of the independent parameters F0 and �. In particular � can be
chosen so as to reduce the net rotation frequency of the mode as de�ned by (30). This can
facilitate the tracking of the mode and improve the quality of the feedback control.

IV. DISCUSSION AND CONCLUSION:

Our principal result in this paper is the demonstration that driven pressure gradients within
the island region (due to ECRH for example) can lead to �nite self-consistent bootstrap currents
within the island that reduce the growth of a neoclassical tearing mode. This contribution that
has been neglected in earlier calculations from symmetry arguments, survives when the next
order magnetic shear terms are retained in the equilibrium magnetic �eld and its magnitude is
comparable to the usual current perturbation calculated from the resistivity change mechanism.
Their combined contribution in the island evolution equation substantially reduces the satura-
tion width of the island. This enhances the e�ectiveness of the ECRH scheme for neoclassical
tearing mode control and also raises the possibility of other alternate schemes that can build on
this e�ect. We suggest the use of modulated neutral beams as one such scheme in which pressure
gradients within the island can be e�ectively altered by controlled delivery of both density and
energy at appropriate phase and amplitude. Our preliminary estimates show that such a scheme
is feasible and of comparable e�cacy to the ECRH scheme in terms of power requirements and
other parameters and therefore warrants a more detailed study.

Finally we would like to remark that another consequence of neutral beam injection (par-
ticularly in the unbalanced parallel injection mode) is the production of large scale toroidal
rotation in the plasma. The concommitant change in the equilibrium pressure pro�les can have
a signi�cant inuence on the neoclassical tearing mode evolution and have not been studied so
far. Large ows can change not only the magnitude of the �0 parameter in the external region
but also bring about mode coupling between various resonant surfaces due to the centrifugal
force induced poloidal asymmetry in the equilibrium pressure pro�le. A detailed calculation of
this e�ect including the appropriate inner layer modi�cations in the dynamics of the neoclassical
tearing mode is presently in progress.
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