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FOREWORD 

The coordinated research programme (CRP) on the Potential of High-Temperature Gas cooled 
Reactors for Process Heat Applications was organized in the framework of the technical 
working group on gas cooled reactors (TWG-GCR) established in 1978 with the purpose of 
advising the Director General of the IAEA and promoting the exchange of technical 
information on national programmes in the field of gas cooled reactors.  

The project has been conducted within the Nuclear Power Technology Development Section 
of IAEA. It was actually launched in 2007, with research proposals received from nine 
Member States and completed by 2009. The participants were: Argentina, China, France, 
Germany, Japan, India, the Russian Federation, South Africa, and the Syrian Arab Republic. 
Some specific objectives of this CRP were to: 

• Address and update the status of R&D on technical and economic prospects of coupling 
HTGR to process heat applications; 

• Focus on potential use of HTGR for nuclear hydrogen production and seawater 
desalination, representing high temperature and low temperature process heat 
applications; 

The outcome of the CRP was expected to include the following: 

• Collection of data, analysis of design features, characteristics of couplings, and safety 
and environmental aspects of HTGR and their process heat applications; 

• Analysis of configuration of nuclear hydrogen production plants and layout and design 
approaches of high temperature heat exchangers; 

• Analysis of waste heat from HTGR and its potential use for seawater desalination.  

The basic aim of the present publication is to summarize the outputs from the Member States, 
participating in this CRP. The publication therefore follows the same objectives and scope as 
those established for the CRP. Indeed, this publication is intended to present the results of 
participants to this CRP and highlight major advances, difficulties and recommendations in 
the area of non-electric applications of nuclear energy which are of importance to the nuclear 
communities at large and to scientists and engineers focusing on safety aspects and economics 
of the overall nuclear power plant coupled to applications of process heat.  

Previous activities of the GCR project relevant to this CRP were an IAEA Technical 
Committee Meeting (TCM) on the subject of high temperature applications of nuclear energy, 
held in Japan in 1992, and several meetings with OECD/NEA on issues such as prospects for 
hydrogen in future energy structures and role of nuclear power, status of nuclear hydrogen 
R&D efforts around the globe, nuclear hydrogen technologies and design concepts, integrated 
nuclear hydrogen production systems, and basic and applied science in support of nuclear 
hydrogen production. 

This publication has been prepared through the collaboration of all the participants to the 
CRP. The IAEA appreciates this support and thanks all the authors who provided their 
reviews and contributions. Especially appreciated is the contribution of K. Verfondern 
(Germany) in the compilation and preparation of this IAEA-TECDOC. The IAEA officer 
responsible for this publication was I. Khamis of the division of nuclear power. 
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The use of particular designations of countries or territories does not imply any judgement by the 
publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and 
institutions or of the delimitation of their boundaries. 

The mention of names of specific companies or products (whether or not indicated as registered) does 
not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement 
or recommendation on the part of the IAEA. 
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1. INTRODUCTION 

1.1. OBJECTIVES 

The increased interest in nuclear power process heat applications, such as hydrogen 
production and seawater desalination was one of the major drivers for the IAEA to initiate a 
coordinated research project (CRP) on Advances in Nuclear Power for Process Heat 
Applications which was completed in 2009. The challenges which were addressed by this 
CRP are related to process technologies, coupling safety, high temperature material 
technology and the economic merits of centralized vs distributed production units. 

In addition to increasing the cooperation among member states on information exchange on 
nuclear process heat applications and to serve as a platform for collaborative research on the 
technical and economic aspects of coupling high temperature gas cooled reactors (HTGR) to 
process heat applications such as hydrogen production and seawater desalination, the overall 
objective was to assess the potential of high temperature gas cooled reactors in process heat 
applications and to update the status of related research and development.  

The CRP was effective in reaching specific objectives as in establishing a solid background 
on HTGR and its potential applications for process heat applications. During the 
implementation of CRP, results have been obtained from leading institutes and offered 
up-to-date information on R&D in both analytical and experimental areas, permitting to 
derive useful conclusions and recommendations. The CRP offered a platform for nine experts 
from eight member states jointly analyzing the potential of HTGR for two main applications 
of process heat applications: hydrogen production and seawater desalination. The 
collaboration among these experts, specifically within each application proved to be an 
effective means of reaching the overall objective of the CRP. However, heterogeneity of the 
participants to the CRP as they formed two groups working independently from each other 
namely: the hydrogen group whom are not interested in desalination, and the desalination 
group whom they have no direct knowledge on hydrogen productions and related issues. 
Another factor was the budget constraints, specifically limitation in grants for research 
contracts 

1.2. NUCLEAR PROCESS HEAT APPLICATIONS 

Nuclear heat applications have been considered for long time, but not much has succeeded. 
Effective and practical measures to gain the advantages of aspects of climate change — green 
house gas reduction — need to be taken now. Nuclear industry and related branches should 
advance and address to the real world as other technologies and environmental institutions do. 
Practical application would be possible based on exchange of experiences and further 
international collaboration. 

Since nuclear energy is nearly carbon free generation and is long term sustainable solution 
and potentially cost-competitive with fossil fuels, it is necessary to consider it as a choice for 
desalination projects. Particularly in cases when power and heat for desalination is generated 
from using heavy crude oil or coal, which requires significant cost for pollution control and is 
an inefficient generation solution, resulting in significant increase of the penalty for CO2 

emission and greenhouse impact. 

As an alternative path to the current fossil fuel economy, a hydrogen economy is envisaged in 
which hydrogen would play a major role in energy systems and serve all sectors of the 
economy, substituting for fossil fuels. Hydrogen as an energy carrier can be stored in large 
quantities, unlike electricity, and converted into electricity in fuel cells, with only heat and 
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water as by-products. It is also compatible with combustion turbines and reciprocating 
engines to produce power with near-zero emission of pollutants. 

Nuclear-generated hydrogen has important potential advantages over other sources that will 
be considered for a growing hydrogen economy. Nuclear hydrogen requires no fossil fuels, 
results in lower greenhouse gas emissions and other pollutants, and lends itself to large scale 
production. These advantages do not ensure that nuclear hydrogen will prevail, however, 
especially given strong competition from other hydrogen sources. There are technical 
uncertainties in nuclear hydrogen processes, certainly, which need to be addressed through a 
vigorous research and development effort. The hydrogen storage and distribution are also 
important area of research to be undertaken for bringing in a successful hydrogen economy 
regime in future. 

1.3. SCOPE OF THE REPORT 

The scope of this CRP was to enable the member states to investigate the potential of using 
high temperature reactors for cogeneration of electricity and hydrogen, and for other process 
heat applications.  

The report includes an overview of current progress on HTGR coupling schemes for different 
process heat applications, such as hydrogen production and desalination. Apart from the 
coupling schemes, a more detailed description is also provided on the actual work that was 
performed and the corresponding results. These include both technical work on the different 
processes as well as techno–economic studies. A major focus was on the qualitative 
assessment of using waste heat generated by such reactors for seawater desalination and the 
optimal thermochemical processes for hydrogen production. The important safety aspects of 
coupling high temperature reactors to hydrogen and desalination facilities are highlighted. 

As this report includes results achieved by participants to the CRP, it will benefit scientists 
and engineers working in the areas of nuclear hydrogen production and desalination, safety 
and design aspects of integrated nuclear desalination systems, and economics of such systems. 
In addition, decision makers/their advisors, physicists and specialists in the area of thermo 
chemical processes related to hydrogen production and desalination technologies, and the 
general public as well.  

2. PROCESS HEAT HIGH TEMPERAT R  REACTOR CONCEPTS 

2.1. DESIGN ASPECTS  

Development of the high temperature gas cooled reactor is pursued as an environmentally 
agreeable efficient power source for electricity generation and other industrial applications. 
One of its main objectives is to provide energy for facilitating combined production of 
desalinated water, electricity and hydrogen. The high exit temperature of the coolant of about 
900°C is useful for hydrogen production. The reject heat is utilized for electricity generation. 
The waste heat can be utilized for the desalination of seawater for producing potable water. 

The HTGR is considered as one of the leading candidates for future nuclear power plants for 
the following advantages  

• Higher thermodynamic efficiency; 

• Lower waste quantity; 

• Higher safety margins; 

• High burnup (~100 GW·d/t of uranium). 
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blocks, and with annular active core geometry are limited to about 400 MW(th) and 
600 MW(th), respectively. These values are determined by the maximum allowable fuel 
temperature (< 1600°C) in the case of loss of forced convection (LOFC) in the depressurized 
reactor with residual heat removal through the reactor vessel to the reactor cavity cooling 
system.  

Some of the main characteristic features of HTGR designs with either block or pebble core 
are compared in Table 2.1. 

TABLE 2.1. MAIN CHARACTERISTICS OF PLANT DESIGNS WITH BLOCK TYPE CORE 
AND PEBBLE BED TYPE CORE 

Reactor type Block core Pebble-bed core 

Power and efficiency 

Thermal power (MW(th)) 600 200–500 

Electric power (MW(e)) 274–284 80–200 

Cycle/net thermal efficiency (%) 47.2–48.4/45.6–46.2 44–49.5/45.5 

Main Gas Conditions 

Reactor inlet/outlet temperature (°C) 460–587/850 280–550/750–950 

Helium gas pressure (MPa) 7–7.15 5.5–9 

Mass flow rate (kg/s) 296.4–440 ~203 

Fuel 

Fuel element   Monolithic pin-in-block 60 mm diameter sphere 

Average enrichment (%) 15 10 

Packing fraction 29–35 4–11 

Average burnup (GW·d/t U) 110–120 100 

Fuel cycle (days) 450–730 903 

Fuel exchange working time (days)  33–82 (incl. reflector exchange) On power loading 

Core 

Equivalent diameter (m) cylindrical 
 annular 

 
3.70/5.48 (inner/outer) 

≤ 3.0 
2.70/4.50 (inner/outer) 

Effective height (m) 8.1–8.4 9.4 

Average power density (MW/m3) 5.44–5.77 4.2 

Pressure drop (%) 0.65–1.42 3.3 

Maximum fuel temperature  
during normal operation (°C) 
in accident (°C) 

 
1108–1286 
1546–1575 

 
1130 
1520 

Reactor vessel 

Inner diameter (m) 7.62–7.89 ≤ 7.3 

Height (m) 23.4–24.4 ≤ 32.4 

Weight (ton) upper/lower part 285–398/838–923  134/975  

Material 
9Cr–1Mo–V  

or SA533/SA508 steel 
SA 533 

Dose rate due to fission product plate out on 
the turbine rotor (mSv/h) 

160 5440 

4



 

In case of a block type core, the modest reactor outlet gas temperature of 850°C for power 
generation reactor designs [1–3] and of 900-950°C for process heat reactor designs including 
for nuclear hydrogen production [4–6] has been selected. The range of design values listed for 
the block core in Table 2.1 have been reported of the power generation reactor designs. In 
case of pebble-bed core, the higher reactor outlet gas temperature of 900°C could be achieved 
easily during normal operation. In this type of core, the maximum temperature at the 
depressurization accident is most critical.  

Pebble Bed Modular Reactor (Pty) Ltd. has been developing advanced helium cooled, 
graphite-moderated HTGRs during the past decade. The PBMR technology is expected to be 
the basis of a family of products that has multiple applications. It is ideal for electricity 
generation where small energy demand markets prevail or distributed generation is required. 
The PBMR is also an ideal source of high temperature and pressure (high energy) steam. With 
follow-on development it is also an ideal source for direct high temperature process heat 
applications. 

The early market PBMR process heat plant (PHP) is envisaged to operate at power levels 
between 200 and 250 MW(th) with reactor outlet temperatures up to 750°C, delivering steam, 
electricity or both. Based on development and qualification of an acceptable intermediate heat 
exchanger design, the direct high temperature process heat applications can be addressed by 
this plant. The configuration of the pebble-bed process heat plant and the requirements 
associated with the IHX depends on the specific process heat application. The business cases 
for various selected process applications have been prepared. The initial development of the 
process heat plant is expected to result from an industry consortium approach.  

Current development work for the pebble-bed process heat plant is focused on the following 
time frames and technology windows: 

• Applications operating at reactor outlet temperatures less than 750°C to produce high 
temperature and high pressure steam and cogeneration. Component engineering 
development requirements and application integration engineering requirements are 
such that deployment in the latter part of the next decade will be feasible. 

• The follow-on development phase will meet the requirements for operating at reactor 
outlet temperatures up to 950°C. This phase matches timeframes for associated 
developments in high temperature materials and hydrogen production processes 
including thermochemical water splitting processes. 

2.1.2. Power cycles of HTGR 

The helium Brayton cycle is ideally applied to HTGR (Fig. 2.2). Key factors affecting the 
efficiency of Brayton cycle include the turbine inlet temperature, compressor and turbine 
adiabatic efficiencies, recuperator effectiveness, and cycle fractional pressure loss. The 
compression ratio is also important.  

2.1.3. HTGR details 

The major heat exchangers of gas turbine cycle are recuperator, precooler and intercooler. 
Direct heat exchangers are integrated together with the turbomachinery in the PCU vessel. 
Some of the essential parameters are given in above Table 2.2 for the reactor concepts 
GT-MHR, GTHTR300, and PBMR. 
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The HTGR will employ a gas turbine system to produce electricity economically and 
effectively. Two system configurations are considered for the gas turbine power generation 
system. Direct cycle provides a gas turbine system in the primary coolant loop and indirect 
cycle provides it in the secondary helium loop. Direct cycle has an advantage of power 
conversion efficiency because of its operation temperature and pressure. But radiation 
contamination of the gas turbine system is a concern and should be considered. Indirect cycle 
is proposed to prevent radiation contamination of the gas turbine system. But power 
conversion efficiency decreases and a large IHX and a secondary loop to transfer nuclear heat 
from primary to secondary loop is needed so that plant cost will increase. 

The major hydrogen production processes of steam methane reforming and thermochemical 
water splitting process which are expected to be coupled with HTGR, require process heat of 
800°C or above for their chemical reactions. The process heat supply system is connected 
upstream of the gas turbine system in the primary coolant system of the HTGR to generate 
high temperature secondary helium to supply process heat for the hydrogen production plant. 
The process heat supply system consists of an IHX which transfers nuclear heat to the 
secondary helium, a secondary helium piping which couples the HTGR and the hydrogen 
production plant, and a helium circulator which circulates secondary helium in the piping. 

Reactor outlet coolant temperature of the HTGR is required at 900°C or above to supply high 
temperature process heat. The IHX must withstand the static and dynamic loading at high 
temperature operation when a hydrogen production plant is in operation or not, because the 
IHX represents the reactor coolant boundary. 

There are two candidates of the IHX configuration. One is the helical tube and shell type IHX 
and the other one is the plate type IHX. The helical tube and shell type IHX has been 
developed and demonstrated in test loops in Germany and in the high temperature engineering 
test reactor (HTTR) in Japan (see also chapter 2.2.6). Plate type IHX with their compact 
design promise an excellent heat exchanger performance, but they are still under development 
with regard to their employment under nuclear conditions. Early HTGR cogeneration systems 
may employ the proven helical tube and shell type IHX. They may be later replaced with plate 
type IHX, after their development has been completed and demonstration was done in 
out-of-pile test loops.  

HTGR cogeneration system is the base load power generation station. It must supply 
continuously electricity to the consumer with high plant reliability when hydrogen production 
plant is shutdown. Power generation system and hydrogen production system should be able 
to operate independently. The intermediate heat transfer loop has a function to separate 
physically the hydrogen production system from the nuclear power generation system. 
Thermal load variation of the hydrogen production plant must be controlled in the power 
generation system or in the heat transfer loop when the hydrogen production plant has 
undergone an emergency shutdown. 

Other design requirements for HTGR cogeneration system are  

(1) to provide safety items to ensure nuclear safety in all operational states against 
accident in the hydrogen production plant; 

(2) to be able to operate load-follow of the hydrogen production plant; 

(3) to prevent fission products from transferring to the hydrogen production plant to 
protect contamination in the products; and 

(4) to prevent oxygen and/or water ingress into reactor coolant system from hydrogen 
production plant. 

11



 

 

The cog
requirem
16 MPa
was sele
for elect

The ste
dedicate
and ele
configu
electrici

(A) Con

This co
connect
reheatin
passing 
plants r
this con
advanta

(B) Con

Configu
Brayton
steam p
pressure
high tem

generation o
ments and 
a and steam
ected based
tricity gene

eam and ele
ed to steam
ectricity can
urations tha
ity (cogener

nfiguration 

onfiguration
ted to a stea
ng in an op

through th
requiring lo
nfiguration 

age. 

nfiguration 2

uration 2 is
n cycle. Thi
pressure. T
e steam and
mperature c

options that
feedwater 

m temperatur
d on requirem
eration. 

ectricity can
m production
n be produ
at were ide
ration) is as

1 

n consists o
am generat
en loop bot
e open loop
wer pressur
can also 

F

2 

s illustrated 
is is in turn

This config
d more pro
apabilities o

were inves
conditions 

res from 31
ments from

n be produ
n and anoth
uced with a
entified for
s follows: 

of the PBM
or. The stea
ttoming Ran
p Rankine c
re steam an
favor locat

FIG. 2.7. Cog

in Fig. 2.8
n connected 
uration wil
cess steam 
of the nucle

stigated at P
with steam

12°C up to 
m specific pe

uced with tw
her to electr
a single nu
r the prod

MR reactor 
am generat

ankine cycle
cycle. This 
nd more ele
tions where

generation co

8 and consi
to a steam

ll favor ty
than electr

ear heat sour

PBMR cove
m pressures
510°C. A r

etrochemica

wo separate
ricity produ
uclear plant
duction of 

with a top
tor operates
e (Fig. 2.7).
configuratio

ectricity tha
e electricity

onfiguration 

ists of the P
m generator w
ypically pro
ricity, but a
rce.  

ered a broad
s ranging f
reference of
al plants tog

e nuclear p
uction. Alte
t. The poss
high temp

pping Brayt
 at 18 MPa
. The steam
on will typi

an process s
y sales pro

1. 

PBMR reac
which oper
ocess plant
again does n

d spectrum 
from 4 MP
f 4 MPa an
gether with 

plants wher
ernatively th
sible nucle

perature ste

ton Cycle w
a and make

m is dispend
ically favor
steam. Add
ovide an e

ctor with a 
rates at the 
ts requiring
not fully ut

of steam 
Pa up to 
d 440°C 
the need 

e one is 
he steam 
ar cycle 

eam and 

which is 
es use of 
ded after 
r process 
ditionally 
conomic 

 

topping 
required 

g higher 
tilize the 

12



 

(C) Con

Configu
generato
an exha
pressure
tempera
significa

2.2.3. 

2.2.3.1. 

Purpose
quantity
carried 
these stu

nfiguration 3

uration 3 is
or directly c
aust turbine
e steam an
ature capab
ant feedwat

Method of t

 Introduc

e of this sec
y) from an 
out the ther
udies are: 

F

3 

 illustrated 
coupled to t
e. This con
nd more p
bilities of t
ter treatmen

F

thermal integ

ction 

ction is to e
HTGR for

rmal integr

FIG. 2.8. Cog

in Fig. 2.9
the reactor a
nfiguration 
rocess stea
he nuclear 

nt considera

FIG. 2.9. Cog

gration of HT

estimation in
r cogenerat
ation of HT

generation co

9 and consi
and providin
will favor 

am than el
heat sourc

ation. 

generation co

TGR for coge

n detail the
tion by the
TGR by so-

onfiguration 

ists of the P
ng high tem
typically p

lectricity. A
ce and is v

onfiguration 

eneration 

e resource s
ermal integ
-called ‘pinc

2. 

PBMR reac
mperature an
process plan
Although it
very efficie

3. 

tream (in te
ration techn
ch technolo

ctor with th
nd pressure 
nts requirin
t utilizes t
ent, it will

 

erms of qua
hniques. BA
ogy’. Objec

 

he steam 
steam to 

ng lower 
the high 
l require 

ality and 
ARC has 
tives for 

13



 

1. Maximize process to process heat recovery; 

2. Minimize the utility requirement; 

3. Design of the heat exchanger network. 

2.2.3.2. Methodology of the thermal integration: pinch analysis 

‘Pinch analysis’ is the application of the tools and algorithm of the ‘pinch technology’. It is 
carried out in several steps [11, 12]: 

First step is the identification of streams in the process:  

i. Hot streams are those streams which must be cooled or available to be cooled, 
i.e. hot helium gas which is coming out from turbine outlet and needs to be 
cooled before entering the compressor. 

ii. Cold streams are those streams which must be heated, i.e. compressed helium 
from HP compressor need to be heated before entering the reactor. 

iii. Utility streams (hot utility & cold utility), i.e. cooling water or steam. 

Second step is the extraction of thermal data of all process and utility streams: 

i. Supply temperature (Tsupply) 

ii. Target temperature (Ttarget)  

 Enthalpy change (ΔH), ΔH = MCp (Tsupply – Ttarget) 

Third step is the selection of the initial ΔTmin value: 

ΔTmin = Hot stream temperature (TH) – Cold stream temp. (TC) 

This is the minimum positive temperature difference to allow the heat transfer between 
streams. The temperature level at which ΔTmin is observed in the process is referred to 
as ‘pinch point’ or ‘pinch condition’. A so-called ‘problem table algorithm’ (PTA) is 
used for determining the utility needs of a process and the location of the process pinch.  

Fourth step is the construction of the ‘grand composite curve’ (GCC):  

It shows the net heat available in various temperature intervals within the process.  

Fifth step is the estimation of the minimum energy of the utility: 

GCC diagrams are used to estimate minimum utility requirements and aim to maximize 
the use of cheaper utility levels and minimize the use of expensive utility levels.  

Sixth and final step is the design of the heat exchanger network and its optimization.  

2.2.4. Thermal integration of 600 MW(th) HTGR plant 

Flow diagram for the 600 MW(th)t HTGR plant is shown in Fig. 2.10. It is a helium cooled 
direct cycle nuclear power plant having relatively high thermal efficiency (45–50%) and 
enhanced safety and environmental characteristics. It includes the nuclear heat source, i.e. the 
reactor system, and power conversion system consisting of equipment needed for electric 
power generation (turbo-compressor, recuperator, generator, precooler and intercooler). 
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2.2.4.3. Targeting minimum cooling water flow rate and maximum coolant outlet temperature 

Next step is to minimize the cooling water flow rate to save the utility cost and its pumping 
cost. Minimization of cooling water flow rate also leads to the maximization of the coolant 
outlet temperature as the heat duty for the coolers is already fixed. This is also advantageous 
as this heated cooling water will be useful for desalination. The higher the temperature of this 
cooling water, the larger will be the capacity of the desalination plant. From the plotted GCC, 
the generation of cold utilities has been targeted (Fig. 2.11).  

Cold water supply temperature    = 20°C 

Cold water supply shifted temperature  = 25°C 

Point S in Fig. 2.11 denotes the cooling water inlet condition. The line drawn from this point 
is the cooling water line. 

For maximum cooling water outlet temperature and minimum cooling water flow rate, a line 
is drawn from point S which is the tangent to the GCC. This tangent represents the minimum 
cooling water line. It touches the GCC at point P which is the pinch point. The slope of this 
tangent gives the required minimum cooling water flow rate. 

The minimum cooling water line is found to touch the GCC at 118°C (shifted temperature). 
From the slope, the minimum cooling water flow rate can be calculated as 
Fmin = 709.077 kg/s. This cooling water is heated up to 124.22°C. 

2.2.4.4. Desalination utilizing waste heat from 600 MW(th) HTGR 

By the thermal integration of the 600 MW(th) HTGR and pinch analysis, hot water of 
124.2°C at a rate of 709.077 kg/s is achieved. This water can be utilized for water production 
by desalination purposes. To transfer the thermal energy from the HTGR cycle to the 
desalination plant, an isolation loop is incorporated.  

BARC has developed an in-house software InDesal-HTGR in visual basic for doing the 
preliminary design calculation for the hybrid desalination system coupled to the HTGR 
utilizing its waste heat. It provides a graphical user interface and performs calculations for  

• HTGR power cycle and available waste heat; 

• Isolation loop for coupling the HTGR with the desalination plant; 

• Hybrid desalination plant coupled to HTGR. 

Results of the calculations for the 600 MW(th) HTGR by InDesal-HTGR are shown in 
Figs 2.13 and 2.14. 

2.2.4.5. Summary 

• Waste heat from the HTGR cycle is utilized for desalination. 

• HTGR plant is coupled to hybrid desalination plant consisting of LT-MED plant and 
preheats RO plant. 

• Waste heat from HTGR is used to heat water in the desalination loop. It is then flashed 
in the flash chamber. Steam is then used in the MED plant. Capacity of the MED with 
a gain output ratio (GOR) of 6 is 1467 t/h. 

• Seawater heated in the heat sink is used as feed stock to the RO plant. For 40% 
recovery in the RO plant, desalination capacity is 715 t/h. 

• Total desalination capacity is = 2182 m3/h. 

• Total waste heat utilization is 310 MW(th). 
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TABLE 2.10. SHIFTED TEMPERATURES 

 Tshifted (°C) MCp (kW/K) 

Internal supply 

568 1171.62 
105 1171.62 
112 1143.15 

Internal demand 

32 1171.62 
30 1471.62 

555 1143.15 

TABLE 2.11. PROBLEM TABLE ALGORITHM (ΔT = 10°C) 

Tdecreasing  
(°C) 

MCp  
(kW/K) 

Cum MCp 
(kW/K) 

Qinter  
(MW) 

QCas 
(MW) 

568 1171.62 1171.62 0 0 
555 -1143.1575 28.4625 15.23106 15.23106 
112 1143.1575 1171.62 12.60889 27.83995 
105 1171.62 2343.24 8.20134 36.04129 
32 -1171.62 1171.62 171.0565 207.0978 
30 -1171.62 0 2.34324 209.441 

 
FIG. 2.16. Grand composite curve for 400 MW(th) HTGR plant (ΔT = 10°C). 

2.2.5.2. Heat exchanger network design 

The heat exchanger network diagram is shown in Fig. 2.17 which is similar to the original 
PBMR flow diagram where cooler C1 represents the precooler and cooler C2 represents the 
intercooler. Cold utility, i.e. cold demineralized water is used as the cooling media in coolers. 

T
em

p
er

at
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re

Enthalpy in MWQc (min) =209.4 MW
Minimum Cold Utility target

Minimumm Cooling 
Water line

517.67 kg/s

Pinch 
(36.04, 105 

P

Q
121.6

Total Waste heat utilization is 209.4 MWth
Minimum cooling water flow rate = 517.67 kg/s
Cooling Water outlet Temp = 121.6 deg C (Shifted)
= 116.6 deg C (Actual)

S
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respectively, (m = 97 t and С = 35). Pb–Bi mass and cost are by factors of 1625 and 468, 
respectively, higher (m = 1300 t and С = 468). 

Helium is the most preferable coolant for the intermediate circuit in terms of VGM-P reactor 
plant safety. It prevents ingress of 3rd circuit coolant into the primary helium circuit and 
excess of allowable 3rd circuit coolant temperatures. Pb–Bi or silicon oil intermediate circuit 
coolants can ingress into the primary helium circuit. In an accident with intermediate circuit 
pump shutdown (for example, at de-energization) and further non-opening of isolation valves 
on main gas circulator, the intermediate circuit coolant is heated up to 750°С in the IHX, 
which is much higher than the allowable Pb–Bi and silicon oil operation temperatures. 
Therefore, it is necessary to study the behavior of these materials at temperatures up to 750°С. 
Thus, the analysis shows that intermediate circuit coolant shall be helium. 

Preliminary technical–economic estimates [14] of hydrogen production in advanced processes 
with HTGR heat and electric power demonstrate that SMR with helium temperature at the 
reactor outlet 950°С can compete with conventional technologies at current gas prices even 
without taking account of potential taxes for CО2 emissions. In view of the tendency for 
further gas price increase, the most economically efficient technology will be thermochemical 
water decomposition in a sulphur–iodine cycle. SMR and thermochemical water 
decomposition at a temperature of 950°C can compete with conventional low temperature 
electrolysis. HTSE advantages at a temperature of 950°C are not clear so far and will finally 
depend on capital costs of heat application for electricity production. Estimates were 
performed for processes which may be implemented with helium temperature at the reactor 
outlet not higher than 950°С. Temperature increase up to 1000°С allows an enhanced 
efficiency of hydrogen production processes, but increases the cost of creation of a safe 
reactor plant. Therefore, a thorough technical–economic analysis shall be performed when 
selecting the temperature level at the reactor outlet and hydrogen production process pattern. 

2.3. SPECIFIC HTGR DESIGN PROPOSALS 

2.3.1. Germany  

2.3.1.1. Process heat reactor concept 

Within the German prototype nuclear process heat (PNP) project, a significant part of the 
efforts was dedicated to the design and demonstration of the ability of HTGRs to be used for 
process heat applications. Of special importance for process heat projects was the 46 MW(th) 
AVR test reactor in Jülich which was operated between 1967 and 1988. It became the world’s 
first pebble-bed reactor to successfully achieving a coolant outlet temperature of 950°C 
proving the feasibility of the pebble-bed HTGR concept under high temperature process heat 
conditions with a high availability. (The same helium outlet temperatures were later 
demonstrated for the Japanese block reactor HTTR as well.) As most chemical processes are 
performed at lower pressures some adaptation of the reactor design and of the chemical 
process has been necessary. 

The choice of the pressure is also important to reduce the loads on the high temperature 
barriers in case of depressurization accidents either in the primary or in the secondary circuit. 
Other important aspects of reactor design are the amount of cogenerated electricity, high 
availability as well as an optimization towards significant simplification of the nuclear island. 
Heat transfer under varying operational load conditions, hot gas mixing in the core bottom, or 
the lifetime of hot gas thermal insulation have been comprehensively investigated in 
experiments. 
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ducts are designed as pressure vessels according to the leak-before-break principle, where the 
early detection of a leakage would allow the immediate plant shutdown. Furthermore, the 
inside pipe containing the hot helium is also designed for a pressure of 4 MPa, although the 
pressure difference to the annular space around containing the returning cold helium is not 
more than 100 kPa during normal operation.  

More concepts of nuclear process heat HTGRs of smaller size have been proposed later, 
among them the modified version of the HTR-500, the 170 MW(th) HTR-Modul concept, and 
the AVR-50. All were characterized by a supply of energy at high temperature levels in the 
order of 950°C, which allows the achievement of high chemical reaction rates.  

2.3.1.3. Coupling between nuclear and chemical plant 

For the PNP nuclear steam coal gasification process, it was foreseen that the heat from the 
reactor coolant be transferred to an additional intermediate circuit via a helium–helium 
intermediate heat exchanger (He–He IHX). The main reason was to avoid the handling of coal 
and ash in the primary system of the reactor, and a much more complex way for repair and 
maintenance work. Primary helium of 950°C flowing on the outside of the IHX tubes passes 
its heat to the secondary helium entering the steam gasifier at 900°C. Also pressure is slightly 
higher than on the primary side for the purpose of preventing radioactivity to enter the 
secondary circuit in case of a leak. The hot steam produced is routed into the coal bed to be 
gasified. Unlike conventional fossil-fueled components, the helium-heated components of the 
HTGR have to meet the more stringent requirements of a „nuclear’ component in terms of 
construction, quality assurance, and scheduled re-testing. They have the important function of 
forming a radioactivity barrier between the primary helium and the process gas. 

Two different He–He IHX components were constructed by German companies (see Fig. VI.7 
in Appendix VI), one with a helical tube bundle and the other one with U-tubes, designed for 
a power level (~125 MW) representative for large and medium-sized plants. Both components 
were tested with 950°C helium on the primary side. The hot helium entering the heat 
exchanger at the bottom, flows upwards through the bundle, and is cooled down to 300°C. 
The secondary helium with a temperature of 200°C is entering the component at the top into a 
ring conduit where it is uniformly distributed over the tube bundle and heated up to 900°C in 
counter-current flow. The hot helium is leaving the IHX again at the top of the component. 
The maximum wall temperature in the tubes in normal operation is 920°C, the maximum 
pressure difference between primary and secondary side is 0.2 MPa under operational 
conditions. In depressurization accidents, they have to withstand the full pressure difference 
in a limited time period. 

For the PNP nuclear hydro-gasification of coal, it was foreseen to use the steam–methane 
reformer directly for heat transfer from the hot helium to the methane–steam mixture. An 
intermediate heat exchanger was, at least in those days, not deemed necessary. The drawback 
seen was the more complicated exchange of the catalyst in the nuclear steam reformer. 

Both IHX components were tested under nuclear coal gasification conditions in a 10 MW(th) 
component test loop (KVK), operated within the PNP project [22]. The facility consisted of a 
primary and a secondary helium loop. The helium flow rate was 3 kg/s in both circuits. Heat 
sources were a natural gas fired heater and an electrical heater. The test components examined 
included, apart from the two IHX, hot gas ducts with a total length of 140 m, hot gas valves, 
water cooler, and a steam generator (as the heat sink). KVK was operated for 18 400 h with 
7 000 h above 900°C and 11 000 h above 700°C, respectively, demonstrating the industrial 
feasibility of the tested components at a high reliability and an almost 100% availability. The 
nuclear steam reformer component was tested as part of the EVA–ADAM system at FZJ. 
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Based on the experiences with HTTR, JAEA has developed the conceptual design of a 
commercial scale HTGR hydrogen cogeneration system named GTHTR300C [24, 25]. The 
GTHTR300C is based on an electricity generation HTGR with a gas turbine electricity 
generation system named ‘gas turbine high temperature reactor’ (GTHTR300) [3, 5]. The 
GTHTR300C employs fully passive reactor safety, high fuel burnup, conventional steel 
reactor pressure vessel, non-intercooled direct Brayton cycle power conversion, horizontal 
single shaft gas turbine and electric generator, and a modular system arrangement. Reactor 
design specifications of the GTHTR300 and the GTHTR300C are the same except for the 
reactor outlet and inlet helium temperature and the helium flow rate. Major design 
specifications of the GTHTR300 and the GTHTR300C are shown in Table 2.13. Figure 2.30 
shows the system layout of the GTHTR300C. GTHTR300C consists of four modules 
including a reactor module, a gas turbine module, a heat exchanger module, and an 
intermediate heat exchanger module. The cooling system layout of the GTHTR300C is shown 
in Fig. 2.31. The reactor coolant temperature is limited to 850°C to avoid turbine blade 
cooling and use conventional turbine blade materials. Deletion of an intercooling system 
reduces the power generation efficiency by 2%. But system arrangement is simplified and 
cost of construction becomes smaller. 

TABLE 2.13. MAJOR DESIGN SPECIFICATIONS OF THE GTHTR300 AND GTHTR300C 

 GTHTR300 GTHTR300C 

Reactor thermal power (MW(th)) 600 600 

Core coolant flow (kg/s) 439 322 

Core inlet/outlet temperature (°C) 587/850 594/950 

Gas turbine inlet temperature (°C) 850 850 

Core coolant pressure (MPa) 6.9 5.1 

Electricity generation (MW(e)) 274 202 

Intermediate heat exchanger (MW(th)) n.a. 170 

n.a.  not applicable. 

2.3.2.2. GTHTR300C core design 

The reactor core of the GTHTR300C consists of 90 fuel columns in annular arrangement, 
73 inner reflector columns, 48 outer reflector columns and 18 sectors of fixed reflector as 
shown in Fig. 2.32. The effective annular core diameters are 3.6 m at the inside and 5.5 m at 
the outside. The core height is 8 m. Eight fuel blocks are stacked in each fuel column. Iin the 
hexagonal fuel block which has a height of 1.05 m and across flat distance is 0.41 m 
(Fig. 2.33), 57 fuel rods are inserted. A fuel rod is composed of 12 hollow fuel compacts 
supported by a graphite center rod. Outer diameter of the fuel compact is 26 mm and inner 
diameter is 9 mm as shown in Fig. 2.34. TRISO coated fuel particles are bonded with graphite 
matrix in the fuel compact. The diameter of a TRISO coated fuel particle is 1 mm. Seven 
kinds of enriched uranium are used and average uranium enrichment is 14%. The average fuel 
burnup is 120 GW·d/t and the age power density is 5.4 MW/m3. Refueling interval is 
18 months. Maximum fuel temperature is estimated at 1244°C during normal operation and 
1535°C in a loss of forced convection accident, which are lower than the design temperature 
limit of 1600°C. 
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FIG. 2.33. Fuel block of the GTHTR300C. 

 
FIG. 2.34. Fuel rod, fuel compact, and coated fuel particle of the GTHTR300C. 
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The total energy required, ∆H, which is composed of the required thermal energy, Q, and the 
Gibbs free energy (electrical energy demand), ∆G, increases with increasing temperature 
leading to increased direct heat requirement. The decrease in electrical energy demand drives 
the thermal-to-hydrogen energy conversion efficiency to higher values. On the other hand, the 
higher temperatures also favor the electrode activity and help lower the cathodic and anodic 
over-voltages. Therefore, it is possible to increase the electric current density at higher 
temperatures and, consequently, lower the polarization losses yielding an increase in the 
process efficiency. 

The HTSE process uses a combination of thermal energy and electricity to split water in an 
electrolyzer that is similar to a SOFC and operates at high temperatures in the range between 
800ºC and 1000ºC. A schematic picture of both devices with the corresponding 
electrochemical reactions is shown in Fig. 3.2. 

Steam is dissociated with electrons from externally provided electricity on the surface of a 
cathode. In presence of an oxygen ionic conductor used as a solid electrolyte, hydrogen 
molecules form on this surface while, simultaneously, oxygen ions migrate through the solid 
electrolyte and form oxygen molecules on the surface of an anode with the release of 
electrons. The products, hydrogen and oxygen, are separated by the gastight electrolyte and 
the hydrogen produced by this process has high purity. Only the gases H2O, O2 and H2 have 
to be circulated in the electrolysis plant and no other chemicals are involved that could rise to 
safety or environmental problems. 

 
FIG. 3.2. Principle of high temperature steam electrolysis, reverse reaction of solid oxide fuel cell 
[32]. 

Development of electrolysis cells for HTSE process is being undertaken vigorously around 
the world [33, 34]. An yttrium-stabilized zirconium oxide membrane was introduced as a 
solid oxide electrolyte and its applicability to a high temperature electrolysis to produce 
hydrogen was examined by the Japan Atomic Energy Agency (JAEA) [32, 35]. In 2004, the 
Idaho National Laboratory (INL) also proposed the high temperature electrolysis concept to 
produce hydrogen using the nuclear energy from HTGRs [36] and an electrolysis cell was 
tested [37]. 

Even the specific materials for the electrodes and electrolyte and the geometry of the unit cell 
can change, depending on the operating temperature for providing optimized performance, a 
representative electrolysis cell is shown in Fig. 3.3. It consists of a ceramic solid membrane of 

H2

Power generation Electrolysis

Electrolyte Electrolyte
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Steam

Anodic reaction H2 + O2- → H2O + 2e-

Cathodic reaction    1/2O2 + 2e- → O2-
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Even over 200 thermochemical cycles have been identified for the water splitting [43, 44], 
very few of them have progressed beyond theoretical calculations to working experimental 
demonstrations that establish the technical feasibility of the thermochemical processes. 
Currently the leading alternatives are the sulphur–iodine cycle (S–I) and the hybrid sulphur 
process (HyS). Other processes have been also proposed but are less developed, such as the 
copper–chloride (Cu–Cl) cycle and the UT-3 thermochemical process. The main 
characteristics of these thermochemical processes for hydrogen production which can be 
supported by nuclear energy are described below. 

3.1.2.2. Sulfur–iodine cycle 

i. S–I Cycle Basics 

The S–I cycle was originally proposed by General Atomics (USA) in the 1980s [45, 46], and 
was studied also in Europe [47], Canada [48], and Japan [49]. At present, active development 
is underway at General Atomics (USA), Sandia National Laboratory, SNL (USA), Japan 
Atomic Energy Agency, JAEA (Japan), Commissariat à l’energie atomique, CEA (France), 
Korean Atomic Energy Research Institute, KAERI (Republic of Korea), Institute of Nuclear 
and New Energy Technology, INET (China), and others. 

The S–I cycle is the most developed thermochemical water splitting process. The equipment 
has been scaled to a laboratory level in Japan, where approximately 30 Nl/hour of hydrogen 
were produced for 175 hours [50]. For these experiments, electrically heated helium was used 
for supplying heat to the chemical reactors but, in the near future, a hydrogen production 
system based on the S–I cycle is planned to be connected to the operating high temperature 
engineering test reactor (HTTR) [51]. The scale-up to a pilot plant with an expected H2 
production rate of 30 Nm3/h is currently under construction. 

The S–I process involves the decomposition of sulphuric acid (H2SO4) and hydrogen iodide 
(HI), and the regeneration of these reagents using the Bunsen reaction, as it is schematically 
shown in Fig. 3.6. Process heat is supplied at temperatures greater than 800ºC to concentrate 
and decompose sulphuric acid. The exothermic Bunsen reaction is performed at temperatures 
below 120ºC and releases waste heat to the environment. Hydrogen is generated during the 
decomposition of hydrogen iodide, using process heat at temperatures higher than 300ºC [52]. 
The process works like a chemical engine to produce hydrogen by absorbing high temperature 
heat in the endothermic decomposition and discharging low temperature heat in the 
exothermic Bunsen reaction. 

The sulphur–iodine process, an HTGR-based pure thermochemical cycle, basically consists of 
three chemical reactions and is considered suitable for large scale cost effective production of 
hydrogen through environmentally attractive option [42].  

Bunsen reaction (exothermic at 20–120°C):  

(1) I2 + SO2 + 2 H2O  ↔ H2SO4 + 2HI 

Hydriodic acid decomposition (endothermic at 300–450°C): 

(2) 2 HI  ↔ H2 + I2 

Sulphuric acid decomposition (endothermic at 800–900°C): 

(3) H2SO4  ↔ H2O + SO2 + 0.5 O2 
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The realistic S–I cycle as was given in (4) can be split into the following process steps [66]: 

(1) (9I2)l + (SO2)g + (16H2O)l  → (2HI+10H2O+8I2)l + (H2SO4+4H2O)l [120°C] 

(2) L2 = (2HI + 10H2O + 8I2)l  → (2HI)g + (10H2O+8I2)l [227°C] 

(3) (2 HI)g  → H2 + (I2)g [327°C] 

(4) L1 = (H2SO4 + 4H2O)l  → (H2SO4)l + (4H2O)l [297°C] 

(5) (H2SO4)l  → (H2SO4)g [357°C] 

(6) (H2SO4)g  → (SO3)g + (H2O)g [397°C] 

(7) (SO3)g  → (SO2)g + 0.5 O2 [867°C] 

The temperatures between brackets are approximate and depend upon the pressure that is not necessarily uniform 
in the different parts of the process. 

The Bunsen reaction (1) proceeds exothermally in liquid phase, and produces two immiscible 
aqueous acid phases which compositions are indicated in parentheses: L1 phase which is 
aqueous sulphuric acid and L2 phase which is a mixture of hydrogen iodide, iodine and water, 
named HIx. In step (2), HI is separated from L2. It is the most critical phase of the cycle. 
Reaction (3) is the thermal decomposition of HI, while step (4) is the separation of L1 into 
H2SO4 and H2O. Process steps (5) to (7) proceed in the gas phase and produce H2O, SO2 and 
O2. These gases are cooled down before bubbled in the Bunsen reactor to separate oxygen 
from SO2 and H2O. Due to the fact that reaction (7) is incomplete, a residual amount of SO3 is 
found in the hot gases following the reaction. This SO3 is recombined to H2O in a reactor 
where the reverse of reaction (6) is performed and the diluted H2SO4 produced is recycled in 
step (4). 

ii. Process concepts and implications 

To overcome thermodynamic limitations like low chemical equilibrium values, azeotropes in 
phase equilibria and also to tackle energy and exergy issues, a variety of concepts like 
membrane-based processing, reactive distillation, etc., which involve process intensification, 
integration principles are pursued. Application of these process concepts in each of the section 
is described below. 

Bunsen reaction (section I): 

Although the Bunsen reaction looks less critical due to negligible energy demand and 
relatively mild temperatures of operations, it represents a key process step to be optimized 
since the compositions of its product streams strongly affect energy consumption in the 
operations downstream [68]. The reaction system consisting of SO2, H2O, I2, HI, H2SO4 has a 
very complex solution chemistry due to strong electrolytic behavior, formation of tri-iodides 
(I3

-), polyiodides (I4
2-, I5

-, etc.) and solvation reactions. The system displays partial miscibility 
behavior. A large data base of the reaction is needed at different pressures of SO2. Figure 3.9 
pictures the domain of R&D for data generation. Domain knowledge to elucidate the 
processes in Bunsen reactor is indicated in Fig. 3.10. 

This heterogeneous reaction (G–L–S or G–L–L) can be construed as ‘pseudo first order 
system’ (Fig. 3.11) as the reaction rate is dependent only on SO2 partial pressure. A 
multistage counter current contactor like oscillatory baffled column reactor (Fig 3.12) to 
enhance mass transfer, heat transfer, product purity is considered [70, 71].  
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(b) azeotrope formation of HI–H2O binary or pseudo azeotrope formation of HI–H2O–I2 
ternary system and consequent energy demands for concentration and separation; 

(c) requirement to recycle large quantities of iodine and water bearing process streams.  

In addition, higher temperatures (up to 450°C) and pressures (up to 5 MPa) aggravate the 
corrosion problem and necessitate the use of exotic and costly materials of construction. 
Table 3.3 mentions some of the process options for operations in this section. Process 
integration and intensification concepts are being evaluated to tackle the problems mentioned 
above. For example, in extractive distillation (Fig. 3.17), a third body (H3PO4) is added to 
destroy the azeotrope by first separating the iodine before the HI is distilled and then 
decomposed. Reactive distillation (Fig. 3.18) integrates separation (HI from H2O and I2) and 
decomposition reaction (HI into H2 and I2) with use of appropriate tower internals, process 
streams and catalyst. Similarly electro–electro dialysis (Fig. 3.19) combines concentration and 
electrochemical separation. Membrane-based processing is invoked to intensify operation by 
simultaneous withdrawal of one of the species to overcome azeotropic/chemical equilibrium 
limitations (Fig. 3.20).  

TABLE 3.3. HI SECTION 

 Process concepts Comments Ref 
1. Distillation 1. Suitable only for lab scale demonstration 

2. Energy intensive due to necessity of evaporating the 
solvent water 

3. Azeotropic HI input to the decomposer 
(disadvantage) 

4. Overall low efficiency (disadvantage) 

 

2. Extractive distillation  
(Fig. 3.17 ) 

1. Can overcome azeotropic limit of HI–H2O 
system(advantage) but introduces additional 
chemicals(disadvantage) 

2. Corrosion problems due to H3PO4 (disadvantage) 
3. Huge amount of energy required to concentrate 

H3PO4 which decreases process efficiency. 

[77] 

3. Reactive distillation  
(Fig. 3.18) 

1. Separation and reaction can be integrated 
(advantage) 

2. High pressure operation (disadvantage) 
3. Severe corrosion problem (disadvant.) 
4. Costly equipment (disadvantage) 

[81] 

4. Electro–electro dialysis  
(Fig. 3.19) 

1. Helps to concentrate HI above azeotrope and 
decrease water and I2 content (advantage) 

2. Even though electrochemically driven, attractive 
overall efficiency (advantage) 

3. Cationic membrane development effort is called for 
4. Techno–economics for large scale deployment needs 

to be studied 

[82–84] 

5. Pervaporation 1. Helps to concentrate HI above azeotropic 
concentration 

2. Use of Nafion-112, Nafion-117 containing both 
hydrophilic and hydrophobic domains 

[85] 

6. Coupled distillation and 
membrane decomposition 
(Fig. 3.20) 

1. High concentration of HI and high yield of H2 can be 
achieved 

[86, 87] 

7. Membrane distillation 1. Helps to concentrate HI above azeotropic 
concentration 

2. Use of Poly-Propylene,  
PTFE hydrophobic membrane 

[88] 
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However, a lot of development effort is required to perfect these concepts. In reactive 
distillation, the development of a catalyst for HI decomposition (in gas/liquid phase) is 
underway. Design of columns with appropriate internals and materials of construction is a 
process engineering and technological challenge. Lots of theoretical and experimental 
investigations are underway.  

Pt /Pd/Ru  reported as active metal catalysts for this reaction. Other catalysts tried are ceria 
(CeO2), nickel, and carbon. For HI decomposition in the gas phase, the theoretical equilibrium 
conversion calculated from free energy values varies from ~14% at 150 oC to ~25% at 600 oC. 
With Pt on carbon catalyst, a conversion very close to this equilibrium is achievable. 
Furthermore, by theoretical analysis with reactive distillation, where decomposing gas will be 
replenished with much higher moles of liquid, the overall conversion will be further enhanced 
by 10 to 15%. This reflux liquid also improves the reactive distillation column performance 
by taking away iodine from the reacting system. 

Process simulation and property models employed by different research groups for different 
sections of the S–I process are:  

- ASPEN Plus [74–78]; 

- SRNL OLI [79]; 

- JAEA OLI [80]; 

- ProSimPlus [80].  

VLE, LLE, SLE experimental data are mentioned in Table 3.4 with references given in [60]. 

In the case of membrane-based processing, development of durable membranes for handling 
high concentration fluids with good separation factors and flux characteristics is the focus 
area of research. 

TABLE 3.4. EXPERIMENTAL DATA AVAILABLE IN LITERATURE FOR HIX SYSTEM AND 
ITS BINARY SUBSYSTEM [60] 

 Data type 
Tmin – Tmax  

[°C] 
Pmin – Pmax  

[MPa] 
Data number 

H2O–HI 

VLE (T,P,x) 77.8–280.9 0.022–5.38 80 

VLE (T,x,y) 60.0–126.5 0.1013 38 

VLE (T,x,y) 0.6–126.8 0.1013 30 

VLE (P,x) 25.0 0.003–0.747 21 

Azeotropic point 127.0 0.1013 1 

LLE (T,x,x’) 24.0–70.0 — 2 

LLE 25.0 0.747 1 

H2O–I2 
LLE (T,x,x’) 77.1–220.0 — 10 

SLE (T,x) 0.0–60.0 — 10 

HI–I2 SLE (T,x) 25.0–90.0 — 5 

H2O–HI–I2 
VLE (T,P,x) 100–280 0.4–64.0 280 

LLE tie line 24.0–152.1 7.0–62.2 19 

VLE  vapour–liquid equilibrium. 
LLE  liquid–liquid equilibrium. 
SLE  solid–liquid equilibrium. 
—  data not available. 
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FIG. 3.22. Equilibrium constant of HI decomposition in vapour phase reaction based on JANAF table 
standard Gibbs free energy values. 

So far reactive distillation of HIX phase for section III of S–I process is conceptualized at 
higher operating pressure (about 2.2 to 5.0 MPa). Due to extreme corrosive nature of the HIx 
phase, it is difficult to construct a commercial plant with suitable material which can 
withstand the environment. This high pressure requirement comes from the corresponding 
high saturation temperature where both equilibrium yield (Fig. 3.23) and kinetics of reaction 
are improved. As far as physical distillation for iodine separation is concerned, pressure does 
not have much appreciable effect. Therefore, it is expected to be advantageous in terns of 
material of construction, if the process can be operated at lower pressure (close to ambient). 
For low pressure reactive distillation of HIx to be functional, the whole physical distillation 
will be operated at low pressure saturated temperature condition for iodine stripping and 
reactive distillation section also will be operated with low pressure, but HI vapour phase 
catalytic decomposer only will be isolated from liquid reflux and elevated to higher 
temperature (approximately 300°C) to facilitate hydrogen production. The whole process will 
be integrated in a single reactive distillation column with additional heating facility at the HI 
vapour phase decomposer section. 

 
FIG. 3.23. Equilibrium conversion of HI in vapour phase reaction based on JANAF table standard 
Gibb’s free energy values. 
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Thermodynamic models 

At any temperature and pressure condition, when HIx mixture vapour and liquid is at 
equilibrium, liquid and vapour fugacities will be equal for all individual components. Based 
on this postulate we can write; 

( ) ( )
i

L

ii

V

i
xPTfyPTf ,,,, =  

where yi and xi are the vapour phase and liquid phase mole fraction of component ‘i’, 
respectively. 

There are two approaches used for present-day simulation: (1) Φ–Φ –Φ 
approach. In the first homogeneous Φ–Φ approach, each phase component fugacity is 

calculated from phase fugacity coefficients ( )
i

V

i
yPT ,,Φ and ( )

i

L

i
xPT ,,Φ  assuming 

fugacities as well as fugacity coefficients also are equal. Fugacity coefficients are calculated 
from any unique suitable real gas equation of states. In the second heterogeneous γ–Φ 
approach, vapour and liquid phasea are handled separately. Similar to the first approach, 
vapour phase component fugacity is calculated from fugacity coefficient, which is calculated 
by any suitable equation of state, but liquid phase component fugacity is calculated by 
introducing activity coefficients γi to consider non-ideality of the liquid phase. Thus when gas 
and liquid phase fugacities are equated, the expression becomes:  

 ( ) ( ) ( )PTfxxTPyPT
L

iiiii

V

i
,,,,

0γ=Φ  

where ( )PTf
L

i
,

0
 is the liquid state fugacity of component ‘i’ at reference state. 

To calculate vapour phase fugacity coefficient of HIx system, mostly three equations of state 
are used, these are PR (Peng–Robinson) [89], RK (Redlich–Kwong) [90] and SRK (Soave–
Redlich–Kwong) [91]. 

PR equation of state: 
22

2 bVbV

a

bV

TR
p

mmm +
−

−
= α

 

with 
c

c

p
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22
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r
T−−++= ωωα  

 where 
cr

TTT /= , and ω is the acentric factor, equal to ( ){ }1log
10

−−
r

p  at Tr = 0.7; 

RK is the equation of state: ( )bVVT
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Soave modified Redlich–Kwong (SRK) equation of state: ( )bVV
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+
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with 
c

c

p

TR
a

22
42747.0

= , 
c

c

p

TR
b

08664.0
= , and 

 ( )( )[ ] 25.02
117613.05517.148508.01

r
T−−++= ωωα  

where  

Vm  is the molar volume,  
R  is the universal gas law constant,  
T  is the temperature,  
Tr  is the reduced temperature,  
Tc  is the critical temperature,  
p  is the pressure,  
pr  is the reduced pressure, and  
pc  is the critical pressure. 

For liquid phase activity coefficient calculation of a highly non-ideal electrolyte HIx system, 
mostly two thermodynamic methods are used, ‘elec NRTL’ (electrolyte non-random two 
liquid model) [92] and UNIQUAC (universal quasi chemical) [93]. 

For the ‘elec NRTL’ model, molecule–electrolyte and molecule–molecule interaction 
parameters (τij) between two species, i and j, are calculated as follows: 

  












+

−
++=

ref

ref

ij

ij

ijij T

T

T

TT
e

T

b
lnατ

where  

aij and bij  are the binary interaction parameters,  
eij   is the binary electrical interaction parameter,  
T   is the temperature, and  
Tref   is the reference temperature [61]. 

For UNIQUAC activity coefficient model, component Gibbs excess free energy is correlated 
to activity coefficient and Engel’s salvation parameters as follows: 

  ( ) ( )
jiijresidualialcombinator

ex

AAqxfqrxf
TR

g
,,,,, +=  

where the combinatorial term handles molecular-size difference effects and the residual term 
handles fluid–fluid interaction. The terms r and q are UNIQUAC structural parameters and Aij 
and Aji are binary interaction parameters [60]. 

Summary and conclusion 

Simulation studies are conducted for the above specific cases where only physical distillation 
will be conducted to separate iodine at 0.15 to 0.2 MPa pressure, followed by vapour phase 
HI decomposition reactor and subsequent iodine stripping at the top of the physical 
distillation column at the same pressure with desired superheated conditions. With this 
modification, it is expected that overall performance of the reactive distillation column will 
not alter and column can be operated at low pressure at the expense of additional heat load at 
each decomposition reactor section. Low-pressure reactive distillation scheme is shown in 
Fig. 3.24. 
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As for the reactor technology, the HTTR operational experience is accumulated and tests on 
safety demonstration and up-grade are being performed. For developing the S–I process, 
(i) close cycle test, (ii) high efficiency component test, and (iii) material test are under way 
[94]. The close cycle test aiming at establishing of reaction control has been carried out with a 
bench scale test apparatus using high temperature helium gas heated by electric heaters to 
drive the process. In parallel with these process studies, materials for the pilot scale facility 
having hydrogen production rate of 30 Nm3/h are being developed to meet the corrosive 
process conditions such as boiling sulphuric acid and SO2–SO3–H2O–O2 gaseous mixture at 
about 800ºC. 

In USA, the Department of Energy (DOE) has sponsored a research project addressed to use 
the MHR for driving the hydrogen production based on the S–I thermochemical cycle and the 
HTSE process. The project is directed by General Atomics and involves the participation of 
the Idaho National Laboratory and Texas A&M University [95]. 

The GT-MHR is a modular, passively safe version of the HTGR, designed to operate at a 
power level of 600 MW(th) and, for hydrogen production, is referred as H2-MHR. The plant 
consists of four 600 MW(th) MHR modules, with each module coupled to an IHX to transfer 
the heat to a secondary helium loop. The heat is then transferred to the S–I-based hydrogen 
production system. The IHX design is based on the PCHE which consists of metal plates that 
are diffusion bonded to restore the properties of the base metal. Fluid flow channels are 
chemically milled into the plates using a technique that is similar to that used for etching 
printed electrical circuits. The IHX design consists of 40 modules and associated manifolds 
within an insulated steel vessel, with each module transferring about 15 MW(th) [96]. 

Several different concepts for coupling the H2-MHR to the S–I process are being evaluated, 
including running the H2SO4 and HI decomposition reactions in series, as shown in Fig. 3.26, 
and running them in parallel with a power topping cycle. The series configuration was 

heat exchanger pinch points, and because the power topping cycle used with the parallel 
configuration adds complexity without significant improvement in the overall efficiency [96]. 

 
FIG. 3.26. H2-MHR system coupled to S–I process with series configuration [96]. 
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works on pilot scale testing, coupling technology with the reactor, nuclear hydrogen 
production safety; finally phase III (2020~) is dedicated to the engineering scale development 
of nuclear hydrogen production [99].  

In addition, China is exploring the concept of an ‘open loop’ S–I thermochemical cycle for 
the production of hydrogen, sulphuric acid and electric power based on two important 
domestic facts: (1) the chemical reactants are inexpensive and abundantly available; (2) the 
products, in addition to hydrogen, are valuable and marketable [100]. 

In the Republic of Korea, within the framework of the so-called ‘nuclear hydrogen production 
technology development and demonstration (NHDD) project’ for the ultimate purpose to 
design, construct a prototype VHTR, and demonstrate nuclear hydrogen production, KAERI 
is performing several research activities related with VHTR design technology development 
and fuel technology development [101], as well as the study of several alternatives of flow 
sheets for the S–I thermochemical cycle. Main objectives are to overcome the problems 
associated with the excess of water and iodine observed in the original S–I cycle [56, 102]. 

v. Simulation of the hydrogen production plant based on S–I cycle 
with heat exchanger 

In order to calculate the quantities of chemical materials used in each of the three sections of 
the S–I cycle, the previous chemical equations (1), (2), (3) are used together with the 
following assumptions: 

X = m(I2) , Y = m(SO2) , Z = m(H2SO4) , W = m(H2O) 

Q = m(SO3) , M = m(O2) , N = m(HI) , R = m(H2) 

where  

m   is the mass of material,  
X1, Y1, … are the masses of materials in section 1,  
X2, Y2, … are the masses of materials in section 2,  
X3, Y3, … are the masses of materials in section 3,  
X, Y, …  are the masses of materials which are not reacted, and  
V   is the recovery of hydrogen production.  

Therefore, each section can be described by the following equations:  

• Section 1 (as shown in Fig. 3.28) 

with the main reaction 

 I2 + SO2 + 2 H2O  → H2SO4 + 2 HI  

X1 = N1 × 0.992; Y1 = N1 × 0.25; W1 = N1 × 0.111; Z1 = N1 × 0.383 

• Section 2 (as shown in Fig. 3.29) 

with the main reactions 

 H2SO4  → SO3 + H2O 
 

 SO3 + H2O  → SO2 + O2 + H2O 

Q2 = Z1 × 0.816 ; Y2 = Q2 × 0.8 ; W2 = Q2 × 0.225 ; M2 = Q2 × 0.2 ; Z2 = Z1 

• Section 3 (as shown in Fig. 3.30)  

with the main reaction 

 2 HI  → H2 + I2  
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The logarithmic temperature difference, logtΔ , is given by  
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The above four equations can be used to determine the HEX heat exchangers needed for the 
hydrogen production plant by using the data specifications of all three sections of the S–I 
cycle as assumed in the CEA studies [104]. Results are shown in Tables 3.5 through 3.8. They 
show some agreement with the CEA studies. 

vii. Material issues: 

Material issues are crucial for a successful deployment of the S–I process on commercial 
scale. Material research areas relate to development of construction materials, catalysts, and 
membranes. Efforts are ongoing to find solutions which render the S–I process efficient and 
economical. Reference [105] gives an excellent overview of the research findings and 
directions. Suggested R&D areas include 

• Development of fabrication methods for components made of tantalum alloys, silicon 
carbide, etc.; 

• Study of long term creep characteristics of candidate materials for sulphuric acid 
decomposition at higher temperatures; 

• Study of long term stability and economics of membrane reactor/separators; 

• Development of platinum and oxide-based catalysts and their substrates for SO3 
decomposition; 

• Catalysts suitable for HI decomposition. 

TABLE 3.5. INPUT DATA OF THE 1 MOL/S HYDROGEN PRODUCTION PLANT 

 Section 2 (H2SO4) Section 3 (HI) 

Mass (kg) 24.225 146.28 

Time (s) 5 60 

Mass flow rate (kg/s)  4.85 2.44 

Input temperature (°C) 120 120 

Output temperature (°C) 850 450 

Heat capacity (kJ/(kg·K)) 1.42 2.51 

Density (kg/m3) 1.84 × 10-3 5.686 

TABLE 3.6. PROPERTIES OF PRESSURIZED WATER IN HEX1, HEX2, AND HEX3 

Parameter Value 

Input temperature (°C) 925 

Output temperature (°C) 690 

Heat capacity (kJ/(kg·K)) 2.465 

Density (kg/m3) 20.58 

Heat conductivity (W/(m·K)) 112.9 × 10-3 

Kinetic viscosity (m2/s) 1.99 × 10-6 

Prandtl number 0.894 

Pressure (MPa) 8 

Dynamic viscosity (kg/(m·s)) 40.94 × 10-6 
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TABLE 3.7. PROPERTIES OF HELIUM IN HEX1 

Parameter Value 

Input temperature (°C) 590 

Output temperature (°C) 950 

Heat capacity (kJ/(kg·K)) 5.193 

Density (kg/m3) 3.53 

Heat conductivity (W/(m·K)) 64 192.2 

Kinetic viscosity (m2/s) 9.96 × 10-12 

Prandtl number 6.726 

Pressure (MPa) 7.65 

Dynamic viscosity (kg/(m·s)) 83 138.7 

For the HI decomposition section, Ta–40NB, Nb–1Zr are excellent metallic materials for 
construction, where as Ta–2.5W, Ta–10W and Ta are also good materials. Hastelloy B-2 can 
be used as sacrificial material only, because cost of the better materials is very high. 
Hastellow C-276 and SS are inappropriate for HIx system. Glass, quartz, mullite and silicon 
carbide are ceramic materials which have very good corrosion resistance against HIx. They 
can be used for packing material, high temperature heat exchanger material, etc. 

TABLE 3.8. CALCULATED SPECIFICATIONS OF THE HEXS 

Section 2 
Concentration Decomposer SO3/SO2 Reactor 

calculated  CEA study calculated  CEA study calculated CEA study 

Q (MW(th)) 6.079 6.4 20.236 20.4 11 11 

K (W/(m2·K)) 375.22 356 83.88 83 387.193 395 

A (m2) 108.16 104 1818.329 1535 355.38 370 

LMTD (K) 149.76 176 132.67 159 79.9 74 

Hex. type Tube in tube Shell & tube Tube in tube Shell & tube Tube in tube Shell & tube 

d1,in/out (mm) 60/65 — 60/65 — 60/65 — 

d2,in/out (mm) 50/55 — 50/55 — 25/30 — 

dtube,in/out (mm) — 27/31 — 27/31 — 27/32 

dshel1 (mm) — 1067/1500 — 
2.5 × 1.7 

× 2.6 
— 2.65 × 9 

Section 3 
E302 E305 E306 

calculated  CEA study calculated  CEA study calculated CEA study 

Q [MW(th)] 21.912 21.5 0.55 — 8.608 21.4 

K [W/(m2·K)] 314.26 305 39.03 — 195.24 305 

A [m2] 225.7 218 128 — 322 218 

LMTD [K] 308.925 322 109 — 136.53 321.85 

Hex. type Tube in tube Shell & tube Tube in tube — Tube in tube Shell & tube 

d1,in/out [mm] 60/65 — 60/65 — 60/65 — 

d2,in/out [mm] 20/25 — 20/25 — 20/25 — 

dtube,in/out [mm] — 21/25 — — — 21/25 

dshel1 [mm] —  4 × 26.1 — — — 2.4 × 3.2 

— data not available. 
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viii. Analytical and measurement technology issues 

In different process units of the S–I process, various chemical species displaying diverse 
interactions (ionic, dipole–dipole, van der Waals, molecule–ionic) are encountered. These 
interactions in turn lead to complex phase behavior, chemical equilibria, etc. To fully 
characterize and elucidate the complex behavior of the physico–chemical processes, reliable 
sensors, measurement techniques and computational tools are essential. Development of 
analytical and measurement technologies is further complicated due to corrosive, toxic and 
opaque nature of the chemicals. Conventional measurement techniques have to be fine-tuned 
or new techniques have to be developed. A standard apparatus used for generating 
thermodynamic data needs to be re-engineered. Developing on-line measuring techniques 
which permit real time concentration measurements, etc., are required for process control to 
achieve stable, efficient operation for a given throughput. In addition, special techniques with 
high special resolution are required to understand the structure and properties of the materials.  

The following list shows some of the techniques which are being developed: 

• Raman spectroscopy for speciation (eg., I4H
+, I6H

+, I8H
+ and hydrogen without iodine) 

studies of HI–I2–H2O ternary system at ENEA, Italy [106]; 

• UV/visible spectrometry for I2 studies and FTIR for HI and H2O [68]; 

• Design and development of calorimeters, ebulliometers [107]. 

ix. Conclusion 

S–I process R&D can be labeled as high potential and high cost research spanning diverse 
areas such as process engineering, materials, analytical techniques, integration with nuclear 
reactor, and safety. An attempt has been made to mention process concepts being studied and 
indicate how research findings described here address some of the issues. Notwithstanding the 
diversity and complexity, the R&D effort increasingly being made by the developed and 
developing countries will surely make large scale commercial production of hydrogen by the 
S–I process a reality alongside development of the high temperature nuclear reactor. This 
paves the way for establishing a nuclear–chemical industry which can mitigate problems of 
greenhouse gas emissions or fossil fuel depletion. 

3.1.2.3. Hybrid-sulphur process 

The HyS cycle was first proposed by Brecher and Wu at Westinghouse Electric Corporation, 
where the process was extensively studied in the 1970s and 1980s and patented [108]. As a 
result, it has come to be known as the Westinghouse process [109]. HyS is one of the simplest 
thermochemical cycles comprising only two reaction steps and having only fluid reactants. 
The term ‘hybrid’ acknowledges the electrochemical nature of one of the reaction steps which 
requires that electric as well as thermal energy be supplied to the process. It is a sulphur cycle 
because it involves sulphur oxidation and reduction and, in fact, sulphur is the only element in 
the cycle other than hydrogen and oxygen. A simple schematic showing the reaction steps is 
given in Fig. 3.32 [110]. 

The first reaction step 

 H2SO4(aq)  → H2O(g) + SO2(g) + ½ O2(g) (> 800ºC) (1) 

is common to all sulphur cycles and, as a matter of fact, the result of two separate reactions. 
As H2SO4 is vapourized and superheated, it spontaneously decomposes into water and sulphur 
trioxide (SO3):  

 H2SO4(aq)  → H2O(g) + SO3(g)  (1a) 
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Most recently, and after considering factors of availability and abundance of materials, 
simplicity, chemical viability, thermodynamic feasibility and control/safety issues, six cycles 
in addition to the S–I process were identified in the NHI as the most promising 
thermochemical water splitting processes [116]:  

• copper–chlorine (Cu–Cl) [117];  

• cerium–chlorine (Ce–Cl) [118];  

• iron–chlorine (Fe–Cl) [118];  

• vanadium–chlorine (Va–Cl) [118];  

• copper–sulfate (Cu–SO4) [118]; and  

• hybrid chlorine [118].  

Proof of principle demonstrations have been completed for these cycles and the chemical 
viability has been proven. 

TABLE 3.10. SUMMARY OF THE JRC ISPRA THERMOCHEMICAL CYCLES [42] 

No. Mark Max. terms 
elements 

Max. temperature 
(K) 

No. of  
reactions 

1 Mark 1 Hg, Ca, Br 1050 4 

2 Mark 1B Hg, Ca, Br 1050 5 

3 Mark 1C Cu Ca, Br 1070 4 

4 Mark 1S Hg, Sr, Br 1070 3 

5 Mark 2 Mn, Na (K) 1070 3 

6 Mark 2C Mn, Na (K), C 1120 4 

7 Mark 3 V, Cl, O 1070 4 

8 Mark 4 Fe, Cl, S 1070 4 

9 Mark 5 Hg, Ca, Br, C 1120 5 

10 Mark 6 Cr, Cl, Fe (V) 1070 4 

11 Mark 6C Cr, Cl, Fe (V), Cu 1070 5 

12 Mark 7 Fe, Cl 1070 5 

13 Mark 7A Fe, Cl 1070 5 

14 Mark 7B Fe, Cl 1120 5 

15 Mark 8 Mn, Cl 1120 3 

16 Mark 9 Fe, Cl 920 3 

17 Mark 10 I, S, N 1120 6 

18 Mark 11 S (hybrid) 1120 2 

19 Mark 12 I, S, N, Zn 1120 4 

20 Mark 13 Br, S (hybrid) 1120 3 

21 Mark 14 Fe, Cl 920 5 

22 Mark 15 Fe, Cl 920 4 

23 Mark 16 S, I 1120 3 

24 Mark 17 S, I 1120 3 
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Due to lower operating temperatures of about 530–550ºC, the Cu–Cl cycle is a promising 
alternative for hydrogen production. The thermochemical cycle decomposes water into 
oxygen and hydrogen through intermediate copper and chlorine compounds. These chemical 
reactions form a closed internal loop that recycles all chemicals on a continuous basis without 
emitting any greenhouse gases. 

The chemical reaction steps in the Cu–Cl cycle are as follows: 

(1) (2 Cu)s + (2 HCl)g  → (2 CuCl)l + (H2)g [430–475°C] 

(2) (4 CuCl)aq  → (2 CuCl2)aq + (2 Cu)s 
[30–70°C, 
electrolysis] 

(3) (2 CuCl2)aq  → (2 CuCl2)s [> 100°C] 

(4) (2 CuCl2)s + (H2O)g  → (CuO.CuCl2)s + (2 HCl)g [400°C] 

(5) (CuO.CuCl2)s  → (2 CuCl)l + (0.5 O2)g [500°C] 

The cycle consists of three main thermally driven reactions and one electrochemical reaction, 
and involves five steps: hydrogen production, copper production, drying, HCl(g) production 
using such equipment as a fluidized bed, and oxygen production. A chemical reaction takes 
place in each step, except in the drying step [119].  

When compared to other methods of hydrogen production, the Cu–Cl cycle has its own 
unique advantages, challenges, risks, and limitations. Main advantages are its lower operating 
temperatures, inexpensive raw materials, and reactions that proceed nearly to completion 
without significant side reactions. Technical challenges include the transport of solids 
(between steps 1–2, 3–4, and 4–5) and electrochemical processes of copper electrowinning (or 
electroextraction), which are not needed by other cycles like the S–I cycle. These processes 
are challenging due to solids injection/removal that can block the equipment operation and 
generate undesirable side reactions in downstream chemical reactors.  

A conceptual layout of a Cu–Cl cycle is illustrated in Fig. 3.37 [120]. As can be seen, only 
water and nuclear heat enters the cycle and, at the end of the process, only H2 and O2 are 
produced.  

Liquid water at ambient temperature enters the cycle and passes through several heat 
exchangers where it evaporates and increases in temperature to 400ºC. Heat for this process is 
obtained from cooling the hydrogen and oxygen gases before they exit the cycle. Steam at 
400ºC and solid copper chloride (CuCl2) at 400ºC from the dryer enter the fluidized bed 
where a chemical reaction occurs. This reaction is endothermic and yields hydrochloric gas 
(HCl) and Cu2OCl2. HCl gas is compressed and Cu2OCl2 is transferred to another process step 
after its temperature is increased to the oxygen production reaction temperature of 500ºC. 

In the second step, an endothermic chemical reaction takes place, in which Cu2OCl2 is heated 
and O2 and copper monochloride (CuCl) are produced. Liquid copper monochloride is 
solidified by cooling it to 20ºC, after which it enters the third process step together with the 
solid copper monochloride from the fifth step. 

In the third process step, solid copper monochloride and water react together at 20ºC, 
endothermically. However, in this reaction water acts as a catalyst, and does not react with the 
other elements or compounds. Another specification with this third reaction that differentiates 
this step from others and makes it the most expensive (based on the price of electricity) is that 
electrolysis takes place in this reaction. Solid copper and copper chloride–water solutions are 
produced in this reaction. A mixture of copper chloride and water is transferred to the dryer, 
and solid copper enters the fifth process step after its temperature is increased to that step’s 
operating temperature. 
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The UT-3 plant consists mainly of Ca reactor units, Fe reactor units, hydrogen separation 
units, oxygen separation units, gas circulation units and membrane separation units. The 
reactant gases must always be heated up to a certain temperature level required for each 
reaction, because they cannot reach that temperature by heat exchange with product gases 
alone. 

Heating as well as cooling of the solid reactants is carried out by use of the sensible heat of 
reactant gas mixtures with high steam content. The gaseous products from reactions (2) and 
(4) must be separated. In reaction (2), oxygen can be easily recovered from the mixture by 
condensation while hydrogen produced from the reaction (4) is also separated by 
condensation from the other two constituents, hydrogen bromide and steam. A condensed 
mixture of hydrogen bromide and steam can be utilized as gas reactant for reaction (3). 
Process waste heat generated in the hydrogen and oxygen separation unit is recovered as 
byproduct steam used for generating power. 

More recent work has suggested that an adiabatic form of the UT-3 cycle could reach a higher 
efficiency than the previous version [132]. In comparison with non-adiabatic processes, 
theoretical calculations showed that energy and exergy economies could be increased 
approximately by 20% while the total power of the equipment is expected to be reduced by 
more than half. 

The physiochemical properties of the solid and gaseous reactants, for instance the sintering of 
the solid, along with the toxicity of the reactants (bromide), make the practicabilities of the 
process very difficult. To overcome the first problem, a new flow sheet was developed which 
employed two asymmetric torus reactors with fluidized beds of solid reactants in each leg. 
This has the advantage of avoiding the energy intensive reactant preparation step and also 
improves the reaction kinetics [133]. 

A modified version of the UT-3 process is the calcium–bromine (Ca–Br) thermochemical 
cycle that is being investigated at ANL [134]. Compared to the UT-3 cycle, the current Ca–Br 
cycle is a marked departure in four ways: 

1. molten calcium bromide (CaBr2) is employed rather than a solid monolith, to 
overcome the heat and mass transfer limitations of the UT-3 process; 

2. electrolysis (or possibly a plasma-chemical stage) will be used for the recovery of HBr 
as hydrogen and bromine, in contrast to the UT-3 cycle which employed two iron beds 
that swung semicontinuously between the oxide and bromide states; 

3. all the steps in the Ca–Br cycle will be continuous; 

4. the process is ‘hybrid’ since it requires the use of electricity. As a result, the hydrogen 
will be produced at much lower temperatures than those required by the UT-3 cycle 
and at much higher molar concentrations. 

The three reactions in the hybrid Ca–Br cycle are given by [135]: 

CaBr2 hydrolysis with HBr formation: 

(1) CaBr2(s) + H2O(g)  → CaO(s) + 2 HBr(g) [740–777°C] 

CaBr2 regeneration with oxygen formation: 

(2) CaO(s) + Br2(g)  → CaBr2(s) + 0.5 O2(g) [577–777°C] 

Br2 regeneration-PEM electrochemical: 

(3) 2 HBr(g)  → H2(g) + Br2(g) [≈60°C] 
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In the framework of Generation IV nuclear energy systems initiative for the development of a 
proliferation resistant, sustainable, nuclear-based energy supply system, the hybrid Ca–Br 
cycle is being investigated for coupling with the so-called STAR-H2 system [136, 137]. 
STAR (for: secure transportable autonomous reactor) is a fast neutron spectrum, 400 MW(th) 
modular-sized reactor that is based on Russian submarine reactor technology. The reactor 
coolant is liquid lead (Pb) with a reactor core outlet temperature of 800ºC for future design at 
atmospheric pressure. 

The thermal energy from the STAR-H2 system can drive the hybrid Ca–Br thermochemical 
process for hydrogen production. It is particularly attractive because nearly one half of the 
required thermodynamic energy for water splitting is delivered as nuclear heat at around 
750ºC, and it is envisioned that this temperature will facilitate the engineering of materials 
when compared to other, higher temperature thermochemical cycles. 

3.1.3. Steam methane reforming 

Based on efficiency and economy reasons, most of the industrial hydrogen production is 
currently based on the steam methane reforming (SMR) process, although the use of this 
method generates significant CO2 emissions into the atmosphere due to the nature of SMR 
reactions as well as the fact that it requires high process temperatures, and the most common 
practice for providing the needed heat is via burning natural gas [138]. 

The SMR process consists of breaking the link between the carbon and the hydrogen in the 
methane (CH4) molecule, with the help of heat and steam. This causes the carbon to oxidize 
generating carbon dioxide (CO2) and hydrogen (H2). The conventional SMR process is 
composed of a steam reformer, a shift converter, and a hydrogen purifier. A mixture of 
desulphurized natural gas and steam is introduced into a catalyst bed in the steam reformer, 
where the steam reforming reaction proceeds on nickel-based catalyst, according to the 
following reaction: 

 CH4 + H2O  → 3 H2 + CO [700–800°C] 

Furthermore, the reformed gas is supplied to a shift converter, where carbon monoxide is 
converted into carbon dioxide to produce more hydrogen by the shift reaction given by 

 CO + H2O  → H2 + CO2  

Often a 300% excess of steam is used so that more CO2 is produced, moving the equilibrium 
in the water gas shift reaction and so achieving higher hydrogen yield and avoiding carbon 
deposition due to the Boudouard reaction which is also catalyzed by nickel. Finally the 
reformed gas is passed to a pressure swing adsorption (PSA) process for purification of H2 or 
to a CO removal reactor by using preferential oxidation. 

One option to mitigate the CO2 emission problem associated with hydrogen production via 
SMR process is to use nuclear reactors for providing the heat necessary for the steam 
reforming reaction. 

Compared to the water splitting thermochemical processes, hydrogen production by nuclear-
heated SMR process is considered to be much closer to commercialization and is viewed as an 
intermediate step to nuclear-driven hydrogen production from water [139]. Nevertheless, the 
nuclear-heated SMR process is not believed to be an appropriate technology for the long term 
taking into account that, due to the nature of the reforming and shifting processes, there is still 
a need for natural gas feedstock and, consequently, CO2 would still be emitted as byproduct of 
chemical reactions [140]. 
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TABLE 3.11. COMPARISON BETWEEN DIFFERENT CONFIGURATIONS 

Configuration 1  Configuration 2 

Advantages   

Fewer components coupled to the nuclear cycle  Smaller IHX required 

Smaller citadel footprint in nuclear island  Better to withstand loss of process and failure to trip 
primary circulator 

  Additional decay heat removal reliability 

Disadvantages   

Difficult to withstand loss of process and failure to trip 
primary circulator 

 Possible leaks in steam generator need to be evaluated 
(more licensing scrutiny) 

In order to bring together the requirements of a sustainable economic growth with the 
environmental protection, Argentine as most of the developed countries are encouraging 
strategies for the rational and integral utilization of their coal ores. This tendency will increase 
with time, as the gas and petroleum reserves become exhausted. 

Coproduction of power, fuels and chemicals offers an innovative, economically advantageous 
mean of achieving these long term energy goals. Coproduction involves the integration of 
three major building blocks: 

• gasification of coal to produce synthesis gas (‘syngas’); 

• conversion of a portion of the syngas to high value products such as high purity 
hydrogen, liquid fuels and chemicals; 

• combustion of syngas and unreacted syngas from the conversion processes to produce 
electric power in a combined cycle system. 

In the coproduction concept, an energy complex produces not only power, but also fuels 
and/or chemicals. This greatly increases the flexibility of the complex and offers economic 
advantages compared with dedicated plants, one producing only power and the other only 
fuels or chemicals. 

The present project in Argentina is addressed to introduce the concept of coproduction for the 
integral exploitation of the Rio Turbio coal, which is by far the most important domestic coal 
reserve. For this purpose, early research and development activities are planned, comprising 
both theoretical and experimental studies for understanding the mechanisms of the coal 
gasification reactions in presence of oxygen and steam, in order to determine the optimum 
parameter condition for the syngas production and the further cleanup steps for the harmful 
contaminants removal, transforming the synthesis gas in a clean fuel for electric power 
production in a combined cycle system, with efficiencies and emissions comparable to the 
natural gas fired plants. 

Additionally taking into account the increasing international interest for developing renewable 
energy sources, and with the aim of taking understanding in the management of these 
sustainable technologies, preliminary studies will be carried out for the conversion of the 
synthesis gas in two high value products: (1) hydrogen by separation through diffusion 
membranes, in order to obtain ultra pure hydrogen for fuel cells; (2) liquid fuels through the 
Fischer–Tropsch synthesis. 

With the first oil crisis at the beginning of the 1970s, the coal resources in Germany were 
become to play a central role and a revival of the coal conversion programme was starting as a 
contribution to an away-from-oil policy. Large markets were seen for synthesis gas, heating 
gas, reduction gas as a consumer-friendly type of energy. Extensive experimental and 
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theoretical studies included coal gasification, liquefaction, and advanced combustion systems 
aiming at improved methods for the generation of SNG, liquid hydrocarbons, and other raw 
materials for the chemical industries. Numerous coal gasification projects nearby mining 
locations were launched to investigate on pilot plant scale various processes and reactor types 
and optimize operational conditions [146]. Interest in coal refinement faded away again with 
cheap oil prices since the 1980s. Today coal gasification is primarily used for ammonia 
synthesis in the fertilizer industry and for synthesis gas production to be used in the synthesis 
of methanol and other hydrocarbons. 

3.1.4.2. Coal conversion processes 

If expressed in carbon and hydrogen, coal can be described with the formula of ~(CH0.8)n. For 
the production of higher grade hydrocarbons, either the carbon must be reduced or hydrogen 
must be added. The conversion of coal into a gas is realized by means of a gasification agent 
which reacts with the coal at temperatures > 800°C similar to an incomplete combustion. All 
organic constituents will be converted at long enough residence times. The gasification agent 
is either steam (steam coal gasification) or hydrogen (hydro-gasification). If air or oxygen is 
injected into the gasifier, a part of the coal is directly burnt allowing for an autothermal 
reaction. Both processes have in common that high pressures are needed to achieve a high 
methane yield, whereas for an optimal synthesis gas output, high temperatures and low 
pressures are required. 

i. Steam coal gasification 

Steam gasification of coal is since long a mature and well established technology practiced on 
industrial scale. In the conventional steam–coal gasification process, a part of the coal is 
partially oxidized in a preceding step, before in the much slower heterogeneous water gas 
reaction, the residual organic solids are converted to synthesis gas with some CO2 and steam.  

In the steam–coal gasification process, a first step is the pyrolysis reaction during the heatup 
phase (400–600°C) where all volatile constituents of the coal are rapidly expelled. The 
gasification reaction with the agent ‘steam’ is given by the heterogeneous water gas reaction 
and the homogeneous water gas (shift) reaction with a further increase of the H2 fraction: 

 C + H2O  → H2 + CO - 118.5 kJ/mol C 
 CO + H2O  → H2 + CO2 + 43.3 kJ/mol C 

where the residual organic solids are converted to synthesis gas. It is followed by a 
methanation step if the desired end product is SNG. Heat must be quickly withdrawn to avoid 
reverse chemical reactions.  

 CO + 3 H2  → CH4 + H2O + 206.0 kJ/mol C 

Gasification processes are classified according to the type of reactor. The principal lines 
mainly used today are those by Lurgi (since 1931), Winkler (since 1922), Koppers–Totzek 
(since 1941). They all were developed in Germany and exist at a large scale (Fig. 3.44). 
Modified process variants, such as Texaco, Shell–Koppers and many others have been 
developed aiming at an adjustment to the feedstock quality, an optimization of the product gas 
composition and, of course, an efficiency improvement. Variants differ by temperature and 
pressure range, grain size of the coal, and residence time. Partial oxidation of pulverized coal 
by oxygen/air (pure O2 for hydrogen production) and steam in a fluidized bed takes place at 
about atmospheric pressure, where 30–40% of the coal is transformed to CO2 to supply 
splitting energy of steam.  
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TABLE 3.12. CHARACTERISTIC FEATURES OF DIFFERENT STEAM–COAL GASIFICATION 
PROCESSES 

 Lurgi Winkler Koppers–Totzek 

Reactor Solid bed Fluidized bed Flue stream 

Grain size (mm) 10–30 1–10 < 0.1 

Steam-to-oxygen ratio 9–5 2.5–1 0.5–0.02 

Movement of reactants, 
products 

Counter-current flow Vortex co-current flow Co-current flow 

Residence time of fuel 
(min) 

60–90 15–60 < 0.02 

Requirements to fuel Mu
Highly reactive, must not 

decay 
Melting point of ash  

< 1450°C 

Maximum gas outlet 
temperature (°C) 

370–600 800–950 1400–1600 

Pressure (MPa) 2–3 0.1 0.1 

Composition of product 
gas (vol.%) 
CO + H2 
CH4 

 
 

62 
12 

 
 

84 
2 

 
 

60 + 29 
0.1 

Byproducts 
Tar, oil, phenols, gasoline, 

waste water 
none none 

 

The Sasol company in South Africa became and still is the world’s largest commercial applier 
of coal conversion technology operating a total of 97 units. Most Sasol–Lurgi standard fixed 
bed reactors have an inner diameter of 3.85 m (Mark IV), able to produce 65 000 Nm3/h of 
dry gas with a raw coal throughput of 54 t/h. Sasol is also operating a 4.7 m diameter reactor 
(Mark V) with a capacity of 100 000 Nm3/h [146, 147]. The plants in Secunda and Sasolburg 
convert more than 30 million tons per year of bituminous coal to yield about 5.1 million Nm3 
per hour of ‘pure synthesis gas’ (containing 56% of H2, 32% of CO, 11% of CH4) 
corresponding to almost 30% of the world’s production. It is the basis of manufacture of 
numerous fuels and chemicals [148].  

(B) Fluidized bed 

The high temperature Winkler (HTW) process takes place in a fluidized bed where fine-grain 
brown coal is reacted with oxygen and steam which are fed in at the bottom with high speed. 
The fluidized bed has no reaction zones, but rather forms a homogeneous distribution of 
solids. Operational conditions are high temperatures and atmospheric pressure. The 
temperature, however, must be below the ash melting point to prevent a softening and 
agglomeration of the ash, which would lead to a collapse of the fluidized bed. The product gas 
composition changes with height and contains almost no higher hydrocarbons at the exit. It 
carries, however, a large amount of dust which can be recirculated to the reactor to further 
raise the carbon conversion rate reaching up to 90%.  

The Winkler gasification is characterized by simple coal pretreatment, low oxygen 
consumption, and good performance over a broad load range. The process was proven 
successful for highly reactive coal grades. Several large scale plants were constructed in 
Germany and other countries with coal throughputs of up to 35 t/h. Industrial scale is at 
~60 000 Nm3/h. Following the atmospheric Winkler process, the gasification was later done at 
higher pressures up to 1 MPa in order to raise unit capacity and gas quantity, and also to save 
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compression energy for the product gas. Gasifier plants have shown simple startup and 
shutdown as well as good partial load behavior and high reliability. Of advantage is also the 
low oxygen consumption. 

(C) Flue stream  

In the flue stream gasifier, dry coal dust is mixed with steam and oxygen/air and gasified at 
atmospheric pressure in an autothermal way. The reaction zone is limited to the flame area 
with a co-current flow of coal and gasification agent. The Koppers–Totzek process runs at 
very high temperatures above the ash melting point. It has the advantage that tar formation is 
suppressed and other organic substances are destroyed. The conversion rate is at almost 100% 
with a methane content in the product gas of < 0.1%. Industrial plant capacities are in the 
order of 50 000 Nm3/h. The Shell process applies the Koppers–Totzek principle under 
pressures up to 4 MPa. Gasification temperatures achieved are up to 2000°C. In the Texaco 
gasification process, fine-grained coal is mixed with water to a suspension. The oxygen is 
added at the burner. The reactor operates at pressures of ~5.5 MPa and high steam contents. 
The conversion rate is about 99%, the thermal efficiency about 92%. The synthesis gas 
typically contains 34% of H2 and 48% of CO. Hydrogen gas can be obtained with a purity 
> 97% and at a pressure of 4 MPa. 

ii. Hydro-gasification 

In the hydro-gasification process of coal, hydrogen is added to convert in an exothermic 
reaction the coal into a methane-rich raw gas, ideal for the production of substitute natural gas 
(SNG). The hydrogen can be provided either by taking the coke left from the 
hydro-gasification and convert it with oxygen and steam in a high temperature Winkler 
process, or by taking a part of the product methane for steam reforming. Both processes need 
high temperatures which could be provided by nuclear. The gasification reaction with the 
agent ‘hydrogen’ and the main product methane is: 

 C + 2 H2  → CH4 + 87.5 kJ/mol C 

Kinetics of the process is more complex compared to steam gasification. The above reaction 
runs in several steps, a pyrolytic step, where primary methane is formed plus volatile 
hydrocarbons. The remainder is a highly reactive coke which either reacts with H2 to methane 
or converts to slowly reacting coke, which then undergoes a slow hydrogenating gasification 
to form methane. 

The other chemical reactions are the endothermic steam methane reforming and again the 
water gas shift reaction, both of which serve the purpose to provide the gasification agent: 

 CH4 + H2O  → CO + 3 H2 - 206 kJ/mol C 

 CO + H2O  →  + CO2 + 43.3 kJ/mol C 

A high gasification degree can be obtained already with relatively short residence times of 9–
80 min. In order to obtain a high conversion rate of coal, the CH4 fraction should not be 
higher than 5%, which requires a low temperature separation step. The advantage of 
hydro-gasification compared with steam coal gasification is its 200 K lower preheating 
temperature which reduces potential corrosive attack. A major drawback, however, is the low 
conversion rate, i.e. the large amount of residual coke of up to 40%. But again, subsequent 
processes would allow the generation of SNG or methanol. In contrast to steam gasification, 
the hydro-gasification process still needs to be demonstrated at a larger commercial scale.  
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iii. Coal liquefaction 

Also coal liquefaction processes were developed in the first half of the 20th century. Bergius 
or Pott/Broche used a direct method to convert coal by a hydrogenation process. Coal is 
mixed with oil and catalyst to convert to an oily medium-sized interim product which is either 
reprocessed to a coal oil or, in a subsequent step, after mixing with H2 passes through a series 
of hydrogenation reactors at 450–490°C and 20 MPa, and at presence of an iron oxide powder 
as catalyst to a coal oil. Here the coal having a molecular weight of > 5000 splits into smaller 
pieces with the concomitant accretion of hydrogen. Thermodynamic conditions determine 
quantity and type of products and they can be adjusted to the educts. 

In contrast, Fischer and Tropsch were starting from synthesis gas. In this indirect liquefaction 
process, coal is gasified in a first step to synthesis gas followed by a catalytical (iron-based) 
hydrogenation of the CO where the synthesis gas is reacted in a Fischer–Tropsch process to 
high quality clean fuels: 

 2n H2 + n CO  → (-CH2-)n + n H2O + heat 

An alternative to Fischer–Tropsch is the Mobil–Oil process which is principally based on a 
new catalyst allowing an easy production of liquid fuels from methanol. 

Both direct and indirect methods were developed to industrial maturity in Germany applying 
brown coal and stone coal. The indirect process is superior to the direct one because of the 
lower operational pressures necessary and thus a higher reliability of the plant. Maximum 
production rates amounted to ~4 million t/a of gasoline [145]. Coal liquefaction in Germany, 
however, eventually became uneconomic and was abandoned later. Renewed interest in the 
1970s resulted in the operation of a pilot plant with a production rate of 200 kg/d. Since then 
only a few joint international projects, e.g. with South Africa, remained, the only country to 
apply this technology still today at a large scale. Since 1955, Sasol in Secunda, South Africa, 
is producing oil products from coal, today at an output of 150 000 barrels/d of fuels and 
petrochemicals [148]. A coal liquefaction plant has also been constructed in Shenhua, China, 
with a throughput of 9.7 million t/a of coal to be converted into 5 million t of gasoline, 
kerosine, diesel, and others. For the next years, China is planning the construction of 27 coal 
liquefaction plants.  

Argentina has begun from 2007 the so-called AiCRT project (‘Integral exploitation of Rio 
Turbio Carbon, Argentine’) for producing diesel fuel through the Fischer–Tropsch synthesis 
with the synthesis gas obtained by the gasification of a sub-bituminous carbon. 

3.1.4.3. Nuclear process heat for coal gasification 

There are several drivers for nuclear energy to be introduced as a primary heat source into the 
coal gasification process [149]: 

• In the conventional gasification process, a significant additional amount of feedstock is 
necessary to provide process heat at the required temperature level. Substitution for 
nuclear would allow resource savings of up to 40%. A respective reduction in CO2 and 
other, coal-specific emissions will be achieved at the same time. 

• The conversion to liquid hydrocarbons will reduce and diversify dependency on oil 
imports. 

• If cost of nuclear heat is sufficiently low, it may help to meet growth rates in energy 
consumption, substitute for expensive electricity generation with fossil fuels, also 
replace old plants. 
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3.1.5.1. Cost estimate for PBMR plant with HyS cycle 

i. Capital costs 

A capital cost estimate and cost-of-hydrogen estimate were made for the reference plant 
design. The HyS plant components were selected and sized in detail on the basis of the 
process flow sheet and the physical properties of the process streams. The available output 
data was suitably modified to get input for the component sizing process. Only commercially 
existing equipment was chosen, other than the sulphuric acid decomposer reactor and the SDE 
modules, which are technology in development.  

Costs for the PBMR and associated NHSS equipment were based on previous estimates 
prepared by the Westinghouse/PBMR team. For the analysis of hydrogen selling price, a 
mature, four-PBMR unit hydrogen plant is modeled, in order to represent the full commercial 
potential of the application. Economies derive from sharing of facilities and other cost savings 
that would come from a mature supply infrastructure. The results are given for both the 
four-unit plant and a ‘nominal’ one-unit plant (where the one-unit plant still has the four-unit 
economies). Total costs for a PBMR/HyS water splitting plant are shown in Table 3.13. 

ii.Costs of production 

The cost-of-hydrogen for the plant was determined based on a specific tool for the 
comparison of hydrogen production technologies developed by DOE. This is a result of the 
H2A production analysis programme, which is part of the national Hydrogen Fuel Initiative, 
and which was conducted by a team from the various DOE divisions, the national laboratories 
and industrial participants. The H2A tool was, therefore, used as the basis for the hydrogen 
price calculations in this study. 

TABLE 3.13. TOTAL COSTS OF PBMR HYS WATER SPLITTING PLANT 

 Total cost Specific cost 

 
Four-unit (2000 MW) 

NHSS 
(million US $) 

One-unit (500 MW) 
NHSS 

(million US $) 

Unit cost 
(US $) 

Total direct depreciable 
cost 

4432 1108 — 

Indirect (owner’s and 
other) cost 

77.9 19.5 — 

Total base construction 
cost 

4510 1128 2200/kW(t) 

Contingency 443.2 110.8 — 

Land 2.0 0.5 5000/acre a 

Total overnight capital cost 4962 1240 
2500/kW(t) 

7700/(kg·day) 
5600/kW(t) of H2

 b 
a 1 acre = 4046.86 m2. 
b based on LHV. 
— data not available. 

The results for the PBMR/HyS reference design are shown in Table 3.14. The results are 
given for both a base case (Shaw) and a case labeled ‘Icarus’. The base case uses capital cost 
estimates for the HyS plant as determined by Shaw using their in-house estimating 
programme which draws data from recent purchasing. The Shaw estimate was prepared by an 
experienced professional estimator and equipment size estimated by an experienced process 
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engineer. The Icarus case uses HyS capital costs, which are significantly less, determined by 
SRNL using a commercial cost estimating programme. Although somewhat less rigorous than 
the Shaw estimate, the Icarus estimate is more consistent with other thermochemical hydrogen 
plant cost estimates that have been published. One reason for the higher costs estimated by 
Shaw was the use of equipment and commodity costs taken at a time (2nd Quarter 2008) at 
which industrial commodities were at a peak, which have since retreated. A second factor is 
that there is no specific industry experience with HyS or other large scale plants for similar 
production of pure hydrogen. For this second reason, subjective factors in the cost estimating 
process are unavoidable, and in accounting for unknowns, there is a natural tendency to be 
conservative. 

The effects on hydrogen price were calculated for uncertainties in major parts of the costs, 
including capital cost factors and other factors, such as rate of return, power costs, etc. The 
base case using the Shaw estimates for the HyS equipment resulted in a levelized hydrogen 
price of US $6.18/kg H2. The sensitivity analysis showed a price range from US $5.00 to 
US $7.10/kg of H2. When the SRNL/Icarus equipment costs were used for the HyS plant, the 
levelized hydrogen price was US $5.34/kg of H2, and the sensitivity range was US $4.15 to 
US $6.25/kg H2. 

TABLE 3.14. HYDROGEN PRICE COMPONENTS SUMMARY FOR PBMR HYS WATER 
SPLITTING PLANT 

 
Shaw Icarus 

(US $/kg) % (US $/kg) % 

Capital charge 4.01 65 3.19 59 

Fixed O&M: 
Labor, taxes, insurance, annual licencing, permits 
and fees, material cost for maintenance and repairs,  
nuclear decommissioning funding, helium make-up  

0.68 11 0.68 13 

Variable O&M: 
Nuclear fuel, process catalyst and chemical 
consumption and waste disposal 

0.56 9 0.56 11 

Utilities and feed: electric power and process water 1.23 20 1.22 23 

Byproduct credit (O2) -0.32 -5 -0.32 -6 

Total hydrogen cost (year 2008) 6.18 100 5.34 100 

Analysis was also performed to determine how the projected hydrogen costs compared to 
hydrogen produced by conventional natural gas steam reforming and water electrolysis. At the 
presently estimated base case costs, according to the H2A model with the assumptions and 
groundrules as stated in this report, the HyS nuclear water splitting plant competes with 
natural gas at a gas price of US $16/MMBTU1 and with electrolysis at between US $60 and 
US $70/MW(e)-h. Using the Icarus-based process costs, the competitive range is 
approximately US $13/MMBtu natural gas price and between US $50 and US $60/MW(e)·h 
for electrolysis. These represent a high energy cost scenario, but they are not an unreasonable 
expectation. 

Hydrogen production system utilizes heat and electricity generated in the HTGR. Cost 
information of heat and electricity is necessary to estimate hydrogen cost. Plant costs of 
HTGR consist of preconstruction costs, construction costs, operation and maintenance costs, 
                                                 

1 1 MMBTU = 1 million BTU (British thermal unit) = 293.1 kWh. 
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supplementary costs, fuel cycle costs. The heat and electricity cost is typically given as units 
of US $/kWh and US $/MJ. 

3.1.5.2. Cost estimate for the Japanese GTHTR300C plant with S–I cycle 

A preliminary cost evaluation of power plant with a gas turbine, GTHTR300, was performed 
[150]. To estimate construction cost of the GTHTR300, the following conditions were 
considered: 

• Four reactor units in one plant; 

• Nth of a kind (NOAK) plant; 

• Modular construction and standardized design. 

Construction cost of a unit of the GTHTR300 is given as listed in Table 3.15. 

TABLE 3.15. CONSTRUCTION COST OF THE GTHTR300 FOR POWER GENERATION 

Component Million US $ 

Reactor components 
 Reactor pressure vessel, Core components, Reactivity control system,  
 Shutdown cooling system, Vessel cooling system, Fuel handling and storage system,  
 Radioactive waste treatment system 

170.8 

Power conversion system  
 Turbine and compressor, Generator, Heat exchanger, Power conversion vessel,  
 Heat exchanger vessel, Hot piping 

140.1 

Auxiliary system  
 Helium purification system, Cooling water system, Helium storage and supply system,  
 Radioactive management system, Ventilation and air conditioning system, Others 

67.2 

Electric system 40.0 

Control and instrumentation system 17.8 

Buildings 110.7 

Total 546.7 

Power generation cost consists of the capital cost, the operation cost, and the fuel cost. The 
capital cost includes the depreciation cost, the interest cost, the property cost, and the 
decommissioning cost. The operation cost includes the maintenance cost, miscellaneous cost, 
the personnel cost, the head office cost, and the business tax. The fuel cost includes the 
uranium purchase and conversion cost, the enrichment cost, the fabrication cost, the storage 
cost, the reprocessing cost, and the waste disposal cost. A sample estimation result of power 
generation cost in the GTHTR300 as functions of load factor and discount rate is listed in 
Table 3.16. 

TABLE 3.16. POWER GENERATION COST 

Parameter Value 

Load factor (%) 80 90 

Discount rate (%) 3 4 3 4 

Capital cost (US cent/kWh) 1.57 1.74 1.40 1.55 

Operation cost (US cent/kWh) 1.11 1.11 0.99 0.99 

Fuel cost (US cent/kWh) 1.46 1.44 1.46 1.44 

Total (US cent/kWh) 4.14 4.28 3.84 3.97 
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The GTHTR300C scales down of the power conversion system of the GTHTR300 including 
gas turbine and the compressor and adds the IHX and the secondary helium loop to supply 
process heat for a hydrogen production system. The construction cost of the GTHTR300C 
which excludes a hydrogen production plant is preliminary estimated as listed in Table 3.17. 
The GTHTR300C produces 202 MW of electricity and 170 MW of high temperature process 
heat. The cost of the power conversion system is evaluated by a scale-factor of 0.6. The cost 
of the IHX and the secondary helium loop is estimated from the HTTR construction cost. 
Electricity and heat costs are evaluated as listed in Table 3.18. 

TABLE 3.17. CONSTRUCTION COST OF THE GTHTR300C FOR HYDROGEN GENERATION 

Component Million US $(1) 

Reactor components 170.8 

Power conversion system  114.7 

Auxiliary system  67.2 

Electric system 40.0 

Control and instrumentation system 17.8 

Buildings 110.7 

IHX, secondary helium loop 69.0 

Total 590.3 

TABLE 3.18. POWER AND PROCESS HEAT GENERATION COST IN THE GTHTR300C 

Parameter Value 

Load factor (%) 80 

Discount rate (%) 3 

Capital cost (US cent/kWh) 1.70 

Operation cost (US cent/kWh) 1.18 

Fuel cost (US cent/kWh) 1.46 

Total (US cent/kWh) 4.34 

Total (US cent/MJ) 5.40 

Steam methane reforming is a mature technology. Detailed plant construction and operation 
costs can be estimated. However, thermochemical hydrogen production processes are at a 
stage of conceptual design, and performance of system and components are at R&D level. 
There is not enough technical data to estimate the plant cost at present. Then experimental 
factors are applicable to estimate plant construction cost of thermochemical processes. The 
Lang–Chilton factor listed in Table 3.19 is one of the conventional experimental cost 
estimation factors in the chemical industry. The lower value of the factor can be applied to 
estimate the construction cost of NOAK plant. The construction cost can be estimated from 
the component cost which can be preliminary calculated based on the conceptual design of 
thermochemical hydrogen production system. 

Hydrogen production cost is estimated by the following equation: 

hydrogenproducedofAmount

costMaterialcostEnergycostOperationcostCapital
costproductionHydrogen

+++=  
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TABLE 3.19. LANG–CHILTON FACTOR 

Item Factor 

Components 1.0  

Installation 0.43  × (a) 

Piping 0.1~0.3  × {(a)+(b)} 

Instrumentation 0.05~0.1  × {(a)+(b)} 

Outdoor wiring 0.05~0.15  × {(a)+(b)} 

Auxiliary system 0.25~1.0  × {(a)+(b)} 

Buildings 0.05~0.2  × {(a)+(b)} 

Capital cost includes depreciation cost, property tax and business income. Operation cost 
includes maintenance cost, miscellaneous cost, personnel cost, and insurance cost. Energy 
cost includes heat cost and electricity cost. Material cost includes water cost and catalyst cost. 

Table 3.20 shows an example of cost factor in chemical industry plant in Japan. Depreciation 
cost of 10% means that key components will be replaced every 10 years depending on their 
lifetime under corrosive conditions. Each thermochemical hydrogen production process is 
different in energy and material consumption rate. It is assumed that heat consumption rate is 
α MJ/Nm3, electricity consumption rate is β kWh/Nm3 and material consumption rate γ 
US cents/Nm3. Operator fee is assumed at δ cents/ Nm3. If hydrogen plant component cost is 
X million US $ for the thermal power of 170 MW, hydrogen production efficiency is 50% 
and load factor is 80%, the hydrogen production plant construction cost is 2.1×X million $ 
and the amount of hydrogen production is 168.2 million Nm3/a. 

3
3

UScents/Nm174.0
Nmmillion168.2

US$million0.2919
costCapital ×=×=  

( ) 33
3

UScents/Nm061.0UScents/Nmδ
Nmmillion168.2

US$million0.1029
costOperation δ+=+= X  

 33 kWh/NmβhUScents/kW4.34MJ/NmαUScents/MJ5.4costEnergy ×+×=  

    ( ) 3UScents/Nm3444.5 βα +=  

Then the hydrogen production cost is estimated by the following equation: 

 cents/Nm)δγ4.34β5.4α0.235(costproductionHydrogen ++++×=  

Factor 

Depreciation cost (%) 10 

Property tax (%) 1.4 

Business income (%) 2.5 

Maintenance cost (%) 3 

Insurance (US cent/kWh) 0.6 

Miscellaneous cost (%) 1.3 
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3.2. NUCLEAR DESALINATION 

3.2.1. Cogeneration (thermal/membrane) 

The nuclear reactor supplies energy to desalination systems either in the form of heat or 
mechanical/electrical energy. It supplies thermal energy for distillation processes such as 
MSF, MED, or MED/TVC, as for desalination processes that require energy in the form of 
electricity such as RO and MVC. The power is supplied from a dedicated plant or electrical 
grid to drive the high pressure pump for the RO process and the main compressor of MVC. 
Apart from the basic energy for desalination, all desalination processes require electricity for 
pumping, auxiliaries and other services. 

Steam can also be bled off at suitable points in the secondary circuit of the power plant for use 
by the desalination plant. However, protective barriers must be included in all modes to 
prevent potential carry-over of radioactivity. The power plant condenser cooling water is 
usually discharged to the sea as waste heat. In a contiguous plant, it is possible to use this 
heated seawater as feed to an RO desalination plant, thereby improving the performance of 
the desalination plant. In this arrangement, waste heat from the power reactor is used to 
improve the efficiency of the RO plant. 

The steam needed for heating in desalination plants is at a low temperature and pressure in 
general. The high temperature version of MSF and MED plants use saturated steam in the 
range of 100°C to a maximum of 140°C. Some plants use saturated steam of 80°C to 100°C, 
while the LT-HTME system operates with steam in the range of 60°C to 80°C.  

Desalination plants can be coupled as a single purpose plant or a cogeneration plant. In the 
case of a single purpose nuclear desalination plant, energy is exclusively used for the 
desalination process, and the desalted water is the only product output. The nuclear reactor is 
fully dedicated to supplying energy for desalting. In case of a cogeneration plant, only a part 
of the energy is utilized for desalting. A cogeneration plant produces both electricity and 
water simultaneously. 

When a nuclear reactor is used to supply steam for desalination, the method of coupling has a 
significant technical and economic impact. The optimum method of coupling depends on the 
size and type of the reactor, the specific characteristics of the desalination process, and the 
desirability and value of electricity generation as a co-product. In the next two sections some 
types of nuclear reactors which can play the role of cogeneration plants are listed and also the 
most important desalination processes are analyzed [151, 152].  

3.2.1.1. MED desalination processes 

i. MED (multi-effect desalination) 

The multi-effect desalination process is an old process and as the result of the scaling 
problems which are associated with the old design of these early units, the multi-stage flash 
process was introduced as an alternative in the 1960s. Recently considerable improvements in 
MED desalination systems have been introduced to reduce the undesirable characteristics of 
the old MED submerged tube evaporators such as low heat transfer rate and high scale rate 
formation. Falling film evaporators such as vertical tube evaporator and the horizontal tube 
evaporator of new MED plants have a number of distinct advantages. They provide higher 
overall heat transfer coefficients and low specific heat transfer surface area if compared to 
MSF desalination systems. They do not employ recycling and are thus based on the once 
through principle and have low requirements for pumping energy. Using compressed vapour 
can enhance the performance of the plant and therefore reduce the power consumption of 
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MED/TVC plants which can be only around 2 kWh/m3 as there are no requirements to 
recirculate large quantities of brine. The combination of high performance ratio and low 
power consumption results in lower overall energy costs. Multi-effect distillation also offers 
the possibility of reducing plant size and footprint. However, there are some problems which 
are associated with MED systems such as the complexity of morphology and the limitation of 
production capacities [153]. 

MED consists of a series of evaporators (effects) with each subsequent effect operated at a 
lower pressure. This permits the feed seawater to undergo multiple boiling without supplying 
additional heat after the first effect. In an MED plant, the seawater is heated to the boiling 
point after being preheated in tubes and then enters the first effect. Seawater is either sprayed 
or otherwise distributed onto the surface of evaporator tubes in a thin film to promote rapid 
boiling and evaporation. The tubes are heated by steam from a boiler, or other sources, which 
is condensed on the opposite side of the tubes. The condensate from the boiler steam is 
recycled to the boiler for reuse.  

Only a portion of the seawater applied to the tubes in the first effect is evaporated. The 
remaining feed water is fed to the second effect, where it is again applied to a tube bundle. In 
turn, these tubes are heated by the vapours created in the first effect. This vapour is condensed 
to form the product water, while giving up heat to evaporate a portion of the remaining 
seawater feed in the next effect. This continues for several effects, with up to 20 effects being 
found in a typical large plant.  

In order to analyze this process thermodynamically, the balances of the system need to be 
determined.  

(a) Mass balance  

  bDf MMM +=  [m3/d] 

where  

Mf  is the feed flow rate,  
MD  is the distillate flow rate, and  
Mb  is the brine flow rate.  

(b) Salt balance 

  bbff MXMX ×=×  

where Xf is the feed-TDS (total dissolved salts), and Xb is the brine-TDS. 

(c) Distillate mass flow rate  

  
==

+=
n

2k
k

n

1k
kD dDM  

where  

Dk  is the distillate by boiling,  
dk  is the distillate by flashing, and  
n  is the number of effects. 

(d) Energy balance  

• First effect: 

   D121Pfhh λD)t(TCMλM ×+−=×  
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where  

Mh  is the heating steam flow rate,  
λh  is the latent heat of heating steam,  
Cp  is the heat capacity,  
T1  is the boiling temperature,  
t2  is the feed temperature,  
D1  is the distillate in first effect,  
λD  is the latent heat of distillate.  

• Second effect:  

   ( )
/

/

VJ

21
P1f2 λ

TT
CDMd

−
×−=   

where  

T2’  is the flashing vapour temperature,  
λVJ’  is the latent heat of flashing vapour temperature. 

• Other effects: 

o the amount of vapour formed by boiling in the effect i 

i

1i1i
i

D
D

λ
λ×= −−   

o the amount of vapour formed by brine flashing in the effect i 

i

i1i
P

1i

2j
j

1i

1j
i λ

TT
CdDMd

′−××







−−= −

−

=

−

=
  

 

o the amount of produced water Md: 

 
= =

+=
n

1j

n

2j
jjd dDM   

o the gain output ratio:  

th
D

h

D

Q

2330
M

M

M
GOR ==  

with the thermal heating steam energy, Qth [kW(t)]: 

    hhth λMQ ×=  

where Mh is the heating steam flow rate and λh is the latent heat of the 
heating steam. 

o The electrical power consumption [154]:  

    
100024

QM
q sdpD

di ×
×

=    

  where Qsdp = 0.03 Qth [155]. 
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The entrainment ratio can be calculated by the following empirical equation [154]: 







×








∗×=

TCF

PCF

p

p

p

P
Ra m

015.0

1
04.1

1

19.1
2296.0      

where  

p2  is the compressed vapour pressure,  
p1  is the entrained vapour pressure,  
pm  is the motive steam pressure,  
PCF  is the pressure correction factor, and  
TCF  is the temperature correction factor,  
and with the last two factors defined as: 

( ) ( ) 6101.10009.0103 27 +−×= −
mm ppPCF   

( ) ( ) 0047.10006.0102 2
1

8 +−×= −
mpTTCF   

The mass balance equation through the ejector is: 

1m2 mmm +=    

where m2 is the compressed vapour flow rate at the steam jet ejector outlet. 

Therefore, the plant performance ratio can be defined as follows:  

η
λ

×
×

×
=

Tmm

d

m

m
PR

2253
 

where η is the ejector efficiency defined as  

InputEnergyTotal

OutputEnergyTotal=η  

iii. RO (reverse osmosis) 

Osmosis is the natural process by which water flows through a semi-permeable membrane 
from pure or dilute solution to a more concentrated solution. The flow continues until the 
resulting osmotic head equals the osmotic pressure of the solution. If a pressure higher than 
the natural osmotic pressure of the solution is applied, the direction of the water flow is 
reversed. The solution becomes more concentrated, and purified water is obtained on the other 
side of the membrane, hence the term ‘reverse osmosis’ [156]. 

The RO desalination process was developed in the USA in the 1960s, and a first test plant was 
built in 1965. Since its commercial application to seawater in 1970, plants of larger and larger 
capacities have been designed, constructed and successfully operated. 

An RO desalination plant mainly consists, as shown in Fig. 3.48, of a pretreatment section, a 
high pressure pump section, a membrane module section, and a posttreatment section. In 
general all modern large scale RO plants use power recovery turbines where the pressure of 
the concentrate is utilized to reduce the overall power consumption of the system. Membranes 
can be sensitive to pH, temperature, chemicals, etc., and are highly sensitive to fouling and 
clogging. Proper design of the system and pretreatment of the water can minimize these 
problems and hence protect the membranes. 

The principles governing the operation of RO plants are: 

1. The water flux through any given membrane is proportional to the effective pressure 
difference across it. 
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efficiency, while the desalination plant is operated so that fresh water production meets or 
exceeds requirements under various operating conditions, including annual variations in site 
specific feed water conditions and daily variations in demand. During periods where the 
power plant is off-line and the feed water preheat is unavailable to the desalination plant, the 
desalination process can still continue, at a reduced efficiency. Through this combination of 
design and performance optimization, the unique electrical and thermal coupling of the energy 
source and desalination system shows significant improvements in water production 
efficiency and reductions in desalination plant capital cost. The result is a reduction in 
levelized water production costs. Although the costs for any given facility are highly specific 
to the site, seawater conditions and other design requirements, detailed cost assessment 
models, nevertheless, indicate that savings typically on the order of 10–15% in plant capital 
cost and 10–20% in water production costs are achievable. 

3.2.1.3. PBMR desalination concepts 

The PBMR cogeneration desalination configuration is based on a multi-module PBMR plant 
of 1500 MW(th) capacity producing steam for a power cycle, using a back-pressure steam 
turbine generator exhausting extraction steam into a thermal desalination plant. The steam that 
is extracted from the turbine is used as the heating source for desalination, with the 
back-pressure value being specific to the desalination technology. The three desalination plant 
technologies considered for this cogeneration configuration are MED, MED with TVC, and 
MSF. 

A schematic of the possible coupling is shown in Fig. 3.49. It should be noted that coupling a 
thermal desalination system to a back-pressure turbine eliminates the need for a condenser 
and a cooling system, however, it does result in a lower electrical output than a full 
condensing Rankine cycle solution. It is not necessary to use a dump condenser since there 
are multiple trains in the desalination system. It can also be assumed that if one or two units 
fail, the rest of the units can accommodate extra steam mass flow. However, in the event of 
failure of a significant number of units, the PBMR plant would have to reduce its output. 

 
 FIG. 3.49. Integrated cogeneration desalination schematic. 

The amounts of water and power that could be produced by such a cogeneration configuration 
depend much on the desalination technology and the associated turbine back-pressure value. 
For the MED and MED-TVC desalination technologies, the minimum required turbine 
back-pressure value was assumed, as a higher back-pressure than the minimum required 
results in a significant reduction in power production, which is not outweighed by the 
insignificant increase in desalination water production. For the MSF desalination technology, 
two turbine back-pressure values are considered (0.1646 MPa and 0.09 MPa). 
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This production is also affected by the number of effects used in a desalination unit and the 
temperature rise in the desalination unit condenser. Having more effects or a smaller 
temperature rise in the condenser reduces the temperature drop of steam across each effect 
and significantly increases the amount of desalinated water that can be produced. This 
increase in desalinated water production, however, requires a significantly larger heat transfer 
surface area (and corresponding higher equipment costs). In this comparison of cogeneration 
configurations, additional MED and MED-TVC cases were considered with twice as many 
effects (ten effects instead of five effects) and a reduced condenser temperature rise (10°C 
instead of 20°C) to mitigate the higher equipment costs. A comparison of these different 
technologies and the associated parameters is illustrated in Table 3.21. 

TABLE 3.21. COGENERATION CONFIGURATION SYSTEM DESIGN AND PERFORMANCE 
SUMMARY 

 Case 
A 

Case 
B1 

Case 
B2 

Case 
C1 

Case  
C2 

Case  
D1 

Case 
D2 

Desalination technology — MED MED MED-
TVC 

MED-
TVC 

MSF MSF 

Turbine back-pressure (MPa) 0.003 0.032 0.032 0.138 0.138 0.165 0.090 

Number of desalination effects — 5 10 5 10 — — 

Number of desalination stages — — — — — 21 6 

Number of desalination units in plant — 13 25 18 30 4 4 

Desalination production capacity (km3/d) 0 145 277 198 339 223 155 

Export power production capacity (MW(e)) 655 549 543 476 469 419 447 

— data not available. 

3.2.2. Waste heat (thermal/RO) 

Waste heat is defined as the released heat from the nuclear power plant after it has been used 
to drive the turbine to produce electricity. Some designs are listed below have useful 
applications for the waste heat. 

3.2.2.1. Helium cooled GT-MHR with MED 

A great advantage of the GT-MHR is that its design allows the utilization of waste heat from 
its intercooler and precooler exchangers at ideal temperatures for desalination (80 to 100°C). 
Because this heat is sent to the heat sink anyway, it is considered virtually free for 
desalination. However, calculations show that at the Skhira site in Tunisia, for seawater 
temperature of 21°C and helium temperature of 26°C at the output of the intercooler or the 
precooler, the maximum amount of heat available to the MED plant is about 43 MW(th) for 
two GT-MHR modules. This would correspond to a production of 43 500 m3/day [149] as 
shown in Fig. 3.50. 

3.2.2.2. Experimental work on BARC LTE plant 

A 30 m3/day low temperature evaporation (LTE) desalination plant using nuclear waste heat 
from the primary coolant water system of the nuclear research reactor CIRUS was installed 
for production of fresh water (Fig. 3.51). The unit operates at 41°C and 94.7 kPa. The LTE 
unit was operated at different temperatures of heating medium ranging from 50–65°C. 
Conductivity of the product water is in the range of 5 μS/cm. This water is used as make-up 
water for the reactor. Table 3.22 gives the performance of the desalination plant at various hot 
water temperatures for reactor rating varying from 20–40 MW [157]. 
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3.2.2.5. PBMR power plant with MED 

The waste heat utilization desalination configuration is based on a 400 MW(th) PBMR power 
plant configuration that uses a Brayton cycle for its power conversion through a single shaft 
recuperative Brayton cycle with helium as working fluid. The Brayton cycle uses a precooler 
and intercooler to cool the helium before entering the low pressure compressor (LPC) and the 
high pressure compressor (HPC) respectively. The precooler and intercooler together rejects 
~218 MW(th) of waste heat at ~73°C and ~63°C, respectively. This waste heat is ideally 
suited for some low temperature desalination processes and can be used without negative 
impact on the power output and efficiency of the nuclear power plant.  

In order to aid decision making regarding the feasibility of a PBMR coupled with desalination 
technology, a comparative economic study is performed. This comparative study includes an 
LT-MED desalination plant utilizing the rejected waste heat as well as an RO plant for water 
production. An LT-MED plant was selected based on the utilization of waste heat together 
with recent advances in lower capital costs. A preliminary design was conducted to determine 
the maximum water production associated with different configurations. Figure 3.54 illustrate 
a typical coupling arrangement of an LT-MED plant to the initial proposed PBMR. 

 
FIG. 3.54. PBMR coupled LT-MED layout. 

An RO plant can also be coupled to the initial PBMR utilizing a portion of the electricity 
generated by the this plant, as well as the rejected water from the ultimate heat sink system as 
feed water to the desalination plant. The ultimate heat sink system rejects 2475 kg/s of heated 
seawater at 39°C through the existing Koeberg outfall structure. The elevated temperature of 
the seawater feed to the RO plant results in an increase in the flux of desalted water through 
the RO membranes. This results in less membrane area required compared to an RO plant that 
utilizes cold feed water directly from the ocean. The reduction in the required membrane area 
reduces the capital and membrane replacement cost of the RO plant substantially. A proposed 
integration of such a plant is illustrated in Fig. 3.55. 
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• process equipment cost including the cost of water treatment units, instrumentation 
and control systems, pre and posttreatment systems, and cleaning systems; 

• auxiliary equipment cost which includes the cost of open water intakes, wells and 
storage tanks, generators, transformers, pumps, pipes, valves, electricity, etc.; 

• cost of building offices, control room, laboratories, workshops, and other structures. 

Indirect costs are mainly the costs of 

• freight and insurance, which is typically 5% of the total direct costs; 

• construction overheads, which include labor costs, fringe benefits, field supervision, 
temporary facilities, construction equipment, small tools, contractor’s profits, and 
miscellaneous expenses. Typically this cost is about 15% of the direct material and 
labor costs; 

• owner’s cost, representing the costs of land acquisition, engineering and design, 
contract administration, commissioning and legal fees, etc.; 

• contingency cost, representing from 4 to 10% of the total direct costs. 

Methodology of costing: 

The specific water cost is defined as the annuity of potable water expenditures divided by the 
annuity production of water [155, 160]. 

The annuity of potable water expenditures (C0) includes capital cost Cca and operation and 
maintenance CO&M and power consumption CP. 

  PMOcao CCCC ++= &    

where the annuity capital cost, Cca, is defined as: 

nTOca
aCC =  with 

1)1(

)1(

−+

+×=
nr

nrr
n

a   

where  

r  is the discount rate, 
n  is the lifetime of the plant.  

It is assumed that r = 7% and n = 30 years, therefore, an = 0.11. CTO is given by:  

  ( ) ( )IDCCCC
oVOTO

++= 1   

where  

CVO  is the vendor overnight cost, 
Co is the owner's cost.  

IDC is the factor for the ‘interest during construction’ which is written as:  

  12)1( −+=
csi

csiIDC    

where ics is the interest rate during construction.  

Local prices for items and labor, foreign supplier prices, and the cost methodology mentioned 
above are used to calculate the specific water cost for the Syrian case study in the IAEA 
coordinated research programme (CRP) on ‘economics of nuclear desalination — new 
developments and site specific studies’ as shown in Table 3.23.  
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TABLE 3.23. COST EVALUATION FOR THE DESALINATION PLANT 

Item Value 
RO Water plant total construction cost (M US $) 177.96 

RO Water plant O&M cost (M US $/a) 9.81 

Pumping power (HP + seawater and booster pump) (MW(e)) 50 

Specific power consumption for RO (kW(e)/m3)  6.72  

Specific cost for RO (US $/m3) 0.2 

Water cost (power cost 0.03 US $/kWh and I=6%) (US $) 0.55 

MVC total construction cost (US $) 17 433 672 

MVC Annual O&M cost (US $/a) 784 512 

Energy (consumption & cost) for the MVC 
 electric (kW(e)/m3) 
 thermal (kW(t)/m3) 

 
10.5 
— 

Water cost (power cost 0.03 US $/kWh and I=6%) (US $) 0.48 

MEE total construction cost (US $) 20 131 539 

MEE annual O&M cost (US $/a) 905 919 

Energy consumption for MEE 
 electric (kW(e)/m3) 
 thermal (kW(t)/m3) 

 
2.1 
47.5 

Power cost 
 electric (US $/kW(e)) 
 thermal (US $/kW(t)) 

 
0.03 

0.005 

Water cost (power cost 0.03 US $/kWh and I=6%) (US $) 0.66 

TVC-MEE total construction cost (US $) 28 500 000 

TVC-MEE annual O&M cost (US $/a) 784 000 

Energy (consumption & cost) for the TVC-MEE 
 electric (kW(e)/m3) 
 thermal (kW(t)/m3) 

 
2 

38.64 

Water cost (power cost 0.03 US $/kWh and I=6%) (US $) 0.55 

Charge rate an and IDC 
 for Is = 6% 
 for Is = 8% 
 for Is = 10% 

 
an = 0.066 IDC = 0.0017 
an = 0.084 IDC = 0.0030 
an = 0.102 IDC = 0.0045 

—  data not available. 

The three parameters interest rate, power cost, and plant availability were chosen to carry out 
sensitivity analysis as shown in Figs 3.56, 3.57, and 3.58. A comparison of water cost for 
MEE versus TVC-MED is given in Fig. 3.59. 

3.2.3.2. PBMR desalination system 

i. Capital and O&M costs 

The cogeneration desalination systems were compared as incremental investments 
superimposed on a base PBMR power plant. The capital and O&M costs of desalination 
plants were partially offset by reduced amount of equipment that is needed if a desalination 
system is integrated with a PBMR power plant. With an integrated desalination plant, the 
condenser, cooling water system, and a feedwater heater in the power cycle were no longer 
required. Additionally a smaller steam turbine and a less expensive electrical system were 
needed. The O&M costs of the desalination plant were similarly partially offset by the 
elimination of the condenser and cooling water system O&M costs. The incremental capital 
and O&M costs (i.e. the costs of desalination plant minus the cost savings associated with 
integrating the desalination plant with a PBMR plant) are shown in Table 3.24 for each case. 
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TABLE 3.24. INCREMENTAL CAPITAL AND O&M COSTS 

 
Case  
B1 

Case  
B2 

Case  
C1 

Case  
C2 

Case  
D1 

Case  
D2 

Desalination technology 
MED: 

5 
effects 

MED: 
10 

effects 

MED-TVC:
5 

effects 

MED-TVC:
10 

effects 

MSF: 
0.165 
MPa 

MSF: 
0.09 
MPa 

Incremental capital cost 
(M US $) 

21 389 87 528 58 23 

Incremental O&M cost 
(1st a) 
(M US $) 

4 8 5 10 8 5 

 
FIG. 3.60. Visualization of trade-offs. 

The cases considered illustrate the trade-offs that exist when extraction steam is used to 
produce desalinated water. For the MED and MED-TVC technologies, increasing the number 
of effects will increase the water production as well as the capital cost. Reducing the turbine 
back-pressure will slightly increase the export power amount but will reduce the water 
production. Using the MED-TVC technology instead of the MED technology will increase 
the water production but reduce the amount of export power. Using the MSF technology 
instead of the MED or MED-TVC technologies will similarly increase the water production 
but reduce the amount of export power. These trade-offs are visualized in Fig. 3.60. 

ii. Lifecycle cost 

In order to compare these trades-offs quantitatively, a lifecycle economic analysis was 
performed. The lifecycle costs of each case were compared on a present value basis. The 
relative present values of the cases considered were highly sensitive to the values of export 
power and desalinated water. Because these values can vary greatly, depending on the specific 
location, the cases were considered for a variety of power and water values. Figure 3.61 
shows the break-even water value for a range of power values. The power values are shown 
on the figure in 2008 Dollars, but are escalated through the life of the plant. Similarly the 
break-even water values are also shown in 2008 dollars and escalated through the life of the 
plant. For each power value, the breakeven water value is the value of water that must be 
obtained in order for the lifecycle present value of the cogeneration configuration case to 
equal the lifecycle present value of the power-only configuration case. 

At power values below US $60/(MW·h), the MED technology with 5 effects requires the 
lowest water values to breakeven with the power-only configuration, varying from 
US $0.63/m3 to US $1.12/m3. With higher power values, the MED technology with 10 effects 

MED: 5
Effects

MED: 10
Effects

MED-
TVC: 5
Effects

MED-
TVC: 10
Effects

MSF:
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bar
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bar

Export
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becomes the more economical option as the increased capital cost is offset by the increase in 
revenue from the additional desalinated water production. It is critical that this economic 
analysis is on an incremental basis; for the entire project to be economical, the base case of 
the PBMR power plant must be covered by a sufficient amount of power sales. This economic 
analysis also assumes that a region needs all the desalinated water that is being produced in 
every case while the water production varies greatly depending on the case. In selecting a 
desalination technology, the water production needs of a region must be considered. While the 
largest desalination plants in the world have capacities above 500 000 m3/d, there are many 
more plants with capacities in the 100 000 m3/d to 200 000 m3/d range, less than the 
capacities in several of the cases. 

 
FIG. 3.61. Break-even water value versus power value. 

iii. Waste heat option 

A net present value (NPV) comparative study has been performed in order to assist the 
decision making with regards to adding a waste heat desalination plant to the Brayton cycle-
based PBMR. This study has been performed between the proposed LT-MED process as well 
as RO for variations in specific capital cost as well as specific electric consumptions (in the 
case of the RO). A list of the general assumptions in this analysis can be found in Table 3.25, 
while it was also assumed that the PBMR base costs are covered by the selling of electricity. 

TABLE 3.25. ECONOMIC PARAMETERS 

Description Value 
General inflation 5 

Capital escalation (%) 5.53 

Electricity price escalation (%) 8 

O&M escalation rate 5 

Water price escalation rate (%) 5.53 

Commercial start-up date 2015 

Economic life (a) 25 

Discount rate (%) 13.7 

Tax (%) 35 

Owners cost 5% of EPC a + $100k per month of construction 

Contingency 10% of EPC a 

Construction interest rate (%) 12.5 

a  EPC = energy performance certificate. 
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From these assumptions, a break-even water price analysis has been performed for both the 
LT-MED case with a specific capital cost of 1300 and 2000 US $/(m3·day) and a RO system 
with capital cost of 700 and 900 US $/(m3·day), respectively. The electrical consumption of 
the RO plant has also been varied between 3 and 5 kWh/m3 while the electrical usage of the 
LT-MED has been fixed on 1.5 kWh/m3. 

Figure 3.62 illustrates the results from this break-even analysis and from it can be concluded 
that a LT-MED with low capital cost provides marginal better opportunities than all other 
options. The sensitivity of the LT-MED capital cost can, however, be seen from the fact that 
the 2000 US $/(m3·day) option lies to the top of the graph. Another aspect worth noticing is 
the fact that as long as electricity cost are below 50 US $/MWh, the break-even point is still in 
the feasible range of ~1 US $/m3. In agreement with these results are also the NPV graphs 
(Fig. 3.63) indicating the feasibility of a desalination scheme coupled to the initial PBMR as 
the major increase in NPV resulting from a higher water price. 

 
FIG. 3.62. Break-even water price vs. power. 

 
FIG. 3.63. Net present value for different power and water cost scenarios. 
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Based on these results, the overall conclusion is that the break-even analysis indicates a 
feasible value of ~1 US $/m3 while an increased water price shows a significant higher net 
present value. This higher value is coupled to a water selling price of 2 US $/m3 which has 
already realized in and around Cape Town (South Africa) region during dry seasons. 

3.3. OTHER APPLICATIONS 

Since the beginning of the development of nuclear power, the direct use of the generated heat 
for district heating or in industrial processes has been considered convenient and practiced in 
many countries. Still, it is less than 1% of the nuclear heat worldwide which is presently used 
for non-electric applications, but there are signs of increasing interest. 

The experience up to now gained with nuclear process heat/steam extraction is from 
60 reactors and about 600 reactor-years, respectively [161]. Most present nuclear non-electric 
applications are found in the lower process temperature range with experience obtained, e.g. 
from district heating (most in Eastern Europe), desalination of seawater (most in Japan) or 
D2O production (Canada). Cheap off-peak electricity from LWRs for electrolytical hydrogen 
production could be another low temperature application.  

3.3.1. District heating 

District heating is predominantly applied in climate zones with relatively long and cold 
winters. It is usually provided in form of hot water (commonly used in Europe) or steam (e.g. 
USA, also Germany) at 80–150°C and at low pressures. Depending on local heat demand, it 
requires decentralized units, since heat transport over long distances is not efficient. With the 
improvement of hot water transportation, however, larger CHP grids could be realized, 
whereas steam transport is limited to a maximum of about 5 km. Typical district heating 
networks are in the range of 600–1200 MW(th) in large cities down to 10–50 MW(th) in 
smaller communities.  

If nuclear power plants are used as primary energy source, heat is extracted from the low 
pressure turbine. An intermediate heat transfer loop is employed to avoid a transition of 
radioactivity into the heat/steam circuit. Major drawback of nuclear systems is their usually 
insufficient economy. As of 1998, 46 commercial nuclear plants in 12 countries are being 
used or have been used for heating purposes with a heat output between 5–240 MW 
demonstrating a safe and reliable operation. Among these plants were two dedicated plants in 
the Russian Federation (Obninsk) and China (NHR-5) [162].  

One example is the nuclear station Beznau in Switzerland which supplies since 1983 heat in 
form of 85°C hot water to over 2300 clients. The main heating network has a length of 31 km, 
from which the heat is transferred to local secondary networks with a total length of 99 km. 
Most recent example of nuclear district heating is the operation of the Chinese HTR-10 
research reactor at the Tsinghua University in Beijing to contribute to local heating in winter 
time. It is actually the first high temperature reactor used for the purpose of ‘process heat’ 
supply. 

Also at PBMR, the possibility of district heating was briefly investigated as an alternative 
waste heat coupling scheme. This work has not yet been completed but initial indications 
clearly indicated that various favorable conditions need to exist in order to justify the 
additional capital expenditure and that application would be quite limited. 
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Steam reforming of natural gas covering worldwide about half of the hydrogen demand, is 
one of the essential processes in the petrochemical and refining industries. The coupling with 
nuclear as process heat source may be an ideal starting point for nuclear power to penetrate 
this market in the near and medium term saving up to 35% of the methane feedstock, and a 
reasonable transition step towards a fossil-free hydrogen production in the long term. 

4. SAFETY AND ENVIRONMENTAL CONSIDERATIONS  

With regard to combined nuclear and chemical facilities, apart from their own specific 
categories of hazards, a qualitatively new class of events will have to be taken into account 
which is characterized by interacting influences. Arising problems to be covered by a decent 
overall safety concept are the question of safety of the nuclear plant in case of a flammable 
gas cloud explosion, or the tolerable contamination by a transition of radioactive substances 
into the product gas. In addition, there are the comparatively more frequently expected 
situations of thermodynamic feedback in case of a loss of heat source (nuclear) or heat sink 
(chemical). Potential hazardous events in connection with a process heat application system 
extensively investigated were 

• fire and explosion of flammable mixtures; 

• atmospheric vapour cloud explosion in the vicinity of the reactor; 

• ingress of flammable gases into the reactor building; 

• tritium transportation from the core to the product, e.g. hydrogen and methanol; 

• thermodynamic interaction between nuclear and chemical plant; 

• isolation of desalination plant. 

4.1. SAFETY ISSUES OF NUCLEAR HYDROGEN PRODUCTION  

There are two significant safety issues originated in the thermochemical hydrogen production 
system to be coupled to the HTGR. One is hydrogen release and the other is toxic gas release. 
Basic safety design approach is to prevent accidental release of there materials and to mitigate 
their effect on the HTGR safety items and operators. Provision of separation distance between 
the HTGR and the hydrogen production system is simple and reliable safety approach. But a 
long separation distance requires a long helium piping and a larger plant site, which results in 
an increase of the plant constr
the economic point of view. 

4.1.1. Fire and explosion hazard 

4.1.1.1. General recommendations 

In case of initiating events such as accidents in the process plant or on industrial sites, releases 
of process raw stock or derived products are possible. From the viewpoint of protection 
measures, the worst safety implications will be produced by an air shock wave resulting from 
the explosion of such substances. 

Allowable releases of explosive substances from the process plant are characterized by 
acceptable positive pressures in the shock wave front, complying with the limits established 
for NPP containment, systems and elements. The distance from the explosion point to the 
containment is accepted with account of the worst consequences for the nuclear island 
(reactor, spent fuel storage, etc.). In order to meet these requirements, the process plant 
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systems and elements important for NPP safety should be designed in accordance with the 
same principles as nuclear power equipment, primarily, the ‘single failure’ and the 
‘conservative approach’ principles. 

In order to reduce the risks associated with placing a nuclear reactor and a hydrogen 
production plant on one site, it is necessary to 

• minimize the amount of H2 and other explosive gases located close to the reactor plant; 

• reduce the amount of gas released from the process plant in case of possible leaks from 
equipment or pipelines; 

• create conditions preventing formation of explosive mixtures. 

The following technical solutions can be recommended: 

• modular design of the power–technological complex (not one, but four independent 
hydrogen production lines, each having its own nuclear source); 

• burial of nuclear reactor modules in the main building below the ground level; 
arrangement of pipelines and equipment carrying explosive substances in the open air 
or, if it is impossible, in rooms filled with inert gases; 

• maintenance of a safe distance between the hydrogen production plant and above 
ground electric engineering and radiation hazardous objects of the power–technological 
complex. 

The modular design of the power–technological complex will permit to: 

• reduce the amount of hydrogen and other explosive substances located close to the 
reactor plant, owing to the optimal number of fast-response shutoff valves isolating the 
leaky sections, and reduced pipeline cross sections and equipment dimensions; 

• arrange the intermediate heat exchanger and the pipelines connecting it to the process 
plant in rooms protected against internal and external impacts, including possible 
explosions of process plant working fluids;  

• provide for emergency relief of excessive pressure from the IHX room and from the 
pipeline gallery connecting the IHX to the process plant through vents releasing the 
steam–gas mixture into the environment; 

• create conditions preventing formation of explosive mixtures in the rooms; in particular: 

o equip process plant equipment and systems with diagnostic tools; 

o provide for a control system to timely detect ingress of explosive gases into the 
compartments where process plant equipment is located, and effective systems 
to extract the explosive gases from these compartments; 

o fill the rooms where flammable and explosive gas concentrations can build up 
with inert gases, or equip them with reliable ventilation systems. 

Independence of all reactor modules from one another in all accidents accompanied with 
radioactive emissions is provided through: 

• inherent safety features and passive safety systems that do not rely on supporting and 
auxiliary systems to function; 

• arrangement of each reactor plant and radiation hazardous objects inside the building 
underground in individual reinforced concrete containments. The containments are 
designed to withstand emergency internal and external impacts (airplane crash, air 
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The basic criteria for assessing explosion effects on the NPP building are [165]: 

• Pressure in the shock wave front; if there are (or supposed to be) any external explosion 
sources at a distance of up to 5 km from NPP structures of category I (Table 4.1), this 
pressure is calculated or assumed equal to 30 kPa; 

• Duration of compression phase up to 1 s; 

• Horizontal propagation of the air shock wave. 

ii. NPP safety requirements imposed by the hydrogen production plant 

The technical measures on object protection against a blast wave are [164] 
• explosion souroce removal or screening; 
• building structure reinforcement (increased stiffness and inertia of cross-sections); 
• technical solutins aimed at decreasing the energy potential of explosive process units. 

TABLE 4.1. EXPLOSION HAZARD CATEGORIES OF PROCESS UNITS [166] 

Explosion hazard 
category 

Relative energy potential of released gas 
cloud, Qv 

Mass of released gas cloud, m 
(kg) 

I > 37 > 5000 

II 27–37 2000–5000 

III < 27 < 2000 

The energy potential, Qv, of the process units intended for hydrogen production through water 
electrolysis shall be calculated on the basis of design solutions ensuring Qv < 27 (explosion 
hazard category III). 

For nuclear power plants, pressure in the shock wave front should be assumed equal to 
10 kPa, with account of explosion sources located on the NPP site (storages of fuel and 
lubricants, hydrogen receivers, acetylene production in the scope included into the NPP 
design). During the entire operation period, it is prohibited to arrange explosion sources 
which can create more than 10 kPa pressure on category I structures at the NPP site. If there 
are (or supposed to be) any external explosion sources (oil refineries, basic storehouses of fuel 
and lubricants or explosives, gas mains, heat accumulators, navigable river routes, general 
purpose railroads etc.) at a distance of less than 5 km from an NPP structure of category I, the 
pressure in the shock wave front is to be calculated or assumed equal to 30 kPa. 

Permanent stay of the servicing personnel in the electrolysis compartment is not 
recommended. Continuous monitoring of the progress of technological processes is 
performed by the operator from the control panel room. Automated shutdown takes place if 
the emergency protection thresholds are reached. 

iii. Layout solutions [166] 

The territory of an enterprise including explosive production facilities should be free of any 
natural cloughs. It is prohibited to lay pipelines carrying flammable and gaseous liquids and 
liquefied gas fuels in trenches or on the surface in artificial or natural cavitations. 

Process facilities, production, administrative and domestic buildings as well as permanently 
or temporarily attended rooms located in the hazardous area in case of emergency should be 
equipped with effective systems for notifying the personnel about emergency situations on the 
process object. 
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Designed explosion and fire hazardous facilities shall meet the following requirements: 

• Buildings accommodating control rooms (operator’s rooms) should be constructed 
outside the destruction area or be capable of withstanding shock wave impact; in the 
latter case, they should be equipped with independent means to support normal systems 
operation and personnel activity in emergencies. 

• Permanently attended administrative and other buildings should be constructed outside 
the destruction area. 

• Plant-shared facilities (power, steam and water supply etc.) should be constructed 
outside the destruction area or be capable of withstanding shock wave impacts. 

• For each object containing process units of any explosion hazard category, it is 
necessary to calculate zones in which the concentration of fuel in the vapour cloud that 
forms in the emergency remains below the explosion limit. The emergency response 
plan shall specify actions to be taken by the personnel in case of emergency to prevent 
ignition of the steam–gas or gas cloud sources within the calculated zones. 

In accordance with the ‘Safety rules to be obeyed in production of hydrogen by water 
electrolysis’, hydrogen storage should be located at a distance of at least 15 to 30 m from the 
storehouses and production buildings, and at least 100 m from administrative buildings [167]. 

4.1.1.3. Design approach for hydrogen release 

Fire and explosion of hydrogen is the most significant consequence of hydrogen release. 
Pressurized hydrogen is released as a jet from a failed pipe. If ignited during leakage, a jet 
flame is formed and components close to the flame may be damaged by overheating. 
According to the safety design regulations for chemical plants, leak detectors and emergency 
shutoff valves shall be provided for detecting and stopping a leakage of hydrogen as soon as 
possible. Components shall be arranged with an appropriate separation distance to eliminate 
secondary failure. The length of the jet flame may be several meters and the safety items in 
the HTGR are placed a hundred meters away from the hydrogen production system, so the jet 
flame does not directly damage the nuclear safety-related items. 

If hydrogen does not ignite during leakage, a combustible hydrogen–air cloud is formed. It 
may cause a flash fire or an explosion. The flash fire is a deflagration without overpressure 
and emits strong heat. Temperature of the building and the components installed outside may 
not significantly increase because the burning period of the hydrogen–air cloud is short and 
thermal capacities of the building and equipments are large. The operators in the control room 
remain in a safe condition and are able to continue the safe operation of the HTGR. 

The overpressure resulting from a hydrogen vapour cloud explosion may damage the reactor 
building or the components installed outside of the HTGR. Several tests were performed to 
identify the characteristics of hydrogen explosion [168]. A 300 m3 volume of hydrogen–air 
mixture with stoichiometric concentration can generate a blast overpressure of 30 kPa in the 
open field. Densely arranged obstacles can accelerate the burning velocity of the hydrogen–air 
cloud and generate stronger overpressure. Vessels and pipes in the hydrogen production 
system shall be arranged with suitable space to eliminate acceleration of the burning velocity. 
Also dense arranged obstacles shall not be placed between the HTGR and the hydrogen 
production system. 

The reinforced concrete wall of the HTGR reactor building and components placed outside 
must be designed to withstand severe external loads such as wind force of a typhoon and 
ground motion of an earthquake. In German and Russian design codes of the nuclear power 
plant for the explosion accident, the design limit of overpressure on the safety plant structures 
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is 30 kPa. Therefore, in this case, the fire and explosion in the open field should not affect to 
safe operation of the HTGR. If the blast overpressure of hydrogen explosion seems to exceed 
30 kPa by acceleration of burning velocity of hydrogen–air cloud, a detailed analysis shall be 
performed to verify the structural integrity of the HTGR reactor building and components 
placed outside. 

An explosion within a vessel or a pipe generates strong overpressure and may break it. 
Hydrogen and oxygen are produced simultaneously in the water splitting hydrogen production 
system so that there is a possibility of an internal explosion if hydrogen and oxygen are 
mixed. But hydrogen and oxygen are produced in different processes in the thermochemical 
water splitting system so that they are physically separated. Operation pressure of the 
hydrogen production system is higher than ambient pressure to minimize the plant scale and 
to enhance the hydrogen production efficiency. The air does not flow into the vessels and 
pipes in the event of pipe failure of the hydrogen production system. After the pressure in the 
hydrogen production system becomes ambient pressure, air ingress by natural convection may 
occur. To prevent an internal explosion, an emergency purge system shall be provided to 
purge hydrogen from pipes and vessels. Hence internal explosions and blast generated 
missiles can be excluded. 

4.1.1.4. Fire and explosion hazards 

i.Unconfined explosion 

Fire and explosion hazards resulting from the leakage of flammable materials such as 
hydrogen, carbon monoxide, and methane or other flammable gases must be considered 
because they have the potential of causing significant damage to safety components. Within 
the PNP project, a gas explosion programme was conducted to improve understanding of the 
complex processes in vapour cloud explosions and their effects on the environment, in 
particular on nuclear plants. It included comprehensive experimental series employing 
representative combustible gases to examine flame speeds, overpressures, as well as criteria 
for the transition from deflagration to detonation (DDT), and on the other hand, the 
identification of PNP typical accident scenarios. Potential flammable gas mixtures accidently 
released into the atmosphere will if ignited, most probably undergo a deflagrative combustion 
connected with a non-damaging pressure wave. 

As part of the experimental programme of the PNP safety programme, the Institute for 
chemical technology of the Fraunhofer Gesellschaft [169] have conducted in 1978 explosion 
experiments with unconfined, premixed stoichiometric hydrogen–air mixtures in 
hemispherical balloons of different sizes (3–20 m diameter). Maximum overpressures 
resulting from flame acceleration were observed to range between 1.3 and 6.3 kPa 
corresponding to a flame speed in the hydrogen–air mixture of 84 m/s. Flame velocities 
showed a certain dependence on cloud size and state of turbulence in the cloud [170]. Other 
tests with methane–air, methane–ethane–air, methane–oxygen-enriched air, propane–air 
mixtures in 1988 were investigating the effect of unconfined flat cloud geometry of 
rectangular or cylindrical shape. Initial turbulence was created by obstacles and fans. Weak 
point ignition resulted in hemispherical flame propagation which ended at the cloud boundary. 
Obstacle configurations increased flame speeds by a factor of 2–3. More tests were conducted 
by Pförtner in an arrangement with two parallel walls forming a 10 m × 3 m × 3 m lane and 
with rich hydrogen–air mixtures as fuel. After generating fan-induced turbulence, flame 
acceleration to a detonation was observed [171]. Explosive-initiated detonations have been 
observed in ethylene, propylene and propane mixtures with air by using 8 g, 30 g, and 80 g, 
respectively of high explosives, but never in premixed methane–air mixtures [170]. 
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ii.Confined explosion 

Fire and explosion events inside the reactor building may cause severe damage to nuclear 
safety systems. It is, therefore, required that the possibility of an ingress and ignition of 
flammable gases inside the reactor building should be low enough to avoid any fire and/or 
explosion at this location. Ingress of product gases into the reactor building requires a 
scenario with the simultaneous failure of the secondary helium pipe and the gas generator or 
reformer tube. The only cause of the simultaneous failure of these components is conceived to 
be an earthquake. Therefore, helium piping and chemical reactor should be designed 
according to the highest level of reliability and for a high seismic safety level. Furthermore, a 
qualified closure of the helium lines by diverse high temperature shutoff valves and the 
emergency shutoff valves in the process feed lines to disconnected from the chemical unit, 
and thus limiting the leaked quantity. Other countermeasures are an additional inerting of 
areas in the reactor building containing the secondary circuit piping. The employment of 
separation systems, segments of pipes which act as high pressure helium buffers, further helps 
to prevent a leakage of radionuclides to the outside. 

An experimental programme at the research center Karlsruhe (FZK) to investigate the 
combustion behavior of hydrogen–CO–air mixtures and to quantify the influence of CO 
concentration on the combustion process of the hydrogen–CO–air mixtures under different 
conditions [172] has been conducted in a 12 m detonation tube. The results have clearly 
demonstrated a damping effect of CO on the turbulent combustion speed of hydrogen–CO–air 
mixtures when compared to turbulent combustion in pure hydrogen–air mixtures. This effect 
is probably caused by the relatively long induction and reaction time of the complicated 
oxidation mechanism of CO. This process requires as an initiating component OH-radicals, 
which have to be provided in a sufficient amount by the H2 oxidation. The resulting time 
delay between hydrogen and CO oxidation could be detected in the hydrogen–CO–air 
experiments with the installed photodiodes, which showed two spatially separated flame 
zones moving along the tube. 

With respect to safety analysis, the mitigation effect of CO additions on the observed flame 
speed and the resulting pressure loads should be taken into account. Treating CO simply as H2 
in the analysis would lead to overconservative load estimates. 

4.1.1.5. Safety distance  

There is a wide variety of possibilities for the definition of ‘safety distance’ and it is largely 
depending on country or document [173]. As commonly understood, a safety distance is the 
required minimum separation distance between a potential hazard source, e.g. the location of 
a flammable gas leakage, and the vulnerable object to be protected from an external impact. 
But apart from the difficulty in providing a precise definition, another problem arises with the 
necessity to select the appropriate method for quantifying a separation distance. Fixing of 
numerical values could be done by estimations assuming severe accident conditions or the 
application of probabilistic risk assessment methods taking account of mitigation measures 
such as, e.g. fire walls. And last but not least, there is a need for harmonization of the various 
approaches of quantification among the countries. 

The separation distance is usually determined as a function of the quantity of hydrogen 
involved (quantity–distance relationship). It may be fixed on the basis of credible events 
taking account of – if referring to hydrogen – the evolving flammable atmosphere as well as 
of the heat and pressure wave resulting from a possible ignition. The separation distance can 
then be defined according to physically defined criteria, e.g. the dose of thermal radiation or 
the peak overpressure, to have reached a certain threshold value. A particular aspect is the risk 
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(a) Hydrogen release rate 

Pressurized hydrogen gas blows out from a failed pipe like a jet at critical speed. Mass flow 
rate of mc can be calculated from the following equation by assuming isentropic flow of an 
ideal gas. 

  
1

1

0

0

1

2 −
+









+
=

κ
κ

κ
κ

TR

p
Amc    

where  

p0 and T0  are pressure, Pa, and temperature, K, of the hydrogen in the pipe,  
A   is the cross section area of the pipe, m2,  
R   is the gas constant of hydrogen, = 4124.6 J/(kg·K), and  
κ   is the ratio of specific heats, = 1.403. 

The mass flow rate depends on the pressure. The pressure of hydrogen gas in the pipe actually 
decreases according to the hydrogen leakage. In this analysis, however, a constant pressure is 
assumed during leakage at the initial condition. Duration of the gas release is given by 
dividing the amount of hydrogen released by the mass flow rate. 

Pressurized hydrogen gas is compressible. The pressure dependence of density should be 
considered to analyze the detailed behavior of the hydrogen flow. Compressibility affects the 
gas concentration only close to the opening of the pipe. This analysis, however, focuses on 
analyzing the dispersion behavior in the open field so that the compressibility of hydrogen gas 
is not considered in this analysis. 

(b) Atmospheric condition 

The atmospheric condition is an important factor of the diffusion analysis. The standard k–ε 
model is adopted in the turbulent flow model of this analysis. A steady-state analysis for each 
wind speed is conducted to determine the initial atmospheric condition. 

(c) Result of dispersion analysis 

Analytical parameters which are the amount of hydrogen released, the pipe diameter, height 
of the release point, the wind speed, and the horizontal angle of jet, are listed in Table 4.2. 
Wind flows in x-direction in Fig. 4.3. Physical properties of the air–hydrogen mixture are 
calculated by the weighted average method. 

Figure 4.5 shows the results of hydrogen gas concentration analysis. In this case, the amount 
of hydrogen gas released is 100 kg, the pipe diameter is 100 mm, the height of release point is 
2.5 m and the wind speed is 1 m/s. The upper figure shows the cross section of the x–z plane 
at y = 0 m and the lower one shows the cross section of the x–y plane at 2.5 m.  

TABLE 4.2. ANALYTICAL CONDITIONS OF THE HYDROGEN DISPERSION 

Item Condition 

Amount of hydrogen released (kg) Max. 100 

Pressure (MPa) 4 

Pipe diameter (mm) 20, 100 

Height of release point (m) 0, 2.5, 5 

Wind speed (m/s) 1–15 

Horizontal angle of jet (°) 0–90 

Atmospheric stability category Stable 
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Pipediameter     100 mm 
Wind speed     1 m/s 
Height of release point   5 m 

M
ov

in
g 

di
st

an
ce

 (
m

) 

Horizontal angle of jet (°) 



 

FIG
and

 

G. 4.13. Hydr
d of 22.5 degr

rogen dispers
ree (bottom)

sion at prese
. 

ence of a walll assuming a

10 s

8 s

a release ang

s 

gle of 0 degr

 

 
ree (top) 

134



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hydrogen gas cloud can move over a long distance depending on the release condition 
and the atmospheric condition. The separation distance between the hydrogen production 
system and the HTGR plant should be determined to prevent ingress of an explosive hydrogen 
cloud into the reactor building through the ventilation system of the HTGR in consideration 
with dispersion of hydrogen cloud. 

(d) Result of explosion analysis 

The effect of the blast overpressure generated by a hydrogen explosion is not a significant 
issue if the structures and equipment are designed to withstand such overpressure. To reduce 
the possibility of damage by a hydrogen explosion, overpressures should be evaluated by the 
following methods and effect on the structures be analyzed. There are two major indicators 
which are peak overpressure and impulse to estimate damage of the structures. The peak 
overpressure is employed as the indicator in many codes and guidelines because of its 
simplicity. Intensity of the overpressure can is calculated by TNT equivalent method [178]. 
The equivalent mass of TNT is calculated with the following equation: 

  
mTNT

mff

TNT E

EQ
Q

⋅
= α   

where  

QTNT   is equivalent mass of TNT, kg,  
Qf   is mass of fuel, kg,  
Emf   is the combustion energy of the fuel, J/kg,  
EmTNT  is the combustion energy of TNT, J/kg, and  
α   is a factor including yield and efficiency.  

The peak overpressure is derived as a function of distance by the TNT explosion blast chart 
test as shown in Fig. 4.15.  
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FIG. 4.114. Effect of the wall. 

 



 

 

 
FIG. 4.15. TNT explosion blast chart; peak overpressure. 

 
FIG. 4.16. Multi-energy method blast chart with peak overpressures. 
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The multi-energy method can also be applied to estimate the blast overpressure of hydrogen 
explosion [178]. The chart as shown in Fig. 4.16 is made from the idealized gas explosion 
analysis in which a combustion energy of 3.5 MJ/m3, stoichiometric concentration of charge–
air mixture, and a semi-spherical shape of the cloud are assumed. There are ten classes in the 
chart identified by the initial blast intensity. Class 10 represents a detonation. Class 5 
represents a hydrogen explosion with low ignition energy and several obstacles. This is the 
most likely explosion in the open field. An explosion in the hydrogen production system may 
correspond to a level between class 5 and class 7 which represents a strong deflagration. 

Scaled distance 'r  and scaled peak overpressure 'p  are given by the following equations: 

  
31

0 )(
'

PE

r
r =   

 0' PPp =   

where  

r  is the distance from the center of explosion, m,  
E  is the combustion energy, J/m3,  
P0  is the ambient pressure, Pa, and 
P  is the peak overpressure on the target item, Pa. 

The combustion energy of hydrogen is 142 MJ/kg or 12.75 MJ/m3 (HHV) and the ambient 
pressure is 101.3 kPa.  

The upper limit of the peak overpressure of structures is an important item to determine the 
safe distance in the safety design. Russian design code prescribes that the building should be 
designed for a shock wave of 30 kPa. But the NRC regulatory guide recommends ~7 kPa 
(1 psi) from the viewpoint of no significant damage on the safety related structures. Japanese 
industrial code recommends 10 kPa from the viewpoint of no significant damage to the 
public. The design limit of peak overpressure of hydrogen explosion will be 10 to 30 kPa. 

In this preliminary analysis, design limit is tentatively set at 10 kPa to evaluate a conservative 
separation distance. The separation distance is defined by a sum of the moving distance of the 
explosive hydrogen gas cloud and the distance of the peak overpressure of 10 kPa derived 
from explosion of the explosive hydrogen gas cloud evaluated from the calculation of moving 
distance. Figure 4.17 shows the evaluation result of separation distance of a hydrogen release 
of 97 kg from a hydrogen transportation pipe of 100 mm. Other parameters are wind speed of 
1 m/s, height of the release point of 2.5 m and the release angle of horizontal. When hydrogen 
of 97 kg is exploded at the release point which is a conventional evaluation method, a 
required separation distance is 62.5 m. However, the required separation distance greatly 
increases considering the moving distance.  

Much hydrogen gas can move over a long distance by dispersion so that the moving distance 
of hydrogen gas cloud extends the separation distance. The conventional evaluation method 
which does not consider the dispersion process may give an uncertain separation distance 
under some conditions. The separation distance between the HTGR and the hydrogen 
production system in the cogeneration system should be minimized with adequate safety 
margin. 
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properties of the hydrogen mixture allow reducing the safe distance between the nuclear and 
chemical plant. 

In order to preserve the nuclear heat and to reduce the power required to pump the coolant 
along the pipeline, the hydrogen production plant should be arranged as close to the RP as 
possible. The reactor building should be, if possible, buried relative to the process plant. In 
another variant, it is necessary to arrange screening with an earth mound, a reinforced wall, or 
(which is less costly) a rising wall in the place of possible hydrogen leak from the pipeline. It 
therefore looks possible to arrange the hydrogen process plant and the reactor building at an 
acceptable distance from each other (not exceeding 100 m), observing all technical measures 
ensuring safety of such arrangement. 

The mass flow during the release of hydrogen or other explosive gases located in close 
proximity to the RP can be reduced owing to the modular equipment design, optimal number 
of fast-response isolation valves sealing off the leaking sections, and reduced cross sections of 
pipelines and overall size of equipment that may contain explosive fluids. 

According to the analysis of the MHR-T based SMR process, high concentration of water 
steam in the steam gas mixture transport area, even in case of leaks, prevents formation of 
explosive mixtures in any initiating events or meteorological conditions. Detonative mixtures 
can form only in chemical plant compartments not connected to the reactor plant, and 
therefore, these compartments can be removed to the required safe distance from the NPP 
main building. 

In summary, the distance between the nuclear reactor and the hydrogen production plant is 
determined by the following main factors: 

• air shock wave impact; 

• capital costs; 

• heat losses; 

• coolant pumping power requirements. 

The modular equipment design and interfaces between the four-module NPP and the chemical 
plant should prevent failures that may disable more than one MHR-T module. Therefore, an 
accident in one reactor module would not affect the safety of the remaining modules, and an 
uninterrupted operation of the entire power complex, in turn, would support a high 
availability factor. 

The cost of screening depends on the screening type:  

• An earth mound or a reinforced wall around the reactor building will be rather costly 
because the wall must be about 30 m high even if the reactor equipment is arranged 
underground; 

• A wall at the point of possible hydrogen pipeline leak should rise about 2 m above the 
pipeline [177], and it does not have to be as thick as in the first option because its 
primary purpose is not protecting against the air shock wave, but preventing the 
hydrogen cloud from drifting towards the nuclear building. 

Accordingly, if the second screening option is used, optimal structural strength of the other 
buildings can be selected. Besides, it would be expedient to analyze possible air shock wave 
impacts and economic effectiveness of protection options for a case with complete burial of 
the reactor plant. This will help to entirely prevent possible accidents associated with air 
shock wave impact on the reactor and to optimize hydrogen production plant arrangement 
relative to the NPP. 
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Due to the modular design of the high temperature electrolyzer, it is necessary to select 
optimal diameters of pipelines and hydrogen/oxygen collectors based on safety and economy 
considerations. This necessity is conditioned by the pumping power requirement on the one 
hand, and safety requirement (i.e. mass of possible hydrogen or oxygen leaks) on the other. 
Metal consumption will depend on the number of isolation valves and pipeline lengths and 
diameters. 

It is more economically effective to arrange hydrogen/oxygen pipelines on the surface than 
underground. 

One of the key conditions to the effectiveness of hydrogen production and radiation safety of 
the end product is selection of the optimal number of circuits. Germany, the USA and the 
Russian Federation [180] conducted research on different variants of HTGR with SMR, 
comparing, in particular, the variant with heat transfer to the thermal conversion unit through 
an intermediate helium circuit, and the variant with direct heat transfer to the thermal 
conversion unit in the primary circuit. According to the results of these studies, in the option 
without intermediate helium circuit, the capital and operation costs decrease by about 30%, 
and the net cost of generated heat decreases by 28% [181]. 

Removal of the intermediate circuit is quite acceptable from the viewpoint of end product 
activity. MHR-T calculations performed by Russian experts show that without the 
intermediate helium circuit, there will be no dangerous factors leading to abnormal operation, 
violation of nuclear and radiation safety norms, or revision of the basic technical solutions 
[180]. 

Exclusion of the intermediate helium storage would be reasonable not only from the safety 
considerations associated with high productivity of the hydrogen production plant based, for 
example, on a 600 MW(th) HTGR. A complex analysis of such factors as hydrogen storage 
form, equipment costs, and expenses related to maintenance and safety assurance shows that 
presence of the intermediate hydrogen storage can increase the end product cost by 30 to 
300% [182].  

Taking into account the analysis of Russian regulatory documentation and the corresponding 
calculations, this section can be concluded with the following statements: 

• The required distance between the NPP and the hydrogen production plant, which is a 
potential explosion source, depends on the energy potential of the gas cloud released 
into the atmosphere. The nuclear reactor main equipment buildings should be designed 
to withstand a pressure of 30 kPa in the shock wave front. Process plant buildings 
containing hydrogen production and handling equipment should have a fire protection 
category not lower than II. 

• Estimations of a 28 kPa shock wave impact on the boundary of the destruction area 
demonstrate that in order to maintain the 100 m distance between the nuclear and 
chemical plant, the mass of hydrogen taking part in the explosion should be limited to 
about 100 kg (without consideration of atmospheric conditions) (Fig. 4.19).  

• The NPP control panel room should be in all cases located outside the explosion and 
fire hazard area. 

• The upper limit of the safe distance can be lowered owing to the following technical 
measures: 

o Screening of the explosion source and underground arrangement of the reactor 
(the refueling mechanism should also be protected against shock wave 
impacts); 
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o Reinforcement of building structures; 

o Development of technical solutions to reduce the energy potential of explosive 
process units. 

• The power–technological complex design should be based on specific site conditions 
and should take into account the following factors: 

o climate in the selected region; 

o special external impacts such as seismicity, aeroplane crash impact, or shock 
wave impact. 

4.1.2. Safety aspects of thermochemical (hybrid) cycles 

In the hybrid sulphur process, the process feed material is water and a small amount of 50 
wt% of sulphuric acid. The process products are hydrogen and oxygen gas. Process 
intermediates include large amounts of sulphur dioxide, sulphur trioxide, and sulphuric acid. 
Sodium hydroxide (NaOH) is used as a scrubbing agent. 

HyS is a process in which 50 wt% of sulphuric acid from the electrolyzers, which contains 
dissolved SO2, is stripped of the sulphur dioxide, and further concentrates the sulphuric acid 
to 75 wt%. The sulphuric acid is then decomposed to steam, oxygen, and sulphur dioxide at 
high pressure and high temperature. The product and stripped SO2 is dissolved in water and 
sent as anolyte to the electrolyzer. Water is supplied to the cathode where it is separated into 
hydrogen and oxygen ions converting the SO2 water solution into sulphuric acid. 

The HyS process involves many hazardous chemicals that are commonly used in chemical 
processing and manufacturing, and the process products are either explosive or an oxidizer. A 
summary of the preliminary hazard assessment that formed part of the NGNP hydrogen plant 
alternatives study HPAS-Shaw (HPAS) study [183] is included in Table 4.3. 

4.1.3. Toxic gas release 

4.1.3.1. Design approach for toxic gas release 

Some toxic materials such as sulphur dioxide, sulphur trioxide, sulphuric acid and hydrogen 
iodine are treated in the thermochemical water splitting hydrogen production system. The 
control room of the HTGR plant shall be protected against these materials to operate safely in 
all operational states [151]. When these materials are released and dispersed toward the 
HTGR, they can enter the control room through the ventilation system. To maintain the 
control room in a safe state or to bring it back into a safe state, appropriate measures shall be 
provided to decrease the toxic gas concentrations in the control room to below the acceptable 
limits. 

Gas detectors shall be provided to detect toxic gas concentrations at the air intake of the 
ventilation system. When a gas concentration exceeds the acceptable limit, the ventilation 
system shall be shutdown to isolate the control room from the outside air. The control room 
and the ventilation shutdown system shall be low leakage construction to keep safe state. 
However, the toxic gas concentration in the control room will slightly increase due to in 
leakage of air. If the toxic gas concentration seems to exceed the acceptable limit, the 
recirculation air filter system in the control room will operate to reduce the toxic gas 
concentration to below the acceptable limit. 
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TABLE 4.3. PRELIMINARY HAZARD ASSESSMENT FOR THE HYS H2 PRODUCTION 
PROCESS 

Item Hazard Discussion 
Concentrated 
H2SO4 at high 
pressure and 
temperature 

Loss of containment of 
highly corrosive acid 
resulting in a release to 
the environment. High 
pressure can result in jet 
or spray release 

Handling of concentrated H2SO4 is industrial practice. However, the high 
pressure employed in this process have the potential that personnel may 
come into contact with the liquid at a significant distance from the leak 
point. 
Corrosion resistance of metals to sulphuric acid is a strong function of 
temperature, fluid velocity, and concentration. Care must be taken to 
ensure that operating conditions are well understood before equipment is 
specified, and that actual operating conditions do not significantly vary 
from design. 
Joints should be minimized to reduce potential for leaks. 
Splash guards should be employed around pumps and joints near 
personnel. 

Concentrated 
SO2 at high 
pressure 

Loss of containment of 
toxic gas resulting in a 
release to the 
environment. High 
pressure can result in jet 
or spray release 

Large quantities of SO2 at high pressure represent a serious toxicity 
hazard. Industrial experience with the safe operation of Claus plants may 
be a useful reference. 
The possibility of the release of large quantities of SO2 from the anolyte 
solution in case of a change in temperature or pressure should be 
considered. 

H2 purification 
and 
compression 

Loss of containment of 
flammable gas at high 
temperature and pressure 
resulting in fire or 
explosion 

The conditions of these operations are within the experience of the 
industrial gases industries. Standard safety measures should be 
incorporated into the design. 
Due to the flammability of the H2, joints and fittings should be avoided in 
the piping system. 
The possibilities of a jet fire or confined vapour cloud explosion in the 
region of potential leak points should be considered in the development 
of the plant layout. 
 

O2 purification 
and 
compression 

The enhanced 
flammability of materials 
in O2 resulting in 
equipment fire 

All piping, fittings, and equipment exposed to > 25% oxygen must be 
oxygen-clean before startup. Fittings that are oxygen-cleaned at the 
factory must be shipped sealed. 
The use of soft materials and lubricants in contact with oxygen-enriched 
streams should be minimized. Fluorinated compounds such as Teflon and 
Viton are normally used for seals and per-fluorinated materials as 
lubricants. 
The use of O2 as the regeneration gas for the TSAs will require that the 
maximum regeneration temperature and pressure be considered in the 
specification of the materials of construction for the adsorber vessels and 
piping that will be exposed to the hot gas. 
It is standard industry practice to place O2 compressors inside of barriers 
for containment and personnel protection in case of a fire. The frequency 
of fires in such equipment should be considered in plant layout. 

Sulfuric acid 
decomposer 

Loss of containment of 
high pressure He. 
Contamination of He 
stream due to tube leaks 
and acid corrosion of He 
heat exchange equipment 

Keeping the pressure of the He stream above that of the decomposer 
should minimize acid leakage into the He in the event of a leak. 

Water treatment No extra ordinary risk This system should be standard equipment routinely used in industry with 
standard safety measures. 

4.1.3.2. Evaluation of separation distance for toxic gas 

Upper limits of the toxic gas concentration for human being are presented in many guidelines. 
The limits in the control room can be determined based on such authorized values. US-NRC 
regulatory guide recommends the upper limit from ‘immediately dangerous to life and health’ 
(IDLH) issued by the National Institute for Occupational Safety and Health (NIOSH) [184]. 
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The IDLH limits are the values for 30 minutes exposure limit to eliminate death or permanent 
adverse health effects. Physical incapacitation does not occur within 2 minutes of exposure. 
The US-NRC considers that a control room operator will take a self-contained breathing 
apparatus within 2 minutes. Although operators maintain their safety actions, the hydrogen 
production system seems to be dangerous for a safe plant operation. 

JAEA considers another safety approach in which operators are not expected to take breathing 
apparatus to reduce the risk of own health damage. The upper limit of toxic gas concentration 
in the control room has been decided to permit 60 minutes exposure. The ‘emergency 
response and planning guideline’ (ERPG) by the American industry health association 
(AIHA) and ‘acute exposure guideline level’ (AEGL) by the US-EPA are employed [185]. In 
the EPRG guideline, three levels of gas concentration limits for sulphuric acid, sulphur 
dioxide and sulphur trioxide for one hour exposure are defined as shown in Table 4.4.  

TABLE 4.4. GAS CONCENTRATION LIMITS IN EPRG 

Gas 
Condition 

ERPG-1 ERPG-2 ERPG-3 

SO2 (ppm) 
 (mg/m3) 

0.3 
0.9 

3 
8.6 

15 
25.7 

SO3 (mg/m3) 2 10 30 

H2SO4 (mg/m3) 2 10 30 

Weight average (mg/m3) 1.6 9.4 28.3 

ERPG-1 is the limit without experiencing mild and transient adverse health effects. ERPG-2 
is the limit without experiencing serious health effects or symptoms which could impair an 
ability to take protective action. ERPG-3 is the limit without experiencing life-threatening 
health effects. The weight-averaged limits corresponding to the released gas composition in 
the sulphur–iodine process where the fractions of SO2, SO3 and H2SO4 are estimated to be 
0.25, 0.35 and 0.4, respectively, are also listed in the table. AEGL defines five levels for 
exposure period from 10 minutes to 8 hours. AEGL-1 is for 8 hours exposure limit and 
AEGL-2 is 1 hour exposure limit. Table 4.5 shows the comparison of these exposure limits. 

TABLE 4.5. UPPER LIMITS OF TOXIC GAS CONCENTRATION [Mg/m3] 

Chemical Name IDLH EPRG-2 AEGL-2 (1 h) AEGL-1 (8 h) 

SO2 262 8.6 — 0.5 (0.2 ppm) 

SO3 15 10 8.7 0.2 

H2SO  15 10 8.7 0.2 

HI — — 115 5.2 

I2 21 5.2 — — 

— data not available. 

The separation distance against toxic gas is determined by the results of atmospheric 
dispersion analysis. JAEA employs SLAB model which considers density effect of released 
gases. Table 4.6 shows the analytical conditions [186] and Fig. 4.20 shows the analytical 
result. The distribution of gas concentrations varies with time. Toxic gas cloud carries 
dangerous concentrations far away from release point. Trend of the gas concentration at the 
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point of 227 m (which is the minimum distance to meet design limits.) from the release point 
is shown in Fig. 4.21. High gas concentration level continues for 20 minutes. The gas 
concentration in the control room is evaluated under the condition of a control room air 
exchange rate of 0.06 per hour, which has low leakage construction features and automatic 
isolation system. Figure 4.22 shows the analysis result. The maximum concentration of the 
sulphuric acid mixed gas is 9.3 mg/m3 which is lower than the upper limit of ERPG-2. But 
duration is longer than 60 minutes. 

 
FIG. 4.20. Transient concentration at 227 m distance from release point during toxic gas dispersion. 
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FIG. 4.21. Trend of the gas concentration at 227 m from the release point. 
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FIG. 4.21. Trend of the gas concentration at 227 m from the release point. 
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4.2. SAFETY ISSUES FOR DESALINATION SYSTEM 

From the HTGR thermodynamic cycle it can be seen that the HTGR overall thermal process 
disposes almost all of its waste heat via two large heat exchangers from the helium gas to 
buffered demineralized water: the precooler and the intercooler. HTGR waste heat at 
precooler and intercooler can be used as a source of thermal energy for the desalination plant. 

4.2.1.1. Safety objectives 

The safety of a desalination system mainly depends on the safety of the nuclear reactor and 
the interface between the nuclear plant and the desalination system. Adequate safety measures 
must be introduced to ensure near zero radioactivity release to the product water. The risk for 
accidental radioactivity carry-over is to be assessed. The basic objective is to prevent 
radioactive contamination of the desalination system and/or the atmosphere. It is necessary to 
ensure that the desalination plant should not cause any disruption and malfunction in the 
nuclear power plant. At the same time, perturbations to the desalination plant due to the 
nuclear power plant need to be analyzed.  

4.2.1.2. Safety analysis of nuclear desalination plant  

Safety analysis is the tool for confirming the adequacy and efficiency of the provisions in 
defense in depth. The most commonly accepted techniques of deterministic safety analysis 
used in the safety analysis of HTGRs are adequate for nuclear desalination plants (NDP). In a 
deterministic safety analysis, response of an NDP is predicted and analyzed for postulated 
initiating events (PIE), which can be anticipated, operational occurrences, or design basis 
accidents (DBA) [187]. 

The safety analysis of a NDP can be performed by  

• Identification of the defense-in-depth barriers in the NDP; 

• Construction of the postulated initiating event list (limited to design basis accidents); 

• Analysis of the accident scenarios and its consequence; 

• Verification of design with respect to acceptance criteria. 

There are two aspects to implement the defense in depth. One is to provide barriers that would 
have to be successively breached for radioactive material to escape outside the plant. The 
other is to prevent the barriers from being breached. As stressed, the first aspect of defense in 
depth in the design is the provision of a series of physical barriers to confine the radioactive 
material at specified locations. The integrity of these barriers is ensured by conservative 
design margins and by high quality in manufacture, inspection and maintenance. In the case 
of failure of one or more of these passive barriers, active engineered safety systems are 
provided to ensure the integrity of the remaining barriers. The second aspect of the 
defense-in-depth strategy is to prevent the barriers from being breached. This is accomplished 
by the design of the plant operational systems. 

An examination of the defense-in-depth barriers and a look at the NDP as a whole, six main 
barriers can be identified to avoid contamination of the fresh water product. These are 

1. Tri-structural-isotropic (TRISO) coated fuel particles; 

2. Ceramic layer of silicon carbide (SiC). It provides fission product confinement 
capability up to temperatures as high as 1600°C. The ability of TRISO fuel particles to 
contain fission products at high temperature help greatly in designing safety system 
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and mitigation measures and make it possible to eliminate adverse consequences of 
many severe accidents by design. 

3. Precooler/intercooler tube walls; 

4. Isolation heat exchangers; 

5. Desalination plant; 

6. Desalination plant isolation system (between the plant and distribution-piping grid). 

The desalination plant itself also acts as a barrier in preventing radioactive contamination of 
the fresh water product as if any radioactive isotopes did enter the desalination system feed 
water stream, it would be left behind in the concentrate in MED desalination system. This 
means that, in case there is a release of fission products due to the catastrophic damage of the 
fuel matrix and fuel element cladding, contamination could reach the fresh water product only 
by a chain of failures. The precooler and intercooler tube would need to rupture, the reactor 
trip would have to fail, isolation heat exchanger tube walls would have to break 
simultaneously, and other safety systems would have to fail to perform its function. 

Safety aspects with regard to desalination system coupling include the fact that desalination 
systems connected to critical systems should be included in the appropriate safety analysis 
reports (SAR). This would require the equipment to be seismically designed and qualified, 
which could have an adverse effect on the capital cost of the plant. Waste heat coupling 
schemes seems to be the only arrangement where this additional aspect could be designed to 
have a minimal impact. This aspect, however, has not been studied or incorporated into the 
costing analysis of the previously mentioned configurations. 

4.2.1.3. Safety analysis of isolation system in HTGR  

The isolation system design should ensure the performance of the isolation function that is 
fulfillment of safety requirements during all foreseen conditions, without relying on 
non-categorized components, in the required time and with the required reliability. BARC has 
carried out the safety analysis of the isolation system of a hybrid MED–RO desalination 
system coupled to HTGR as shown in Fig. 4.24. 

i.Design basis of isolation system 

The design basis of the isolation system covers the following postulated initiating events: 

A. Operational transient in HTGR and desalination plant in terms of flow, pressure and 
temperature, etc.;  

B. Leaks in the precooler and intercooler heat exchangers;  

C. Leaks in the isolation heat exchangers working as barriers;  

D. Failures in the IL pressure control; 

E. Failures in the IL circulating pump. 

F. Failures in the IL circulating pump in desalination plant loop 

G. Failure of MED desalination plant 

H. Failure of RO desalination plant 
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ii. Predicted response to postulated initiating events  

A. Operational transient in HTGR and desalination plant in terms of flow, pressure and 
temperature, etc.  

HTGR waste heat at precooler and intercooler is used as a source of thermal energy for the 
desalination plant. In case of sudden decrease or cessation of steam requirement in the MED 
desalination plant due to transients or shutdown of the desalination plant, a bypass line in the 
desalination loop will be used to divert hot water from the isolation heat exchanger directly to 
the heat sink. Heat will be rejected at the heat sink, so it will not affect HTGR operation.  

It is to be mentioned that this transient can result a minor feedback of thermal transient in the 
HTGR loop also. But these transients are expected to be similar to the transients already 
considered in HTGR design, such as loss of heat sink, loss of load. So no transient more 
severe than those already addressed in the HTGR design are expected to occur as a result of 
addition of this desalination plant.  

Passive heat removal in HTGR can be accomplished by the heat conduction through the 
graphite holding the TRISO particles, followed by convection and radiation in the structures 
and other media in absence of the primary coolant. Also due to large heat capacity of graphite 
in the HTGR core, HTGRs have slow and stable response in transients caused by initiating 
events, facilitating better reactor self control at all levels of defence in depth.  

Likewise transients originated in HTGR will have an impact on operational stability and 
availability of the desalination plant, but it would not cause any radiological consequences. 
One of the most severe transients for the reactor core is the depressurization which happens 
very rapidly for the coolant. But even in the case of a depressurization, it has been shown that 
the maximum temperature of the fuel particles will remain below 1600°C, due to the very 
high thermal conductivity and heat capacity of the graphite assemblies, and to the choice of a 
non-thermally insulated metallic primary circuit, since the residual power will be removed by 
radiation heat transfer through the pressure vessel. 

B. Leaks in the precooler & intercooler heat exchangers  

Although severe accidents involving core melting should not occur in HTGRs, it will be 
important to avoid a major helium leakage, because reactor investment could be lost if fission 
products are released inside the primary circuit. For these reasons, leak-before-break 
procedures, evaluating if it is possible to detect a crack by leakage during normal operating 
state, far before the crack becomes unstable during a transient, are very important for gas 
cooled reactors. 

C. Leaks in the isolation heat exchangers working as barriers  

In the desalination plant loop, the pressure is higher than the IL pressure. Any leak in the IHX 
will cause demineralized water to leak into the IL. But there will be no carry-over of 
radioactivity from the isolation loop to the desalination plant loop in case of a failure in the 
isolation heat exchanger tubes. A leak will reduce the differential pressure between these two 
loops and the operator will be informed for a safe shutdown of the desalination plant.  

D. Failures in the IL pressure control. 

An isolation loop pressure control is necessary to maintain pressure reversal. The intermediate 
loop is pressurized by the demineralized water circulating pump, and this pressure is 
controlled by a pressure relief valve (PRV) at the flash tank inlet. The pressure reversal can 
also be monitored by installing a desalination plant transmitter between the shell side and tube 
side liquid of the isolation heat exchanger.  
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E. Failures in the IL circulating pump 

The isolation loop is to be provided with feed pumps (2×100%) to prevent a loss of 
circulation in the IL due to failure in one IL feed pump.  

F. Failures in the IL circulating pump in desalination plant loop 

Desalination is to be provided with feed pumps (2×100%) to prevent a loss of circulation in 
the desalination plant due to failure in one feed pump [187]. 

G. Failure of MED desalination plant 

In case of failure of the MED desalination plant, a bypass line in the flash loop will be opened 
and all heated water will be bypassed to the heat sink for heat rejection.  

H.  Failure of RO desalination plant 

In case of failure of the RO desalination plant, the dump valve will be opened and heated sea 
water in the heat sink will be dumped to the sea.  

4.3. COUPLING SCHEMES AND CONTAMINATION OF END PRODUCTS FOR 
HYDROGEN PRODUCTION 

4.3.1. End product purity and public radiation safety 

If the two power–technological complex options, with and without the intermediate circuit, 
are compared in terms of end product purity, the latter option might be preferred since it 
avoids such negative effects of the intermediate circuit as  

• reduction of the grade of heat transported to the process plant; 

• reduction of the plant efficiency.  

The possibility of excluding the intermediate circuit is supported by the HTGR safety concept 
which provides 

• containment of radioactivity inside fuel particles with multilayer coatings; 

• guaranteed coating integrity; 

• use of helium as the primary coolant because helium is not activated in the core; 

• maintaining the required primary coolant purity using the coolant purification system. 

Integrity of the reactor fuel, in turn, is possible due to: 

• reactor inherent safety based on negative feedback and natural heat transport 
mechanisms; 

• reactor transfer to subcriticality when control and compensation rods are inserted into 
the core by gravity; 

• reactor core protection against deformation (or damage) in case of internal or external 
impacts (airplane crash, shock wave, hydrogen explosion in the interfacing systems); 

• removal of decay heat to maintain fuel safe operational temperatures in all accidents, 
including full loss of coolant accidents (LOCA), by the natural mechanisms of heat 
conduction, radiation and convection. 
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Consequently, the required end product purity can be provided by:  

• retention of fission products in the fuel;  

• introduction of an intermediate circuit;  

• introduction of effective purification systems;  

• minimization of neutron radiation impact on the process circuit;  

• pressurization of structures;  

• use of proper materials;  

• application of coatings and provision of specific equipment operating conditions to 
reduce tritium permeability of working surfaces (such as oxide film formation on heat 
exchange surfaces [180];  

• maintenance of the pressure gradient directed from the process circuit to the primary 
circuit; and possibility of fast reactor isolation from the process circuit in abnormal 
operating conditions on alarms indicating excess of allowable radioactive/chemical 
contamination limits or reduction of the pressure gradient between the primary and 
process circuits. 

Besides, it is necessary to take measures to protect the personnel against toxic effects of 
substances released from the damaged process plant equipment. 

4.3.2. Coupling of GTHTR300C to sulphur–iodine cycle 

Hydrogen production system is coupled with the HTGR via a heat transfer loop. Safety 
requirements are common for all types of reactor system, which is to protect people and the 
environment from harmful effects of ionizing radiation. The exposure of the public remains as 
low as reasonably achievable (ALARA) in operational states, and radiological risk is 
acceptably low in accident states. The defense-in-depth concept is employed to prevent 
accidental release of radioactive materials. 

Hydrogen production system coupled with the HTGR should be a non-nuclear grade chemical 
plant to reduce construction and maintenance cost because hydrogen produced by the 
cogeneration HTGR system must have economic competitiveness with hydrogen produced by 
the conventional fossil system. Figure 4.25 shows an image of the design classification of the 
GTHTR300C designed by the JAEA [24]. With the following requirements, a non-nuclear 
grade hydrogen production system in a cogeneration HTGR is achievable: 

• The HTGR can continue safe operation independent of operational conditions of the 
hydrogen production system. 

• The heat transfer loop, which provides hot helium gas from the IHX to the hydrogen 
production system, is not required to perform any nuclear safety function to prevent 
anticipated operational occurrences and accidents. 

• Events originating in the hydrogen production plant do not affect the safe operation of 
the HTGR. 

The functions of the heat transfer loop are primary helium cooling, pressure load control on 
the IHX heat exchanger tubes, and impurity concentration control during normal operation. 
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FIG. 4.27. Operaation sequencce of thermaal load degradation of thee hydrogen pproduction sy

 

ystem. 
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Thermal load degradation of the hydrogen production system can be detected as a temperature 
increase at the turbine inlet. The operation sequence of this event is shown in Fig. 4.27.  

At first, the CV3 opens to control the turbine inlet helium temperature. The load balance 
between the gas turbine, the compressor, and the generator changes and the turbine rotation 
speed increases. Then the CV1 opens to control the turbine rotation speed. Actuation of these 
control valves decreases the helium flow in the core. The reactivity control system reduces the 
reactor power to keep the reactor outlet helium temperature at rated operation condition of 
950°C. 

Thermodynamic analysis of the loss of thermal load of the hydrogen production system in the 
GTHTR300C was performed. The analytical result is shown in Fig. 4.28. In this event, the 
flow rate at CV1 and CV3 are 4 kg/s and 34 kg/s at 1000 s, respectively. The increase of 
turbine rotation speed is only 6 rpm at 12 seconds. The flow rate in the core decreases to 88% 
of the rated condition. And the reactor power decreases to 505 MW. CV1, CV3, and the 
reactivity control system can control the nuclear power plant within the operational limit, so 
that the nuclear power plant can continue the power generation operation independent of the 
hydrogen production system operation. This result shows an availability of the control valve 
system to continue safe reactor operation independent of the hydrogen production system.  



 

 

 

FIG. 4.28. Analytical result of thermal load degradation of the hydrogen production system. 

4.3.2.2. Pressure load control 

Temperatures of the IHX heat exchanger tubes are over 900°C in rated operation condition. A 
large pressure load on the tubes for long time periods increases creep damage, and results in 
shortening the operation lifetime. JAEA employs differential pressure control method in 
which the pressure of the secondary helium flowing inside the tubes of the IHX is controlled 
slightly higher than that of the primary helium in the rated operation condition. The pressure 
of the process fluids in the hydrogen production system is lower than that of the secondary 
helium to prevent ingress of the flammable and toxic materials into the secondary helium loop 
in the event of heat exchanger tube failure of the chemical reactor heated by the secondary 
helium. The secondary helium pressure decreases and the pressure load on the IHX heat 
exchanger tube increases in this event. 

As discussed previously, the HTGR with gas turbine power generation system can continue 
operation when the hydrogen production system is shutdown. To continue long term power 
generation after secondary helium depressurization, the differential pressure of the IHX heat 
exchanger tubes must be controlled. The GTHTR300C provides isolation valves on the heat 
transfer loop to ensure confinement of the reactor system and isolate the hydrogen production 
system from the HTGR. After closing the isolation valves, the helium supply system supplies 
helium gas between the IHX and the isolation valves to recover the secondary helium pressure 
and to control the differential pressure. The operation sequence in the secondary helium 
depressurization is shown in Fig. 4.29.  
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FIG. 4.29. Operation sequence of depressurization of the secondary helium in the heat transfer loop. 

4.3.2.3. Tritium contamination 

With regard to radioactive contamination of the product gas, the principal hazard is 
considered to be the extremely mobile tritium. While a pipe rupture may be excluded by a 
proper design and quality control, the transition of hydrogen or its isotopes by permeation 
through intact walls is easily possible.  

There are two basic mechanisms of radioactivity transport from the primary circuit into 
adjoining ones: 

• diffusion and leaks through micro defects in the barriers between the radioactive and 
nonradioactive circuits; 

• depressurization of heat exchange surfaces separating the circuits [180]. 

The major contaminant of produced hydrogen is tritium because of its high diffusion 
permeability and relatively short half-life. Being a most important biologically relevant 
nuclide, tritium is referred to the group of most important dose-forming nuclides. It is well-
known that nuclear reactors are a source of man-made tritium. Tritium generated in nuclear 
reactors gets into the environment with gas releases and liquid wastes. Different reactor types 
generate tritium at different rates. Tritium generation in HTGRs equals about 19 GBq (0.5 Ci) 
per year per 1 MW of thermal power. In the wastes from nuclear power plants, tritium exists 
in three main forms: tritiated water (HTO), tritiated hydrogen (HT), and tritiated methane 
(CH3T). The life of tritiated hydrogen and tritiated methane in the atmosphere equals 5 to 
10 years. Main mechanisms of tritium extraction from the atmosphere are bacterial oxidation 
and photochemical oxidation, and the end product in both cases is tritiated water.  

Tritium is constantly produced by ternary fission of the fuel and neutron capture reactions of 
3He, 6Ll, 7Li and 10B in the core and permeates through the heat exchanger tubes of the IHX 
from the primary helium into the secondary helium. The tritium concentration in the 
secondary helium shall be controlled at levels lower than the acceptable limit. Because tritium 
is a low energy beta radiation emitter, exposure via inhalation and ingestion are of most 
concern. The dose limit for the public is recommended at 1mSv/a according to the IAEA 
safety standard [188]. Dose coefficients of HT and HTO for people 18 years old and older are 
1.8 × 10-15 Sv/Bq and 1.8 × 10-11 Sv/Bq, respectively. Thus the acceptable limits of the 
average concentration of HT and HTO in the air are 62.5 Bq/cm3 and 6.3 × 10-3 Bq/cm3 when 
the breathing rate is 1 m3/h. The limit of HTO in the water is 60 Bq/cm3 when the water 
ingestion is 2.5 /d [189]. 

(i) Germany 

Within the frame of the PNP project in Germany, experimental investigations were made on 
the permeation process in high temperature alloys. Test facilities allowed both long term 
(1000–3000 h) at temperatures up to 1000°C and pressures up to 3.2 MPa. Short term  
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analyses were used for preselection of materials. Results have shown that in-situ oxide layers 
show a large inhibition of permeation at temperatures above 650°C. Still, the uncertainty is 
relatively large at lower temperatures and also if looking at respectively measurements from 
operated HTGRs.  

Assuming a gas purification system in the IHX cycle of the PNP reactor, the tritium release 
rate was estimated to be less than 0.2 GBq (5 × 10-3 Ci) per MW(th). For the product 
hydrogen, this translates into a contamination of less than 0.37 Bq (10 pCi)/g of H2. This 
figure was deemed tolerable in the PNP-project in comparison to other allowed levels of 
radioactive contamination. Other countermeasures to be taken are a reduction of the lithium 
contents in the reactor graphite structures, an enhancement of the purification rate in the 
helium circuits, doping of the secondary circuit with oxidizing impurities, or the employment 
of an additional intermediate circuit. 

For the H2 transportation process in the opposite direction, as a typical result, around 
50 mL/(m²·h) of H2 were measured at 900°C for typical steam reformer applications. These 
quantities of hydrogen could be easily removed by the gas purification plant. Of course, the 
stability of oxide layers during transients and other loads have to be considered and may 
influence the data. 

According to the German ‘preventive radiation protection ordinance’, neither licensing nor 
announcement is required for the use of fossil products refined by nuclear process heat, whose 
tritium content does not exceed 5 Bq/g. This special case is the exception from the rule, where 
for any fabricated product, the specific radioactivity limit is lower by a factor of 10 compared 
to the above figure, i.e. 500 mBq/g [190]. The background for this special rule resulting from 
discussions in the context of the PNP project is the fact that, depending on the origin of the 
feed natural gas, the natural activity content would be already close to the free limits given by 
the law. In the new German preventive radiation protection ordinance issued in 2001, the free 
limit for tritium has been raised to an activity of 1 TBq or alternatively a specific activity of 
1 GBq/g [191]. 

(b)  Russian Federation: 

In accordance with Russian radiation safety norms (NRB-99) [192], it is necessary to observe 
the following limits of allowable personnel exposure to tritium (Table 4.7). 

In ongoing nuclear power plant projects, the annual exposure doses for the public in normal 
operating conditions are limited to 10 µSv for aerosols and 10 µSv for liquid wastes [193]. 

Taking into account the experience of prototype HTGR operation in the USA and in 
Germany, and the experience of Russian MHR-T reactor designing, we can reasonably expect 
that a HTGR with a thermal power of 600 MW will release about 9 250–11 100 GBq/a (250–
300 Ci/a) of tritium into the primary circuit. Tritium formation is illustrated in Fig. 4.30 for 
the example of the HTTR circuit [143]. 

TABLE 4.7. LIMITS OF PERSONNEL EXPOSURE TO TRITIUM [192] 

Nuclide 
Half-life  

(a) 
Compound type, inhalation 

Maximum yearly 
intake 
(Bq/a) 

Allowable yearly average 
volumetric activity 

(Bq/m3) 

3H 12.3 

G1 (tritiated water steam) 1.1 × 109 4.4 × 105 

G2 (gaseous tritium) 1.1 × 1013 4.4 × 109 

G3 (tritiated methane) 1.1 × 1011 4.4 × 107 
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FIG. 4.30. Tritium flow paths in the HTTR circuit. 

In accordance with the legislation of Germany, the allowable concentration of tritium in any 
product should not exceed 0.5 Bq/g (see previous section). Since the conservative 
concentration of tritium in the gas product equals ~9300 Bq/m3, hydrogen production at an 
MHR-T-based power–technological complex using steam methane reforming (SMR) with 
direct heat transport and without an intermediate circuit is believed to meet the criteria 
established in the radiation safety norms (NRB-99) [180]. 

Activity estimations performed for the end product (ammonium nitrate) of Russian VG 400 
reactor showed that the public exposure dose for tritium from the NPP was almost three 
orders of magnitude lower than the from the background radiation [180]. 

Analytical estimations performed by General Electric for an HTR-1170-based NPP with SMR 
show that even if the converted gas is contaminated with tritium with the activity of as high as 
2775 GBq/a (75 Ci/a), the allowable limits of end product contamination will not be exceeded 
[180]. 

In the SMR process, there is a possibility of converted gas leaks, and this will require 
intensive ventilation in enclosed rooms and extra fire and explosion safety precautions (such 
as use of catalytic oxidizers) etc. to ensure additional protection against tritium contamination. 
A similar analysis performed for HTO leaks shows that the concentration limits will be 
observed with a considerable margin even in conservative estimations. 

(c)  Japan 

Tritium production rate in the GTHTR300C is estimated at 1.5×108 Bq/s. Tritium circulating 
in the primary helium loop is removed by the primary helium purification system or 
permeates the heat exchanger tubes of the IHX. The concentration in the primary helium is 
estimated at about 6×105 Bq/(g He) (≈ 100 Bq/cm3), where the helium inventory is 10 000 kg, 
the flow rate of purification system is 1000 kg/h and the tritium permeation of IHX is 10% of 
the birth rate. The concentration in the secondary helium is about 3×105 Bq/(g He) 
(≈ 50 Bq/cm3), where secondary helium inventory is 1000 kg, the flowrate in the purification 
system is 200 kg/h and the permeation rate to the hydrogen production plant is 10% of 
permeated tritium from primary loop. This estimate strongly depends on the flow rate the 
purification system. Tritiated water (HTO) in the helium gas is several orders of magnitude 
lower than elemental hydrogen (HT) [194]. 
 



 

Even if the HT concentration in the secondary helium is 50 Bq/cm3, it is lower than the 
acceptable limit in the air to achieve the dose limit of the public. Helium leakage during 
operation is very small so that the effective dose against operators of the hydrogen production 
plant is negligibly low. A much larger quantity of helium is released in case of the secondary 
helium pipe failure. The operator may inhale the released helium gas for several hours during 
inspection tour or maintenance activities. The effective dose by HTO inhalation is estimated 
to be about 2μSv/h when the concentration of HTO is 0.5 Bq/cm3, which is two orders of 
magnitude lower than that of HT, and the helium gas concentration in the air is diluted by 
10%. 

Tritium can also permeate to the hydrogen production system through the heat exchanger 
tubes of the chemical reactors. The permeated tritium reacts with water and hydrogen in the 
hydrogen production system and becomes HT and HTO. HT is released from the hydrogen 
production system with the product hydrogen, but HTO circulates in the hydrogen production 
system. The tritium concentration in the circulating water will be higher than in the secondary 
helium [194]. Circulating water is not drinking water so that operators and public do not 
directly ingest this water. However, from the safety design point of view, the concentration of 
HTO in the circulating water in the hydrogen production system must be as low as reasonably 
achievable. Draining the circulating water and injection of fresh water are effective means to 
reduce the HTO concentration. Product hydrogen containing HT shall be exempted from 
radiation management requirements. The exemption criterion is that the effective dose of 
public shall be lower than 10 μSv/a [188].  

4.4. COUPLING SCHEMES AND CONTAMINATION OF END PRODUCTS IN 
DESALINATION SYSTEM 

4.4.1. Heat supply from nuclear reactor (coupling) 

When an integrated system is based on the utilization of a contiguous RO process, the 
coupling between the reactor and the process does not require any further optimization, except 
for the adaptation to local site conditions. 

The most promising process, LT-HTME distillation, and the most widespread process, MSF, 
need heat. The heat could be obtained from the nuclear reactor by coupling the exhaust steam 
of the power plant with the brine heater.  

For a thermal process such as the MED, the coupling is more complex. It is necessary that the 
thermohydraulic characteristics of such a coupling be determined precisely. In order to 
elaborate and optimize a given coupling scheme, it is necessary to determine the conditions 
which allow the transfer of the right amount of heat to the process with the least possible 
impact on the plant performance.  

The formulation of thermodynamic equations concerning the heat and mass balances at 
different nodes of the coupling and their subsequent resolution with appropriate boundary 
conditions then leads to the determination of the basic parameters such as mass flow rate of 
the extracted vapour, and its ideal temperature for a given amount of desalted water 
production.  

It should be recalled that in accordance with the safety analysis an intermediate circuit, 
comprising a heat exchanger, a flash tank, and a recirculation pump, is absolutely essential to 
the coupling. The dimensioning of these components is then obtained by resolving the 
appropriate heat and mass balance equations. 
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2. The pressure in the steam cycle is lower than in the primary reactor cycle. Thus 
leakage may carry radioactive traces to the power–water interface. 

As an example of energy consumption: a typical water cooled reactor of 600 MW(e) 
discharges about 1150 MW(th) at ambient temperature. If the steam expands in the 
turbine to a pressure of 0.25 MPa, the heat discharged by its condensation is about 
1400 MW(th) and the electricity generated is about 350 MW(e). The amount of 
desalted water with a GOR of 12 is 624 000 m3/day.  

Pressurized water cooled reactors (PWR) and pressurized heavy water cooled reactors 
(PHWR) are safer as they have an additional barrier fluid between the reactor coolant 
and the desalination plant motive steam. Boiling water reactors are less attractive for 
thermal desalination as the reactor coolant reaches the condenser. An example of a 
water cooled reactor is the ‘Thermos’ reactor which is cooled by 0.9–1.0 MPa 
pressurized water at a maximum temperature of 137–140°C. The primary coolant is 
cooled by a secondary cycle of pressurized water having a pressure of more than 
1.1 MPa and a maximum temperature around 128°C [152, 195]. 

(2) Medium brine temperature with pressure of 30–40 kPa and condensing temperature of 
69–76°C 

This case is suitable for most of low cost evaporators with aluminum heat transfer 
surface. Larger steam turbines of about 300 MW(e) are available that are capable of 
operating at the exhaust pressure of 30–40 kPa. Such turbines are designed to operate 
with dry cooling tower heat rejection.  

For the thermal coupling in this case, the conditions in the brine heater are milder than 
in the previous case. Because of the low pressure in the desalination system, the 
isolation becomes more difficult. As the temperature is lower, the corrosion rate is 
slower. The Canadian reactor ‘Slowpoke’ with power sizes of 2–20 MW(th) is an 
example for this case. A thermal power of 10 MW(th)can desalt up to 4500 m3/day 
[152]. 

(3) Low brine temperature with pressure of 17–18.6 kPa and condensing temperature of 
56.5–58.5°C 

In this case, there is no problem of producing a large amount of desalted water because 
of the availability of large turbines, minimum penalty on the power unit, maximum 
flexibility, simplicity, reliability, and safety. But due to the low temperature, at which 
this heat is supplied to the desalination plant, the GOR is smaller compared to the 
previous two cases. For instance, assuming 26°C seawater temperature and 56.5°C 
steam condensing temperature (17 kPa), the GOR of the MSF will be 3.5–4.5. For 
MED with aluminum heat transfer surfaces, the GOR could be 5.5–6.4. 

While for the thermal coupling is the same as described in case 1. For MSF the steam 
condenser serves as the brine heater. The probability of leakage in this temperature is 
very small comparing with the previous two cases because of maintaining pressure 
reversal is very easy [152]. 

(4) Cold brine temperature with pressure of 4–8 kPa and condensing temperature of 30–
40°C 

The sea water here should be cold (20°C), so it is possible to adapt a special version of 
MSF, but number of stages is reduced and the GOR is as small as 0.5 to 2 [152]. 
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4.4.1.3. Engineered safety features for prevention of the radioactive contamination of product water  

Assuming a three loop system (i.e. an IL between reactor loop and desalination loop as shown 
in Fig. 4.31), pressures in these loops (P1, P2, and P3) may be adjusted in such a way that 
transfer between loops is in the favorable direction. 

The best way, which is difficult in practice, is an arrangement where the reactor loop pressure 
is lower than the IL pressure which, in turn, lowers the product loop pressure. In this case, the 
transfer between loops is always in the safe direction.  

In practice, systems are usually engineered in two ways: 

(1) High–Low–High (H–L–H) configuration 

The reactor loop pressure P1 is higher than in the isolation loop P2; the desalination loop 
pressure P3 is higher than in the isolation loop, so (H–L–H). In this case, a pressure barrier 
against undesired transfer exists between the product loop and the isolation loop.  

Advantages of this configuration are: 

(a) Any leakage in the isolation heat exchanger will be directed to the isolation loop and 
not to the desalination loop. 

(b) The allowed radioactive contamination for the isolation loop is slightly higher and 
more easily monitored. 

Disadvantage is that the operating pressure in the desalination plant loop is higher which is 
difficult to use, as pressure of the desalination plant is dictated by the process and it is not 
very high. 

(2) Low–high–low (L–H–L) configuration  

The reactor loop pressure P1 is lower than in the isolation loop P2; the desalination loop 
pressure P3 is lower than in the isolation loop P2, so (L–H–L). In this case, a pressure barrier 
against undesired transfer exists between the reactor loop and the isolation loop.  

Advantage of this configuration is that the radioactivities are enclosed inside the primary 
loop. Disadvantage is that is difficult to monitor the possible contamination of the IL and 
exclude the possibility of leakage from the IL to the final product.  

4.4.2. Design of coupling system for HTGR and hybrid desalination plant 

4.4.2.1. Coupling of LT- MED desalination plant with HTGR 

An MED desalination plant is coupled to an HTGR nuclear power reactor along with an 
intermediate heat exchanger as an additional isolation loop (Fig. 4.33). It uses the flash loop 
to transfer heat to the desalination plant.  

Buffered demineralized water is used as cooling media in the precooler and intercooler. This 
water is heated in the loop depending on the heat rejected in the precooler and intercooler. 
Also it is essential to ensure that no localized boiling is allowed to take place within these 
heat exchangers. Therefore, pressure in this loop should always be greater than the saturation 
pressure of the water at the temperature where it was heated up to. 

In order to have the pressure reversal (H–L–H), pressure in the desalination plant loop should 
be greater than the intermediate loop pressure. Therefore, a higher pressure is maintained in 
this loop compared to the IL pressure. This is ensured by the demineralized water circulating 
pump. 
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One PRV is installed in the loop prior to the flash tank to reduce the pressure. After flashing 
in the flashing chamber, hot water is cooled by giving away the latent heat for vapour 
generation. Then this water is pumped through a demineralized water-to-seawater heat 
exchanger, i.e. a heat sink for rejecting the rest amount of heat. 

A bypass line in the desalination loop is also provided to divert all the hot water from the 
isolation heat exchanger directly to heat sink in case of non-availability of the MED 
desalination plant.  

4.4.2.2. Coupling of RO desalination plant with HTGR 

The electric power generated by the HTGR can be used to power a reverse osmosis (RO) 
desalination plant. This is direct electrical coupling of the power plant to RO desalination 
plant without going through a transformation/ transmission/distribution process. So it will 
have some cost benefit. 

RO with feed preheating: 

In the heat sink, heat is rejected to the sea water. This rejected sea water is at high temperature 
(nearly 40o C). So it can be used as feed stock for a reverse osmosis desalination plant. The 
only physical coupling between the two plants is a pipe connection between HTGR sea water 
discharge and RO plant’s water intake. This piping connection would incorporate a ‘dump’ 
valve to enable HTGRs to continue normal operation in the event that the RO plant was 
non-operational. 

4.4.2.3. Coupling of hybrid MED–RO desalination plant with HTGR 

A schematic of the coupling system of HTGR nuclear reactor with hybrid MED–RO plant can 
be seen in Fig. 4.34. 

4.4.3. Engineered safety features in coupling of hybrid desalination plant to HTGR 

The process logic of coupling of a hybrid desalination plant to an HTGR is shown in Fig 4.34. 
An isolation heat exchanger is provided in between the desalination plant flash loop and the 
coolant loop for precooler and intercooler.  

Helium in the precooler and intercooler is at considerably higher pressure than the pressure of 
coolant water in this heat exchanger. The coolant loop operates only marginally above 
atmospheric pressure in the precooler and intercooler. This is to ensure that any possible 
leakage is always ‘helium-outwards’ rather than ‘water-inwards’. So there will be no leakage 
of water to the nuclear core. But in case of a leakage, the isolation loop will be contaminated. 

The coolant in the isolation heat exchanger operates at higher pressure than the coolant in the 
loop for precooler and intercooler. Therefore, this interface provides a pressure reversal. In 
case of a leakage, the flow will be from the desalination plant loop to the isolation loop. So 
there will be no carry-over of radioactivity from the isolation loop to the desalination plant 
loop in case of a failure of tubes in the isolation heat
safety feature. 

4.5. ENVIRONMENTAL ISSUES OF DESALINATION 

Environmental issues related to desalination are a major factor in the design and 
implementation of desalination technologies [198]. Desalination plants along with fresh water 
(clean water) also generate concentrate (reject or residual stream). Major environmental issues 
are related to the disposal and management of the concentrate.  
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Critical concentrate parameters are TDS, temperature, and specific weight (density). The 
specific weight or density is a critical concentrate parameter. Compared to freshwater, 
concentrate has a higher density due to the increased salt concentration. When concentrate 
with a higher density is disposed into waters of lower salinity (lower density), the concentrate 
tends to sink. In comparison, a typical discharge from wastewater treatment plants will float, 
because its density is normally less than the receiving water. The tendency of the concentrate 
to sink when interacting with the receiving water introduces problems for the marine 
environment [198].  

Typically a desalination plant concentrate consists of the following components or groups of 
components, respectively [199]:  

• high salinity (depends on the recovery rate); 

• heat (in thermal desalination); 

• antiscaling additives (poly-carbonic acids, polyphosphates); 

• antifoaming additives; 

• antifouling additives (mainly chlorine and hypochlorite); 

• halogenated organic compounds formed after chlorine addition; 

• acid; 

• corrosion products (metals). 

4.5.2. Environmental issues related with concentrate disposal 

4.5.2.1. High salinity 

Desalination plants discharge the same load of seawater constituents as taken in. The only 
difference is the increased salinity. The salinity of a concentrate is a function of the 
desalination process recovery rate (product water/feed water). 

Marine organisms exist in an osmotic balance with their environment. Higher salt 
concentrations in this brine plume affect benthic organisms (living near the seabed), as 
increase in the concentration of salt in the environment results in a dehydration of the cell, 
decrease of the turgor (or osmotic) pressure, and death (mainly of the larvae and young 
individuals) [200]. The magnitude of these environmental impacts on marine life also depends 
on the natural hydrodynamic conditions as well as biological factors of the local marine 
environment [201]. 

4.5.2.2. Heat 

Thermal desalination plants discharge the concentrate usually with a temperature 5 to 8°C 
above ambient seawater temperature. 

The elevated temperature of a concentrate discharge from a thermal desalination plant is 
known to have an impact upon marine organisms in a number of ways with certain 
communities, such as those at the limit of their geographical range being particularly affected. 
For instance, elevated temperatures and increased salinity reduce the overall concentration of 
dissolved oxygen in the water which restricts the life forms to those able to exist at lower 
oxygen levels. Furthermore, at the level of the individual organism, extreme temperatures 
may result in death, whilst sublethal temperature can modify the rate at which biological 
processes occur, thus influencing movement, the onset of maturity, life stage development, 
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and growth and size. At the species level, excessive temperatures may lead to changes in 
individual abundance and population diversity [202]. 

4.5.2.3. Antiscaling additives 

Polyphosphate is an early antiscaling agent. It has a temperature sensitivity and is hydrolyzed 
to orthophosphate at temperatures above 90°C. Presently the most widely used antiscaling 
additive is BELGARD EV2000®, a polymer of maleic acid (C4H4O4) [203]. These polymers 
prevent the dissolved material from precipitating, settling, and baking on surfaces, impair 
crystal growth by distorting the lattice structure so that soft sludge may be formed that does 
not adhere to or grow on metal surfaces. After [202], a typical BELGARD discharge 
concentration in concentrate is 0.53 mg/L. 

Orthophosphate, the hydrolysis product of polyphosphate, is a macronutrient (besides 
nitrogen compounds) enhancing primary productivity. In sea, discharge of a macronutrient 
may have drastic consequences: eutrophication, i.e. algal blooms. It will cause a dramatic 
deterioration of the operation condition of the plant itself: increased bio-fouling, increased 
content in organic matter, increased filter problems, increased need of anti-foulants and so on 
[199]. All these effects are bound to a severe deterioration of the environmental quality. After 
[203], BELGARD does not give rise to any toxic hazard in the drinking water. 

4.5.2.4. Antifoaming additives 

Antifoaming agents typically are alcylated polyglycols, fatty acids, and fatty acid esters. A 
frequently used brand is ‘Belite’. The agents exhibit surface activity at the water steam 
interface and prevent foam formation. Fatty acids and their esters are non-toxic. Foaming is a 
function of organic seawater constituents, which are mainly excretion and degradation 
products of planktonic algae. Generally the need for antifoaming agents is seasonally 
different. It depends largely on the raw water quality. 

Antifoaming agents are detergents. Detergents have adverse effects on organisms disturbing 
the intracellular membrane system.  

4.5.2.5. Antifouling additives 

Fouling is a multistage process in which many groups of organisms are involved. It starts with 
the adsorption of polymeric matter from the raw water to solid surfaces which allows 
film-forming pioneer-bacteria to settle. This first bio-film is then joined by secondary 
periphytes, which become the major part of the bacterial population. In a third step, 
microalgae, protozoa and fungi colonize, and finally, adhesion of debris, detritus and 
inorganic particles occur. These stages cannot be separated from each other, they rather form 
a continuous process. It is obvious that bio-fouling depends largely on the raw water 
properties, mainly on its contents of particulate matter and dissolved nutrients. Among the 
broad-effect agents, chlorine is preferred because it is cheap and much experience exists. A 
typical chlorine addition is 2 ppm. Good process guidance aims at a chlorine concentration 
zero at the outlet. Hypochlorite produced at the site of use by seawater electrolysis is an 
alternative to chlorine.  

Chlorine exhibits broad effects on the environment, when it is discharged with the brine. The 
effects are of biological nature — the sterilizing activity itself, as well as of chemical 
nature — halogenations of organic seawater constituents. Seawater contains 70 ppm bromide. 
Chlorine transforms bromides to bromine while the chlorine itself is transformed to chloride. 
The result is that the reactive bromine is present in addition to the chlorine, and the variety of 
halogenated products becomes larger. In the presence of ammonia, chlorine and bromine form 
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chloramines and bromoamines. They are stable and survive 90°C for one hour. Chlorine and 
bromine form halogenated organic compounds [199].  

4.5.2.6. Halogenated organic compounds 

Chlorine is highly reactive. Natural and added organic seawater constituents may be 
chlorinated and metabolized. In addition, chlorine converts bromide and iodide to elemental 
bromine and iodine which, in turn, may react with organic matter. This means that 
chlorination starts avalanches of secondary reactions which form an unknown number of 
products, e.g. tri-halomethanes [204]. The situation becomes worse if the seawater content in 
organic carbon is enhanced, e.g. by pollution with hydrocarbons or by addition of antifoaming 
additives. 

Chlorine interaction with oil products produces a variety of halogenated hydrocarbons, some 
of which (e.g. the halomethanes) are potential carcinogens and mutagens [205]. 

4.5.2.7. Acid 

In addition to antiscaling additives, acid addition is a means to minimize scaling. Usually 
sulphuric acid is added. The original pH value of seawater is 8.3. The pH value is lowered to 
expel a part of the dissolved carbonate. Occasional removal of scaling remains necessary. 
This is done by conducting an acid wash at pH 2.0 [205].  

The acid solution is discharged into the sea followed by fresh seawater used to rinse the 
distiller. The alkalinity of seawater amounts to ca. 150 ppm. From this, it can be calculated 
that 20 000–25 000 m3 seawater are necessary to neutralize the 5000 m3 acidified seawater 
discharged. This needs considerable time and damage to organisms cannot be excluded. 

4.5.2.8. Corrosion products 

Corrosion causes liberation of heavy metal ions with the consequence of heavy metal 
pollution of the desalted product as well as of the concentrate. Corrosion products reach the 
sea with the concentrate. Thermal desalination plants discharge copper, nickel, iron, 
chromium, zinc and other heavy metals depending on the alloys present in the process line. In 
terms of concentrations, copper and iron are highest. Copper concentrations in desalination 
effluents are 200 fold (and more) higher than natural copper concentrations in seawater.  

The heavy metals will adsorb on suspended matter and will sink down causing an 
accumulation in the sediments. Since the problem is not the concentration, but rather the load, 
the consequences cannot be mitigated by dilution of the outfall [199]. Copper, nickel, 
chromium, manganese, and other potentially emitted metals exhibit biological adverse effects 
depending on organisms and their conditions and on the environment and its conditions. 

5. CONCLUSIONS AND RECOMMENDATIONS  

Conclusions can be drawn as follows: 

• Nuclear power is a safe, reliable, clean, and economic energy source. The experience 
achieved and lessons learned from five decades of commercial nuclear power plant 
operation have resulted in a status of minimal risk of severe occurrences, thus 
representing a powerful option within the existing mix of energy sources. The next, 
fourth generation of nuclear plants will be even safer, more reliable, more economic, 
and more proliferation-resistant, and will supply more than just electricity.  
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• Many of the suggested designs of innovative nuclear reactors of the fourth generation 
are of small or medium power size (< 700 MW(e)), some even less than 300 MW(e). 
Among those, the VHTR, which is flexible in design, siting, fuel cycle and size, 
represents a promising concept. It clearly shows the features of a catastrophe-free 
reactor and is most advanced in terms of R&D works. It will provide coolant exit 
temperatures of up to 1000°C, which can be utilized in the cogeneration mode for a 
broad range of process heat applications. 

• Nuclear CHP options and its market requirements should be investigated in more detail. 
Products others than electricity could significantly enlarge the energy market for nuclear 
CHP offering at the same time a considerable potential for fuel resource saving due to 
high overall efficiencies, improved economics and reduction of CO2 emissions. There is 
already experience to couple nuclear energy to low temperature processes like district 
heating or desalination, but it still is lacking the demonstration on a larger scale. The 
petrochemical and refining industries represent another huge potential with their 
growing demand for hydrogen and process steam due to the increasing share of ‘dirty 
fuels’ such as heavy oils, oil shale, tar sands entering the market. 

• In the high temperature heat market, nuclear is also applicable to the production 
processes of liquid fuels or of hydrogen by steam reforming or water splitting, 
compatible with the needs of the transportation sector. The feasibility of steam 
reforming of methane or coal gasification under nuclear conditions was already 
successfully demonstrated; technical and economical feasibility, however, remains to be 
demonstrated at a larger scale. The advanced water splitting processes of high 
temperature electrolysis and thermochemical cycles have still design challenges and not 
yet reached commercial scale. 

Some recommendations regarding nuclear assisted hydrogen production are: 

• Further work must be done on hydrogen production by water splitting in the area of 
pilot scale demonstration to develop an integrated cycle with automated control of 
operation including stability of the process, instrumentation and control required for the 
system, and the enhancement of the efficiencies of the processes. 

• Separation and purification methods must be improved to obtain better quality (purity) 
of produced hydrogen. 

• The safety of coupling for the overall nuclear hydrogen production plant must be 
thoroughly analyzed addressing the interaction of the reactor safety requirements and 
the chemical process safety requirements aiming at eventual establishment of safety 
criteria and standards related to nuclear hydrogen production. 

• The energy economics of nuclear hydrogen must be analyzed.  

Some recommendations regarding nuclear assisted desalination are: 

• Further detailed design & economic analysis of the hybrid nuclear desalination 
technologies coupled to an HTGR utilizing the waste heat from it should be carried out 
to reflect the ongoing and future developments in HTGR technology. 

• The safety of coupling the nuclear desalination plant with an HTGR must be thoroughly 
analyzed addressing the interaction of the reactor safety requirements and the product 
water quality. 
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APPENDIX I. NUCLEAR HYDROGEN PRODUCTION IN CHINA 

I.1. INTRODUCTION 

Since the 1980s, China’s economy is rapidly growing. It is expected that the growth will 
continue in the next decades. But more and more energy demand and environmental problems 
caused by firing fossil fuels are key challenges for a sustainable development of China. In the 
period of 2000–2007, China’s average growth rate of energy consumption was 8.9% per year 
and that of electricity consumption was as high as 13.0% per year. In 2007, China’s total 
energy consumption was 2.66 billion tons of coal equivalent (TCE)2. The primary energy 
production was 2.23 billions TCE. The composition of primary energy production (as coal 
equivalent calculation) was: 76.6% raw coal, 11.3% crude oil, 3.9% natural gas, 7.3% hydro 
power and 0.9% nuclear power [206]. Such a primary energy mix resulted in the emission of 
large amounts of SO2 and CO2. In 2006, the emission amounts of CO2 were 5.61 billion tons 
[207], and those of SO2 from the industry sector were 22.35 million tons [208].  

For meeting the challenge, China is developing clean energies including nuclear energy and 
renewable energies such as wind power, solar energy, and so on. In recent years, China’s 
nuclear electricity production is increasing. Up to now, nuclear power plants with a total 
capacity of 9.11 GW(e) are in operation [209], new PWRs with a total capacity of over 10 
GW(e) are under construction. The construction of Gen-III PWR, AP1000 and EPR, will start 
soon. According to the ‘State Medium-Long Term (2005–2020) Development Programme of 
Nuclear Power’ issued in Oct. 2007, the total capacity of operating nuclear power plants in 
2020 will be 40 GW(e) plus 18 GW(e) under construction. Considerably increasing 
application of nuclear energy will greatly improve China’s primary energy mix and 
effectively improve air quality. 

Hydrogen is a clean energy carrier. China is taking a very active approach for developing 
hydrogen energy technology including production, storage, and application of hydrogen. In 
the ‘Tenth Five-Year Plan (2001–2005)’, funding for programmes related to electric vehicles 
and hydrogen and fuel cells added up to 40% of the total energy research budget. It mainly 
focuses on basic and technical aspects of hydrogen energy and related demonstration projects 
[210] such as fuel cell city bus, refueling station and a ‘hydrogen park’. An example was the 
successful service provided by hydrogen powered automobiles during Beijing Olympic 
Games in August 2008.  

Since the 1970s, the high temperature gas cooled reactor technology has been developed in 
China. A 10 MW(th) test reactor (HTR-10) with spherical fuel elements was constructed in 
2000 and is now in operation. A number of safety related experiments have been conducted in 
the HTR-10. R&D on direct cycle helium turbine technology is being carried out. Coupling a 
helium turbine system to the existing 10 MW(th) test reactor is foreseen [211]. The 
construction of an industrial scale demonstration plant of modular HTGR (HTR-PM) is one of 
the so-called ‘national major science & technology special projects’. The construction of the 
200 MW(e) HTR-PM will be finished around 2013. The related design, construction, and 
R&D work has been started.  

Hydrogen production by nuclear energy is a promising way for industrial scale production 
compared with other developing production methods. Among all nuclear reactors, the HTGR 
is most suitable for nuclear hydrogen process due to its potential of high efficiency electricity 

                                                 

2 1 TCE (ton of coal equivalent) corresponding to the energy content of 5.2 barrels of oil = 0.7 TOE (ton of oil 
equivalent) = 27.78 million BTU (British thermal unit) = 29 308 MJ = 8 141 kWh. 
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I.2.2. Fundamental research 

Current R&D activities are covering: (1) researches on the three chemical reactions, i.e, 
Bunsen reaction, hydriodic (HI) acid decomposition, and sulphuric acid decomposition, and 
related technologies, (2) design and construction of a closed loop facility for verifying the 
process. The research topics are as follows [212–215]: 

(1) Process study on Bunsen reaction and separation characteristics of sulphuric acid 
phase and HIx phase, purification of the two phases by reverse Bunsen reaction: 

A preliminary investigation of the kinetics of the reaction was conducted. The 
dependency of concentrations of various ions such as H+, I-, SO4

2-, and I3- on the 
reaction time was determined. Results show that the reaction proceeds rapidly, the 
concentrations of the ions quickly reach a stable level. The concentrations of various 
ions approximately meet the formula: 

[H+] = 2[SO4
2-] + [I-] 

indicating that formation of the products keeps strict stoichiometry. In addition, it 
shows that the concentration of I3- is two orders of magnitude lower than those of 
other ions, suggesting that the complex reaction between I2 and I- is negligible in the 
reaction. 

In the Bunsen section, I2 reacts with water and SO2 forming H2SO4 and HI acids. With 
excess of iodine, the two acids will separate spontaneously. However, if the amounts 
of I2 exceed the saturation, I2 will be solidified out from the solution. In addition, the 
saturation is mainly affected by temperature, therefore, the influences of temperature 
and molar fraction of I2 in the mixture of H2SO4, HI, I2 and H2O on the phase 
separation were investigated. 

Although the two acids separate with excess I2, they are cross-contaminated. i.e, the 
HIx solution contains a small amount of H2SO4 and H2SO4 solution contains a little HI. 
If the two solutions as produced are fed to the distillation column for condensation, 
side reactions will occur and sulphur may form at the top of the column according to 
the following equation, by which 6 moles of HI are consumed per 1 mole of H2SO4.  

H2SO4 + 6 HI = S + 3 I2 + 4 H2O 

More seriously, sulphur formed may lead to clogging of the pipe or unbalanced 
materials. In addition, mass balance will be poor. Therefore, it is necessary to purify 
the two acids. The two acids are purified by reverse Bunsen reaction shown in the 
following equation: 

H2SO4 + 8 HI = H2S + 4 I2 + 4 H2O 

The effects of temperature, flow rate of carrier gas, and feed rate on the purification 
(denoted with removal efficiency of impurities) were investigated. As Bunsen reaction 
is exothermic, raising temperature will be beneficial to the reverse reaction. In 
addition, a gaseous product, SO2, forms in the reverse Bunsen reaction, therefore, 
removal of the gas will enhance the reverse reaction. These assumptions were 
confirmed by experiments. Results show that the two acid phases could be purified 
with higher removal efficiency of impurities under suitable conditions such as higher 
temperatures and a suitable carrier gas flow rate. 
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(2) Pre-concentration of HI acid by EED to exceed azeotropic composition, and 
concentring of HI acid by conventional distillation:  

The concentration of HI acid in the HIx phase produced in the Bunsen reaction is about 
10 mol/kg H2O, close to the azeotropic composition of HI acid solution, which is 
HI : H2O = 1 : 5 (molar ratio), i.e. [HI] is ~11.1 mol/kg. Therefore, it is difficult to 
concentrate HI solution by conventional distillation. An EED technique was employed 
to concentrate HI solution. The influences of different materials such as electrode and 
membrane, and operational parameters such as temperature and initial composition of 
HI acid on the concentration effects were investigated. Results show that HI acid 
could be effectively concentrated through EED, and the concentration of HI could 
exceed the azeotropic composition. Higher operation temperature leads to lower cell 
voltage, which is beneficial to lower the energy consumption. However, the 
concentration efficiency will become lower as temperature increases. 

(3) Catalytic decomposition of HI acid; development of efficient catalyst/supporter and 
novel preparation method, such as electro-plating of Pt on various supporters [216]: 

The HI decomposition reaction is usually catalyzed by Pt catalysts which were 
prepared by an impregnation–calcination method or impregnation–H2 reduction 
method. In INET, Pt catalysts were prepared by various methods including 
impregnation–H2 reduction at high temperature, impregnation–calcination at high 
temperature, impregnation–hydrazine reduction at room temperature, and Pd-inducing 
electroless plating, and others. Much attention was paid to the Pd-inducing electroless 
plating method. The prepared catalysts were characterized, e.g. by XRD, TEM, BET, 
and their catalytic performance was evaluated. 

(4) Catalytic decomposition of sulphuric acid on Pt and non-Noble metal catalysts, 
including Fe/Cu oxides and Cr/Cu oxides: 

In this area, work was focusing on the development of non-Pt catalysts. Two 
composite metal oxides, CuFe2O4 and CuCr2O4, were prepared by sol–gel, vacuum 
freeze drying (VFD), and following calcination. These oxides were characterized by 
XRD, TEM and BET analyses. Their catalytic performance to the decomposition 
reaction of SO3 was evaluated in a fixed bed reactor. Both copper ferrite and copper 
chromate show catalytic activities close to that of Pt/Al2O3. However, the stability and 
lifetime of these oxides need to be further explored. 

(5) System control technology for precise temperature and flow rate control 

(6) Correlation between density and composition of HI/I2/H2O and HI/H2O/I2/H2SO4 
systems 

I.2.3. Process verifying closed loop facility 

To verify the data acquired from the fundamental studies and obtain operating experience 
with the closed loop facility, a process-verifying facility (IS-10) was designed and established 
at INET. The main specifications of the facility are shown in Table I.1.  

Figure I.2 shows a photograph of IS-10 which consists of the three main sections and the 
control device. 
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Current research activities mainly focus on: (1) demonstration of the feasibility of using 
planar SOEC technology for high temperature electrolysis; (2) development of new materials 
with corrosion resistant and high performance HTSE; (3) analysis of the degradation 
mechanisms of SOEC cells used in HTSE mode; (4) optimization of HTSE cell and stack; (5) 
studies of system design to support cycle life assessment and cost analysis for HTSE plants.  

I.3.2. R&D on HTSE  

The research and development of HTSE technology was initiated at INET in 2005. In the past 
years, researchers mainly concentrated on preliminary investigations, feasibility studies, 
equipment development, and fundamental researches. Currently, two testing systems, one is 
for HTSE cell online testing and the other one is for high temperature electrochemical 
performance evaluation of SOEC components, have been designed and constructed [218]. In 
addition, the research on novel anode materials has obtained excellent results. Also the 
theoretical analysis of hydrogen production efficiency of HTSE coupled with HTGR has been 
carried out [219]. 

(1) Study on conventional planar LSM-SOEC system 

The lab scale hydrogen production on a conventional LSM-SOEC system was 
investigated. The electrolyte layer made of YSZ (containing 8 mol% of Y2O3) was 
sandwiched between the porous cathode (Ni/YSZ) and anode layer (LSM). When the 
input voltage is 1.0 V and the temperature is 850°C, the hydrogen production rate is 
0.315 mL/(min·cm2). When the voltage increases to 1.3 V, the hydrogen production 
rate increases to 0.98 mL/(min·cm2) correspondingly [216]. 

The ‘area specific resistance’ (ASR) is one of the most important characteristic 
parameters in measuring the electrolysis performance of SOEC for hydrogen 
production. The lower the ASR value, the better is the performance of the anode 
electrode. Testing results of LSM electrodes under SOEC and SOFC modes show that 
the ASR value of a Ni–YSZ/YSZ/LSM cell was only 0.76 Ω·cm2, while it increased 
about 5 times, i.e. to 3.7 Ω·cm2 when operating in the SOEC mode. Studies of the Risǿ 
National Laboratory, DTU (Denmark technical university), also showed similar 
results. Therefore, it can be seen that although HTSE is essentially a reverse process of 
SOFC, the conventional materials of SOFC are not suitable for operation in SOEC 
mode because of the high steam content, which is always over 70%, whereas it is only 
3% in SOFC mode. 

(2) Development of novel anode ,aterials with low ASR 

The feasibility of the novel conductive membrane Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) used 
as oxygen electrode of SOEC was studied. Compared with other oxygen electrode 
materials, ASR data of the electrode BSCF/YSZ are 0.66 Ω·cm2 at 750°C, 0.27 Ω·cm2 
at 800°C, and only 0.077 Ω·cm2 at 850°C, remarkably lower than the common used 
oxygen electrode materials LSM as well as the current focus materials LSC and LSCF. 
When the voltage is 1.3 V and the current density is 300 mA, the hydrogen production 
rate of the BSCF cell is 147.2 mL·cm-2·h-1, about three times higher than that of the 
LSM cell (~49.8 mL·cm-2·h-1). It indicates that BSCF could be a potential candidate 
for the application of the SOEC anode [220]. 

(3) Microstructure control of cathode electrode 

Previous analyses indicated that the coarsening and oxidation of nickel particles as 
well as the diffusion of steam were the limiting step in the whole electrolysis reaction. 
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TABLE I.2. CELL CONFIGURATION AND TECHNOLOGICAL SPECIFICATIONS  

Cell configuration Specifications 

 Composition 
Thickness 

(µm) 
Size 

Porosity/ 
density 

Temp. 850°C 

Electrolyte YSZ 10–20 6.5 × 6.5 D > 95% Input steam > 70% 

Anode LSM 30–50 5 × 5 P > 20% Efficiency > 90% 

Cathode Ni–YSZ 1000 6.5 × 6.5 P > 35% ASR-C < 1 Ω.cm2 

Seal Glass–Ceramic 3000  D > 95% ASR-U < 1.5 Ω.cm2 

Bipolar plate Ferrite — 6.5 × 6.5 — — — 

Channel width 
1.0 mm 

Bipolar 
thickness 

3.0 mm — 
Degradation 

rate 
< 0.05 %/5h 

Channel width 0.5 mm Ridge width 1.0 mm — — — 

— data not available. 

I.4. SUMMARY 

It has been decided to develop nuclear hydrogen technologies in China. The R&D on nuclear 
hydrogen technology was initiated as a part of China’s HTR-PM demonstration nuclear power 
plant project. The sulphur–iodine process and high temperature steam electrolysis were 
selected as potential production process of hydrogen, R&D on both processes is carried out at 
INET. It is expected to commercialize nuclear production of hydrogen after 2020, therefore, 
the coming decade is a key period to realize the target. There are many challenges on the way, 
and comprehensive international cooperation is necessary. 
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APPENDIX II. NUCLEAR COAL GASIFICATION RESEARCH IN GERMANY 

The German PNP project was a cooperation between the HTGR industries (Hochtemperatur-
Reaktorbau GmbH, Mannheim, and Gesellschaft für Hochtemperaturreaktortechnik mbH, 
Bensberg), the coal industries (Bergbauforschung GmbH, Essen, and Rheinische 
Braunkohlenwerke AG, Cologne), and the nuclear research center Kernforschungsanlage 
Jülich (today: FZJ). The project was funded by the Federal Government, the State Goverment 
of Northrhine Westphalia, and the participating industries. 

Main objective was the development, design, and construction of an energy system based on a 
combination of German coal and nuclear power, including the developing and prototype 
testing of a nuclear heat generating system to be operated at a 950°C gas outlet temperature, 
intermediate circuit, heat extraction, coal gasification processes and nuclear energy transport.  

II.1. NUCLEAR STEAM–GASIFICATION OF COAL 

For nuclear coal gasification, a new component to be developed was the gas generator with 
allothermal heating. In 1973, a first device was tested on a small technical scale (~1 kg/h) to 
investigate kinetics and heat transfer characteristics, gas composition, and other parameters. 
The follow-on plant on semi-technical scale operated since 1976 at the Bergbau-Forschung, 
Essen, was a first-of-its-kind gas generator with a fluidized bed of about 1 m2 base area and a 
height of up to 4 m, laid out for a coal throughput of ~200 kg/h. This unit was constructed as a 
vertically arranged cylindrical vessel (Fig. II.1) with the outer dimensions of 7.75 m (max.) 
diameter and 21.13 m height, designed for pressures up to 4 MPa. Its concept differed from 
the conventional one in that the coal was gasified indirectly by means of a tube-type 
immersion heater which was placed into the fluidized bed to transfer heat from a separate 
helium circuit. The helium was electrically heated up to 950°C with the heat transferred at a 
power of 1.2 MW. Characteristic data of the semi-technical plant are listed in Table II.1 [222]. 

The semi-technical plant was used for testing components, feeding devices, insulation, 
investigating broad ranges of operating conditions, and applying different types of coal. 
Reaction rates were observed to decrease with height of the fluidized bed which can be 
explained with the inhibiting effect of the product gases whose concentration increases with 
height. Due to the good heat transfer, half of the heat exchanging surface was already 
sufficient to decouple almost all of the heat from the helium. 

Compared to the conventional case, the temperature provided by the helium is limited. 
Consequently reaction rates are slower which, however, could be enhanced by adding a 
catalyst. The catalytic coal gasification was also tested in the plant (Fig. II.2, left). The 
addition of 4 wt% of the catalyst potassium carbonate enhanced coal throughput by 44%. At 
the same time, the fluidized bed temperature was decreased. As the right-hand side of Fig. II.2 
indicates, for constant helium temperature, the heat transfer decreases with increasing 
gasification temperature. On the other hand, heat transfer increases with increasing reaction 
rate (due to the addition of catalyst). This is compensated by a decrease in the gasification 
temperature [222].  

Furthermore, residence times could be reduced from 7–9 h (anthracite) down to about 1.5 h. 
In addition, the H2 production was significantly increased on the expense of CO (Table II.2). 
The catalyst, however, was found to be not effective until a certain threshold value of ~2 wt% 
due to bonding on the coal. Also corrosion effects were enhanced observing a strong inner 
oxidation at temperatures > 800°C. 
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The semi-technical plant was in hot operation for approx. 26 600 hours with more than 
13 600 hours under gasification conditions (750–850°C, 2–4 MPa). Maximum capacity was 
0.5 t/h of coal, the total quantity of coal gasified was 2400 t [222, 223]. Some results are 
summarized in Table II.2 regarding derived reaction enthalpy and product gas composition, 
distinguished between the non-catalytic and catalytic process and between the pyrolysis and 
gasification phase, and also compared with the autothermal process. It shows that the primary 
pyrolysis products are further converted in the steam atmosphere in the gasification phase. 
Overall result of the semi-technical scale operation was that an industrial scale gas generator 
in connection with a nuclear heat source was considered feasible. 
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TABLE II.3. MAIN DATA OF PROTOTYPE GAS GENERATOR FOR PNP STEAM COAL 
GASIFICATION 

Parameter 
Value 

Non-catalytic Catalytic 

Thermal power (MW) 340 

Length (m) ~33 

Outer diameter (m) 7.2 

Heat exchanging surface (m2) 
 1st module (pyrolysis) 
 2nd module (gasification) 
 3rd module (gasification) 
 4th module (gasification) 

 
425 
535 
612 
612 

Helium flow (kg/s) 94.4 

Helium inlet temperature (°C) 895 

Helium pressure (MPa) ~ 4.1 

Height of fluidized bed (m) 1.9–3.4 

Coal input (t/h) 27.3 69.3 

Steam flow (t/h) 177 190 

Catalyst (t/h) — 3.27 

Gasification pressure (MPa) ~4.3 — 

Gasification temperature (°C) 800–900 — 

Raw gas production rate (Nm3/h) 77 923 219 818 

Degree of gasification (%) ~ 93 — 

— data not available. 

II.2. NUCLEAR HYDRO-GASIFICATION OF COAL 

Also the hydro-gasification process can be combined with a nuclear heat source. But unlike 
the steam–coal gasification, the nuclear heat is not coupled directly into the gasification 
reactor. Since two variants of hydrogen production exist, there are two alternatives of nuclear 
involvement [225]. The one variant is steam methane reforming, where a part of the product 
gas methane is drawn off and the high temperature nuclear heat is used for the endothermic 
reforming reaction. Still remaining low temperature nuclear heat is taken for steam and 
electricity generation. The produced hydrogen is routed at a relatively low temperature 
(~400°C) to the reactor where the gasification of coal takes place in an exothermal reaction at 
800–900°C and 8 MPa. The partial pressure of the hydrogen strongly influences the methane 
production rate. About 40% of the H2 reacts with the coal to methane, while 60% is recycled 
after gas treatment. 

In the second variant, the nuclear heat is taken to preheat the hydrogen produced during the 
gasification process itself, i.e. by the water gas shift reaction which occurs at 100%. Due to 
the endothermic character of the shift reaction resulting in a much lower heat production in 
the reactor, the gasification agent hydrogen needs to be preheated to 800–950°C. Nuclear heat 
is also used for steam production and the residual power for electricity generation. Compared 
to the first variant, it has a simpler process scheme. A drawback is the fact that high 
gasification pressures (8 MPa) are needed, at least if the focus is on SNG production and high 
gasification rates, whereas the HTGR (PR-3000) would be operated at 4 MPa. 
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Between 1976 and 1982, the Rheinische Braunkohlenwerke, Wesseling, investigated the 
hydro-gasification process in a 1.5 MW semi-technical test facility with both lignite and hard 
coal [225–227]. The reactor of 8 m height contained a fluidized bed with 0.2 m diameter 
where the gasification agent hydrogen was injected. The hydrogen was electrically preheated 
to 750°C and could if necessary be further heated to 1000°C by partial combustion. System 
parameter could be varied in a broader range. A part of the hydrogen was used as a carrier 
medium for the coal input. Due to the exothermic character of the reactor, a direct heat input 
is not required. With residence times varied between 20–40 min gasification degrees (for 
lignite) were up to 75%.  

The test facility was operated for about 27 000 h with more than 12 000 h under gasification 
conditions. The throughput was 320 kg/h of lignite or 160 kg/h of hard coal, the total quantity 
gasified was 1800 t. 

From 1983 to 1985, a follow-up pilot plant was operated over 8300 h, with half of the time 
under coal gasification conditions with high availability. It included, unlike the semi-technical 
plant, all postprocessing components of gas treatment up to the stage of SNG production. The 
plant had a throughput of 9.6 t/h corresponding to a total power of 50 MW. Gasification of 
more than 17 000 t of brown coal was made to yield a total of 11 million Nm3 of SNG, whose 
fraction in the raw gas was between 22 and 36%. The SNG production was at a rate of up to 
6400 Nm3/h. The characteristic data of both semi-technical plant and pilot plant are listed in 
Table II.4 and compared with a large scale commercial plant. 

TABLE II.4. MAIN DATA OF HYDRO-GASIFIERS AT DIFFERENT SCALES 

Parameter Semi-technical plant Pilot plant Large scale plant 

Operation 1976–1982 1983–1985 n.a. 

Thermal power (MW) 1.5 50 3000 

Length (m) 8 — — 

Inner diameter (m) 0.2 1.0 3.2 

Dry coal input (t/h) 
0.32 (lignite) 

0.16 (hard coal) 
9.6 2200 (lignite) 

Coal grain size (mm) < 1 — — 

Residence time (min) 
9–80 (lignite) 

28–38 (hard coal) 
— — 

Hydrogen flow (Nm3/h) — 6000–12 500 — 

Height of fluidized bed (m) 1.9–3.4 3–6 4.0 

Gasification pressure (MPa) 
5.5–9.5 (lignite) 

8.0–8.7 (hard coal) 
6.5–12 8 

Gasification temperature (°C) 
820–950 (lignite) 

940–960 (hard coal) 
850–930 850 

Raw gas production rate [Nm3/h] 

with fraction (%) of CH4 

 

≤ 48 

< 16 000 

22–36 
380 000 (methane) 

Degree of gasification (%) 
≤ 82 (lignite) 

≤ 47 (hard coal) 
50–60 < 60 

n.a. not applicable. 
— data not available. 

184



 

Both the semi-technical and the pilot plant were, apart from lignite, also used for testing 
whether or not hydro-gasification is feasible with the mostly caking hard coal using a 
gasification agent of either pure hydrogen or mixtures of H2, CO, and steam. Results have 
shown that the reaction capability of hard coal is significantly smaller than for lignite. Due to 
the specific kinetics of hydro-gasification, residence times for complete gasification were 
comparatively long. Therefore, a degree of gasification of ~65% was considered reasonable 
requiring a residence time of about 30 min at 9 MPa and 900°C; beyond this value, residence 
times would be uneconomically long. Gasification degrees were higher for lignite and lower 
for anthracite coal. Also caking coals were found to soon lead to agglomeration near the coal 
inlet which resulted from poor mixing with the fluidized bed and eventually prevented a 
further operation. 

The nuclear steam reforming as the alternative method to supply hydrogen was subject of 
extensive R&D work within the so-called NFE project, acronym for long distance energy 
transportation. The research center Jülich has developed in cooperation with the respective 
industries designs of a nuclear steam reformer for methane. The first test facility was a single 
splitting tube (EVA), and the follow-on facility consisted of a tube bundle (EVA-II) [22]. A 
similar experimental programme was recently conducted in Japan where the main focus was 
on the mutual thermodynamic interaction. was investigated in experiments conducted under 
the typical conditions of a nuclear reactor, i.e. in reformer tubes heated with helium of 900°C 
and 4 MPa with industrial scale dimensions (15 m in length, 130 mm inner diameter). Also 
EVA’s counterpart, ADAM, a facility for the re-methanation of the synthesis gas generated in 
EVA, was constructed and operated, thus completing the system to a closed cycle and 
verifying the principle of a long distance energy transportation system based on hydrogen as 
the energy carrier. 
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APPENDIX III. NUCLEAR REACTOR 

III.1. CAREM-D (ARGENTINA) 

The project consists of development, design and construction of a prototype small nuclear 
power plant (100 MW(th), 27 MW(e)). A design alternative called CAREM-D has been 
developed for the cogeneration of electricity and potable water (preheated RO modules of 
10 000 m3/day) [151]. 

CAREM is a project for an advanced, simple and small nuclear power plant, conceived with 
new generation design solutions and standing on the large world wide experience 
accumulated in the safe operation of light water reactors, especially adequate for nuclear 
desalination of seawater. It is an indirect cycle plant with some distinctive and characteristic 
features that greatly simplify the reactor and also contribute to a higher level of safety. These 
distinctive features are: 

Integrated primary cooling system. 

- Primary cooling by natural circulation. 

- Self-pressurized. 

- Safety systems relying on passive features. 

- Coupling system minimizing the risk of contamination. 

III.2. KLT-40C (RUSSIAN FEDERATION) 

The KLT-40C is a twin-reactor system intended to produce fresh water and electric power in 
different proportions. It may also be used for heat production in a cogeneration cycle. The 
KLT-40C design is based entirely on the serially produced marine nuclear steam supply 
system (NSSS) being used in the Russian nuclear-powered icebreakers [151]. 

The KLT-40C has the following original features: 

- Primary piping length is minimized. 

- Natural circulation is used in the primary and secondary circuits for all emergency 
modes. 

- The containment is designed for high overpressure and includes a passive pressure 
suppression system. 

- Safety is enhanced through fine-tuning of the engineered features proven by operation 
of the NSSS prototype and by the use of systems, which do not require external power 
sources. 

III.3. SMART (REPUBLIC OF KOREA) 

SMART (system integrated modular advanced reactor) is a small PWR with a rated thermal 
power of 330 MW. It is being developed by KAERI (Korea Atomic Energy Research 
Institute). The main objectives of the project are: 

1. Development of a cogeneration system capable of producing 90 MW(e) and 
40 000 m3/day of desalted water [228]. 

2. Enhanced safety through a combination of inherent and passive engineered safety 
features. 
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3. Improved economics through system simplification, component modularization and 
construction time reduction. 

The design of SMART is based on existing PWR technology and the fuel designs utilized in 
currently operating power reactors in the Republic of Korea. The prominent design feature of 
SMART is the adoption of integral arrangement. All the primary components such as core, 
steam generator, main coolant pumps and pressurizer are integrated into a single pressurized 
vessel. The integrated arrangement of these components enables the elimination of large-sized 
pipe connections between the components of the primary reactor coolant systems, and thus 
fundamentally eliminates the possibility of large break loss of coolant accidents. This integral 
arrangement, in turn, becomes a contributing factor to the safety enhancement of the SMART. 

III.4. HELIUM COOLED GT-MHR WITH MED 

The GT-MHR (gas turbine modular helium reactor) is an advanced high temperature gas 
cooled reactor which is being developed jointly by a consortium including Minatom of 
Russia, General Atomics, Areva NP, and Fuji Electric with the goal of burning weapons grade 
plutonium. It can, however, operate on uranium fuel and be competitive as a stand-alone 
electricity producer. By design, it releases waste heat at about 100°C. The recovery of ‘free’ 
heat for desalination lowers the price of the product water by a factor of 2, making the 
combination of GT-MHR and MED a very attractive economical option [151]. 

The nuclear reactor has a 600 MW(th) core with micro-particle fuel included into prismatic 
fuel elements. This type of core has been successfully employed in the Fort Saint Vrain plant 
in the USA. In the modular design, the safety of the concept is simplified by use of natural 
phenomena such as thermal radiation, which in any event maintains the fuel temperature 
below the temperature that leads to silicon carbide coating damage. This ensures that the 
nuclear material is confined within the fuel all the time. 

With helium as a coolant, the core is coupled directly to a gas turbine in a Brayton cycle. 
Helium at 850°C is expanded in the turbine that drives two compressors and an alternator 
yielding a net electricity production of 285 MW(e) with an efficiency of 47.5%. 

A special feature of the Brayton cycle, optimized for desalination operating conditions is the 
release of heat at the cold source via the precooler and intercooler at above 100°C. Normally 
this heat is released only through a cooling tower or to the river, but with proper adaptation it 
can be converted to useful heat to be used, for example to heat the feed water of an MED 
desalination unit. 
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APPENDIX IV. THERMODYNAMIC PROPERTIES OF PLANT MATERIALS 

IV.1. SULPHURIC ACID 

 H2SO4 @ 850°C 

Heat capacity (kJ/(kg·K)) 3.95 

Heat conductivity (W/(m·K)) 0.0032 

Density (kg/m3) 1840 

Kinetic viscosity (m2/s) 0.000015 

Prandtl number 0.894 

 

IV.2. HYDRIODIC ACID 

 HI @ 450°C 

Heat capacity (kJ/(kg·K)) 0.83 

Heat conductivity (W/(m·K)) 0.0045 

Density (kg/m3) 976 

Kinetic viscosity (m2/s) 0.0000293 

Prandtl number 0.894 

 

IV.3. PRESSURIZED WATER 

 PW @ 600°C 

Heat capacity (kJ/(kg·K)) 2.435 

Heat conductivity (W/(m·K)) 0.112 

Density (kg/m3) 20.58 

Kinetic viscosity (m2/s) 0.00000199 

Prandtl number 0.894 
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IV. 4. THERMODYNAMIC PROPERTIES OF WATER 

IV.4.1. Density 

)(10 44332211
3 FAFAFAFA ×+×+×+×=ρ  

where [229]: 
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where T is the saturation temperature of water [°C] and S is the salinity of water [mg/L]. 

IV.4.2. Heat capacity 

( ) 332 10−×+++= DTCTBTACP  

where T is the temperature [°C] and 

28102288.16197.68.4206 SSA ××+×−= −  
262 102719.2104178.51262.1 SSB ××−××+−= −−  

2642 108906.1103566.51012026.1 SSC ××=××−×= −−−  
2967 104628.410517.1877.6 SSD ××−××+×= −
 

and S is the salinity of water [mg/L]. 

IV.4.3. Thermal conductivity 
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IV. 4.4. Dynamic viscosity 

( ) ( ) 310−××= RW μμμ   
21 SBSAR ×+×+=μ  

( ) )18.139/(129.6047914.3 TLn w ++−=μ  
2853 10927.3105.110474.1 TTA ××−××+×= −−−  
21085 1023.2105.8100734.1 TTB ××+××−×= −−−
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APPENDIX V. ARGENTINA PHYSICO–CHEMICAL STUDIES ON THE 
THERMOCHEMICAL REACTION PROCESSES FOR HYDROGEN 

PRODUCTION 

V.1. INTRODUCTION 

The current and projected hydrogen demands are sufficient to justify massive investments in 
new methods to produce hydrogen that would be more cost-efficient than the actual large 
scale production methods. The objective of this project is to develop a suitable hydrogen 
production method based on high temperature chemical reactions for converting water to 
hydrogen and oxigen with a cost that is expected to be as low as 60% of that for nuclear 
hydrogen production by electrolysis of water. Even not specifically addressed in this project, 
it is believed that a high temperature nuclear reactor will provide the source of heat needed for 
the thermochemical water decomposition. 

Three approaches have been identified for the efficient production of hydrogen using nuclear 
energy. The first one, nuclear assisted steam reforming of natural gas, uses nuclear heat to 
reduce the amount of natural gas needed to produce a given quantity of hydrogen. The second 
approach, hot electrolysis, involves the electrolysis of water at high temperature. Finally, 
thermochemical cycles use a series of high temperature chemical reactions for the water 
splitting and they are expected to have an overall efficiency of about 50%, receiving then the 
most attention. 

Based on domestic capabilities developed for more than 50 years in Argentina, related with 
both nuclear energy and hydrogen production and applications technologies, the production of 
hydrogen using high temperature nuclear reactors is being seriously considered as a 
sustainable and environmentally friendly alternative for the country. 

Since the majority of water splitting thermochemical processes requires heat supply at 
temperatures above 800ºC, several alternative cycles based on metallic chlorides are being 
investigated with the goal of reducing the process temperatures to the order of 500–600ºC. 
Lower operating temperatures reduce the costs of materials and maintenance, and they can 
effectively use low grade waste heat, thereby improving cycle and power plant efficiencies.  

Research activities currently underway in Argentina are focused on the metallic chlorides 
family of thermochemical cycles. Theoretical and experimental investigations are addressed 
to elucidate the kinetics and mechanisms of thermochemical reactions at laboratory scale, in 
order to find the optimum conditions for increasing the efficiency of these cycles with the 
objective of a future scaling up of the experimental facilities. 

A metallic chloride thermochemical cycle decomposes water into oxygen and hydrogen 
through intermediate metal and chlorine compounds. It is possible to employ a variety of 
chemical reaction steps so that the sum of them consumes water and heat, produces hydrogen 
and oxygen, and regenerates the chemical reactants within a closed system. 

In addition to the sulphur–iodine process, four metallic chloride cycles have been recently 
identified in the so-called Nuclear Hydrogen Initiative to belong to the most promising 
thermochemical water splitting processes: (1) copper–chlorine (Cu–Cl cycle); (2) cerium–
chlorine (Ce–Cl cycle); (3) iron–chlorine (Fe–Cl cycle); (4) vanadium–chlorine (Va–Cl 
cycle); and (5) zinc–chlorine (Zn–Cl cycle). 

After considering factors such as availability and abundance of materials, simplicity, chemical 
viability and thermodynamic feasibility, the Fe–Cl, Zn–Cl and Cu–Cl family of cycles was 
selected to begin our investigations on water splitting thermochemical cycles. 
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A lot of studies have been performed in the past on these methods, but the kinetics and 
mechanisms of reactions are not completely understood yet and this project is expected to 
contribute to a better understanding of the critical problems identified for each cycle. 

V.2. THERMODYNAMIC EQUILIBRIUM CALCULATIONS 

At the beginning, a complete thermodynamic analysis was done in order to determine whether 
the iron chloride cycle may be replaced by another one that enhances the hydrogen production 
[230]. Using the software HSC for thermodynamic calculations, the equilibrium amount of 
the different species was evaluated for several experimental conditions. 

First the well known iron–chloride system was analyzed considering that the most important 
reactions to be taken into account are: 

FeCl2(s,l) + H2O(g)  → Fe3O4(s) + 6 HCl(g) + H2(g) (I) 

Fe3O4(s) + 8 HCl(g)  → FeCl2(s,l) + 2 FeCl3(g) + 4 H2O(g) (II) 

FeCl3(g)  → FeCl2(s,l) + Cl2(g) (III) 

Cl2(g) + H2O(g)  → 2 HCl(g) +1/2 O2(g) (IV) 

2 HCl(g)  → H2

 
and H2O (1:1 in moles). The equilibrium composition in the gaseous phase shows that the 
amount of H2 increases with temperature from 2 mol% at 500˚C to 8 mol% at 950˚C. The 
total pressure considered was atmospheric pressure. So, using the ideal gas equation  

pH2= XH2×PT, 

where pH2 is the partial pressure of hydrogen, XH2 is the hydrogen mole fraction, and PT the 
total pressure of the system, these percentages mean that the partial pressure of hydrogen is 
0.02 and 0.8 atm, respectively. The other species in the gaseous phase are mostly unreacted 
water and undissociated HCl while less than 1% the FeCl2, FeCl3, Cl2, and O2 are also present 
as impurities. In the condensed phase, the only two species present are FeCl2 with a minimum 
of reaction degree and a little amount of Fe3O4, but there is no Fe2O3 when equilibrium is 
reached.  

TABLE V.1. H2O/FeCl2 (1:1) 

Temp. 
(°C) 

H2O(g) 
(mol%) 

HCl(g)  
(mol%) 

FeCl2(g)  
(mol%) 

H2(g)  
(mol%) 

FeCl3(g)  
(mol%) 

Cl2(g)  
(mol%) 

O2(g)  
(mol%) 

500 84 14 3.475(-3) 2 8.859(-6) 3.282(-12) 2.698(-23) 

700 48 44 1.261 7 3.357(-3) 4.246(-9) 6.340(-18) 

950 21 46 27.15 8 4.953(-2) 5.263(-7) 2.826(-13) 

If more water is added to the system, increasing the ratio between H2O and FeCl2 to 5:1 in 
moles, there are changes in the relative amounts of the different species. The changes with 
temperature of H2O, H2, HCl, FeCl2, FeCl3 and Cl2 are less pronounced than in the previous 
case; for example, they are from 84 mol% to 64 mol% (instead 84 to 21 mol%) for H2O, and 
from 2 mol% to 5 mol% (instead 2 to 8 mol%) for H2 at 500 and 950˚C, respectively, while 
the relative change of O2 increases from 3 × 10-23 to 2.5 × 10-11 comparing with 3 × 10-23 to 
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3 × 10-13 mol% for the previous case. It is expected that the percentage of water increases and 
the percentage of the other species decreases. Nevertheless, the final equilibrium amount of 
O2 at 950˚C is greater than before. In the condensed phase, it is observed a less amount of 
FeCl2 and a greater amount of magnetite, at all temperatures. 

These results show that the presence of more water creates an oxidative atmosphere which is 
not convenient for the formation of hydrogen. Therefore, it is indicating that the dissociative 
reaction of HCl is not shifted by the presence of higher quantities of water. Meanwhile, the 
reactions I to IV are embraced by the Le Chatellier principle which establishes that, in a 
chemical reaction when a reactive is augmented, the equilibrium is shifted to the formation of 
the products. 

On the other hand, if the amount of FeCl2 is increased because the H2O/FeCl2 ratio used for 
calculations was 1:5 in moles, there is no change in the fraction of the gaseous phase. This 
result means that the condensed chloride does not affect the equilibrium amount, without 
beneficiation of the hydrogen reaction. 

If the partial pressure of oxygen is diminished by its capture through an oxidation reaction, it 
is possible to produce more HCl that enhances the generation of H2 by dissociation. The 
scavenger should react with O2 but it should be almost unreactive with HCl. As it is well 
know that refractory metals have this characteristic, we considered the incorporation of 
metallic titanium to the system and we performed thermodynamic calculations for 
determining the possible species that may be formed with either oxygen or chlorine. Results 
of thermodynamic calculations are presented in Table V.2. As can be seen, a considerable 
amount of oxygen is generated. But if a refractory metal is added to the system for capturing 
this gas, the O2 partial pressure diminishes remarkably and enhances hydrogen production. 

TABLE V.2. H2O/FeCl2 (1:1) USING TITANIUM AS OXYGEN SCAVENGER 

Temp. 
(°C) 

H2 (g) 
(mol%) 

FeCl2(g)  
(mol%) 

HCl (g) 
(mol%) 

H2O(g) 
(mol%) 

FeCl3(g) 
(mol%) 

TiCl4(g)  
(mol%) 

Cl2(g)  
(mol%) 

O2(g)  
(mol%) 

500 100 3.5(-3) 1.1(-11) 1.2(-12) 1.1(-18) 1.6(-27) 1.0(-34) 1.0(-34) 

700 99 1.3 1.5(-11) 1.5(-9) 3.1(-16) 1.0(-34) 1.6(-34) 1.0(-34) 

950 59 41. 1.6(-11) 2.4(-7) 4.2(-13) 1.0(-34) 9.7(-30) 7.1(-31) 

After considering a starting system with 5 moles of FeCl2, 1 mole of H2O and 10 moles of Ti 
the results show that in the equilibrium the partial pressure of H2 in the gaseous phase is 100 
to 32% in the temperature range between 500 and 950ºC, while the other gaseous species are: 
10-3 to 68 mol% for FeCl2, 10-11 to 10-10 mol% for HCl, 10-12 to 10-7 mol% for H2O, 10-18 to 
10-7 mol% for FeCl3, 10-27 to 0 mol% for TiCl4, 0 to 10-30 mol% for Cl2, and 0 to 10-29 mol% 
for O2 at 500 and 950ºC, respectively. This shows that all H2O has reacted and the HCl was 
dissociated, indicating that O2 was completely consumed and the reactions I to V have shifted 
towards the right hand. 

In the condensed phase, these hypotheses are confirmed because the amount of FeCl2 is 
practically the same as at the beginning at low temperature, like is expected by reactions II 
and III. Otherwise, the decrease of Ti and the increase in the amount of TiO2 confirm the 
evidence that the O2 is captured by the metallic titanium. The null amount of Fe3O4 evidences 
that reaction II is very effective in the formation of FeCl2. 

If Fe is used as a reactive species instead of Ti and the formation of Fe3O4 is considered, the 
equilibrium calculation evidences that the performance of the cycle is less productive for the 
generation of H2 and a greater amount of O2 is present in the closed system (see Table V.3). 
But this oxygen is accompanied by smaller amounts of FeCl2, and greater amounts of H2O, 
HCl, and FeCl3. In the condensed phase, a little quantity of Fe3O4 is formed. 
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TABLE V.3. H2O/FeCl2 (1:1) USING IRON AS OXYGEN SCAVENGER 

Temp. 
(°C) 

H2 (g) 
(mol%) 

H2O(g)  
(mol%) 

HCl (g)  
(mol%) 

FeCl2(g) 
(mol%) 

FeCl3(g)  
(mol%) 

Cl2(g)  
(mol%) 

O2(g)  
(mol%) 

500 81 2.6 3.475(-3) 17 2.846(-7) 3.387(-15) 8.945(-28) 

700 53 21 1.261 25 5.861(-4) 1.294(-10) 3.407(-20) 

950 17 36 31.94 15 3.081(-2) 1.471(-7) 3.273(-14) 

Other chloride cycles were also analyzed, like those in which participate the following 
chlorides: CuCl, ZnCl2 and MnCl2. taking into account the following reactions: 

(a) Copper–chloride cycle 

2 CuCl(s,l) + 2 H2O(g)  → Cu2O(s) + 2 HCl(g) + H2(g) + 1/2 O2(g) (VI) 

Cu2O(s) + 2 HCl(g)  → 2 CuCl(s,l) +H2O(g) (VII) 

2 HCl(g)  → H2(g) + Cl2(g) (VIII) 

(b) Zinc–chloride cycle 

ZnCl2(s,l) + H2O(g)  → ZnO(s) + 2 HCl(g) (IX) 

ZnO(s) + 8 HCl(g)  → ZnCl2(s,l) + H2O(g) (X) 

2 HCl(g)  → H2(g) + Cl2(g) (XI) 

(c) Manganese–chloride cycle 

3 MnCl2(s,l) + 4 H2O(g)  → Mn3O4(s) + 6 HCl(g) + H2(g) (XII) 

Mn3O4(s) + 6 HCl(g)  → 3 MnCl2(s,l)+ 3 H2O(g) + 1/2 O2(g) (XIII) 

2 HCl(g)  → H2(g) + Cl2(g) (XIV) 

In the case of the copper chloride cycle, the amount of hydrogen obtained is various orders of 
magnitude less than in the iron chloride cycle (see Table V.4). It was also obtained that cycles 
with zinc chloride are not promising because the partial pressure of hydrogen is various orders 
of magnitude lower than the corresponding of the iron chloride cycle. Finally, when MnCl2 is 
taken into account the situation is improved as a less oxidative environment is reached but, in 
any case, the H2 production is not so satisfactory when compared with results of Table V.1.  

TABLE V.4. H2O/CuCl (1:2) 

Temp. 
(°C) 

H2O(g) 
(mol%) 

HCl(g)  
(mol%) 

CuCl(g)  
(mol%) 

H2(g)  
(mol%) 

O2(g)  
(mol%) 

Cl2(g)  
(mol%) 

500 100 4.873(-3) 4.649(-8) 7.468(-8) 3.3733(-8) 1.246(-11) 

700 99.9 5.829(-2) 5.186(-5) 1.446(-5) 7.226(-6) 3.794(-9) 

950 99.6 0.4013 1.191(-2) 9.473(-4) 4.735(-4) 3.285(-7) 
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With this idea in mind, new thermodynamic calculations were performed, including the 
starting reacting species and an O2 scavenger like titanium. The presence of titanium 
enhanced the production of hydrogen more than in the iron cycle, as can be seen from the 
following results: 100 to 99.9 mol% for Cu, 98.9 to 33.3 mol% for Zn, 100 to 85.8 mol% for 
Mn at 500 and 1000ºC, respectively. Therefore, it is concluded that the cooper chloride cycle 
is the best condition because there is the smallest amount of its chloride in the gaseous phase, 
and it condensed at room temperature with less tendency to its hydration. In the three cycles 
analyzed, the amount of the other gaseous species as HCl, O2, TiCl4 and H2O, are 
insignificant. 

But several others reactions may take place, due to the different interactions between gaseous 
and condensed reaction product phases. One of the most important interactions is the reaction 
between TiCl4 and Fe2O3. Different Fe, Ti compounds can be obtained under varying 
temperature conditions, Cl2 pressure, and atmosphere. A detailed study of this type of 
interference was done in the present research. 

V.3. INTERFERENCE DUE TO INTERACTION BETWEEN FE2O3 WITH TICL4 

V.3.1. Starting materials and experimental setup 

The starting materials used in this study were: metallic titanium (Aldrich Chemical Company, 
Inc., USA, 99.7%), Fe2O3 powder (Spex Industries Inc., USA), chlorine gas (Indupa, 
Argentina, 99.8%), argon gas (AGA, Argentina, 99.99%). 

The samples were in different zones of a quartz capsule. The titanium sheet 
(0.5 mm × 10 mm × 0.18 mm, 75 mg) was in an alumina crucible and the Fe2O3 powder in a 
quartz crucible. Carbon powder was placed in the bottom of the capsule. The quartz capsule 
was then evacuated and materials were held in vacuum until they were completely outgassed. 
Finally, chlorine gas was introduced and the capsule sealed off. Figure V.1 shows the 
experimental setup, in which A and B denote the quartz capsule zones where the Ti sheet and 
Fe2O3 powder were placed. The amount used for experiments were 3.75 × 10-4 mole Fe2O3, 
1.666 × 10-3 mole Ti and 6.165 × 10-4 mole Cl2(g). Titanium was in excess with respect to the 
stoichiometric amount needed to convert all Fe2O3 into titanium oxides, and chlorine was in 
defect respect to the amount needed to convert stoichiometrically all Ti into TiCl4. 

The closed capsule was introduced in a preheated electric furnace at the reaction temperature 
(773, 873, 973 and 1073 K) and held there for a previously selected time. After heating, the 
encapsulated samples were cooled down to room temperature and finally the products were 
removed from the capsule. The capsules were opened in a glove box to prevent the hydrolysis 
of some reaction products. Then the solid products contained in A, B and C (Fig. V.1) were 
separated and analyzed. 

Starting materials and reaction products were examined by scanning electron microscopy 
(SEM, Philips Electronic Instruments), energy dispersive spectroscopy (EDS, EDAX 9900), 
X ray diffractometry with Ni-filtered Cu Kα radiation (Philips PW 1310/01), and Mössbauer 
spectroscopy. The Mössbauer spectroscopy studies were carried out at room temperature 
using a 57Co/Rh source in a constant-acceleration transmission spectrometer. The 
spectrometer was calibrated using a standard α-Fe foil and the reported isomer shift (IS) are 
relative to the center of the α-Fe spectrum. The spectra are least-square fitted with Lorentzian 
line shapes. 
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V.3.3. Summary of the most important remarks 

The most convenient cycle for the production of hydrogen was the iron chloride cycle in the 
presence of Ti at low temperatures and copper–chloride cycle along the whole temperature 
range. 

The interaction between TiCl4 and Fe2O3 was very important and the reaction takes place 
through a mass-transport mechanism by means of iron chlorides and TiCl4(g) which are 
formed in situ within the closed quartz capsule. 

In the system Fe2O3–Ti–Cl2, there is a strong effect of the temperature on the characteristics 
of the reaction products. Due to the interaction of the TiCl4(g) with Fe2O3, the reaction 
products in zone A (quartz crucible) were: TiO2 (rutile) at 773 K, FeTiO3 (ilmenite) at 873 K, 
and Ti2O3 at 1073 K. In the formation process of these oxides, gaseous iron chlorides diffuse 
along the capsule to zone B (alumina crucible) to react with remaining Ti, forming Fe and 
thereby regenerating TiCl4(g). It makes the reaction a cyclic process until all the Fe2O3 is 
exhausted. 

Moreover, in the system Ti–Fe2O3–C–Cl2, the reductor atmosphere surroundings, generated 
by the presence of C with high specific area, bear to the majority formation of Ti2O3 at 
temperatures higher than 973 K without the presence of titanates. 

Another significant interaction due to which the expected result of this thermocycle can 
deviate is the formation of iron oxychloride from the reaction of iron trichloride with iron 
oxide. The presence of iron trichloride is very posible due to the oxidative atmosphere present 
in the reactor. 

V.4. THERMOGRAVIMETRIC STUDY OF COPPER CHLORINATION  

V.4.1. Introduction 

The chlorination reactions of copper or copper containing mixtures were studied for the 
development of separation methods in extractive metallurgy [236–240], for the recycling of 
metals from scraps [241, 242], or from spent catalysts [243, 244], and for preparation of 
anhydrous chlorides as precursors for further chemical industrial applications [245, 246].  

Cuprous chloride is a colorless or grey cubic crystal, fairly stable on air or light [246]. The 
direct combination of the elements is the most common method of production. Remeika et al. 
studied the synthesis of CuCl from Cl2 and CCl4. They found that very pure and 
stoichiometric CuCl is produced by the reaction of copper with CCl4 [247]. Cupric chloride is 
usually prepared by dehydration of the dehydrate CuCl2·2H2O at 120°C. It forms yellow to 
brown deliquescent monoclinic crystals [246].  

The most complete thermogravimetric study of the chlorination of copper and copper 
chlorides was presented by Tití-Manyaka et al. [236] in 1976. They did non-isothermal 
thermogravimetric measurements for the chlorination of copper, CuCl and CuCl2. According 
to their results, the chlorination of metallic copper proceeded by forming CuCl, followed by 
further chlorination of a part of CuCl to CuCl2 above its melting point (430°C). However, the 
amount of CuCl2 formed was limited, as indicated by a small weight decrease in the 
thermogravimetric analysis (TGA) curve at 537°C, its decomposition temperature. They say 
that in chlorine, metallic copper was converted to CuCl and fused at 220°C because of the 
highly exothermic nature of the reaction. In the cuprous chloride TGA curve, they distinguish 
four regions: accelerated chlorination after the fusion of CuCl, decelerated chlorination 
perhaps after the closure of the surface with solid CuCl2, a rapid weight decrease by 
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decomposition of CuCl2, and vaporization of Cu3Cl3. Finally for cupric chloride, they found 
that the TGA showed decomposition of CuCl2 at 537°C followed by vaporization of CuCl. 

The surface of reaction of copper at low pressures of chlorine (up to 1 kPa) was extensively 
studied by Sesselmann et al. [248, 249]. They found that upon chlorine exposure, a surface 
layer with an average stoichiometry CuClx is formed and the value of x can vary continuously 
from 0 to almost 2 as a function of the gas pressure and the exposure time.  

Bourhila et al. [245] studied the chlorination of copper foils in a flux of chlorine diluted in 
argon with a total pressure of 0.1 kPa. They found that the morphology and composition of 
the copper chloride deposited in a substrate holder near the chlorination chamber varied with 
the temperature of reaction. For temperatures above 420°C, they obtained only CuCl. As 
temperature decreases below 420°C, they found also CuCl2. Finally at temperatures below 
380°C, CuCl2 was the only compound observed.  

The chlorination of chalcopyrite concentrates has been studied by several authors as was 
reviewed by Kanari et al. [237]. Among other chlorides, they reported the formation of CuCl2 
for temperatures between 20 and 700°C and CuCl for 600 and 700°C.  

The National Commission of Atomic Energy is investigating a suitable physicochemical 
process for the conditioning of spent nuclear fuel and treatment of the scrap of research 
reactors of the Al–UxSiy type. A possible way of processing is through dry chlorination of the 
cladding with the purpose of selective separation of the aluminum from the remaining 
elements such as Cu, Fe, Ni, Zn, etc., transforming them into volatile chlorides. To 
understand the chlorination reaction of metallic mixtures, it is necessary to study the 
chlorination of the different metals on their own. These studies are also the foundation for 
developing processes related with recycling valuable metals from complex metallic scraps. 
On the contrary to other metals, copper is mainly used as pure metal or as alloys with high 
copper content [250], consequently it may be recovered by a simple one-step process.  

The chlorination of copper has not been studied systematically [236, 245, 247–249], and the 
kinetics and mechanism of the reaction are not well established yet for many reaction 
conditions. Consequently, the aim of this work is to analyze the kinetics of the copper 
chlorination reactions followed by TG measurements with the purpose of establishing a 
reaction model. In order to identify and quantify the products obtained at different 
temperatures between 100 and 750°C, microstructural characterization of solid and condensed 
phases were done. Volatilization of copper chlorides at temperatures above 400°C in chlorine 
and argon atmospheres has also been studied. Complete understanding of the volatilization 
processes is important for further development of a separation methodology based on the 
selective volatilization of the different compounds.  

V.4.2. Experimental procedure 

The gases used were Cl2 of 99.8% purity (Indupa, Argentina) and Ar of 99.99% purity (AGA, 
Argentina). The solid reactants were circular sheets of 6 mm diameter of commercial copper 
(99.9% of purity). The chlorination reactions were carried out in a thermogravimetric analyzer 
(TGA), which is extensively described elsewhere [251]. This thermogravimetric analyzer 
consists of an electrobalance (Model 2000, Cahn Instruments, Inc.) suitable for working with 
corrosive atmospheres, a gas line, and an acquisition system. This experimental setup has a 
sensitivity of ±5 μg while operating at 950°C under a flow of 8 L/h.  

Samples of about 20 mg were placed in a quartz crucible inside the reactor in an argon flow of 
1.3 /h. For the non-isothermal measurement, a chlorine flow of 0.8 l/h was introduced in the 
reactor and at the same time, the heating started with a ramp of 100°C/h. For the isothermal 
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reactions, the solids were heated until they reached the desirable temperature before chlorine 
injection. The partial pressure of chlorine was 35.5 kPa.  

Due to the hygrospicity of the products, they were isolated into a glove box and were prepared 
in well sealed samples in order to characterize by XRD avoiding the absorption of moisture. 

V.4.3. Thermodynamic analysis 

According to the ΔG° values of all chemically possible copper chlorination reactions for 
temperatures below 100ºC, CuCl is the most likely product to be obtained for the reaction of 
copper with chlorine, whether in solid, liquid or vapour state. However, formation of CuCl2 
from metallic copper can not be excluded since it also has a negative value of ΔG°. The 
reaction of CuCl with Cl2 to give CuCl2 is straightforward for temperatures below 400°C. At 
higher temperatures, the decomposition of CuCl2 is predictable since the ΔG° of this reaction 
becomes negative. There are some discrepancies in the literature about the CuCl2 
decomposition temperature; the values reported by different authors are between 300 and 
537°C [236, 246]. For this reason, it is not obvious to determine which chloride would be 
formed. 

According to the ΔG° value, formation of gaseous Cu3Cl3 from metallic copper is expected 
for all temperatures. Volatilization of CuCl although having a positive value of ΔG° for the 
whole range of temperatures, has to be taken into account in a flowing system because the 
flux conditions may enhance the volatilization process. The CuCl melting point is 422°C 
[246], its partial pressure is about 10-4 kPa for temperatures above 650°C for the trimmer and 
750°C for the monomer [230], which suggests that the mass change will be detectable by 
thermogravimetric measurements.  

V.4.4. Results and discussion 

V.4.4.1. Non-isothermal thermogravimetry 

For general characterization of the copper chlorination process, a non-isothermal TG 
measurement was carried out. The mass change vs. temperature is shown in Fig. V.9. As it 
can be seen there, the reaction starts at about 150°C with a mass gain followed by a mass loss 
starting at 500°C. Formation of CuCl produces a mass gain that corresponds to 55.8% of the 
initial mass of copper, whereas formation of CuCl2 leads to a mass increase of 111.6%. The 
percentage of mass gain observed is indicating that in the maximum, there is mostly CuCl2. 
The mass loss is due to CuCl2 decomposition followed by CuCl volatilization. The presence 
of mostly CuCl in the last part of the curve was confirmed by XRD.  

V.4.4.2. Calculation of the amounts of CuCl2, CuCl, and CuCl(g) 

Isothermal TG curves were obtained for temperatures between 100 to 825°C. In Fig. V.10, the 
curves obtained for three temperatures are shown to illustrate the different behavior observed 
as temperature increases. The chlorination reactions start with a mass gain which corresponds 
to the formation of condensed copper chlorides. After that, for temperatures above 500°C, the 
mass continuously decreases until complete volatilization, whereas for the lower 
temperatures, the mass tends to a constant value. For temperatures below 500°C, all reactions 
proceed without mass loss, and the amount of mass gained increases with temperature up to 
about 450°C. The mass gain in isothermal reactions is always smaller than the mass gain in 
the non-isothermal case. The mass gain for temperatures up to 625°C is higher than that 
needed for complete reaction to form CuCl, and the difference corresponds to CuCl2 
formation. 
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TABLE V.6. PERCENTAGE OF INITIAL MASS OF COPPER THAT FORMS CuCl, CuCl2  
CuxClx(g) (WITH x=1 OR 3) IN THE MAXIMUM OF THE TG CURVES (AFTER THE MASS 
GAIN) FOR DIFFERENT TEMPERATURES 

Temperature 
(°C) 

Mass of reacted Cu 
(mg) 

Percentage of 

CuCl CuCl2 CuxClx(g) 

100 0.97 36.43 63.57 n/d 

150 1.81 36.68 63.32 n/d 

175 3.51 57.87 42.13 n/d 

200 10.47 83.11 16.89 n/d 

225 10.22 85.48 14.52 n/d 

250 12.45 78.66 21.34 n/d 

400 c/s 71.3 27.7 1 

450 c/s 49.1 48.5 2.4 

500 c/s 51.7 44.9 3.4 

550 c/s 73.9 24.9 1.2 

600 c/s 79.8 18.3 2 

650 c/s 72.2 20 7.8 

700 c/s 77.6 12 10.4 

750 c/s 78.5 7.8 13.7 

c/s  complete sample of Cu reacted. 
n/d non-detected. 

The same can be applied to understand the non-isothermal reaction. As long as there is still 
metallic copper, there is a flux of chlorine passing through the layer of copper chlorides 
impelled by the gradient in chlorine partial pressure established between the top of the sample 
and the interface between metallic copper and the chloride ashes. In the interface, chlorine is 
being exhausted by the reaction with copper, whereas in the top of the sample, chlorine 
arrives from the bulk gas stream. The flux of chlorine prevents the decomposition of CuCl2 
even though it is unstable above 400°C. However, once copper finishes, the partial pressure of 
chlorine across the chloride ashes decreases leading to a decomposition of CuCl2 from the 
inner side of the ashes. Mass balances indicate that the last part of the curve could not 
correspond to the volatilization of only CuCl because that would lead to an amount of copper 
bigger than the initial mass of copper. This means that after the change of slope point, there is 
still CuCl2, probably because at the top of the sample, CuCl is in a chlorine atmosphere. 
However, towards the end of the reaction, volatilization of CuCl predominates which leads to 
the change of slope observed. 

Table V.6 shows that for isothermal chlorination above 450°C, the amount of CuCl2 decreases 
while CuCl increases with temperature. A possible explanation for the percentages observed 
is that during the mass gain, while there is still metallic copper, both processes occur: 
formation of CuCl from metallic copper and formation of CuCl2 from CuCl. As temperature 
increases, the rate of formation of CuCl increases more than the rate of formation of CuCl2 
leading to formation of higher percentages of CuCl. 

The formation of CuCl2 at 600°C, although not being stable at that temperature, was 
confirmed by XRD of a sample obtained by interrupting the chlorination reaction during the 
mass gain by quenching with liquid air. For the lower temperatures up to about 275°C, the 
reaction rate reaches a near to zero value at intermediate stages. Although there is unreacted 
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(CuZn)β(s) + ZnO(s) + Cl2(g)  → Zn2OCl2(s,l) + (CuZn)α(s) + Cu(s)  (1) 

Zn2OCl2(s,l) + Cl2(g)  → 2 ZnCl2(s,l) + ½ O2(g)  (2) 

(CuZn)β,α(s) + Cl2(g)  → ZnCl2(s,l) + CuCl(s,l)  (3) 

(CuZn)β,α(s) + CuCl(s,l)  → ZnCl2(s,l) + Cu(s) + (CuZn)α(s)  (4) 

Cu(s) + Cl2(g)  → CuClx(s,l) x=1,2  (5) 

 (CuZn)α(s) and (CuZn)β(s) correspond to alpha and beta phases of the CuZn alloy. The range 
of composition of these phases is Cu–(0 to 39)Zn (wt%) and Cu–(36.7 to 59.8)Zn (wt%), 
respectively [267]. 

The chlorination reaction starts at 250ºC with formation of zinc oxychloride from the thin 
layer of zinc oxide that covers the alloy surface and zinc from the alloy. The occurrence of 
α-CuZn and metallic copper can be due to zinc preferential elimination from the alloy. 
However, metallic copper can also arise from the reaction of CuCl formed initially according 
to: 

(CuZn)β(s) + ZnO(s) + Cl2(g)  → Zn2OCl2(s,l) + (CuZn)α(s) + CuCl(s)  (6) 

(CuZn)β,α(s) + ZnO(s) + CuCl(s)  → Zn2OCl2(s,l) + Cu(s)  (7) 

All three species on the right hand side of equation (1) were detected by XRD in the 
chlorinated sample at 250ºC. CuCl as an intermediate species according to equations 6 and 7 
has not been detected up to now. At 250ºC, the scale of oxychloride stops the reaction. At 
higher temperatures, due to the high reactivity of copper [254], large amounts of CuCl are 
quickly generated, which in turn reacts with zinc from the alloy inhibiting the protective effect 
of zinc oxychloride. Moreover, at high temperatures, the chlorination of Zn2OCl2 is 
kinetically feasible. Both events inhibit the protective effect of the zinc oxychloride layer. 

V.6.4. Conclusions 

• There are differences in the alloy and pure metal reactivity towards chlorine. 
Interactions were detected corresponding to oxidation–reduction reactions between 
copper chlorides and metallic zinc from the alloy. Volatilization of ZnCl2 is 
diminished during alloy chlorination compared with chlorination of pure zinc.  

• Formation of well developed copper crystals was observed.  

• At low temperatures, the formation of a Zn2OCl2 layer inhibits the alloy chlorination 
reaction. 

• A global mechanism was presented according to the different processes considered: 
reaction inhibition, interactions between chlorides and copper crystallization. 

V.7. EXPERIMENTAL AND THEORETICAL ANALYSIS OF THE IRON–CHLORINE 
CYCLE  

The iron–chlorine (Fe–Cl) family of thermochemical cycles was first proposed in the early of 
1970 at the technical university (RWTH) Aachen in Germany. The Fe–Cl cycles consist of at 
least four different chemical reaction steps and employ auxiliary compounds selected from the 
group consisting of iron oxides, iron chlorides, chlorine, and hydrogen chloride [274–282]. 
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V.7.1. Theoretical analysis 

The following reactions are proposed for the iron–chlorine cycle, and the thermodynamic 
properties are presented in tables after each reaction: 

(1) FeCl2(s) + 3 H2O(g)  → Fe2O3(s) + 4 HCl(g) + H2(g)  

 

T (ºC) ΔH (kJ) ΔG (kJ) K 

550 220.91 80.31 8.007 × 10-6 

650 223.75 63.07 2.697 × 10-4 

750 137.72 52.21 2.160 × 10-3 

 

(2) HCl(g)  → H2(g) + Cl2(g)  
 

T (ºC) ΔH (kJ) ΔG (kJ) K 

550 187.77 199.32 2.242 × 10-13 

650 188.31 200.69 4.399 × 10-12 

750 188.78 202.01 4.854 × 10-11 

 

(3) Fe2O3(s) + 3 Cl2(g)  → 2 FeCl3(g) + 3/2 O2(g)  
 

T (ºC) ΔH (kJ) ΔG (kJ) K 

550 298.11 127.99 7.542 × 10-9 

650 291.89 107.67 8.074 × 10-7 

750 286.45 88.04  3.198 × 10-5 

 

 (4) 2 FeCl3(g)  → 2 FeCl2(g) + Cl2(g)  
 

T (ºC) ΔH (kJ) ΔG (kJ) K 

550 226.26 112.58 7.171×10-8 

650 226.31 98.76  2.577×10-6 

750 226.35 84.95 4.602×10-5 

 

Thermodynamic calculations predict the formation of hematite during hydrolysis of FeCl2 
(instead of magnetite) and a low production of H2, due to an oxidative atmosphere. A feasible 
way to enhance the H2 production could be by removing the O2 from the reaction site, for 
example with the presence of an O2 scavenger like metallic Ti (Le Chatellier principle). 
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V.7.2. Experimental procedure 

V.7.2.1. Materials  

The solid reactants were FeCl2·4H2O powder provided by Fluka and the titanium sheet by 
Alfa Aesar Company. Typical sample sizes for the reaction were 150 mg and 80 mg, resp.  

V.7.2.2. Procedure  

The reactions for the study of thermochemical cycles were performed in a quartz reactor in 
vacuum conditions (Fig. V.18). The reactor was purged with a vacuum pump for two hours 
where the reagent loses two water molecules, with FeCl2·2H2O remaining in the reactor. 
Afterwards the reactor was heated until it reached the corresponding temperature of the 
experiment. The reactions were carried out at 650ºC at different times (see Table V.7). Then 
the gaseous products were condensed with liquid nitrogen, and hydrogen was analyzed by gas 
chromatography. The solid products were characterized by XRD and SEM.  

 
FIG. V.18. Schematic view of the thermo-cycle reactor used in the present study. 

TABLE V.7. SUMMARY OF THE DIFFERENT EXPERIMENTAL CONDITIONS IN EACH 
EXPERIMENT  

Experiment FeCl2·4H2O CuCl2 Ti H2O (20 μl) Time (h) 

1 ×    48 

2 ×  ×  5 

3   × × 24 

4  ×  × 24 

5 × × ×  24 
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4
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(5) FeCl3(g)  → FeCl2(g) + ½ Cl2(g)  

(6) TiCl4(g) + FeCl2(g) + 3/2 O2(g)  → TiFeO3(s) + 3 Cl2(g)  

(7) TiCl4(g) + 3/2 O2(g)  → TiO2(s) + 3 Cl2(g)  

In future experiments, the removal of oxygen and hydrogen using a diffusion ceramic 
membrane as a separation system will be improved in order to enhance the formation of 
hydrogen. But with the purpose of accelerating the reaction rates some catalysts must be 
incorporated and the temperature in the reaction zone could be increased. 
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APPENDIX VI. RECOMMENDATIONS CONCERNING REQUIREMENTS 
FOR COMPONENTS AND EQUIPMENT 

VI.1. ANALYSIS OF LAYOUT AND DESIGN SOLUTIONS OF HIGH TEMPERATURE 
HEAT EXCHANGERS  

HTGR plants use an intermediate helium circuit intended to transfer high grade heat from the 
reactor to the industrial application. The intermediate circuit prevents leakage of fission 
products into the industrial application circuit and contamination of the primary circuit with 
the industrial application products. It also improves plant safety and ensures flexibility in 
terms of application of different technologies. Direct transfer of heat to the process medium in 
high temperature heat exchangers is also applied. In both cases, the problem lies in the 
development of reliable high temperature intermediate heat exchangers for heat transfer from 
the primary to the intermediate circuit [283]. The problem is related to the fact that thermal 
stability of the HTGR graphite core is higher than the thermal stability of IHX structural 
materials. Fuel operating temperatures amount to 1200°C and can reach 1600°C for a short 
time in accidents. Heat exchange tubing temperatures in normal operating conditions can 
reach 950°C and higher. At such temperatures, the long term strength of the tubing materials, 
even if they are made of high nickel alloys, becomes very low (~10 MPa). The most typical 
IHXs developed in the Russian Federation, Japan, USA, Germany, and France are further 
analyzed in the report.  

Main thermal engineering and geometric parameters of IHXs applied in different reactor plant 
designs are presented in Table VI.1. 

VI.1.1. IHX design of the Russian Federation 

The VG-400 and VGM reactor plants use an intermediate helium circuit where the pressure is 
higher than in the primary circuit. Two IHX designs were developed and tested. The first 
design is based on straight-tube shroudless cassettes, the second features cassettes with helical 
tubes [284]. Main characteristics and structural layouts of the two IHX designs are provided 
in Table VI.1 and Fig. VI.1.  

The straight-tube IHX has an equilateral triangle arrangement of cassettes inside a profiled 
shroud, and an equilateral triangle arrangement of tubes in the cassettes in two rows around 
the central tube. All cassettes are arranged at two levels along the height in order to reduce 
pressure losses at the heat exchange surface inlet and outlet and to improve helium flow 
formation at the shell side inlet. In the IHX design with helical-tube cassettes, the heat 
exchange surface consists of 19 cassettes arranged in triangle inside a hexahedral shroud. 
Tubes are wound around the central load-bearing tube and form four multiple-turn coils with 
the diameter from 232 to 406 mm. 

The IHX in the MHR-T plant is used to transfer heat at temperatures of up to 1000°C to the 
hydrogen production application and is separated into two heat exchangers due to limitations 
on the heat exchanger casing size. The heat exchanger is vertically arranged, pressurized, 
modular (with the possibility of plugging separate modules), see Fig. VI.2. 
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Since all IHXs have short lifetime because of high operating temperatures, they are made 
repairable with a possibility of replacing the heat exchange surface. Owing to sectionalization 
of the heat exchange surface, it is made possible to find and isolate damages in the heat 
exchanger tubing when the reactor is shutdown. 

VI.2. RECOMMENDATIONS CONCERNING DESIGN OPTIMIZATION 

As a result of the performed analyses of existing IHX designs, main tendencies and directions 
of IHX development, a number of problems related to IHX designing were identified and 
recommendations for design optimization were formulated. Main difficulties in IHX 
development are first of all associated with the development (or selection) of structural 
materials operable at temperatures up to 1000°C and analysis of their properties.  

Operation of АVR and THTR-300 high temperature reactors and tests at the KVK test facility 
demonstrated that the problem of structural materials compatible with helium at temperatures 
under 950°C can be solved [289, 290]. In HTGR nuclear power plant designs, this issue is 
solved by selecting high nickel steels and alloys (O5CrNi46MoWNb4, О3Cr21Ni32MoWNb, 
CrNi55MoWZr), which are characterized by high heat resistance at temperatures from 650 to 
950°C, as the structural materials for heat exchange equipment. With the helium temperature 
increasing to 1000°C, the solution looks more problematic because of the need to ensure the 
maximum IHX lifetime of about 100 000 hours. In this case, the problem can be solved by 
using ceramic materials, e.g. materials based on SiC. There are additional problems caused by 
certain specific requirements to the IHX from the reactor: increased leak-tightness, 
accessibility for repairs, prevention of radioactive deposits, and reliability in all modes [291–
293]. 

Another important problem is selection and validation of optimal and yet feasible IHX design 
and layout solutions. These problems stipulate solution of the following main tasks: 

• ensure compensation of thermal deformations of tubes in the bundle and of the bundle 
relative to the casing; 

• arrange load-bearing elements in areas with lower temperatures controlled by the inlet 
temperatures of heated helium; 

• minimize hydraulic losses, especially on the heating coolant side; 

• provide conditions for replacement of defective or spent structural elements; 

• develop recommendations on the algorithms of nuclear power plant normal operation 
and accident modes from the viewpoint of ensuring heat exchanger operability; 

• perform integrated investigations and model tests of main heat exchanger components. 

The complex of investigations and tests, in particular, includes refinement of design, thermal 
hydraulic characteristics, and temperature conditions. Important tasks are the determination of 
tube bundle flow hydraulics, which is necessary to select design features and to reduce 
thermal irregularities, and calculation of heat transfer, temperature fields, pressure losses and 
non-steady-state operating modes. 

The above mentioned tasks were investigated during calculations and experimental studies 
performed at high temperature helium test facilities in OKBM (Russian Federation). Similar 
experiments were actively performed in Japan and Germany.  

The successful development of reliable and highly efficient IHXs largely depends on the 
correct selection of heat exchanger design layout, which determines the way of heat exchange 
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surface washing, heat exchange surface shape, arrangement of components, and coolant flow 
principles.  

Analyses of different IHX designs, both existing and being developed, showed that in HTGR 
plants with inlet helium temperatures under 950°C, it is possible to apply metallic 
shell-and-tube vertical heat exchangers with top supply and removal of the heated coolant, 
constituted by helical tubes woven in a small or a single coil, with U-shaped/Field/straight 
tubes, with longitudinal or cross flow. 

Heat exchangers with U-shaped heat exchange surfaces have self-compensation, but must 
include ‘hot’ load-bearing tube plates, which are thick-walled and therefore, manufactured or 
large-size forgings of heat resistant materials.  

It is impossible to transport high grade heat from the reactor to the industrial application 
without insulating internal pipes to prevent heat recuperation. To eliminate heat recuperation, 
the internal pipes must be insulated with a manufacturable heat-resistant material with an 
effective heat conductivity coefficient in helium ≤ 0.2 W/(m·K). Recuperation problems must 
also be carefully addressed in high temperature heat exchangers with cold coolant supply and 
hot coolant removal via coaxial pipes. For example, methane conversion applications utilize 
intermediate heat exchangers based on field tubes with recuperation in the internal tubes, 
which has its advantages [294], namely recuperation decreases the temperature of outlet 
process gas from 800–850°C to 600°C and it allows simplification of secondary circuit valve 
designs and application of designs developed for power plant steam pipelines. 

Sectionalization of the tubing system best meets the reliability and cost effectiveness 
requirements, improves design manufacturability and repairability, and decreases the size of 
IHX tube plates.  

Analyses of different designs showed that the heat exchanger design which best meets these 
requirements is a vertical heat exchanger with self-compensation of axial and radial thermal 
deformations, with the heat exchange surface of helical tubes woven in a single coil.  

Sectionalization of the heat exchange surface is ensured by grouping the tubes into separate 
headers with each tube being accessible. Hydraulic resistance on the tube side is 3 to 5 times 
higher than on the shell side, with equal helium flow rates on both sides. Therefore, the 
allowable resistance is ensured by selecting the internal diameter and number of tubes and, if 
possible, decreasing helium flow rate inside the tubes and simultaneously increasing helium 
heating. Such heat exchangers, similar to the developed and tested IHX for the HTTR plant 
(Japan), have found application in the majority of nuclear power plants in different countries. 
For the purpose of higher compactness and safety, such heat exchangers are arranged in one 
casing with the gas blower. From the viewpoint of safety, possible ruptures of pipelines 
connecting the IHX with the gas blower may be a concern. Among the advantages of the 
above described design is the application of proven manufacturing technologies for IHXs with 
the power up to 300 MW.  

Current developments of more compact IHX designs with a power above 300 MW are based 
on the application of HEATRIC-type heat exchange surfaces. In such IHXs, which are 
designed to fit casings of reduced diameters, high hydraulic resistance in channels with small 
hydraulic diameters is avoided by organizing radial (relative to the vertical cylindrical casing) 
helium flow with vertical helium supply in one of the circuits. This flow pattern leads to a 
large temperature difference in the rigid heat exchange module matrix with restricted 
diameters and to possible irregularity of helium flow distribution in the circuit with vertical 
supply. These phenomena may contribute to an increase of stresses in the heat exchange 
module and a decrease of heat transfer efficiency. 
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In order to avoid these negative phenomena, the IHX design with compact heat exchange 
modules for the MHR-T plant suggests vertical helium flow in the circuits and arrangement of 
modules at two levels along the height. Cassette heat exchanger designs suggested for the 
VG-400 and VGM plants at the early stages of high grade heat transport technology 
development, when there was no operating experience or experimental data, were less 
compact but offered better possibilities of repairing, replacing, and testing the standard 
design.  

As a result of analysis of design experience and operating heat exchangers [293, 295, 296], 
the following recommendations on optimization of IHX designs can be formulated: 

1. IHX parameters at 100% power are determined by the process circuit and depend on 
the process parameters. 

2. The design of IHX and its elements must have high technical and economic indicators 
and must ensure the assigned parameters in all reactor plant operating modes. 

3. All IHX elements must have high reliability and meet all safety requirements. 

4. The IHX design must have the required strength characteristics, including long term 
strength, and a lifetime up to 100 000 hours. 

5. If inlet hot helium temperatures equal 950°C, the IHX heat exchange surface can be 
made of proven metallic nickel-based alloys; if inlet hot helium temperatures is 
1000°C and higher, it is necessary to use ceramics, for example, SiC-based materials. 

6. In order to reduce thermal stresses, IHX large load bearing elements must be shielded 
against the impact of high temperature gas flows. 

7. The IHX design must be simple, compact, and easy to install and operate, with a 
possibility of detecting and eliminating damages. Analyses [285] showed that the 
optimal variant is the IHX design with a unit power up to 300 MW. 

8. Connections between IHX elements must be leak-tight to prevent intercircuit and 
bypass leaks and must ensure compensation of thermal structural deformations. 

9. Irregularity of temperatures in the heat exchanger cross section, temperature pulsations 
in elements, and element vibrations induced by high velocity gas flow must be 
eliminated or minimized. 

10. The IHX is one of the most heat-stressed components of the nuclear power plant, 
therefore, plant control algorithms in normal operating modes and in accidents must 
be aimed at maintaining heat exchanger operability and lifetime. Therefore, it is 
necessary to prevent, if possible, simultaneous impact of maximum temperatures and 
maximum pressure differences on heat exchanger elements. 

11. IHX main design solutions must be validated by a complex of research, calculation 
and experimental activities. 

VI.3. ANALYSIS OF LAYOUT AND DESIGN SOLUTIONS OF HOT GAS DUCTS 

Hot gas ducts are designed to transport hot coolant from the reactor to the intermediate or 
process high temperature heat exchanger, and in case of multi-circuit heat transfer pattern – to 
transport coolant from the intermediate heat exchanger to the process (network) heat 
exchanger. It is obvious that the most severe operation conditions are present in gas ducts 
transporting helium from the reactor. In these hot gas ducts which shall operate within the 
entire reactor plant operation period (up to 60 years), helium may circulate at an average 
temperature of up to 950°С. Local temperatures may reach a level of 1000°C and higher due 
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These data may be collected through tests of heat insulation samples or samples of small heat 
insulating panel assemblies. The requirements for test and experimental facilities include 
provision of helium flow rate and the availability of vibration and acoustic test equipment. 
Irradiation tests and hot chamber investigations will be required as well. 

OKBM in cooperation with other enterprises performed a complex of investigations and tests 
of various types of heat insulation. Results are provided in Table VI.2 [15, 299]. Screen heat 
insulation was also tested. 

As a result of investigations of heat insulation designs, it was demonstrated that in terms of 
heat conductivity and cost and under HTGR temperatures up to ~800–900°С, it will be 
optimal using heat insulation in the form of Al2O3 and Si2O3 ceramic fibrous mats to be 
arranged between metal covering sheets and the load-carrying tube. Ceramic fiber was used as 
heat insulation at FSV (USA) and other HTGRs in Germany and Japan. These plants passed 
tests to determine performance characteristics and mechanical load impact on kaowool and 
quartz-et-silice fibrous mats [299]. There are limited pilot data on irradiation results.  

TABLE VI.2. FIBROUS MATERIALS HEAT CONDUCTIVITY IN HELIUM ENVIRONMENT 

Material Heat conductivity (W/(m·K)) 

@ temperature (°C) 200 400 600 800 1000 

Kaolin fiber a 0.26 0.28 0.32 0.36 0.40 

Silicon fiber type 0.25 0.35 — — — 

Quartz fabric 0.25 0.28 0.32 0.38 0.44 

Graphite fabric 0.29 0.33 0.37 0.42 0.48 

Foam cordierite b 0.65 0.7 0.8 0.95 — 

Screen isolation from steel foil 0.18 0.23 0.29 0.35 — 

a  Density of 250 kg/m3. 
b  Density of 600 kg/m3, porosity of 79%. 
— not available. 

VI.4. ANALYSIS OF LAYOUT AND DESIGN SOLUTIONS OF GAS CIRCULATORS 

To provide gas coolant circulation in main heat transfer loops, gas circulators are used in gas 
cooled reactor plants. Main characteristics of gas circulators are presented in Table VI.3. A 
brief description of gas circulators is given below. Their operation experience is still used 
when developing the new examples. 

VI.4.1. China  

Since the mass flow rate of the primary loop of HTR-10 is relatively small and the required 
pressure rise is quite high, a centrifugal fan was chosen as the helium circulator (Fig. VI.11) 
[300]. The helium circulator designed as single-stage radial compressor is vertically installed 
at the top of the steam generator inside the vessel and submerged in helium gas. The motor 
part in the upper region including motor, cooler, cooling fan remains at temperatures of 60–
65°C, while the fan part in the lower region including impeller, diffuser, and gas inlet duct 
reaches 250°C. For a mass flow of 4.32 kg/s and a working temperature of 250°C, the 
pressure head of the blower required is 27.2 kPa. 
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VI.4.7. Recommendations for gas circulator design optimization  

Recommendations for design optimization can be formulated based on the analysis of 
experience in design development and gas circulators operation [301, 302]. 

The following recommendations are proposed for various stages of gas circulator design, 
development and operation. 

1. It is necessary to take account of experience in design of various axial and centrifugal 
compressors in view of working fluid physical properties features. 

2. All components of closed circuit shall be designed with account of mutual influence of 
parameters in the design point and in view of operation conditions at various power 
levels. 

3. Specified parameters of flowrate, pressure and temperature shall be ensured both in 
standard and emergency operation conditions. 

4. Gas circulator shall have stable response in wide range of rotation speed variation at 
5 < n < 110%. 

5. Gas circulator shall be arranged in the cold area of the loop, e.g. downstream the 
steam generator or heat exchanger. 

6. Gas circulator shall use the drive with controlled rotation speed, which is leaktight 
against radioactive-contaminated pumped fluid. 

7. Р Gas circulator together with drive shall be located vertically. 

8. Possibility of loop contamination from axial and radial supports shall be eliminated. 

9. Gas circulator shall be fabricated and assembled in plant conditions, i.e. modular 
principle of assembling shall be used. 

10. Gas circulator shall operate reliably under the earthquakes up to 0.15g; the entire plant 
shall shut down under the earthquakes up to 0.3g. 

11. Service life shall be 60 years minimum starting from standard operation. 

12. Easy and safe maintenance shall be ensured, diagnostics of remotely controlled and 
automatically served assemblies shall be provided. 

13. Easy installation and replacement of assemblies shall be provided during scheduled 
repairs after reactor shutdown and cooling down. 

14. Reliable operation shall be provided for operation period exceeding 7000 h per year. 

15. To eliminate the risk of lubricant contamination to reactor circuit, gas bearing which is 
proven in the HTTR and HTR-10 is recommended for gas circulator units of limited 
reactor capacity (practically < 50 MW(th)), while electromaganetic bearing is 
recommended for gas circulator units of larger reactor capacity, say 200–600 MW(th). 
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ABBREVIATIONS 

AC/DC alternating current/direct current 

AECL atomic energy of canada limited 

AEGL acute exposure guideline level 

AGR advanced gas reactor 

ASR area specific resistance 

BARC Bhabha Atomic Research Centre 

BET Brunauer-Emmett-Teller N2 absorption 

BSCF Ba0.5Sr0.5Co0.8Fe0.2O3-δ 

CEA Commissariat à l’energie atomique 

CFD computer fluid dynamics 

CHP combined heat and power 

CRP coordinated research project 

EDS energy dispersive spectroscopy 

EED electro-electro dialysis 

ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo 
sviluppo economico sostenibile 

EPA US Environmental Protection Agency 

FESEM field-emission scanning electron microscope  

FTIR fourier transform infrared spectroscopy 

GCC grand composite curve 

GOR gain output ratio 

GTHTR300 Gas turbine high temperature reactor of 300 MW(e) 

GTHTR300C GTHTR300 cogeneration 

GT-MHR gas turbine - modular helium reactor 

HHV higher heating value 

HP high pressure 

HPC high pressure compressor 

HPMR hydrogen permselective membrane reactor 

HTGR high temperature gas cooled reactor 

HTSE high temperature steam electrolysis 

HTTR high temperature engineering test reactor 

HyS hybrid sulphur cycle 

IDLH immediately dangerous to life and health 

IHX intermediate heat exchanger 
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IL isolation loop 

INET Institute for Nuclear and New Energy Technology 

INL Idaho National Laboratory 

JAEA Japan Atomic Energy Agency (former JAERI) 

JRC Joint research center 

KAERI Korean atomic energy research institute 

LHV lower heating value 

LLE liquid-liquid equilibrium 

LOFC loss-of-forced-convection accident 

LP low pressure 

LPC low pressure compressor 

LSC strontium doped lanthanum chromite La(Sr)CrO3  

LSCF strontium and cobalt doped lanthanum iron oxide 
La(Sr,Co)FeO3 

LSM La(Sr)MnO3 

LT low temperature  

LTE low temperature evaporation 

LT-HTME low temperature – horizontal tube multi effect 

MED multi-effect desalination 

MEE multi-effect evaporation 

MSF multi-stage flash 

MVC mechanical vapour compression 

NDP nuclear desalination plant 

NGNP next generation nuclear plant 

NHI nuclear hydrogen initiative 

NHSS nuclear heat supply system 

NOAK Nth of a kind 

NPV net present value 

NRC US Nuclear Regulatory Commission 

NSSS nuclear steam supply system 

PBMR pebble bed modular reactor 

PCHE printed circuit heat exchanger 

PCU power conversion unit 

PEM proton exchange membrane 

PHTS primary heat hransport system 
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PNP prototype nuclear process heat reactor 

PRV pressure relief valve 

PTA problem table algorithm 

PTFE polytetrafluoroethylene 

PWR pressurized water reactor 

RCCS reactor cavity cooling system 

RO reverse osmosis 

RPM revolutions per minute 

SDE SO2 depolarized electrolyzer 

SEM scanning electron microscopy 

SHTS secondary heat transport system 

S-I sulphur-iodine cycle 

SLE solid-liquid equilibrium 

SMART system integrated modular advanced reactor 

SMR steam methane reforming 

SNG substitute natural gas 

SNL Sandia National Laboratory 

SRNL Savannah River National Laboratory 

SOEC solid oxide electrolysis cell 

SOFC solid oxide fuel cell 

STAR secure transportable autonomous reactor 

TDS total dissolved salts 

TEM transmission electron microscopy 

TG thermogravimetry 

TGA thermogravimetric analyzer 

TNT 2,4,6-trinitrotoluene (c7h5n3o6) 

TVC thermal vapour compression 

UT-3 University of Tokyo 

VLE vapour-liquid equilibrium 

XRD x ray diffraction 

YSZ yttria stabilized zirkonium 
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