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ABSTRACT 

The linear stability of electrohydrodynamic poorly conducting couple stress viscous 

parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric 

field and Coriolis force using energy method and supplemented with Galerkin Technique. The 

sufficient condition for stability is obtained for sufficiently small values of the Reynolds 

number, eR . From this condition we show that strengthening or weakening of the stability 

criterion is dictated by the values of the strength of electric field, the coefficient of couple stress 

fluid and independent of Taylor number. In particular, it is shown that the interaction of electric 

field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid 

compared to that in an ordinary Newtonian viscous fluid.  
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1. INTRODUCTION 

The effective functioning of microfluidic devices in electronics, electrical and mechanical 

engineering involving fluids, particularly those having vibrations and petroleum products 

containing organic, inorganic and other microfluidics, require the understanding and control of 

stability of parallel fluid flows. These substances, dissolving in the fluid, make the fluid poorly 

conducting. The electrical conductivity,σ , of such poorly conducting fluidics, increases with  

the temperature and the concentration of freely suspended particles. These freely suspended 

particles in fluid spin producing microrotation, forming micropolar fluid. According to Eringen 

(1966) the micropolar fluids may be regarded as non-Newtonian fluids like fluid suspensions. 

The presence of dust in the atmospheric fluid, the cholesterols, RBC, WBC and so on in the 

physiological fluid, the Hylauronic acid and nutrients in synovial fluid in synovial joints, the 
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presence of Deuterium - Tritium (DT) in inertial fusion target may also be modeled using 

micropolar fluid theory of Eringen (1966). This theory takes care of the inertial characteristics of 

the substructure particles which are allowed to spin and thus undergo microrotation (Peddicson 

and McNitt 1970, Ariman et al. 1973, Lukaszewicz 1999 and Eringen 2001). A particular case of 

micropolar fluid theory, when the microrotation balances the natural vorticity of a poorly 

conducting fluidics in the presence of an electric field, is called ‘electrohydrodynamic couple 

stress fluid’ (EHDCF) (Rudraiah 1998, 2003). 

 We however note that the hydrogen isotopes DT are freely suspended in IFT which will 

spin and executing microroation. This microroation in a fluid forms micropolar fluid whose 

theory has been developed by Eringen (1996). According to Eringen, a particular case of 

micropolar fluid, when the microroation balances with the natural vorticity of the fluid there will 

be an antisymetric stress known as couple stress and forming couple stress fluid (CSF). So far, in 

the literature on IFE, to our knowledge, no work is available on the Electrohydrodynamic 

stability of flows using CSF. These EHDCFs exhibit a variation of electrical conductivity, σ∇ , 

increasing with temperature and concentration of freely suspended particles, releases the charges 

from the nuclei forming distribution of charge density, eρ . These charges induce an electric 

field, iE
r
. If need be, we can apply an electric field, aE

r
, by embedding electrodes of different 

potentials at the boundaries. The total electric field, i aE E E= +
r r r

, produces a current density, 

J Eσ=
r r

, according to Ohm’s law and also produces an electric force, e eF Eρ=
r r

. This J
r
 acts as 

sensing and the force, eF
r
, acts as actuation. These two properties make the poorly conducting 

couple stress fluid to act as a smart material (Rudraiah 2003). This smart couple stress poorly 

conducting fluid plays a significant role in controlling stability of parallel flows which is 

essential for an effective function of machineries that are used in practical problems mentioned 

above. This poorly conducting CSF in the presence of an electric filed, is called 

Electrorheological Fluid (ERF)/EHDCF introduced by Winslow (1949) and Rajagopal and 

Wineman (1995). These ERFs have a number of possible technical applications in the various 

areas of microelectronics, industrial applications in addition to increase the efficiency of the 

extraction of IFE as discussed above. Because of this importance considerable interest has been 

evinced, during the last decade, in the study of experimental and theoretical aspects of the effects 
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of couple stress fluid (see K. Rajagopal and A.S. Wineman 1995, K. Rajagopal and M. Ruzicka 

1996 and M. Ruzicka 1997). 

          This paper deals with the Electrohydrodynamic stability of a poorly conducting parallel 

viscous couple stress fluid flow in a channel in the presence of non-uniform electric field and 

coriolis force using linear stability analysis. In hydromagnetics, the linear stability of an 

incompressible non-dissipative ordinary fluid of variable density without buoyancy force has 

been investigated (see Taylor 1931). He concludes that the coriolis forces has a stabilizing 

influence and he further concludes that it brings about stability in the configuration, when it is 

thoroughly unstable without them. Barcilon and Pedlosky (1967) have investigated the 

hydrodynamic steady motions in a rotating stratified fluid using the linear theory and have shown 

that the rotating stratified fluid persists into the non-linear range. In particular, they have shown 

that even in the non-linear region the diffusive processes are very important throughout the fluid 

region. The stability of heterogeneous fluids has been extensively investigated (see Shivakumara 

and Venkatachalappa, M 2004, Miles1961 and Howard and Gupta 1962). These results have 

been extended to include the stability of cylindrical masses of fluid but mostly for axisymmetric 

disturbances. This has been extended to investigate the stability for non-axisymmetric 

disturbances of homogeneous, incompressible fluid having a solid body rotation (see 

Ludwieg1961). Later stability of heterogeneous flows to non-axisymmetric disturbances has 

been studied (see Rudraiah and Narayana 1972). So far, to our knowledge, much work has not 

been done on the study of Electrohydrodynamic stability using smart property of couple stress 

poorly conducting fluid. 

The study of it is the main objective of this paper. In this paper we consider the combined 

effect of coriolis force and Electric force on electrohydrodynamic stability of a homogeneous 

viscous couple stress fluid flow in a channel. To achieve this objective, this paper is planned as 

follows. The required basic equations, corresponding boundary conditions are given in section 2 

on mathematical formulation. The basic state and the stability equations are given in section 3. 

The stability analysis and Numerical solution is given respectively in section 4 and 5. Discussion 

in the section 5 and conclusions in the final section 6. 
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2. MATHEMATICAL FORMULATION 

 

 

 

 

 

 

 

 

 

Fig 1: Physical Configuration 

 

We consider a horizontal poorly conducting couple stress fluid flow in a channel bounded 

on both sides by electro-conducting impermeable rigid plates embedded with segmented 

electrodes located at 0z =  and z h=   having different electric potentials 0=φ  at 0z =  and 

V

h

 =  
 

φ  at z h=  as shown in Fig 1.     

For the sake of clarity, we first give the general form of modified basic equations for a 

poorly conducting couple stress incompressible fluid in a channel, modification in the sense of 

addition of the couple stress, electric force and coriolis force to be obtained from the general 

form of Maxwell equations.  

 We note that one of the limitations encountered in the continuum theory is the lack of taking 

into account the microrotation of freely suspended particles in a fluid. For example, hyaluronic 

acid (HA) molecules and other nutrients present in synovial fluid, RBC, WBC and so on in 

blood, DT in Inertial Fusion Target (IFT) in the extraction of Inertial Fusion Energy (IFE) and so 

on are freely suspended executing spin. In that case, the microrotation of the microelements must 

be taken into account in deriving the required basic equations where the microelement motions 

play a significant role. In such situations, the couple stress theory a particular case of micropolar 

fluid, as explained above, is useful. Then the required basic equations for a couple stress poorly 

conducting fluid, following Stokes (1968), Rudraiah et al (1998, 2011), are:
  

The conservation of mass, for an incompressible fluid:   

z
y

x

Segmented Electrodes 

0=φ

V

h
=φ z h=

0z =
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0q∇ ⋅ =
r

                                                (1) 

The conservation of momentum: 

 

( ) 2 4 2e

q
q q p q q E q

t

∂ + ⋅∇ = −∇ + ∇ − ∇ + − Ω× ∂ 

r rr r r r r
ρ µ λ ρ ρ                                     (2) 

The conservation of energy: 

 
( ) 2T
q T T

t

∂
+ ⋅∇ = ∇

∂
r

κ                              (3)

 

The conservation of species: 

 
( ) 2C
q C C

t

∂
+ ⋅∇ = ∇

∂
r

ϖ                   (4) 

where  ( , )q u w=
r

 is the velocity, ρ  the density, p the pressure, λ the coefficient of couple 

stress, µ the viscosity of the fluid, Ω the angular velocity, eρ  the distribution of charge density , 

T  the temperature, κ  the thermal conductivity, C  the concentration, ϖ the soluble diffusivity 

The conservation of charges: 

 

0e J
t

∂
+∇⋅ =

∂

rρ

 

                                             (5) 

 eJ q E= +
r rr

ρ σ                   (6) 

J
r
the current density, which is the sum of convective current, eq

r
ρ , and conduction current, E

r
σ , 

σ  the electrical conductivity, E
r
, the electric field. These are supplemented with the Maxwell 

Field equations for a conducting medium: 

Gauss law   

 0

eE∇⋅ =
r ρ

ε
                                                                                                            (7) 

where oε  is the dielectric constant for free space.  

In a poorly conducting fluid, the induced magnetic field is negligible and there is no applied 

magnetic field, hence the Faradays law becomes

  

 

0E∇× =
r

   (8) 

That is, the electric field is conservative, so that 

 
E = −∇
r

φ                                                                             (9) 

where φ is the electric potential  
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Eq. (5), using Eqs. (6) and (1), takes the form 

 ( ) 0eD
E

Dt
+∇ ⋅ =

rρ
σ                (10) 

where ( )D
q

Dt t

∂
= + ⋅∇
∂

r
. We note that in a poorly conducting fluid 1σ << and hence any 

perturbation on it is assumed to be negligible and increases with conduction temperature, bT , and 

diffusion concentration, bC , such that 

 
( ) ( )01o t b c b oT T C Cσ σ α α = + − + −    .                                        (11) 

Here 0σ  is that of σ  at  0bT T=  and 0bC C= , tα  and cα are the volumetric expansion 

coefficients of σ .  The expressions for bT and bC are obtained in section 3.1.  

 

3. THE LINEAR STABILITY EQUATIONS FOR A COUPLE STRESS POORLY 

CONDUCTING FLUID 

In this section we derive the stability equations subject to infinitesimal disturbances 

superposed on the basic state given in section 3.1 below. 

3.1 Basic State 

We consider a basic flow, in a poorly conducting couple stress fluid and assuming it to be 

fully developed and unidirectional parallel to the plates driven by a constant pressure 

gradient b
p

x

∂
∂

. Then the basic flow, bu , parallel to the boundaries in the x - direction, satisfies the 

momentum equations 

2 4

2 4
0 2b b b

eb bx b

p u u
E w

x z z

∂ ∂ ∂
= − + − + − Ω

∂ ∂ ∂
µ λ ρ                            (12) 

0 2b
eb bz b

p
E u

z

∂
= − + − Ω

∂
ρ         

where the suffix b represents the basic state quantities.  

The boundary conditions are the no-slip conditions 

 
0 at 0 andbu z h= =                          (13) 

and the couple stress conditions  

2

2
0 at 0 andbd u

z h
dz

= =                          (14) 
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Further, bT and bC in Eq. (11) are the solutions of                   

 

2

2
0bd T

dz
=  and 

2

2
0bd C

dz
=                  (15) 

satisfying the conditions           

 0bT T=  and 0bC C=  at 0z =                                                                                                (16a)                         

1bT T=  and 1bC C=  at z h=                                                                                                (16b) 

Solutions of Eqs. (15), satisfying the conditions (16a, b), are 

0b

T
T z T

h

∆
= +  and 0b

C
C z C

h

∆
= +             (17) 

where 1 0T T T∆ = −  and 1 0C C C∆ = −   

Substituting the solutions given by Eq. (17) into Eq. (11), we get 

0 (1 )b hz= +σ σ α                                                                      (18)      

where  h t c

t C

h h
α α α

∆ ∆
= + .  

In a poorly conducting fluid, the frequency of charge distribution is smaller than the 

corresponding relaxation frequency of the electric field, so that eD

Dt

ρ
 in Eq. (10) is negligible 

compared to ( )E∇⋅
r

σ . Then, from Eq. (10) after neglecting eD

Dt

ρ
and using Eqs. (9) and (18), we 

get 

2

2
0b b

h
z z

∂ ∂
+ =

∂ ∂
φ φ

α                                                                                              (19) 

subject to the boundary conditions 

0b =φ   at 0z =                  (20a) 

b V=φ  at z h=                                (20b) 

where V is the applied uniform electric potential.  

We make quantities in Eqs. (19) and (20a,b) dimensionless, using 

         

* * * *

0 2

, , ,b eb
b eb

x z
x z

VV h h

h

= = = =
 
 
 

φ ρ
φ ρ

ε
             (21)   
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where the asterisks (*) denote the dimensionless quantities. Substituting Eq.(21) into Eqs.(19) 

and (20a,b) and for simplicity neglecting the asterisks, we get 

2

2
0b b

h
z z

∂ ∂
+ =

∂ ∂
φ φ

α                            (22) 

satisfying the boundary conditions 

0b =φ  at 0z =                           (23a) 

        
1b =φ  at 1z =                         (23b) 

The solution of Eq. (22), satisfying the boundary conditions (23a,b), is 

         

( )
( )

log 1

log 1

h

b

h

z+
=

+

α
φ

α                                                

(24) 

The expression for ebρ can be obtained, from Eq. (7), using Eq. (24), as 

         ( ) ( )

2

2
1 log 1

h
eb

h hz
=

+ +

α
ρ

α α              

(25) 

Eq. (9), using Eq. (24), becomes  

  ( ) ( )
0,

1 log 1

h
bx bz

h h

E E
z

= = −
+ +

α
α α

                     (26)  

We make Eqs. (12) to (14) dimensionless, using  

        

* * * *

2

0 0
0 2

, , , , ,b b eb b
b b eb b

u p Ez x
u p z x E

V Vu u h h

h h

∗ ∗= = = = = =
   
   
   

ρ
ρ

ρ ε
                   (27) 

where 0u is the average velocity. Substituting Eq. (27) into Eqs. (12) to (14), using Eqs. (25) and 

(26) and simplifying and for simplicity neglecting the asterisks, we get 

4 2

c b bD u D u cΛ − =                    (28) 

where 
2

1
c

a
Λ = , 

h
a

m
= , m =

λ
µ

the coefficient of the couple stress fluid, Rec P= −  a positive 

constant, bp
P

x

∂
=

∂
, 0R e

u h

υ
=  the Reynolds number. The required boundary conditions are 

2 0 at z 0 and 1b bu D u= = =                (29) 

Solving Eq. (28), using the boundary conditions (29), we get 
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2 1 1
cosh sec

2 2 2 2
b c c

cc c

z z z
u c h

    
= − − Λ + Λ −       ΛΛ Λ     

                         (30) 

To find c 

The average velocity is given by 0

0

1
h

bu u dz
h

= ∫  . From this we get                        

3
2

12

1
1 12 24 tanh

2
c c

c

c =
 

− Λ + Λ   Λ 

 

Substitute c in Eq. (30), we get  

( )

3
2

1 2 1
6 1 2 2 cosh sec

2 2

1
1 12 24 tanh

2

c c

c c

b

c c

c

z
z z h

u

    −
 − + + Λ − Λ        Λ Λ    =

 
− Λ + Λ   Λ 

        (31) 

3.2 Stability Equations 

In a two – dimensional, incompressible, homogeneous poorly conducting couple stress 

fluid flow, with ( ), ,iq u w= the Eqs. (1) to (5) takes the form 

2 41
2e

x

u u u p
u w u u E w

t x z x

∂ ∂ ∂ ∂
+ + = − + ∇ − ∇ + − Ω

∂ ∂ ∂ ∂
ρµ λ

ρ ρ ρ ρ
                                          (32) 

2 41
2e

z

w w v p
u w w w E u

t x z z

∂ ∂ ∂ ∂
+ + = − + ∇ − ∇ + + Ω

∂ ∂ ∂ ∂
ρµ λ

ρ ρ ρ ρ
                              (33) 

0
u w

x z

∂ ∂
+ =

∂ ∂
               (34) 

2T T T
u w T

t x z

∂ ∂ ∂
+ + = ∇

∂ ∂ ∂
κ

             
(35)

 

2C C C
u w C

t x z

∂ ∂ ∂
+ + = ∇

∂ ∂ ∂
ϖ

             
(36)

 

2 1
0e e eu w

t x z z z

∂ ∂ ∂ ∂ ∂ + + + −∇ − = ∂ ∂ ∂ ∂ ∂ 

ρ ρ ρ φ σ
σ φ

σ           

(37) 

where 
2 2 4 4 4

2 4

2 2 4 2 2 4
, 2

x z x x z z

∂ ∂ ∂ ∂ ∂
∇ = + ∇ = + +

∂ ∂ ∂ ∂ ∂ ∂
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To study the Electrohydrodynamic stability of couple stress poorly conducting fluid in a 

saturated porous medium as shown in Fig. 2, we superimpose an infinitesimal disturbance, 

denoted by the primes, over the basic state denoted by suffix ‘b’ of the form 

, , , , , , ,b b x bx x y bz z e eb e b bu u u w w p p p E E E E E E T T T C C C′′ ′ ′ ′ ′ ′ ′= + = = + = + = + = + = + = +ρ ρ ρ (38) 

Substituting Eq. (38) into Eqs. (32) to (37), linearising by neglecting the product and higher 

order of prime quantities compared to the basic state, we obtain 

( )
2 2 4 4 4

2 2 4 2 2 4

1 1
2 2b

b eb x e bx

uu u p u u u u u
u w E E w

t x z x x z x x z z

′ ′ ′ ′ ′ ′ ′ ′   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ + = − + + − + + − + − Ω   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

µ λ
ρ ρ

ρ ρ ρ ρ
  

(39) 

( )
2 2 4 4 4

2 2 4 2 2 4

1 1
2b eb z e bz

w w p w w w w w
u E E

t x z x z x x z z

′ ′ ′ ′ ′ ′ ′ ′   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′ ′+ = − + + − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

µ λ
ρ ρ

ρ ρ ρ ρ
      (40) 

0
u w

x z

′ ′∂ ∂
+ =

∂ ∂
                                     (41) 

2 2

2 2

b
b

TT T T T
u w

t x z x z

′ ′ ′ ′ ∂∂ ∂ ∂ ∂
′+ + = + ∂ ∂ ∂ ∂ ∂ 

κ
           

(42)

 

2 2

2 2

b
b

CC C C C
u w

t x z x z

′ ′ ′ ′ ∂∂ ∂ ∂ ∂
′+ + = + ∂ ∂ ∂ ∂ ∂ 

ϖ
           

(43)

 

2 22 2 2 2

2 2 2 2 2 2
0b b b b

b bu w
t x x z z z x z z z z z z

 ′ ′ ′ ′ ′ ′   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  ′+ + + + + + + + =     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

φ φ φ σφ φ φ φ σ φ
σ σ

  

(44)

 

These perturbed equations are made dimensionless using the quantities 

* * * * * * * * *

2

0 0 0
0 2

0

, , , , , , , , ,e x z
e x z

E Eu w z x p t
u w z x p t E E

V V Vu u h h u h

h h hu

= = = = = = = = =
       

             

ρ
ρ

ρ ε
     

* * * * *

0 0

, , , ,
T C

T C
V h h

= = = = =
φ σ σ

φ σ σ
σ β γ σ

            (45) 

Substituting Eq. (45) into Eqs. (39) to (44) and for simplicity neglecting the asterisks (*) and the 

primes, we get 

2 2 4 4 4

2 2 4 2 2 4

1
2c

b b e eb x

e e e

u u p u u u u u Ta
u Du w W E w

t x x R x z R x x z z R

   Λ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + − + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

ρ
           

(46)

           

 

( )
2 2 4 4 4

2 2 4 2 2 4

1
2c

b e eb z e bz

e e e

w w p w w w w w Ta
u W E E w

t x z R x z R x x z z R

   Λ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + − + + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

ρ ρ
       

(47) 
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0
u w

x z

∂ ∂
+ =

∂ ∂
                     (48) 

2 2

2 2

1

Pr
b b

e

T T T T
u w DT

t x R x z

 ∂ ∂ ∂ ∂
′+ + = + ∂ ∂ ∂ ∂             

(49)

 

2 2

2 2

1
b b

e

C C C C
u w DC

t x Le R x z

 ∂ ∂ ∂ ∂
′+ + = + ∂ ∂ ∂ ∂             

(50)

 

 ( )
2 2 2 2

2 2

2 2 2 2
0b b b b b b

e

u wD D D D D
t x x z R x z z z

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + + + + + =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

φ φ τ φ φ σ φ
φ σ σ φ φ σ   (51) 

where 
2

0

2 2

0

e

V
W

u h

ε
ρ

= the Electric number, which Physically represents the ratio of electric energy 

to kinetic energy, 
22 h

Ta
Ω

=
ν

 the Taylor number, Pr =
ν
κ
, the Prandtl number, Le =

ν
ϖ

 ,the 

Lewis number, 
2

0

0

h
=
σ

τ
νε

  the ratio of viscous relaxation time to charge relaxation time.                                                      

To discuss the stability of the system Eqs. (36) to (51) we use the normal mode solution of the 

form  

( ) ( )il x ct
function of z e

−    
                                              (52) 

where 
r ic c ic= +  is the velocity of perturbed quantities, rc is the phase velocity and ic  is the 

growth rate and l  is the horizontal wave number which is real and positive. If 0,ic > the system 

is unstable and 0,ic < the system is stable. Eqs. (38) to (40), using Eq. (41), and after 

simplification, take the form 

( ) ( ) ( )22 2 2 2

e b c e e b e e eb xD l ilR u c D l u ilR p R Du w W R E Ta w − − − − Λ − = + − +  
ρ

                     

(53) 

( ) ( ) ( ) ( )
2

2 2 2 2

e b c e e e eb z e bzD l ilR u c D l w R Dp W R E E Tau − − − − Λ − = − + −  
ρ ρ                   (54) 

0ilu Dw+ =                                                                                     (55) 

( ) ( )2 21

Pr
e b bilR u c D l T DT w

 − − − =              

(56) 

( ) ( )2 21
e b bilR u c D l C DC w

Le

 − − − =              

(57)

 



12 

 

( )( ) ( )( ) ( ) ( )2 2 2 2 2 2

e b b e b b bilR u c D l D l D D R D D w D D D − − + − + = − − +
 

τ σ σ φ φ τ φ σ φ σ
    

(58) 

Eliminating the pressure p  between Eqs. (53) and (54), by operating D  on Eq. (53), multiplying 

Eq. (54) by il  and then subtracting and use the stream function ,u D w il= = −ψ ψ  and Eq. (8), 

we get the stability equation 

( )
( )

2 2 2 2 2 2 3
2 2 ( ) ( )

( ) 0
( ) ( ) ( )

eb xb
e e c e e

b b b b

D ED u D l D l
lR D l lR i i iW R

u c u c u c u c

− −
− − + − Λ + =

− − − −

ρ
ψ ψ ψ ψ       (59) 

Eq. (59) is the required stability equation which is called the modified form of Orr-Sommerfeld 

equation (modified in the sense of incorporating the contribution from the electric force, eEρ
r
and 

the couple stress fluid). The boundary conditions now take the form  

3 0 0 1D D at z and= = = =ψ ψ ψ                                 (60) 

0 0 1T at z and= =                   (61) 

0 0 1C at z and= =                   (62) 

0 0 1at z and= =φ                   (63) 

 

4. STABILITY ANALYSIS 

To find the conditions for stability or instability of the basic flow, we find, following Shubha 

et al. (2008), Drazin and Reid (2004), and Rudraiah et al. (2011), the nature of c  using the 

energy method. For this, we multiply Eq. (59) by ψ , the complex conjugate of ψ , and 

integrating the resulting equation with respect to z  from 0  to 1 and using the boundary 

conditions (60) and after simplification, we get 

      ( ) ( )2 2 2 4 2 2 2 2 4 2 6 2 2 2 2

2 1 0 3 2 1 0 1 02 3 3 ( )c e eI l I l I I l I l I l I ilR Q ilR c I l I+ + + Λ + + + = − + +
         

(64) 

where  

 

1 2
2

0

n

nI D dz= ∫ ψ  (n=0 to 3) 

( )1 1 12 22 2 2 2

0 0 0
( )b b b b e r iQ u D l u D u dz D Du dz W D l D Q iQ = + + + − − = + ∫ ∫ ∫ψ ψ ψ ψ φψ       

( ) ( )( )
1 2 22 2 2 2

0

1
Re

2
r b b b e r r i iQ Q u D l u D u W D l D D dz

  = = + + − − +  
  

∫ ψ ψ ψ φ ψ φ           (65) 

and 
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( ) ( ) ( )( ){ }1
2 2

0
Imi r i i r b e i r r iQ Q D D Du W D l D D dz= = − + − −∫ ψ ψ ψ ψ ψ φ ψ φ

                       
(66) 

The second term on the left hand side of Eq. (64) is the contribution of couple stress fluid and 

the term involving eW in the first term on the right hand side of Eq. (64) is the effect of electric 

field.  

Equating the real and imaginary parts of Eq. (64) to zero, we respectively get 

     
( )2 2 2

1 0

r
r

Q
c

I l I
=

+
              (67)   

( ) ( ) ( )
( )

2 2 2 2 2 2 4 2 2

3 2 1 0

2 2 2

1 0

1
1 3 2 3 1i c c c c

e
i

Q I l I l l I l l I
lR

c
I l I

 − Λ + + Λ + + Λ + + Λ 
=

+
       (68) 

We write Eq. (66) in the form

 

        ( ) ( ) ( ) ( )
1 1

2 2

0 0
Im

2
b e i r r i

i
Q D D Du dz W D l D D dz= − + − −∫ ∫ψ ψ ψ ψ ψ φ ψ φ                        (69) 

From Eq. (69) it follows that  

( ) ( )( )
1 1

2 2

0 0
Im b e i r r iQ D Du dz W D l D D dz≤ + − −∫ ∫ψ ψ ψ φ ψ φ

 

and using Schwarz’s inequality, we get 

( ) 1 0 1Im Q I I q B≤ +
 

where  

0 1

max b
z

q Du
≤ ≤

=  

( )( )
1

2 2

1
0

e i r r iB W D l D D dy= − −∫ ψ φ ψ φ
 

This gives the upper bound for ci   

( ) ( ) ( ) ( )
( )

2 2 2 2 2 2 4 2 2

0 1 1 3 2 1 0

2 2 2

1 0

1
1 3 2 3 1c c c c

e
i

qI I B I l I l l I l l I
lR

c
I l I

 + − Λ + + Λ + + Λ + + Λ 
≤

+
          (70)   

From Eq. (70), it follows that a sufficient condition for stability is  

       
( ) ( ) ( ) ( )2 2 2 2 2 2 4 2 2

3 2 1 0

0 1 1

1
1 3 2 3 1e c c c cR I l I l l I l l I

l qI I B
 < Λ + + Λ + + Λ + + Λ +

       (71) 
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5. Numerical solution 

Equations (56) to (59) together with boundary conditions (60) to (63) constitute an eigenvalue 

problem with c as an eigenvalue. Since the differential equations involve variable coefficients, 

the resulting eigenvalue problem has to be solved numerically, and note that the Galerkin-Type 

weighted residual method is more suitable to solve the same. Accordingly, the variables are 

written in series of basis function as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

, , ,
n n n n

i i i i i i i i

i i i i

ψ z Aψ z φ z B φ z T z D T z C z E C z
= = = =

= = = =∑ ∑ ∑ ∑        (72) 

where , ,i i iA B D  and iE  are unknown constants are the basis functions  ( ) ( ) ( ), ,i i iψ z φ z T z and  

( )iC z are generally chosen that they satisfy the corresponding boundary conditions. Substituting 

Eq. (72) into Eqs. (56) to (59), multiplying the stability equation by ( )jψ z , the continuity of 

charges equation by ( )jφ z , the temperature equation by ( )jT z and the concentration equation 

by ( )jC z , performing the integration by parts with respect to z  between 0z = and 1z = and 

using the boundary conditions (60) to (63), we obtain the following systems of 4n linear 

homogeneous algebraic equations in the 4n unknowns , , ,i i i iA B D E ; 1,2,.....i n=  

 0ji i ji ia A b B+ =                (73) 

0ji i ji i ji i ji ic A d B e D f E+ + + =             (74) 

0ji i ji ig A h D+ =               (75) 

0ji i ji ip A q E+ =               (76) 

The coefficients jia to jiq  involve the inner products of the basis functions and are given by 

( )
( )

2 2 2 2 2

4 4 2 2 6 6 2 4 2 22 3

ji e b j i b j i j i j i b j i

j i j i j i c j i j i j i j i

a lR u D ψ ψ l u ψ ψ c D ψ ψ l ψ ψ D u ψ ψ

i D ψ ψ l ψ ψ l D ψ ψ i D ψ ψ l ψ ψ l D ψ ψ l D ψ ψ

= − − − − +

+ − − Λ − − +
 

ji e eb i jb lWe R Dρ φ ψ= −  

3
ji e b j ic il R D φ φ ψ= −  

( ) ( )2 2 2 2 2 2
ji e b i j b j i i j j i b i j j i b i jd ilR u D φ φ l u φ φ c D φ φ l φ φ τ σ D φ φ l φ φ Dσ Dφ φ= − − − + − +  



15 

 

( )2
ji t b j i b i je τα D φ φ T Dφ DT φ= +  

( )2
ji c b j i b i jf τα D φ φ C Dφ DC φ= +  

ji e i jg ilR ψ T=  

( ) 2 21

Pr
ji e b i j i j i j i jh ilR u TT c TT D TT l TT= − − −  

ji e i jp ilR ψ C=  

( ) 2 21
ji e b i j i j i j i jq ilR u C C c C C D C C l C C

Le
= − − −           (77) 

where the inner product is defined as ( )
1

0
dz− −− − = − − − −∫ . 

The above set of homogeneous algebraic equations can have a non-trivial solution if and only if  

0 0

0
0 0

0 0

ji ji

ji ji ji ji

ji ji

ji ji

a b

c d e f

g h

p q

=                            (78) 

The eigenvalue has to be extracted from the above characteristics equation. For this, we select 

the trial functions as follows: 

( ) ( )( )1 1 1 1 11
1 1 2 1 , , ,

5

i i i i i i i i i i
i i i iψ z z z z φ z z T z z C z z

+ + + + += − + − + − + = − = − = −        (79) 

The basis functions chosen above satisfy the boundary conditions automatically. Using these, the 

inner products were evaluated. The coupled equations (56) to (59) can now be expressed in the 

form of a generalized eigenvalue problem with c as an eigenvalue.   

 

5. RESULTS AND DISCUSSION  

A sufficient condition for stability in terms of Reynolds number, 
e

R , given by Eq. (71). 

Equations (56) to (59) together with boundary conditions (60) to (63) is also computed 

numerically using Galerkin Technique and the results are depicted graphically. 
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      Figure 2 shows that the plot of growth rate 
i

c as a function of horizontal wave number l for 

different values of couple stress parameter, 
2

1
c

a
Λ =  for fixed values of electric number, 

10,eW = Reynolds number, 0.8,eR =  Prandtl number, Pr 5,= Lewis number 20Le = , 2.=τ
 

From the Fig. 3, it is clear that an increase in the value of a increases the value of ic because an 

increase in a is to decrease the viscosity implying decrease in resistance to the flow, which in 

turn promotes instability much faster.  

Figure 3 shows that the plot of ic with l for different values of eW  for fixed values 

of 0.8, 10,Pr 5, 20, 2.eR a Le= = = = =τ
 
 From this figure, it may be inferred that for an increase 

in the value of eW , decreases the value of ic  and thus make the system more stable. The reason 

being that an increase in eW  is to decrease the kinetic energy and hence makes the system more 

stable.  

 

6.CONCLUSIONS 
 

It is known that in the stability of classical Poiseuille flow a sufficient condition for stability 

is the existence of point of inflexion. This stability of Poiseuille flow was extended to 

electrohydrodynamic stability of an inviscid poorly conducting parallel fluid flow in the presence 

of an electric field and in the absence of couple stress fluid by Shubha et al (2008). They have 

shown that the electrohydrodynamic stability is determined in terms of electric number rather 

than the point of inflexion of the basic velocity profile. In contrast to this, in our paper a 

sufficient condition for stability is obtained for sufficiently small value of Reynolds number, Re. 

From this we found that strengthening or weakening of a sufficient condition for stability 

depends on the electric number, eW , the coefficient of couple stress fluid, m , and Prandtl 

number,Pr,
 
Lewis number , Le , and τ . From these, we conclude that the interaction of electric 

field with couple stress is more effective in stabilizing a poorly conducting couple stress fluid 

compare to that in ordinary Newtonian viscous fluid.  
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Fig. 2: Variation of ic with l for different values of a when     
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 Fig 3: Variation of ic with l for different values of eW  when 

                     0.8, 10,Pr 5, 20, 2.eR a Le= = = = =τ  
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