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Abstract 

 

In this paper we explain a Mathematical Model involving Darcy linear drag, 

Forchheimer quadratic drag, horizontal density gradient and the variation of electrical 

conductivity due to organic substances dissolved in a heterogeneous Boussinesq poorly 

conducting couple stress fluid flow (PCPCSFF) through Nano Porous Zeolites regarded 

as densely packed porous media. Initially, the flow is at rest and set in motion due to 

initial piecewise horizontal concentration gradient.  

Analytical solutions, for electric potential using the Maxwell field equations and 

for velocity and density using nonlinear Darcy – Forchheimer equation in the presence of 

couple stress and electric force are obtained using the method of time series evolution. 

The analytical solutions for streamlines and density are computed for different values of 

time, t, for a particular value of electric number 
1
W  and couple stress parameter β  and the 

results are depicted graphically in figures 1 and 2. From these figures we found that the 

streamlines are closer in the region of x<0 than that of x>0 and the density profiles are 

concentrated in the lower region and develop curvature in the presence of electric field 

and couple stress parameter. The physical reason for the nature of streamlines and density 

profiles are given in the last section and some important conclusions are drawn.  

 

 

1. Introduction 

 

To supply adequate food for the increase in population and modern way of living 

farmers have put arbitrarily more fertilizers into the soil. This has resulted in reduction in 

quality and quantity of food due to soil resource degradation and caused distress among 

farmers. There is a necessity to find mechanisms to reverse this trend. For this, it is 

necessary either to use more land or intensify crop production per unit of available land. 

We know that scarcity and increase in the cost of land in our country, the poor farmers 

cannot afford to buy more land and hence they have to resort to intensify crop production 

per unit of available land. It is a known fact that in our country our soils are either low 

fertile or made less fertile due to the intensive removal of nutrients without caring for 

substituting fresh nutrients. In that case intensify crop production is not viable 

proposition and we have to resort to alternate method. In this paper we propose to use 

nanoporous zeolites which are more amicable.  
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          Zeolites are microporous aluminosilicate materials. Microporous material is a 

material containing pores with diameter less then 2 nm. Aluminosilicate minerals are 

minerals composed of aluminum, silicon and oxygen. The hydrated aluminosilicates 

minerals are zeolites which have pore structure having naturally occurring materials. 

These nanoporous zeolites were originally found in 1756 by the Swedish mineralogist 

Axel Fredrik Cronstedt. He called the material zeolite coined from the Greek Language 

meaning “boiling stone”. The organic minerals dissolved in water in micropores forming 

poorly conducting fluid with electrical conductivity, σ , increasing with temperature. 

Further, the organic minerals and other substances are freely suspended in water in voids 

of porous zeolite and they will execute microrotation forming micropolar fluid developed 

by Eringen [8]. A particular case of micropolar fluid when microrotation balances with 

the natural vorticity of the fluid is called a couple stress fluid.The nanoporous zeolites 

have high void volume, low density and high cation exchange capacity. In these, the two 

process namely particle diffusion within the zeolite and diffusive transport through the 

liquid film surrounding the particles have been identified as the most important processes 

in an ion exchange property. These processes cause the difference in temperature 

between high surface temperature of nanoporous zeolite and the low temperature of water 

in the void volume of nanoporous zeolite producing the variation of electrical 

conductivity, σ∆ . This σ∆ releases the electric charges from the nuclei forming 

distribution of charge density, 
e
ρ . In addition, the motion of electric charges induces an 

electric field, 
i
E
r

. In case, high strength of electric field is needed in the design of 

artificial zeolites, it can be generated called applied electric field, 
a
E
r

by segmented 

electrode of different potentials set up at the upper and lower surfaces of the nanoporous 

zeolite. The total electric field, ( )
i a

E E E= +
r r r

not only produces the current density, J
r

, 

according to Ohm’s law, and also produces, along with 
e
ρ , the force 

e
Eρ
r

. This current 

acts as sensing and the force acts as actuation, which are the two important properties to 

make a material to be a smart material. These smart nanoporous zeolite can be widely 

used in industries for water purification, as catalysts, nuclear reprocessing, for the 

production of laundry detergents and so on. They can also be used in the design of 

artificial organs like cartilages in synovial joints, endothelium the walls of the coronary 

arteries, the trachea (i.e., wind pipe) in biomedical engineering. In particular, these smart 

nanoporous zeolites may be used in agriculture as fertilizers to grow more quality and 

quantity of food and as well as to increase soil fertility. Numerous soil and land quality 

indicators have been used to asses the degradation statues (see Ramesh etal [7]). 

Zeolites have porous structure which can accommodate a wide variety of cat ions. 

These positive ions are loosely held so that they can readily be exchanged for others in 

the contact solution. Natural zeolites found in volcanogenic sedimentary rocks have been 

not only used in agriculture and they have also been used as building stone, as light 

weight aggregate and pozzolans in cements and concretes, as filler in paper, as soil 

amendments in agronomy and horticulture, in the removal of ammonia from municipal, 

industrial, agriculture and hospital wastes, drinking water, as energy exchangers in solar 

refrigerators, as dietary supplements in animal diet, in pet litters, in taking up ammonia 

from animal manures and as ammonia fillers in kidney – dialysis units. In addition to 

their recent success in the healing of cuts and wounds, natural zeolites are now 
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considered to be full fledged minerals commodities, the use of which promise to expand 

even more in the future (see Mumpton [6] ). 

Natural zeolites are hydrated aluminosilicates. They consist of open three 

dimensional cage-like structures and a vast network of open channels extending 

throughout. Loosely bound positively charged ions called cations are attached at the 

juncture of the negatively charged aluminosilicates lattice structure. This frame work 

provides exceptional strength and stability to the lattice structure.  

The channels, typically 0.3 to 0.7 nanometers in diameters (3 to 7 angstroms 

slightly larger than a water molecule), selectively screen molecules according to size and 

exchangeable cations.  

Molecules too large to pass through the entry channel are excluded, thus giving 

rise to the term “Molecular Sieve”. The molecular structure, surface area, surface charge 

density and cation exchange capacity (CEC) of each particular zeolite will determine its 

loading, shrinking, swelling and stability under various conditions. The zeolites have a 

rigid three – dimensional crystalline structure (similar to honeycomb) consisting of a 

network of interconnected tunnels and cages. Zeolites in general have high specific 

surface areas and their rigid framework limits shrinking and swelling.  

Natural zeolites form in a condition where volcanic rocks and other layers react 

with alkaline groundwater. Zeolites are also crystallizing in post-depositional 

environments over the years ranging from thousand of years in swallow marine basins. 

Naturally occurring zeolites are therefore rarely pure. It is for this reason, naturally 

occurring zeolites, without uniformity and purity, are excluded from many important 

commercial applications. 

Since naturally occurring zeolites are rarely pure, several types of synthetic 

zeolites have been synthesized. One of the important processes used in zeolite synthesis 

is sol-gel in which other elements like metals and metal oxides can easily be incorporated. 

It is known that the silicate sol formed by the hydrothermal method is very stable. 

The literature on nanoporous zeolites is silent about synthesizing them having the 

properties of smart materials. Therefore, the main objective of this paper is to explain 

how to make Nanoporous smart zeolites using organic minerals dissolving in water in the 

voids of nanoporous zeolites making that water poorly conducting with conductivity σ  

increasing with temperature as explained above. Such smart nanoporous zeolites will 

have several advantages as explained earlier in this section. However, their advantages 

are more useful in agriculture to grow more food using the property of sensing whenever 

the crop is needed water or nitrogen or both and the actuation property provide them. To 

achieve this objective, this paper is planed as follows. Formulation of the problem is 

given in section 2. The solutions of the problem using time evolution are given in section 

3. Conclusions are drawn in section 4.    

 

2. Formulation of the Problem 

 

In this section, we give the required basic equations, following Rudraiah and Ng 

[4], for a couple stress poorly conducting incompressible heterogeneous two dimensional 

fluid saturated densely packed Nanoporous Zeolites using ensemble averages.  

 

In Cartesian form, they are:  
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The Conservation of Mass for incompressible Boussinesq fluid 

0,
u w

x z

∂ ∂
+ =

∂ ∂
                 (2.1a) 

 

 Condition for heterogeneity         

           

 0u w
t x z

ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
     (2.1b) 

 

Conservation of Momentum for flow regarded as densely packed porous media 

                                     

              (2.2)  

 

                                                                                         

  
0 0 0

1
1b e

z

Cw w w p g
u w q w w E

t x z z k kk

ρυ λ ρ
ρ µ ρ ρ

 ∂ ∂ ∂ ∂
+ + + = − − + − + ∂ ∂ ∂ ∂  

r
           (2.3) 

where x and z are the horizontal and vertical Cartesian coordinates.  

 

Conservation of Electric Charges:  

  
0

0e e e e
zu w E

t x z z

ρ ρ ρ ρ σ
σ
ε

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
                   (2.4) 

 

The Maxwell Equations, in the absence of Magnetic field 

   

            (2.5 a, b, c)           

 

Following Rudraiah [1, 2], we have                                                            

                                  (2.6 a, b) 

 

 where,  ( ),0,q u w=
r

is the mean filter velocity, ϕ  electric potential, eρ the volume 

distribution of charge density, ,e g and Eρ
rr

are the gravitational field and the electric field, 

J
r

the current density, σ the electrical conductivity of PCCFF, αh and αc are the 

volumetric coefficients of electrical conductivity, υ the kinematic viscosity of fluid, λ the 

couple stress coefficient, k the permeability, Cb the quadratic drag coefficient of a 

nanoporous zeolite, oε the dielectric constant of free space, 0σ is that of σ  at 0T T=  

and 0C C= . 0T  and 0C are respectively the reference temperature and concentration 

distributions. The poorly conducting fluid is initially at rest and since σ <<1, any 

perturbation on σ is negligible and hence it depends on the conduction temperature, 
2

2
0

d T

dz
= and conduction diffusion

2

2
0

d C

dz
= . 

The solutions for T and C satisfying the conditions
0

T T= , 
0

C C=  at z = 0 and 

1
T T= and 

1
C C= at z = h, the width of the nanoporous zeolite, are 0/T T z h T= ∆ +                        

and   0/C C z h C= ∆ +                              

0 0

1
1b e x

C Eu u u p
u w q u u

t x z x k kk

ρυ λ
ρ µ ρ

 ∂ ∂ ∂ ∂
+ + + = − − + + ∂ ∂ ∂ ∂  

r

. / , 0,
e o

E E Eρ ε ϕ∇ = ∇× = = −∇
r r r

( ) ( )0 0 0, 1 h cJ E T T C Cσ σ σ α α= = + − + −  
r
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Then, σ, given by eqn (2.6b) takes the form  

( )/ 1 1 , / /
0

Z
z e T h C hcT

γσ σ γ γ γ α α= + ≈ << = ∆ + ∆Q    (2.7) 

For base flow (i.e. 0, 0q
t

∂
= =

∂
r

), eqn (2.4) becomes  

0

0e

z

d
E
dz

ρ σ
σ
ε
+ =  

This, using (2.5c) and (2.7), becomes   
2

2
0

zz

ϕ ϕ
γ

∂ ∂
+ =

∂∂
                      (2.8) 

Its solution, satisfying the conditions 0
Vx

at z
h

ϕ = =  and
( )0V x x

at z h
h

ϕ
−

= =                                  

is  
( )

( )
0 1

1

Z

h

Vx eVx

h e

γ

γ
ϕ

−

−

−
= −

−
                                          (2.9) 

Then eqns (2.5 a, b, c) take the form 

( ) ( )
2

2 0 0
0 0 , ,

1 1

ZZ

e x Zh h

Vx Vx ee VE E
hh e h e

γγ

γ γ

γγ
ρ ε ϕ ε

−−

− −
= − ∇ = − = − =

− −
 (2.10 a, b, c) 

where V is the uniform potential at the boundaries due to segmented electrodes,    

x
E and

z
E are the components of the electric field in x and z directions.  

 

3. Solution Using Time Evolution 

 

  We consider a two – dimensional motion of a poorly conducting 

heterogeneous couple stress fluid saturated densely packed nanoporous zeolite with  x – 

axis horizontal and z – axis vertical and velocities u and w respectively in x and z 

directions. A non-uniform initial horizontal density gradient sets in a vertical motion 

denoted by w in addition to horizontal motion. We make the above equations (2.1a) to 

(2.4) dimensionless using the scales 
3

22

0 0
/ , / , / , , , / /

b b
gC k k C k V V k and V kυ α υ υ σ ε for 

length, time, velocity, conductivity, potential, electric field and density of charges 

respectively. Eliminating the pressure between eqns (2.2) and (2.3) and expressing them 

interns of stream function ψ defined by 

/ / ,
z x

u z and w xψ ψ ψ ψ= −∂ ∂ = − = ∂ ∂ =     (3.1)  

 we get  

 
( )

( ) ( )

1
2 2 2 2 2 2 22

1 2 3

1
2 2 2 22 1

12 0

t z x x z x z

z

x z x z xz x xx z zz w e
x

γ

ψ σ ψ ψ σ ψ ψ σ ψ ψ ψ ψ

σ ρ
ψ ψ ψ ψ ψ ψ ψ ψ ψ

− −

∇ − ∇ + ∇ + ∇ + + ∇

∂
− + + + + − =

∂

 (3.2) 

where  

 
3

2 2 2 2 2

1 2 3
/ , / , 1 ,

b
gC k gkσ υ σ α υ σ βσ= = = +  

 
0

2 2 4 2

1 0/ , /h h k and w V xβ λ µ σ ε γ= = =  

is the electric number. We solve eqn (3.2) using the time series evolution of the form  
2 3

0 1 2 3
t t tψ ψ ψ ψ ψ= + + +       (3.3) 

2 3

0 1 2 3
..t t tρ ρ ρ ρ ρ= + + + +      (3.4) 
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Since the fluid is initially at rest, it follows that 
0

0ψ = and 
0 0

( , )x zρ ρ= which is the initial 

density.  Equation (3.2), using eqns (3.3) and (3.4) and equating the coefficients of like 

powers of t to zero and assuming w << u so that  

( ) ( )2 2 2 2 2
,u w u u because u w u+ ≈ + ≈  we get  

At o(t
0
): 2

1 1 0 1 1
, 0z

x
w e γψ σ ρ ρ−∇ = − + =     (3.5 a, b) 

At o(t): 2 2

2 3 1 1 1
2 0

x
ψ σ ψ σ ρ∇ + ∇ + =  

This, using equations (3.5 a, b) becomes  

( )2 2

2 3 1 1 1 0 1/ 2, / 2
z

x w e
γψ σ ψ σ σ ρ −∇ = − ∇ = − − +    (3.6) 

From eqn (2.4) we see that its derivative may be approximated, as in Simpson and Linden 

[5] by  

( )2xt x x
uρ σ ρ= −        (3.7) 

 

From this it follows that the evaluation of the density gradient is determined by the sign 

of ( )x x
uρ . This amounts to an increase in horizontal density gradient which will occur only 

when the horizontal motion in the region of stronger density gradient is towards the 

region of the weaker density gradient.  To know the effect of inertia we have to go up to 

o(t
2
) in eqn (3.2) and obtain, by equating the terms of o(t

2
) to zero, the equation  

( )2 2 2

2 1 1 1 1 3 2 1 2 1 12

3

1 1 1 1

21

3 2

x z z x x z zz

z xx x xz

σ ψ ψ ψ ψ σ ψ σ ρ ψ ψ
ψ

ψ ψ ψ ψ

 − ∇ − ∇ − ∇ − −
∇ =  

− −  
 (3.8) 

Further, in dimensionless form, we have  

( ) ( )1 2 1 0 1 0 3 2 0 2 0
0, / 2, / 3

z x x z z x x z
ρ ρ ψ ρ ψ ρ ρ ψ ρ ψ ρ= = − = −   (3.9) 

( ) ( )2 3

0 1 0 1 0 2 0 2 0

1 1

2 3
z x x z z x x z

t tρ ρ ψ ρ ψ ρ ψ ρ ψ ρ= + − + −   (3.10) 

We note, as in Simpson and Linden [5], to find an increase in horizontal density gradient 

we have to consider a non-uniform horizontal density gradient of the form 

1 1

2 1

1 0

1 0

x x

x x

γ σ
ρ

γ σ

− <
= 

− >
      (3.11) 

 where 
1 1 2 2 1 2

/ , / , andγ α α γ α α α α= = are the values of α in x<0 and x>0 respectively.  

This reveals a discontinuity in the density gradient at x=0 although the density is 

continuous. Equations (3.5a), (3.6) and (3.8), using eqn (3.11), become  

3 1 11 12 2

1 2

2 1 3 2 1

/ 2 , 0, 0

, 0, / 2 , 0

zz

z z

w e xw e x

w e x w e x

γγ

γ γ

σ γγ
ψ ψ

γ σ γ

−−

− −

 − + <+ < 
∇ = ∇ = 

+ > − + >  
  (3.12, a, b) 

( )
( )

2
1 1 1 1 11 12 3

3 2 2

2 1 1 1 12 1

2 2, 0 1

6 3, 0

z
z zz xx x xz

z
x z z x

w e x

w e x

γ

γ

ψ ψ ψ ψ ψγσ
ψ

σ ψ ψ ψ ψγ

+ −  + <   ∇ = + 
− ∇ − ∇+ >      

 (3.13) 

Solving eqns (3.12a, b) we get  

( )( )

( )( )

2 2 3 2

1 2 1 2

0

1

2 2 3 2

2 1 1 2

0

/ 2 / 2 / 0

/ 2 / 2 / 0

i

i

i

i

z h h a x

z h h b x

γ γ γ γ π
ψ

γ γ γ γ π

∞

=

∞

=


+ + + <

= 
 + − + >


∑

∑
  (3.14) 
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( )( )

( )( )

2 2 3 2

1 2 1 2

0

2

2 2 3 2

2 1 1 2

0

/ 4 / 4 / 0

/ 4 / 4 / 0

i

i

i

i

z h h a x

z h h b x

γ γ γ γ π
ψ

γ γ γ γ π

∞

=

∞

=


+ + + <

= 
 + − + >


∑

∑
  (3.15) 

In eqns (3.14) and (3.15) 
i
a  and 

i
b  are given by  

( ) ( ) ( )2 1 2 /
1/ 1 2 cos 1 2 /

i x h

i
a i i z he

ππ += + +     (x<0)  

( ) ( ) ( )2 1 2 /
1/ 1 2 cos 1 2 /

i x h

i
b i i z he

ππ − += + +      (x>0)  

Similarly, the solutions of eqns (3.13) are determined but for want of space are omitted 

here because the expressions are lengthy but they are included in computing  
2 3

1 2 3
t t tψ ψ ψ ψ= + +  

and the results are graphically represented and discussed in section 4. Similarly, we 

obtain 

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2 2

1 1 1 1 2 1

0

2 2 2

2 2 1 1 2 2

0

1 1 / 2 / ( 0)

1 1 / 2 / ( 0)

i

i

x

i

i

x

i

i

x t t z h C e x

x t t z h C e x

α

α

γ σ γ γ γ γ π
ρ

γ σ γ γ γ γ π

∞
−

=

∞

=

  − − + − − <  
= 
  − − + − − > 

∑

∑
 (3.16) 

where ( )( ) ( ) ( )sin 2 1 / / 2 1 , 1 2 /i iC i z h i i hπ α π= + + = +  

From eqn (3.16) it follows that the maximum value of 
x
ρ occurs at x = 0 and as x → ∞ we 

have  

( ) ( ) ( )
2

1 2 1 2 1 2

1
log tan 1 2

2 4
x

t t
z

π
ρ σ γ γ γ γ γ

+  = − + − +  
  (3.17) 

Since 
1 2
γ γ> , it is clear from (3.17) that 

x
ρ  increases with time from z < 0 and decreases 

for  z > 0. 

 

4. Conclusions 
 

The effects of electric field, couple stress parameter, β , Forchheimer quadratic 

drag, the variation of initial electrical conductivity and density in the horizontal and 

vertical directions in a heterogeneous poorly conducting fluid flow through nanoporous 

zeolite are investigated analytically.  The instantaneous streamlines for the flow with 

1 2
γ γ>  for different values of t and for a particular value of electric number,

1
w , and 

couple stress parameter, β , are drawn in Fig 1. From this figure we conclude that the 

streamlines are closer in the region of x < 0 than that of x > 0.  Physically this is attributed 

to the fact that more intensive flow is produced by the combined effect of electric field, 

couple stress parameter, β , and density gradient in that region.  The time evolution of 

density is numerically computed using eqn (3.16) for different values of time t and for a 

particular value of 
1
w  and  β  the results are presented in Fig. 2.  

From this figure we observe that the density profiles are concentrated in the lower 

region and hence there will be an increase in density gradient in that region.  We also 

observe that the density profile develops curvature near x = 0 instead of being straight 

line.  From this we conclude that this curvature due to smart properties of nanoporous 

zeolite  in the presence of electric field and couple stress parameter, β , sets up a 

circulation in the transverse plane and hence the magnitude of the density gradient 
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increases with time.  This is favorable to grow more quality and quantity of food, because 

if crops needed either water or nitrogen or both, then the sensing property of soil material 

sense it and its actuation property supply the requisite of these materials. 
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