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FOREWORD

The IAEA supports human capacity development in its Member States by providing educational materials and 
offering training courses on a wide range of nuclear related topics. The IAEA also maintains a series of educational 
basic principle nuclear power plant simulators as well as part-task simulators, which can be used in educational and 
training courses and in nuclear engineering university curricula. The hands-on approach made possible by these 
simulators can help further trainees’ practical and technical understanding of technologies.

The term computational fluid dynamics encompasses a vast range of numerical methods and practices for the 
simulation of fluid flow and heat and mass transfer that occur within nuclear systems on a broad range of spatial 
and temporal scales. These approaches represent an increasingly powerful tool that can aid academic institutions 
and industries in activities ranging from individual reactor component design and performance estimates to safety 
assessment at the plant level. In response to growing interest, the IAEA is providing education and training in the 
fundamentals of computational fluid dynamics in support of human capacity building efforts that may be of interest 
to Member States operating, constructing or planning the construction of nuclear power plants.

This publication is based on the course materials presented at the Joint ICTP–IAEA Course on Theoretical 
Foundations and Application of Computational Fluid Dynamics in Nuclear Engineering held in 2021. The course 
covered the basics of computational fluid dynamics in the field of nuclear engineering, from mathematical 
description to numerical representation and physical modelling. The concepts taught in course lectures were 
reinforced with practical hands-on virtual training exercises and demonstrations using open source software. The 
training materials from the course were compiled, edited and supplemented to create this publication as a resource 
for conducting similar training courses, as a reference for education and training programmes, and for direct use by 
trainees, university students and professors. 

The IAEA is grateful for the contribution of H. ur Rehman (Pakistan) in drafting this publication. The IAEA officer 
responsible for this publication was T. Jevremovic of the Division of Nuclear Power.
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1. INTRODUCTION 
1.1. BACKGROUND 

The behaviour of nuclear reactors depends on a complex interplay of physical phenomena that 
range from fluid dynamics, structural mechanics to neutron kinetics. With specific regard to the 
former, the prediction of momentum, heat and possibly mass transfer processes that affect the 
coolant and/or moderator is paramount to the design, performance, and safety assessment of 
nuclear reactors. Such predictions can be obtained via experimental or computational means. 
While experiments provide the ultimate benchmark, these can often be costly to set up, run and 
iterate to investigate the range of phenomena of interest. Conversely, computational 
approaches, are significantly cheaper to employ, both in material and temporal resource costs. 
However, the production of meaningful predictions via computational approaches is strongly 
dependent on a thorough understanding of all the elements that such approaches entail. These 
range from the governing physical laws (e.g., the conservation equations) to the geometric and 
temporal scales of the phenomena of interest, the mathematical models devised for their 
description as well as their limits of applicability, the steps required to obtain a time and space 
discrete description of a mathematical model starting from a time and space continuous 
formulation, the solution algorithms to be performed on the discrete model, and many more 
aspects.  

Computational approaches can be fundamentally distinguished based on their dimensionality 
as well as target spatial resolution, which has important consequences on their limits of 
applicability. At the coarsest of the geometric scales, lumped parameter system codes rely 
primarily on a one dimensional (1D) fluid flow modelling to achieve a description of plant wide 
phenomena of interest. While the support for some degree of two dimensional (2D) and three 
dimensional (3D) flow modelling of certain components (e.g., the vessel) is increasing in some 
established system codes, their original 1D vocation stems from the historical constraints of the 
available hardware at the time of their development, dating back to several decades ago. At a 
finer geometric scale lie the subchannel and porous medium codes. These codes are generally 
employed for component level analyses that range in scale from a full core down to individual 
fuel elements, with a spatial resolution comparable to the fuel pin pitch. Further down the 
resolution scale lie Reynolds averaged Navier Stokes (RANS), large eddy simulation (LES) 
and direct numerical simulation (DNS) based approaches. These resolve the fluid flow in all 
physical dimensions down to the boundary layer thickness (RANS), down to the scale of some 
of the turbulent eddy scale (LES) or even further down the smallest of the turbulent eddy scales 
(DNS). The two most important trends to be considered when progressing towards higher 
spatially resolving approaches is that the computational cost of running simulations tends to 
increase significantly while the reliance on additional closure models (that make up for the lack 
of detail of coarser approaches) is reduced. 

The computational approaches discussed so far formally belong to the broader category of 
computational fluid dynamics (CFD) approaches, which are otherwise transversal to many 
more fields of science and engineering, ranging from aeronautics to marine engineering. 
However, with specific regard to the nuclear field, the term CFD is often used to denote only 
the higher resolution approaches, namely RANS, LES, or DNS based CFD. The reason for this 
is that, as these approaches allow to resolve fluid flow down to or below the boundary layer 
size, most of the flow dynamics (which is shaped by what happens at these scales) can be 
resolved via first principles, i.e., without the use of case dependent correlations. On the other 
hand, coarser approaches require additional closure in the form of these case–dependent 
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correlations. For this document, the term CFD will be used in its nuclear vocation (unless 
specified differently), i.e., to encompass RANS, LES, and DNS methods. 

The steady increase of available computational power, both in the form of desktop workstations 
as well as high performance computing clusters, enables the application of CFD methods to 
cases of research and industrial significance. This ties into the general trend towards higher 
fidelity simulations that has been witnessed in the nuclear field over the past decade, which is 
primarily driven by RANS based methods and, to a lesser extent, LES as well as so called 
hybrid RANS–LES methods. To this day, DNS methods remain very computationally 
expensive even for the investigation of small scale phenomena of operational relevance, yet 
interest in the field is set to grow as hardware capabilities progress. 

1.2. OBJECTIVE 

The objective of this publication is to build a theoretical understanding of the principal aspects 
related to CFD approaches. These aspects can be broadly summarized as: mathematical and 
physical foundations, governing equations, modelling of turbulence, the numerical 
discretization procedure of the physical domains and governing equations, and the solution 
algorithms. These aspects are covered for both single phase and multi phase flows and are 
provided further context via concrete examples of CFD applications in the field of nuclear 
engineering. 

1.3. SCOPE 

The domain of CFD approaches in nuclear engineering is vast and requires particular care when 
tackled from the perspective of gaining a sufficiently deep understanding of each aspect it 
entails while maintaining a broad outlook on the relationship among different aspects as well 
as of the overall CFD procedure. For this reason, the scope of this publication is to provide a 
clear overview of each aspect of the CFD approaches without aiming at the greatest possible 
depth of analysis, focusing rather on building a solid understanding on the connections in 
between different topics. 

1.4. STRUCTURE 

The fundamentals of CFD are described in Section 2. starting with the overview of basics in 
vector calculus of interest to later derivations of governing equations of fluid dynamics. The 
Lagrangian and Eulerian methods are described in detail. This section also provides the 
overview of numerical methods and solution algorithms. The fundamentals of turbulent 
modelling are described in Section 3, while Section 4 covers the fundamentals of two phase 
flow modelling. Section 5 provides descriptions and examples on the application of CFDs to 
reactor design and analysis. Section 6 provides brief overview of relating uncertainties and 
methods of error analysis. 

2. FUNDAMENTALS OF COMPUTATIONAL FLUID DYNAMICS 

This chapter focuses on introducing the most important concepts and procedures in CFD, which 
transcend any specific methodological declination. These concepts can be grouped in two 
domains: 1) the mathematical and physical foundations of fluid dynamics and its governing 
equations, and 2) the aspects related to translating a physical model described by a set of 
governing equations into a discrete model that can be solved and treated numerically. 
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2.1. BASICS OF VECTOR CALCUS AND GOVERNING EQUATIONS OF FLUID 
DYNAMICS 

This section provides an overview of the CFD procedure and governing equations of fluid flow. 
It recalls basics of vector calculus and its utilization in modelling physical phenomena. In fluid 
dynamics, the description of fluid motion in an important aspect for analyzing any fluid flow 
problem. Two different approaches are used to describe fluid kinematics, namely Lagrangian 
and Eulerian approaches, which are also discussed in this section. Finally, the fluid flow models 
on which one can apply physical principle to derive governing equation of fluid dynamics 
followed by continuity, momentum and energy equations are discussed. 

2.1.1. Overview of the computational fluid dynamics procedure 

In fluid mechanics, conversation laws relating to mass, momentum, and energy conversation 
govern the fluid flows. These conversation laws are represented in the form of partial 
differential equations. To solve these equations numerically, these are first approximated to 
algebraic equations using CFD techniques. Various commercially available or specially 
developed software are utilized for this purpose. In CFD, different mathematical models, 
numerical methods, and soft tools are employed to analyze and predict fluid flows. The main 
advantage of the CFD over the experimental approach is that it provides valuable information 
about a physical phenomenon at a lower cost and in a lesser time. Furthermore, the information 
gained from a CFD analysis is more detailed as compared to an experimental one since 
measurement points are limited in experiments. In industries where the prediction of flow and 
process equipment is pertinent to the product design improvement, there is an increment in the 
CFD usage. Many CFD software packages offer the capability to capture fluid flow features 
like 3D, unsteady, turbulent, and even combustion – the features that are involved in most of 
the practical engineering problems related to fluid flows. The Navier–Stokes equations are of 
fundamental importance in a CFD analysis, these relate flow parameters like pressure, 
temperature, density, and velocity. The limited computational power or insufficient 
representation of the mathematical model often produces an approximate solution to a fluid 
flow problem. The following are the fundamental elements of a CFD simulation: 

 Discretized flow field: Values at a finite number of nodes approximate the field 
variables (𝜌, 𝑝, 𝑢, etc.); 

 Motion equations are discretized: approximated by values at a finite number of 
nodes; 

 Differential or integral equations: algebraic equations, as shown in Fig. 1; 
 Resulting system of algebraic equations is solved to find values at the nodes. 

The CFD codes provide a complete CFD analysis that consists of the following three steps (also 
refer to Fig. 2) [1]: 

 Pre-processing step: In this step, the computational domain geometry and 
discretization (i.e., mesh) are defined and created, physical properties of the 
various materials involved in the simulation are defined, initial and boundary 
conditions are set, and simulation models and parameters are selected; 

 Solution step: In this step, the governing equations that are representative of the 
investigated phenomenon are solved by the computer code, typically with 
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additional constitutive relationships that provide often required closure to the 
governing equations; 

 Post–processing step. In this step, after the end of the simulation, results are 
extracted, processed, and interpreted in a wide variety of ways. 

 

(a)                                                        (b) 

FIG. 1. (a) Continuous valued function and (b) discrete approximation of a function. 

 

FIG. 2. Overall workflow and elements within the framework of a CFD approach. 

2.1.2. Basics of vector algebra and vector calculus 

Fluid dynamics is described with the quantities that have both, magnitude and direction, such 
as for example the velocity. This is a vector quantity, and as such, the mathematics involved 
behind fluid dynamics is most conveniently expressed in vector notation. This section provides 
and overview of basic relations of vector algebra and vector calculus [2]. 

2.1.2.1. Scalar and vector fields 

A scalar quantity given as a function of three space coordinates and a time coordinate 𝑡 is called 
a scalar field. The coordinates in space might be defined as cartesian (𝑥, 𝑦, 𝑧), cylindrical 
(𝑟, 𝜃, 𝑧) or spherical (𝑟, 𝜃, 𝜑). For example, pressure 𝑝, density 𝜌, and temperature 𝑇 are all the 
scalar quantities that can be represented via scalar fields so that: 

 𝑝 = 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝(𝑟, 𝜃, 𝑧, 𝑡) = 𝑝(𝑟, 𝜃, 𝜑, 𝑡)  (1) 
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 𝜌 = 𝜌(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌(𝑟, 𝜃, 𝑧, 𝑡) = 𝜌(𝑟, 𝜃, 𝜑, 𝑡)  (2) 
 𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑟, 𝜃, 𝑧, 𝑡) = 𝑇(𝑟, 𝜃, 𝜑, 𝑡) (3) 

Similarly, a vector quantity given as a function of space and time coordinates is called a vector 
field. For example, velocity 𝒖 is a vector quantity that can be represented in terms of its scalar 
components 𝑢௜ with respect to the basis vectors in the reference frame. In case of a cartesian 
reference frame with bases vectors (𝒆𝒙, 𝒆𝒚, 𝒆𝒛), velocity is defined as follows: 

 𝒖 = 𝑢௫𝒆𝒙 + 𝑢௬𝒆𝒚 + 𝑢௭𝒆𝒛 (4) 

wherein the individual components are scalar fields: 

 𝑢௫ = 𝑢௫(𝑥, 𝑦, 𝑧, 𝑡) (5) 
   𝑢௬ = 𝑢௬(𝑥, 𝑦, 𝑧, 𝑡) (6) 
  𝑢௭ = 𝑢௭(𝑥, 𝑦, 𝑧, 𝑡) (7) 

Similarly, the fields of tensor quantities of any order can be defined; for example, a stress or a 
strain, which has magnitude, direction, and a plane in which it acts. Tensor (from Latin tendere 
that means to stretch) is a mathematical formalism used to solve physics problems. It is more 
general than vector, while zero tensor represent a scalar (number). Therefore, tensor is defined 
as an algebraic object over an n dimensional vector space obeying change-of-basis 
transformation law. 

2.1.2.2. Scalar and vector products 

Given two vector fields 𝒂 and 𝒃, their scalar product is 𝒂 ⋅ 𝒃 while the vector product is 𝒂 × 𝒃. 
For a cartesian reference frame the vectors and products are defined as follows: 

 𝒂 = 𝑎௫𝒆𝒙 + 𝑎௬𝒆𝒚 + 𝑎௭𝒆𝒛 (8) 
 𝒃 = 𝑏௫𝒆𝒙 + 𝑏௬𝒆𝒚 + 𝑏௭𝒆𝒛 (9) 
   𝒂 ⋅ 𝒃 = 𝑎௫𝑏௫ + 𝑎௬𝑏௬ + 𝑎௬𝑏௬ (10) 
  

𝒂 × 𝒃 = ൥

𝒆𝒙 𝒆𝒚 𝒆𝒛

𝑎௫ 𝑎௬ 𝑎௭

𝑏௫ 𝑏௬ 𝑏௭

൩

= 𝒆𝒙൫𝑎௬𝑏௭ − 𝑎௭𝑏௬൯ + 𝒆𝒚(𝑎௫𝑏௭ − 𝑎௭𝑏௫) + 𝒆𝒛(𝑎௫𝑏௬ − 𝑎௬𝑏௫) 

 

(11) 

When considering cylindrical or spherical reference frames, it is generally more convenient to 
perform a change of basis for both 𝒂 and 𝒃 from the original reference frame to a cartesian one. 
For a cylindrical reference frame, the change of basis to cartesian coordinates is:  

 𝑎௫ = 𝑎௥ 𝑐𝑜𝑠𝜃 (12) 
 𝑎௬ = 𝑎௥ 𝑠𝑖𝑛𝜃 (13) 
   𝑎௭ = 𝑎௭ (14) 

wherein the 𝜃 angle is defined with respect to the 𝑥 axis in the cartesian frame. For a 
transformation from a spherical reference frame: 

 𝑎௫ = 𝑎௥ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 (15) 
  𝑎௬ = 𝑎௥ 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 (16) 
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  𝑎௭ = 𝑎௥ 𝑐𝑜𝑠𝜑 (17) 

wherein the 𝜃 is defined with respect to the 𝑥 axis in the cartesian frame, lying in the 𝑥𝑦 plane, 
while the 𝜑 angle is defined with respect to the 𝑧 axis in the cartesian frame, lying in a plane 
perpendicular to the 𝑥𝑦 plane. 

2.1.2.3. Gradient of a scalar field 

Consider a scalar field 𝑝 in the form specified by Eq. (1). The gradient of 𝑝, which is 𝛻𝑝, at a 
given point in space is a vector such that: 

 Its magnitude is the maximum rate of change of 𝑝 per unit length of the coordinate space 
at the given point; 

 Its direction is that along which 𝑝 changes the most at the given point. 

As an example, a 2D pressure field in Cartesian coordinates is sketched in Fig. 3. The solid 
curves are lines of constant pressure. Such lines are called isolines. An arbitrary point (𝑥, 𝑦) is 
shown in Fig. 3. Moving away from this point in an arbitrary direction, 𝑝 will in general, change 
because of moving to another location in space. Moreover, there will be some direction from 
this point along which 𝑝 changes the most over a unit length in that direction. This defines the 
direction of the gradient of 𝑝. The magnitude of 𝛻𝑝 is the rate of change of 𝑝 per unit length in 
that direction. Both, the magnitude, and direction of 𝛻𝑝 change from one point to another in the 
coordinate space. A line drawn in this space along which 𝛻𝑝 is tangent at every point is defined 
as a gradient line, as represented in Fig. 3. The gradient line and isoline through any given point 
in the coordinate space are perpendicular.  

 

FIG. 3. Illustration of the concept of gradient of a scalar field. 

The pressure gradient is hereby expressed in different reference frames, namely cartesian, 
cylindrical and spherical frames as follows: 

 
𝛻𝑝 =

𝜕𝑝

𝜕𝑥
𝒆𝒙 +

𝜕𝑝

𝜕𝑦
𝒆𝒚 +

𝜕𝑝

𝜕𝑧
𝒆𝒛 

(18) 

  
𝛻𝑝 =

𝜕𝑝

𝜕𝑟
𝒆𝒓 +

1

𝑟

𝜕𝑝

𝜕𝜃
𝒆ఏ +

𝜕𝑝

𝜕𝑦
𝒆𝒛 

(19) 
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𝛻𝑝 =

𝜕𝑝

𝜕𝑟
𝒆𝒓 +

1

𝑟

𝜕𝑝

𝜕𝜃
𝒆ఏ +

1

𝑟 𝑠𝑖𝑛𝜃

𝜕𝑝

𝜕𝜑
𝒆𝝋 

(20) 

2.1.2.4. Divergence of a vector field 

In fluid dynamics, one of the most relevant vector fields is the fluid flow velocity, often denoted 
with 𝒖. For a fluid element of an infinitesimal volume of fluid moving along a streamline, a 
continuous 1D line in 3D space that is tangent to the velocity field at every point in space, the 
divergence of the velocity field denoted with 𝛻 ⋅ 𝒖, represents a scalar field that is the rate of 
change of a volume of a moving fluid element having a constant mass. The divergence of the 
velocity (or any vector field) for different reference frames, cartesian, cylindrical and spherical 
frames are defined as follows: 

 
𝛻 ⋅ 𝒖 =

𝜕𝑢௫

𝜕𝑥
+

𝜕𝑢௬

𝜕𝑦
+

𝜕𝑢௭

𝜕𝑧
 

(21) 

  
𝛻 ⋅ 𝒖 =

1

𝑟

𝜕(𝑟𝑢௥)

𝜕𝑟
+

1

𝑟

𝜕𝑢ఏ

𝜕𝜃
+

𝜕𝑢௭

𝜕𝑧
 

(22) 

  
𝛻 ⋅ 𝒖 =

1

𝑟ଶ

𝜕(𝑟ଶ𝑢௥)

𝜕𝑟
+

1

𝑟 𝑠𝑖𝑛𝜃

𝜕(𝑢ఏ 𝑠𝑖𝑛 𝜃)

𝜕𝜃
+

1

𝑟 𝑠𝑖𝑛𝜃

𝜕𝑢ఝ

𝜕𝜑
 

(23) 

2.1.2.5. Curl of a vector field 

For the vector field 𝒖 defined in of Section 2.1.2.4., its curl, denoted with 𝛻 × 𝒖, is a vector 
field such that its value at any point in space is a vector that lies in a plane perpendicular to the 
flow streamline and is indicative of an overall rotation of the streamlines (i.e., of the velocity 
field) in space. The curl of the velocity (or any vector field) for a cartesian reference frame is 
given as follows: 

 

𝛻 × 𝒖 = ൦

𝒆𝒙 𝒆𝒚 𝒆𝒛

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢௫ 𝑢௬ 𝑢௭

൪ = 𝒆𝒙 ቆ
𝜕𝑢௭

𝜕𝑦
−

𝜕𝑢௬

𝜕𝑧
ቇ + 𝒆𝒚 ൬

𝜕𝑢௭

𝜕𝑥
−

𝜕𝑢௫

𝜕𝑧
൰ + 𝒆𝒛 ቆ

𝜕𝑢௬

𝜕𝑥
−

𝜕𝑢௫

𝜕𝑦
ቇ 

(24) 

2.1.2.6. Line integrals 

For a vector field 𝒖 the line integral along any continuous open line defined between the two 
points 𝑎, 𝑏 in space is defined as: 

 

න 𝒖 ⋅ 𝑑𝒍

௕

௔

 
(25) 

where 𝑑𝒍 is a vector of infinitesimal length 𝑑𝑙 along the integral domain. The integration domain 
might be represented by a closed line, and in such a case the line integral is expressed as: 

 
ර 𝒖 ⋅ 𝑑𝒍 (26) 

These two types of integrals are illustrated in Fig. 4. Line integrals of the velocity field on a 
closed domain are often used e.g., in the calculation of the circulation, a scalar quantity 
representing the degree of rotation that a fluid flow exhibits. 
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(a)                                                                    (b) 

FIG. 4. Example of line integrals of a generic vector field A on: (a) an open line defined between two points a, b 
and (b) a closed line C. 

A line integral of a scalar field 𝑝 is a scalar that can be calculated as: 

 

න p 𝑑𝑙

௕

௔

 
(27) 

 or, for a closed line integral as follows: 

 
ර 𝑝 𝑑𝑙 (28) 

2.1.2.7. Surface integrals 

Analogously to the line integrals introduced in Section 2.1.2.6, and with respect to vector fields 
such as e.g., the velocity field 𝒖, the surface integral of a vector field is a scalar, and it can be 
defined as: 

 
ඵ 𝒖 ⋅ 𝑑𝑺

ௌ

 (29) 

wherein 𝑑𝑺 is the oriented infinitesimal surface area element on the surface 𝑆, and parallel to 
the surface normal 𝒏 at any point. In case the surface is closed, the normal is outwards from the 
domain enclosed by 𝑆, by convention. From the perspective of notation, integrals on closed 
surfaces can be denoted with ∯ as an integration symbol, but typically the double integral 
notation (or even a single integral notation, if the integration domain is clearly indicated) 
suffice. An example of the integral domain with the relevant elements that partake in the 
definition of the integral are represented in Fig. 5.  
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FIG. 5. Representation of a closed surface S encompassing a volume 𝑉, together with a representative infinitesimal 
oriented surface element 𝑑𝑺 parallel to the outwards normal 𝒏. 

Similarly, a surface integral for a scalar quantity 𝑝 is defined as follows: 

 
ඵ 𝑝 𝑑𝑆

ௌ

 (30) 

The surface integrals, together with volume integrals and the Gauss theorem, provide the basis 
of the finite volume method, one of the most popular numerical discretization methods for 
obtaining a space and time–discrete representation of a continuous fluid flow problem. While 
other types of surface integrals are mathematically possible, such as the surface integral of a 
scalar field 𝑝 yielding a vector ∬ p d𝐒

ୗ
, or surface integrals of a vector field 𝒖 yielding a vector 

such as ∬ 𝐮 𝑑𝑆
ୗ

 or ∬ 𝐮 × d𝐒
ୗ

, these are arguably quite rare in the domain of computational 
fluid dynamics as these do not offer particularly useful physical interpretations or numerical 
applications.  

2.1.2.8. Volume integrals 

The volume integral of 𝒖, a vector field, in space over the volume 𝑉 is defined as: 

 
ම 𝒖 𝑑𝑉

௏

 (31) 

Similarly, for a scalar field 𝑝, the volume integral results in a scalar and is defined as: 

 
ම 𝑝 𝑑𝑉

௏

 (32) 

From the perspective of notation, given that in a 3D spatial domain, volumes are closed, the 
symbol ∰ can be used as well to represent the integration, but the meaning remains unchanged. 

2.1.2.9. Relationship between line, surface, and volume integrals 

The line integral of a vector field 𝒖 over closed line boundary C is related to the surface integral 
of 𝒖 over an open surface S by Stokes theorem. The representation of it is shown in Fig. 6.  
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FIG. 6. Representation of an open surface 𝑆 bounded by a closed line boundary 𝐶 alongside a representative 
oriented infinitesimal surface element 𝑑𝑺 parallel to the surface normal 𝒏 at point 𝑃. 

Stokes theorem is defined as follows: 

 
න 𝒖 ⋅ 𝑑𝒍

஼

= ඵ(𝛻 × 𝒖) ⋅ 𝑑𝑺

ௌ

 (33) 

As shown in Fig. 5, if the volume 𝑉 is enclosed within the closed surface 𝑆, the surface and 
volume integrals of the vector field 𝒖 are associated by the Gauss theorem, also known as the 
divergence theorem: 

 
ඵ 𝒖 ⋅ 𝑑𝑺

ௌ

= ම(𝛻 ⋅ 𝒖) 𝑑𝑉

௏

 (34) 

The significance of these two theorems, especially of the Gauss theorem, will become clear 
when discussing the tenets of the finite volume method.  

2.1.2.10. Material derivative 

The material derivative of a quantity, also known as substantial derivative, represents the rate 
of change per unit time as it is being transported (or advected) in space by a velocity field 𝒖. It 
can be interpreted as a time derivative of a quantity as it is moving along a streamline. The 
quantity can be a scalar, vector, or tensor of any order, and the material derivative operator can 
be defined as: 

 𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝒖 ⋅ 𝛻 

(35) 

By comparison, the partial derivative with respect to time 𝜕 ⁄ 𝜕𝑡, also known as local 
derivative, represents the rate of change of a quantity per unit time at a fixed point in space, 
regardless of advection. As an example, the material derivative of the density scalar field 𝜌 is 
given with: 

 𝐷𝜌

𝐷𝑡
=

𝜕𝜌

𝜕𝑡
+ 𝒖 ⋅ (𝛻𝜌) 

(36) 
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2.2. LAGRANGIAN AND EULERIAN APPROACHES 

Two distinct approaches for describing fluid motion through space are Lagrangian and Eulerian 
approaches. While the specific mathematical reference frames encountered so far, the cartesian, 
cylindrical and spherical ones, describe the space starting from a certain origin point, the 
Lagrangian and Eulerian approaches are concerned with how the perspective from which one 
is to describe the dynamics of a fluid. 

2.2.1. Lagrangian approach 

Collective motion of individual particles, as represented in Fig. 7, is described by laws of 
classical mechanics that can be applied to accurately define the motion and predict where these 
particles move and exchange momentum and kinetic energy with one another. 

 

FIG. 7. Collection of particles whose state is described by the position vectors 𝒙, and velocity vectors 𝒗. 

The kinematics refers to the position vectors 𝒙 and the velocity vectors 𝒗 of each particle as a 
function of time. When applied to tracking the evolution of the position and velocity of discrete 
fluid elements (or parcels) of constant mass, this approach is known as Lagrangian approach, 
named after Italian mathematician Joseph–Louis Lagrange (1736–1813). This method entails 
several difficulties: to define and identify fluid parcels as per their movement in the flow field, 
and for all cases of interest to nuclear engineering, fluids are assumed to be a continuum. As a 
result, interactions between neighboring fluid parcels are as easily described as the interactions 
between distinct particles. Despite these difficulties, there are numerous practical applications 
of Lagrangian approach, such as but not limited to rarefied flows, flow visualization and 
measurements based on particle tracking. 

2.2.2. Eulerian approach 

The Eulerian approach, named after Swiss mathematician Leonhard Euler (1707–1783), is more 
common method for describing fluid motion. The fluid properties are described in terms of 
continuous fields in space and time with reference to an observer that is not affected by the fluid 
flow. From a mathematical perspective, at each point 𝒙 and time 𝑡, these fields describe the 
various properties (pressure, velocity, density, etc.) of the fluid at a given location in space and 
time, regardless of which parcels of fluid pass through that location. From a physical 
perspective, as many fluid properties are statistical in nature, these fields describe fluid 



 

12 

properties in a neighborhood of a given point in space and time. Nonetheless, from a 
computational perspective, the domain of the fluid flow of interest is spanned by a grid of finite 
volumes or control volumes. The description of fluid flow becomes a description of the fluid 
inflow and/or outflow from each finite volume, as well as the change in flow properties in each 
cell arising from this inflow/outflow. This is described in the following sections. 

2.2.3. Clarifying remarks on the Lagrangian and Eulerian approaches 

The Lagrangian and Eulerian approaches are compared in the example of a generic fluid flow 
in a cartesian reference frame as shown in Fig. 8; in particular, the differences between the two 
approaches at three different moments in time 𝑡଴, 𝑡ଵ and 𝑡ଶ. 

 

FIG. 8. Comparison of (a) Lagrangian) and (b) Eulerian approach in describing the fluid flow with respect to 
Cartesian reference frame at three separate moments in time, 𝑡଴, 𝑡ଵ and 𝑡ଶ. 

The Lagrangian approach concerns itself with tracking the evolution of individual fluid parcels, 
which in case shown in Fig. 8, considers a fluid parcel in a neighbourhood of point 𝒑଴ at time 
𝑡଴. As the parcel is advected through space, its position evolves accordingly, passing through 
points 𝒑ଵ and 𝒑ଶ at times 𝑡ଵ and 𝑡ଶ, respectively. The parcel’s trajectory through time and space 
is presented by a dashed line. The fact that the fluid parcel is still the same as the starting one 
(i.e., composed of the same original molecules) is indicated by the colour of the parcels being 
not changed. 

In contrast to this, in the Eulerian approach there is a collection of points of interest, in the 
neighbourhood of which the evolution of the fluid flow is tracked. As shown in Fig. 8, the 
concern is what happens in the neighbourhood of point 𝒑 (which never changes) at different 
times. The fluid within the neighbourhood is possibly changing as fluid flows through it; this is 
marked with different colours at different times in Fig. 8. 

The reference frame is the same for both approaches and it is constant in time (though it does 
not necessarily need to be time independent), stressing the fact that the two approaches are 
independent of a coordinate system. 
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Despite, the Lagrangian approach provides valuable results in many cases, in fluid flow 
problems the Eulerian approach is more convenient and often used. Secondly, since velocity or 
pressure probes are usually installed at a specified location inside a wind tunnel, the Eulerian 
approach is more suitable for experimental measurement [3]. 

2.3. GOVERNING EQUATIONS OF FLUID DYNAMICS 

Computational fluid dynamics is based on fundamental conservation laws, namely: 

 Law of conservation of mass; 
 Law of conservation of momentum (which follows from the second Newton’s law); 
 Law of conservation of energy. 

The specific form, meaning the mathematical formulation, that the governing equations assume 
depends however on the chosen flow representation model. Representation model is the choice 
of a specific combination of flow reference frame (either Lagrangian or Eulerian) and a 
definition of the fluid neighborhood as discussed in Section 2.2. Two approaches for defining 
neighborhood in more rigorous terms are described in this section. These are a finite control 
volume approach and an infinitesimal fluid element approach. Thus, a total of four different 
flow models are possible [4]. 

2.3.1. Fluid flow representation models 

Each of the four models are described by four different sets of governing equations, which 
nonetheless represent the same conservation laws. These flow models are shown in Fig. 9. 

 

FIG. 9 Example of different flow models: (a) finite control volumes with Eulerian approach; (b) finite control 
volumes with Lagrangian approach; (c) infinitesimal fluid elements with Eulerian approach; (d) infinitesimal fluid 
elements with Lagrangian approach. 
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2.3.1.1. Eulerian, finite control volume based flow representation 

A finite control volume together with Eulerian approach is used for the flow model illustrated 
in Fig. 9 (a). This control finite non infinitesimal volume 𝑉 is bound by a boundary surface 𝑆. 
Consistently with a Eulerian approach, the control volume is not affected by the fluid as it flows 
through it. By applying the conservation laws to the fluid instantaneous contained in finite 
volume, it is possible to obtain conservation equations in an integral form. In other words, the 
conservation laws are expressed in terms of integrals of relevant quantities over the control 
volume 𝑉 or the bounding surface 𝑆. The mathematical formulation does not separate derivate 
terms into combinations of partial derivatives. While this is inconsequential from the 
perspective of mathematical notation, it is consequential from the perspective of an actual 
numerical representation of the equations.  

2.3.1.2. Lagrangian, finite control volume based flow representation 

Lagrangian approach for describing the flow via a finite control volume ais illustrated in Fig. 9 
(b). Consistently with a Lagrangian approach, the control volume is neither of constant volume 
nor of constant shape, as it intended to identify a specific collection of molecules as flow. By 
applying the conservation laws to the fluid within the control volume, the conservation 
equations take an integral form. The form is integral, as it was for the previously illustrated 
case, as the domain of interest is represented by a finite control volume. However, in a 
Lagrangian framework the form is said to be a non conservation one as, mathematically, some 
of the derivative terms that appear in the conservation form are separated in different individual 
derivate terms. It is important to point out that the terms conservation and non conservation 
form are mathematical formalisms that describe the same exact physics but can lead to potential 
differences in numerical solutions of the equations. 

2.3.1.3. Eulerian, infinitesimal fluid element based flow representation 

An infinitesimal fluid element of volume 𝑑𝑉 treated with a Eulerian approach is illustrated in 
Fig. 9 (c). This infinitesimal volume is fixed in space with respect to selected coordinate system. 
In the limit of a vanishingly small volume, the conservation equations are in a differential, rather 
than an integral form. Thus, for a Eulerian reference frame, the final equations are in a 
differential conservation form. 

2.3.1.4. Lagrangian, infinitesimal fluid element based flow representation 

The fluid flow described via infinitesimal fluid elements 𝑑𝑉 in a Lagrangian reference frame is 
illustrated in Fig. 9 (d). Applying conservation laws to the fluid element, the conservation 
equations take a differential non conservation form. The actual equations for these different 
forms are presented in the following Section 2.3.2. 

2.3.2. Conservation equations 

2.3.2.1. Mass conservation equation 

The mass conservation equation (or the continuity equation) describes conservation of mass to 
the volume of interest for a specified flow representation model. In the Eulerian reference 
frame, a finite control volume 𝑉 is bounded by surface 𝑆. This corresponds to the flow 
representation model illustrated in Fig. 9 (a). In such a case, the mass conservation law states 
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that the total rate of fluid mass change within the volume 𝑉 needs to correspond to the net mass 
flow into that volume through the surface boundary 𝑆. Thus, an integral conservation form of 
the continuity equation is as follows: 

 𝜕

𝜕𝑡
ම 𝜌 𝑑𝑉

௏

+ ඵ 𝜌𝒖 ⋅ 𝑑𝑺

ௌ

= 0 
(37) 

The volume integral of the fluid density over 𝑉 equals the total fluid mass in the control volume. 
Conversely, while total mass inflow is given by an integral of the surface normal mass flow 
ρ𝒖 ⋅ 𝑑𝑺 over the bounding surface. It can help to think about these terms from a dimensional 
perspective. Namely, the term ρ𝒖 represents a mass flux, the amount of fluid mass flowing per 
unit time per unit surface through an imaginary surface perpendicular to the flow direction. 
Performing a scalar product of this quantity against an oriented surface gives the total mass 
flow across the surface, the total amount of fluid mass flowing per unit time through the surface. 
By performing this for all infinitesimal surface elements 𝑑𝑺 that compose the boundary and 
considering that the surface normal are by convention pointed outwards with respect to the 
volume enclosed, the resulting integral is a balance of the overall mass outflow from the volume 
(if the integral is < 0) or inflow into the volume (if the integral is > 0).  

For the flow illustrated in Fig. 9 (c), the same logic applies to the derivation of integral form of 
the continuity equation. In this case however, the limit for 𝑉 → 0 needs to be considered. The 
problem posed by having to treat how 𝑆 → 0 as 𝑉 → 0 can be solved by formulating the surface 
integral in terms of volume integral using Gauss theorem (Section 2.1.2.9), Eq. (34), thus: 

 
ඵ 𝜌𝒖 ⋅ 𝑑𝑺

ௌ

= ම(𝛻 ⋅ 𝜌𝒖) 𝑑𝑉

௏

 (38) 

By taking the advantage of Eq. (38) and with the limit for 𝑉 → 0, based on Eq. (37), the 
differential conservation form of the continuity equation becomes: 

 𝜕

𝜕𝑡
𝜌 + 𝛻 ⋅ (𝜌𝒖) = 0 

(39) 

For a finite control volume moving with the flow as represented in Fig. 9 (b), the mass 
conservation principle states that the total mass within the volume is constant in time, which 
stems from the definition of a control volume itself in a Lagrangian frame. Recalling the concept 
of material derivative introduced in Section 2.1.2.10, it represents the total rate of change of 
fluid mass within a moving fluid parcel. Thus, the conservation equation can be defined in its 
integral non–conservation form as: 

 𝐷

𝐷𝑡
ම 𝜌 𝑑𝑉

௏

= 0 
(40) 

By applying the same logic adopted before when using the integral conservation form to derive 
the differential conservation form, the differential non–conservation form that describes the 
flow of an infinitesimal fluid element in a Lagrangian frame can be obtained as: 

 𝐷

𝐷𝑡
𝜌 + 𝜌𝛻 ⋅ 𝒖 = 0 

(41) 
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By recalling the definition of material derivative provided by Eq. (35) and by recalling that 𝛻 ⋅
(ρ𝒖) = (ρ𝛻 ⋅ 𝒖) + (𝒖 ⋅ 𝛻ρ) due to the derivative of a product rules, the conservation and non–
conservation forms of the continuity equation are mathematically identical. However, the 
advective term 𝛻 ⋅ (ρ𝒖) is treated as a sum of separate terms in the non–conservation form. The 
differences between these forms arise only at the equation discretization step, as it is further 
elaborated in Section 2.4. 

2.3.2.2. Momentum conservation equation 

The momentum conservation equation (or the continuity equation) is a consequence of applying 
a formulation of Newton’s second law to the volume of interest for a specified flow 
representation model. The total rate of change of a momentum within the volume (whether 
finite or infinitesimal) needs to be equal to a sum of: net momentum inflow in the volume, 
forces that act on the surface boundary of the volume, and the body forces (also known as bulk 
forces) acting on the volume from within (e.g., gravity). In the Eulerian reference frame, a finite 
control volume 𝑉 is bounded by a surface S. This corresponds to the flow representation model 
illustrated in Fig. 9 (a). As the density represents a specific mass (i.e., mass per unit volume), 
specific momentum (i.e., momentum per unit volume) is then 𝜌𝒖. Thus, the rate of change of 
total momentum in the control volume can be calculated as: 

 𝜕

𝜕𝑡
ම 𝜌𝒖 𝑑𝑉

௏

 
(42) 

The term 𝜌𝒖 can also be thought as the amount of mass that is advected by 𝒖, namely a mass 
flux, while the term 𝜌𝒖 ⋅ 𝑑𝑺 represents the net mass flow through an infinitesimal oriented 
surface element 𝑑𝑺 on the bounding surface 𝑆. This is a scalar quantity that represent mass 
outflow from the volume 𝑉 through 𝑑𝑺 if positive, inflow if negative. Starting from this, the 
net flow of momentum through 𝑑𝑺 can be defined as 𝒖(𝜌𝒖 ⋅ 𝑑𝑺). No specific mathematical 
considerations apply to this term in this form, as the term in parenthesis is scalar. Nonetheless, 
it is often more convenient to express this term as an outer product of the velocity terms, given 
that 𝒖(𝜌𝒖 ⋅ 𝑑𝑺) = 𝜌(𝒖 ⊗ 𝒖) ⋅ 𝑑𝑺. Finally, the net outward flow can be obtained as: 

 
ඵ 𝜌(𝒖 ⊗ 𝒖) ⋅ 𝑑𝑺

ௌ

 (43) 

The momentum changes due to forces acting on the domain boundary surface. At each point on 
the surface, an infinitesimal force 𝑑𝑭 acting on an infinitesimal oriented surface area element 
𝑑𝑺 can be defined. The oriented surface area element is given by 𝑑𝑺 = 𝒏 𝑑𝑆, where 𝒏 being 
represents the surface normal and 𝑑𝑆 the surface area of the element. By defining a stress vector 
𝝈௡ acting on the surface as ∶ 

 
𝝈௡ =

𝑑𝑭

𝑑𝑆
 

(44) 

it is possible to equate the total force acting on the surface 𝑆 as: 

 
ඵ 𝑑𝑭

ௌ

= ඵ 𝝈௡ 𝑑𝑆

ௌ

 (45) 



 

17 

To abstract the description of the state of stress at each point in the fluid from a specific instance 
of a control volume, the Cauchy stress tensor 𝝈 is defined so that, for any possible infinitesimal 
surface 𝑑𝑺 of normal 𝒏 that passes through the point being considered, it is: 

 𝝈௡ = 𝒏 ⋅ 𝝈 (46) 

The Cauchy stress tensor fully describes the state of stress within each point of a fluid in a 
manner that is independent from the specific choice of a control volume and its bounding 
surface. In case of fluid, the stress tensor is always decomposed into a so called hydrostatic 
component that consists of (isotropic) pressure field 𝑝 and a deviatoric stress tensor 𝝈ௗ so that: 

 𝝈 = −𝑝𝕀 + 𝝈ௗ (47) 

where 𝕀 represents the identity tensor. In 3D space cartesian reference frame, the stress tensor 
is given by: 

 
𝝈 = ൥

𝜏௫୶ − 𝑝 𝜏௫௬ 𝜏௫௭

𝜏௬௫ 𝜏୷୷ − 𝑝 𝜏௬௭

𝜏௭௫ 𝜏௭௬ 𝜏୸୸ − 𝑝
൩ 

(48) 

where the 𝜏௫௬ values represent the nine components of the deviatoric stress tensor 𝝈ௗ. For a 
continuum, it can be shown that only six of these components are independent, as the principle 
of conservation of angular momentum applied to the control volume leads to 𝜏௜௝ = 𝜏௝௜ , meaning 
that the deviatoric stress tensor 𝝈ௗ is symmetric. By substituting the stress vector 𝝈௡ with Eq. 
(46) in Eq. (45) and considering the definition of the stress tensor in terms of a hydrostatic and 
deviatoric components given by Eq. (47), the net rate of change of momentum due to forces 
acting on 𝑆 becomes: 

 
ඵ 𝑑𝑭

ௌ

= ඵ 𝒏 ⋅ (−𝑝𝕀 + 𝝈ௗ) 𝑑𝑆

ௌ

= − ඵ 𝑝 𝑑𝑺

ௌ

+ ඵ 𝒏 ⋅ 𝝈ௗ  𝑑𝑆

ௌ

 (49) 

For Newtonian fluids, the deviatoric stress tensor is: 

 
𝝈ௗ = 𝜇(𝛻𝒖 + (𝛻𝒖)் −

2

3
(𝛻 ⋅ 𝒖)𝕀) 

(50) 

where 𝜇 represents fluid molecular viscosity. Term 𝝈ௗ in 3D space is obtained as follows: 

 

𝝈ௗ = 𝜇

⎣
⎢
⎢
⎢
⎢
⎢
⎡

 

2
𝜕𝑢௫

𝜕𝑥
−

2

3
𝛻 ⋅ 𝒖

𝜕𝑢௬

𝜕𝑥
+

𝜕𝑢௫

𝜕𝑦

𝜕𝑢௭

𝜕𝑥
+

𝜕𝑢௫

𝜕𝑧

𝜕𝑢௫

𝜕𝑦
+

𝜕𝑢௬

𝜕𝑥
2

𝜕𝑢௬

𝜕𝑦
−

2

3
𝛻 ⋅ 𝒖

𝜕𝑢௭

𝜕𝑦
+

𝜕𝑢௬

𝜕𝑧
𝜕𝑢௫

𝜕𝑧
+

𝜕𝑢௭

𝜕𝑥

𝜕𝑢௬

𝜕𝑧
+

𝜕𝑢௭

𝜕𝑦
2

𝜕𝑢௭

𝜕𝑧
−

2

3
𝛻 ⋅ 𝒖

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(51) 

For any specific bulk force 𝒇௕its contribution is: 

 
ම 𝒇௕ 𝑑𝑉

௏

 (52) 
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By combining all of the contributions considered so far, namely: net momentum rate of change 
within 𝑉, given by Eq. (42), net momentum advected out of 𝑉, given by Eq. (43), net momentum 
change due to forces acting on 𝑆, given by Eq. (49), and net momentum change due to specific 
bulk forces given by Eq. (52), the final integral conservation form of the momentum equation 
becomes: 

 𝜕

𝜕𝑡
ම 𝜌𝒖 𝑑𝑉

௏

+ ඵ 𝜌(𝒖 ⊗ 𝒖) ⋅ 𝑑𝑺

ௌ

= − ඵ 𝑝 𝑑𝑺

ௌ

+ ඵ 𝒏 ⋅ 𝝈ௗ  𝑑𝑆

ௌ

+ ම 𝒇௕ 𝑑𝑉

௏

 
(53) 

Differential conservation form of the momentum equation is instead derived by applying the 
same logic to an infinitesimal fluid element 𝑑𝑉 fixed in space, consistent with Eulerian 
framework, as shown in Fig. 9 (c). This means that the governing equation would be given by 
Eq. (51) in the limit for 𝑉 → 0. As seen for the continuity equation, this limit is better handled 
if the surface integrals that appear in Eq. (53) are converted into volume integrals. By taking 
advantage of the divergence theorem, this can be accomplished for all relevant terms as follows: 

 
ඵ 𝜌(𝒖 ⊗ 𝒖) ⋅ 𝑑𝑺

ௌ

= ම 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) 𝑑𝑉

௏

 (54) 

 
ඵ 𝑝 𝑑𝑺

ௌ

= ම 𝛻𝑝 𝑑𝑉

௏

 (55) 

 
ඵ 𝒏 ⋅ 𝝈ௗ  𝑑𝑆

ௌ

= ම 𝛻 ⋅ 𝝈ௗ  𝑑𝑉

௏

 (56) 

By substituting Eqs. (54)(56) into Eq. (53) and taking the limit for 𝑉 → 0, the differential 
conservation form of the momentum conservation equation becomes: 

 𝜕

𝜕𝑡
𝜌𝒖 + 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) = −𝛻𝑝 + 𝛻 ⋅ 𝝈ௗ + 𝒇௕ 

(57) 

Both, the integral and differential forms are vector valued equations, as the velocity 𝒖 is a 
vector. Thus, these can be also written as a group of equations, one for each component. 
Considering the differential form as an example, the momentum equation for the 𝑖th component 
in a cartesian reference frame is: 

 𝜕

𝜕𝑡
𝜌𝑢௜ + ෍

𝜕

𝜕𝑥௝

ଷ

௝ୀଵ

(𝜌𝑢௜𝑢௝)

= −
𝜕

𝜕𝑥௜
𝑝 + ෍

𝜕

𝜕𝑥௝

ଷ

௝ୀଵ

ቌ𝜇 ൭
𝜕𝑢௝

𝜕𝑥௜
+

𝜕𝑢௜

𝜕𝑥௝
− 𝛿௜௝

2

3
෍

𝜕𝑢௞

𝜕𝑥௞

ଷ

௞ୀଵ

൱ቍ + 𝑓௕,௜  

 

(58) 

where different axes along which the derivation is performed are indicated with 𝑥௜, with 𝑥ଵ =
𝑥, 𝑥ଶ = 𝑦 and 𝑥ଷ = 𝑧. Furthermore, the Kronecker delta 𝛿௜௝ equals 1 only when 𝑖 = 𝑗 and is 0 
otherwise. Thus, Eq. (57) consists of three scalar equations, that in case of a cartesian reference 
frame, assume the form specified by Eq. (58). For notational simplicity and abstraction from 
specific reference frames however, the momentum equation is often denoted in its vector form 
given by Eq. (57). 
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The system of coupled partial differential equations for continuity, Eq. (39), and for the 
conservation of momentum, Eq. (57), are referred to as the Navier–Stokes equations, governing 
the dynamics of fluid flow. The integral non–conservation formulation is: 

 𝐷

𝐷𝑡
ම 𝜌𝒖 𝑑𝑉

௏

= − ඵ 𝑝 𝑑𝑺

ௌ

+ ඵ 𝒏 ⋅ 𝝈ௗ  𝑑𝑆

ௌ

+ ම 𝒇௕ 𝑑𝑉

௏

 
(59) 

The advective term is missing from the non–conservation formulation as the control volume is, 
at any point in time, always containing the same initial set of molecules over which it was 
defined. Thus, there is no net flow from or into the control volume. The force balances at the 
volume surface or within the volume itself still apply, resulting in the same formulation of the 
other source terms. With regards to its differential formulation, it can be obtained as: 

 𝐷

𝐷𝑡
𝜌𝒖 + 𝜌𝒖(𝛻 ⋅ 𝒖) = −𝛻𝑝 + 𝛻 ⋅ 𝝈ௗ + 𝒇௕  

(60) 

2.3.2.3. Energy conservation equation 

The energy conservation equation is obtained by applying the first law of thermodynamics with 
the selected flow representation model. In practice, the energy balance is typically inclusive of 
internal, potential, and kinetic energy for the volume under investigation.  

In the Eulerian frame the energy balance, i.e., the total energy change per unit time within a 
finite control volume 𝑉 bounded by a surface 𝑆, such as the one represented in Fig. 9 (a) is 
defined as follows: 

 𝜕

𝜕𝑡
ම 𝜌 ൬𝑒 +

1

2
𝒖 ⋅ 𝒖൰ 𝑑𝑉

௏

 
(61) 

where 𝑒 is the specific internal energy (i.e., internal energy per unit mass) and 1 2⁄  𝒖 ⋅ 𝒖 is the 
specific kinetic energy (i.e., kinetic energy per unit volume) of the fluid. The following energy 
balance change mechanisms are considered:  

 Advection: fluid carrying energy in and out of the volume due to its own flow; 
 Heat conduction: conduction of heat at the volume surface due to temperature 

differences; 
 Mechanical deformations of fluid parcels due to fluid stress tensor; 
 Body heat source terms, which might be due to chemical, nuclear reactions, emission or 

absorption of radiation in any spectrum; 
 Potential energy change arising from the flow happening in the presence of a body 

force. 

Following the same approach used for mass advection or momentum advection term, it can be 
shown that the advection energy source term is: 

 
ඵ 𝜌 ൬𝑒 +

1

2
𝒖 ⋅ 𝒖൰ 𝒖 ⋅ 𝑑𝑺

ௌ

 
(62) 
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Conduction takes place on the volume boundary surface 𝑆 as it is driven by a temperature 
gradient 𝛻𝑇 at the surface. The total heat flow through the infinitesimal oriented surface 𝑑𝑺 of 
normal 𝒏 is given by Fourier’s law and it is equal to 𝑘∇𝑇 ⋅ 𝑑𝑺, where 𝑘 is the fluid thermal 
conductivity at the surface. Thus, the total heat flow into the volume (if the normal is pointing 
out from the volume the surface encloses) is given by integrating Eq. (62) over the bounding 
surface, resulting in: 

 
ඵ 𝑘𝛻𝑇 ⋅ 𝑑𝑺

ௌ

 (63) 

The energy rate of change due to mechanical deformations, if the fluid is flowing at a velocity 
𝒖 through an oriented surface 𝑑𝑺 with a normal 𝒏, and the stress vector at location equals 𝝈௡, 
then the total mechanical power associated with this fluid flow under stress vector equals 𝝈௡ ⋅
𝒖 𝑑𝑆. By recalling Eq. (46), this power can be expressed in terms of the stress tensor as 𝒏 ⋅ (𝝈 ⋅
𝒖) 𝑑𝑆. Thus, the total deformation related energy change rate (i.e., power) is:  

 
ඵ 𝒏 ⋅ (𝝈 ⋅ 𝒖) 𝑑𝑆

ௌ

 (64) 

For a specific body heat source term 𝑞̇, namely a heat source per unit volume, the total resulting 
energy source per unit time over 𝑉 is: 

 
ම 𝑞̇𝑑𝑉

௏

 (65) 

About the effect of body force field 𝒇௕, the energy change per unit time associated with the 
fluid moving through the potential field that gives rise to a force (e.g., gravity is 𝒇௕ = 𝜌𝒈) is:  

 
ම 𝒇𝒃 ⋅ 𝒖 𝑑𝑉

௏

 (66) 

The integral conservation form of the energy conservation equation can thus be written as: 

 𝜕

𝜕𝑡
ම 𝜌 ൬𝑒 +

1

2
𝒖 ⋅ 𝒖൰ 𝑑𝑉

௏

+ ඵ 𝜌 ൬𝑒 +
1

2
𝒖 ⋅ 𝒖൰ 𝒖 ⋅ 𝑑𝑺

ௌ

= ඵ 𝑘𝛻𝑇 ⋅ 𝑑𝑺

ௌ

+ ඵ 𝒏 ⋅ (𝝈 ⋅ 𝒖)𝑑𝑆

ௌ

+ ම 𝑞̇𝑑𝑉

௏

+ ම 𝒇𝒃 ⋅ 𝒖 𝑑𝑉

௏

 

(67) 

The differential formulation of the conservation form is obtained in the same manner as seen 
for the other conservation equations so far by taking the limit of the integral form for 𝑉 → 0 
and expressing surface integrals in terms of volume integrals via the divergence theorem. The 
differential formulation thus is: 

 𝜕

𝜕𝑡
൬𝜌𝑒 +

1

2
𝜌𝒖 ⋅ 𝒖൰ + 𝛻 ⋅ ቆ൬𝜌𝑒 +

1

2
𝜌𝒖 ⋅ 𝒖൰ 𝒖ቇ

= 𝛻 ⋅ (𝑘𝛻𝑇) + 𝛻 ⋅ (𝝈 ⋅ 𝒖) + 𝑞̇ + 𝒇𝒃 ⋅ 𝒖 

(68) 
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Conversely, the integral non–conservation form of the energy conservation equation, that is 
applicable for a Lagrangian reference frame, can be written as: 

 𝐷

𝐷𝑡
ම 𝜌 ൬𝑒 +

1

2
𝒖 ⋅ 𝒖൰ 𝑑𝑉

௏

= ඵ 𝑘𝛻𝑇 ⋅ 𝑑𝑺

ௌ

+ ඵ 𝒏 ⋅ (𝝈 ⋅ 𝒖)𝑑𝑆

ௌ

+ ම 𝑞̇𝑑𝑉

௏

+ ම 𝒇𝒃 ⋅ 𝒖 𝑑𝑉

௏

 

(69) 

To conclude with, the differential non–conservation form of the energy conservation equation 
is written as follows: 

 𝐷

𝐷𝑡
൬𝜌𝑒 +

1

2
𝜌𝒖 ⋅ 𝒖൰ + ቆ൬𝜌𝑒 +

1

2
𝜌𝒖 ⋅ 𝒖൰ቇ (𝛻 ⋅ 𝒖)

= −𝛻 ⋅ (𝜅𝛻𝑇) + 𝛻 ⋅ (𝝈 ⋅ 𝒖) + 𝑞̇ + 𝒇𝒃 ⋅ 𝒖 

(70) 

It should be stressed that energy equations often vary depending on which energy transfer terms 
are considered and which are not. It is not uncommon in the domain of CFD to neglect e.g., 
frictional heating associated with the stress power term ∇ ⋅ (𝝈 ⋅ 𝒖). These considerations need 
to be made based on the expected magnitudes of the different terms, which can vary from 
application to application and can differ from one another significantly. It is not uncommon, 
for certain applications where heat transfer processes dominate over kinetic energy change 
processes, to e.g., neglect the kinetic energy contribution altogether. 

In conclusion to this section, it was shown how to construct conservation equations for different 
quantities that are fundamental to fluid flow based on the adopted choice of a flow 
representation model. It should nonetheless be notices that, for the purposes of computational 
fluid dynamics, the conservation form (i.e., Eulerian based) representations of the fluid flow 
are significantly more common than the Lagrangian approaches, which conversely enjoy some 
degree on popularity for the description of multi phase fluid flows. 

2.3.3. Considerations on the Navier–Stokes equations 

When referring to the Navier–Stokes equations, one generally refers specifically to the coupled 
system of equations represented by the continuity equation and the momentum conservation 
equation. These equations commonly appear in simplified forms compared to what has been 
discussed so far, depending on the flow properties.  

At the most fundamental level, flows are categorized as incompressible flows and as 
compressible flows. Incompressible flows are time independent flows with the fluid density 
parcel advected by the flow. This is equivalent to stating that the material derivative of the 
density is null: 

 𝐷

𝐷𝑡
𝜌 = 0 

(71) 

By recalling the definition of the material derivative provided by Eq. (35) it can be shown that 
for incompressible flows the continuity equation becomes (in its differential form): 

 𝛻 ⋅ 𝒖 = 0 (72) 
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A consequence of Eq. (71) is that all flows with constant density are incompressible, while not 
all incompressible flows have a constant density. Conversely, compressible flows are all flows 
that are not incompressible in the sense described by Eq. (71) and Eq. (72). This has 
consequences on the form of a momentum equation as well, specifically referring to the 
divergence of the deviatoric stress tensor ∇ ⋅ 𝝈ௗ, i.e., momentum diffusion. For the most general 
case of a compressible flow, it follows:  

 
𝛻 ⋅ 𝝈ௗ = 𝛻 ⋅ ቆ𝜇 ൬𝛻𝒖 + (𝛻𝒖)் −

2

3
(𝛻 ⋅ 𝒖)𝕀൰ቇ 

(73) 

For an incompressible flow however, this can be simplified via Eq. (72) to obtain: 

 𝛻 ⋅ 𝝈ௗ = 𝛻 ⋅ ൫𝜇(𝛻𝒖 + (𝛻𝒖)்)൯ (74) 

If the flow, in addition to being incompressible with ∇ ⋅ 𝒖 = 0, is also characterized by a 
constant molecular viscosity 𝜇, and by considering the fact that ∇ ⋅ ((∇𝑢)்) = ∇(∇ ⋅ 𝒖), the 
deviatoric stress tensor can be modelled in an even more concise manner as: 

 𝛻 ⋅ 𝝈ௗ = 𝜇𝛻 ⋅ (𝛻𝒖) = 𝜇𝛻ଶ𝒖 (75) 

The symbol 𝛻ଶ is the vector Laplacian operator and, in 3D cartesian coordinate system, it yields 
a vector given by: 

 

𝛻ଶ𝒖 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕ଶ𝑢௫

𝜕𝑥ଶ
+

𝜕ଶ𝑢௫

𝜕𝑦ଶ
+

𝜕ଶ𝑢௫

𝜕𝑧ଶ

𝜕ଶ𝑢௬

𝜕𝑥ଶ
+

𝜕ଶ𝑢௬

𝜕𝑦ଶ
+

𝜕ଶ𝑢௬

𝜕𝑧ଶ

𝜕ଶ𝑢௭

𝜕𝑥ଶ
+

𝜕ଶ𝑢௭

𝜕𝑦ଶ
+

𝜕ଶ𝑢௭

𝜕𝑧ଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(76) 

As a conclusive example, for the case of an incompressible fluid flow with constant viscosity 
(which is an example to be reconsidered in Section 2.8), the Navier–Stokes equations in their 
differential, conservation form are written as follows: 

 𝛻 ⋅ 𝒖 = 0 (77) 
  𝜕

𝜕𝑡
𝜌𝒖 + 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) = −𝛻𝑝 + 𝜇𝛻ଶ𝒖 + 𝒇௕ 

(78) 

2.4. IMPORTANCE OF THE NUMERICAL SOLUTION APPROACH 

The aim of any solution approach is to find an approximate solution to a set of equations 
generated from fundamental conservation laws governing fluid behavior. In practice, solution 
procedures consist of: 

 Discretization, whose purpose is to generate, from the basic fluid conservation laws, a 
set of equations amenable to being solved numerically; 

 Solution algorithm containing the sequence of steps to tackle solution of each of the 
equations; 

 Use of numerical methods to solve the equations. 



 

23 

These three aspects are interconnected to the extent that the choice of discretization methods 
and solution algorithms is important not just for the accuracy of numerical solutions but may 
also crucially determine if the equations generated can be solved numerically, or how fast these 
can be solved depending on numerical method. The remainder of this section provides an 
overview of discretization practices commonly used in CFD to help a reader understand the 
importance of discretization parameters in relation to numerical solution, and to illustrate the 
main principle behind solution algorithms used in current CFD approaches. 

2.5. NUMERICAL FRAMEWORKS 

There are several numerical frameworks developed to model the behavior of fluids. The idea 
common to most of these frameworks is to subdivide the region of space where the fluid is to 
be studied into smaller subregions and to develop, for every subregion, a relationship between 
the yet unknown value of a fluid property of interest in one subregion to the values at 
neighboring subregions. The system of equations (one for each subregion) so generated is then 
processed numerically to calculate the actual values of the property in each subregion. Three 
various approaches are sketched in Fig. 10.  

 

FIG. 10. Arrangement of variables on the computational domain according to different numerical frameworks: 
(a) finite volume method, (b) finite element method, (c) finite difference method. 

With the finite volume method shown in Fig. 10 (a), the region of space of interest (simulation 
domain) is subdivided into control volumes of arbitrary shapes; the fluid property (or flow 
variable) is evaluated at the geometrical centroid of the control volume, and it is assumed to 
prevail inside the control volume. With the finite element method, shown in Fig. 10 (b) the 
simulation domain is subdivided into elements of arbitrary shapes and fluid property is 
evaluated at the element corner points. With finite difference methods as sketched in Fig. 10 
(c), flow variables are arranged at the points of intersections of orthogonal grid lines. All these 
mesh based approaches are fundamentally best suited for a Eulerian description of the fluid 
flow. All the equations that are derived in this section and discussed are obtained in their 
conservation form, as discussed in Section 2.3.1. assuming the Eulerian description of the fluid 
flow. The finite volume method is the dominant approach for CFD applications due to its 
flexibility, relative ease of implementation and applicability to model flows in complex 
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geometries of typical engineering problems, among which are nuclear thermal hydraulic 
applications.  

2.6. FINITE VOLUME METHOD 

For CFD applications, the aim is to use the finite volume method to generate a set of linear 
algebraic equations linking the value of fluid property of interest at a control volume to the 
values in neighbouring control volumes. The finite volume method subdivides the simulation 
domain into (typically, but not necessarily) stationary, arbitrary shaped control volumes, as 
shown in Fig. 11, where 𝑃 is the geometrical centroid of the control volume. The value of a 
property at 𝑃 is assumed to prevail inside the control volume (also called mesh cell or simply 
cell). The cell has a volume 𝑉 and is bounded by surface 𝑆. Due to a simplified computational 
representation, mesh cells always consist of polyhedra, meaning that the bounding surface of 
each cell consists of a collection of flat surfaces, referred to as faces. Each face 𝑓 is 
characterized by a surface area vector 𝑺௙ of normal 𝒏௙ and magnitude 𝑆௙, which by convention 
points outwards from the volume enclosed by overall cell bounding surface 𝑆.  

 

FIG. 11. Generic representation of a finite volume. For generic cell (in the center of this figure) any value of 
interest is represented by an average value that is constant throughout the cell and that is stored at the cell 
centroid. 

The conservation of a generic fluid property 𝜙 is enforced via integral transport equations, 
linking the rate of change of a fluid property within 𝑉 to different phenomena, which can be 
broadly categorized as of: 

 Advection, i.e., the transport of 𝜙 by the fluid velocity field 𝒖; 
 Diffusion i.e., the transport of 𝜙 due to molecular diffusive processes even in absence 

of a macroscopic net advection; 
 Source term i.e., physical processes that result in a net generation or removal of 𝜙 from 

the volume. 

While the conservation equations for the specific cases of mass, momentum and energy 
conservation have been derived in their various forms in Section 2.3.2, the integral form of the 
transport equation for a generic fluid property 𝜙 is presented here from the perspective of using 
it as a starting point to discuss the finite volume method. 

2.6.1. Discrete representation of a conservation equation 

The integral formulation of the transport equation for a generic mass intensive fluid property 𝜙 
can be derived considering the discussion in Section 2.3.2. Its integral formulation over the 
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volume of a mesh cell 𝑉 is considered. The triple and double integral notations are simplified 
to a single integral notation. The equation can be thus written as: 

 𝜕

𝜕𝑡
න 𝜌𝜙𝑑𝑉

௏

+ න𝜌𝜙𝒖 ⋅ 𝑑𝑺
ௌ

= − න𝑱థ ⋅ 𝑑𝑺
ௌ

+ න 𝑓థ𝑑𝑉
௏

 
(79) 

in which the two terms on the left hand side correspond to the net rate of change of 𝜌𝜙 in 𝑉 and 
the outflow of 𝜌𝜙 due to advection through the boundary surface 𝑆 respectively, while the two 
terms on the right hand side represent the diffusion of 𝜌𝜙 into 𝑉 through the bounding surface, 
governed by a diffusion flux 𝑱థ, and the volume source of 𝜌𝜙 due to a source term 𝑓థ. Note 
that if 𝜙 were to be a vector quantity, the relevant gradient and dot product operations would 
need to be adequately replaced (by substituting those with divergences and outer products to 
preserver dimensionality). Different integral forms of various conservation equations that have 
been previously discussed in Section 2.3.2 can be derived from Eq. (79): 

 Continuity equation can be obtained by setting 𝜙 = 1, 𝑱థ = 𝟎, 𝑓థ = 0; 
 Momentum conservation equation can be obtained by setting 𝜙 = 𝒖, 𝑱థ = −𝝈, namely 

the fluid stress tensor, and 𝑓థ = 𝒇௕; 

 Energy conservation equation can be obtained by setting 𝜙 = 𝑒 +
ଵ

ଶ
𝒖 ⋅ 𝒖, 𝑱థ =

−𝑘∇𝑇 − 𝝈 ⋅ 𝒖 and 𝑓థ = 𝑞̇ + 𝒇௕ ⋅ 𝒖. 

In order to obtain a finite volume discretization of the integral governing equation defined 
within a control volume, one primarily takes advantage of the definition of a mean volume and 
surface values, as well as the divergence (or Gauss) theorem. As it was previously introduced, 
the finite volume method assumed that all values of any fluid quantity 𝜙 within the mesh 
volume can be reasonably approximated by a certain value stored at the cell centroid. This value 
consists of the volume average, so that for a cell labelled 𝑃 of volume 𝑉: 

 
𝜙௉ = |𝜙|௏ =

1

𝑉
න 𝜙

௏

𝑑𝑉 
(80) 

The same averages can be defined for surface values as: 

 
|𝜙|ௌ =

1

𝑆
න𝜙

ௌ

𝑑𝑆 
(81) 

The goal of a finite volume method is to derive (algebraic) governing equations that apply to 
discrete collection of average values, since those are the values that being numerically 
processed. For the time derivative term, it can be seen that: 

 𝜕

𝜕𝑡
න 𝜌𝜙𝑑𝑉

௏

=
𝜕

𝜕𝑡
(𝑉|𝜌𝜙|௏)  

(82) 

The product of average terms is a good approximation to the average of the product. With this 
approximation, it is possible to obtain: 

 𝜕

𝜕𝑡
න 𝜌𝜙𝑑𝑉

௏

≃
𝜕

𝜕𝑡
(𝑉|𝜌|௏  |𝜙|௏) 

(83) 
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This logic can be applied to surface integrals as well. As the mesh cells are always polyhedral, 
the integral can be decomposed into a sum of integrals over each flat face 𝑓 of surface area 𝑆௙ 
and surface normal 𝒏௙:  

 
න𝜌𝜙𝒖 ⋅ 𝑑𝑺

ௌ

= ෍ න𝜌𝜙𝒖 ⋅ 𝑑𝑺
௙௙

 (84) 

By expressing the surface integral in terms of a surface average it follows: 

 
න𝜌𝜙𝒖 ⋅ 𝑑𝑺

௙

= 𝑆௙|𝜌𝜙𝒖|௙ ⋅ 𝒏௙ (85) 

By substituting the average of the product with the product of the averages, the advective term 
can be re–written as follows: 

 
න𝜌𝜙𝒖 ⋅ 𝑑𝑺

௙

≃ ෍ 𝑆௙|𝜙|௙|𝜌𝒖|௙ ⋅ 𝒏௙

௙

 (86) 

However, in computational framework, where field variables are available only at cell 
centroids, the face averaged values |𝜙|௙ are not generally directly available. Thus, need to be 
reconstructed from the cell center average values |𝜙|୚ of the cells that share each face 𝑓 via 
adequate interpolation methods. However, a continuous problem in a continuous space is 
translated into a discrete problem (i.e., a discrete collection of governing equations for 𝜙, one 
per mesh cell) that is fundamentally reducible to a set of algebraic relationships between cell 
centered average values |𝜙|୚, which are what the numerical solution ultimately consists of. 

2.6.2. Examples of discretization practices in industrial computational fluid dynamics 

The finite volume method is used to generate a set of linear equations, one for each control 
volume, amenable to numerical solution. Various spatial and temporal discretization practices 
can be plugged into the finite volume method framework to generate the linear equations. 
Discretization practices are here illustrated with simple 1D convection diffusion problems. A 
1D flow configuration is considered where the flow velocity 𝒖 is known. To derive the 
coefficients of the linear equation, the properties of each control volume of interest are linked 
with nearby control volumes as is transported by velocity 𝒖 (convection) and by molecular 
processes (diffusion). The simulation domain is assumed to consist of a series of mesh cells of 
equal size aligned in the flow direction, as shown in Fig. 12, where the computational molecule 
consisting of the control volume 𝑃, for which an algebraic equation is derived, and its neighbor 
control volumes 𝑊 (west) and 𝐸 (east) are indicated. 

 

FIG. 12. Computational molecule in 1D uniform grid made of cubic cells. The control volume with centroid 𝑃 as 
well as its two neighbors 𝑊 and 𝐸 are labelled. 
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2.6.2.1. Spatial discretization 

The steady state advection diffusion example for 𝜙 in a fluid of constant density as given by 
Eq. (79) is considered. By steady state it is assumed that the final distribution of 𝜙 is time 
independent so that the time derivative term is always null. It is assumed that the flux 𝑱థ can 
be related to the gradient of 𝜙 as 𝑱థ = −𝑐థ∇𝜙 with 𝑐థ being a certain diffusion coefficient and 
that the source term 𝑓థ = 0. Thus the problem reduces to finding a solution 𝜙 to: 

 
න𝜌𝜙𝒖 ⋅ 𝑑𝑺

ௌ

= න𝑐𝜙𝛻𝜙 ⋅ 𝑑𝑺
ௌ

 (87) 

At the same time, the fluid flow itself, meaning its density and velocity distribution, should 
satisfy the conservation of fluid mass, namely a steady state version of Eq. (37) that reduces to: 

 
න𝜌𝒖 ⋅ 𝑑𝑺

ௌ

= 0 (88) 

However, as the density is taken as a constant for the case under exam, it is the velocity field 
alone that should satisfy Eq. (88). For clarity regarding the problem statement, the differential 
forms of Eq. (87) and Eq. (88) can be obtained by applying the divergence theorem and taking 
the limit for 𝑉 → 0, which results in: 

 𝛻 ⋅ (𝜌𝜙𝒖) = 𝛻 ⋅ (𝑐థ𝛻𝜙) (89) 

 𝛻 ⋅ (𝜌𝒖) = 0 (90) 

By reformulating Eq. (87) in terms of surface averages, it follows: 

 
෍ 𝑆௙|𝜙|௙|𝜌𝒖|௙ ⋅ 𝒏௙

௙

= ෍ 𝑆௙ห𝑐థ𝛻𝜙ห
௙

⋅ 𝒏௙

௙

 (91) 

Based on the example provided in Fig. 12 a focus is on the cell of centroid 𝑃. The summation 
over the cell faces consists of two terms for each of the two cell faces, namely 𝑤 and 𝑒, so that 
the Eq. (91) can be written as follows: 

 
𝑆௘|𝜙|௘|𝜌𝑢|௘ − 𝑆௪|𝜙|௪|𝜌𝑢|௪ = 𝑆௘ ฬ𝑐థ

𝜕

𝜕𝑥
𝜙ฬ

௘
− 𝑆௪ ฬ𝑐థ

𝜕

𝜕𝑥
𝜙ฬ

௪
 

(92) 

The negative sign on the terms evaluated at the 𝑤 face arises from the fact that, for the 
considered scenario, both the velocity vector and the gradients on the face are antiparallel to 
the face normal, which is outwards oriented from the cell by convention. The important aspect 
to stress here is that Eq. (92) is a discretized version of Eq. (89). 

It is customary to introduce a face flux variable in the discretized equations that govern fluid 
flow. This face flux is a scalar quantity denoted with 𝐹 and, for the 1D case, it is defined on 
each cell face 𝑓 as follows: 

 𝐹௙ = |𝜌𝑢|𝑓 (93) 
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Physically, it represents the net mass flux through the face 𝑓 and has the dimension of kg/mଶs. 
By employing this result, Eq. (92) is then written as: 

 
𝑆௘|𝜙|௘𝐹௘ − 𝑆௪|𝜙|௪𝐹௪ = 𝑆௘ ฬ𝑐థ

𝜕

𝜕𝑥
𝜙ฬ

௘
− 𝑆௪ ฬ𝑐థ

𝜕

𝜕𝑥
𝜙ฬ

௪
 

(94) 

By applying the same procedure for the discretization of the continuity equation, Eq. (88) in 
cell with centroid 𝑃, it follows: 

 𝑆௘𝐹௘ − 𝑆௪𝐹௪ = 0 (95) 

For simplicity, it is assumed that the velocity field is known a priory and requires no solution 
(also considering that Eq. (95) alone does not suffice, as one needs to solve a momentum 
conservation equation as well, not presently discretized). Thus, the focus is on obtaining a field 
𝜙 that consists of the cell center values of 𝜙, so that 𝜙 satisfies Eq. (94) in each cell of the 
mesh. However, Eq. (94) is still not expressed in terms of cell centered values, rather in terms 
of face centered values |𝜙|௙ as well as face centered gradients |𝜕𝜙/𝜕𝑥|௙. In order to be able to 
solve the collective system of equations, each in form of Eq. (94) for each cell, these terms need 
to be expressed as functions of cell centered quantities of the cell under consideration and, 
possibly, the cell centered quantities of neighboring cells. This is done via adequate so called 
differencing (also known as interpolation) schemes. 

2.6.2.2. Differencing schemes 

The most fundamental differencing schemes is summarized in this section. The central 
differencing scheme employs a linear interpolation to approximate a property at a generic face 
𝑓 that is shared by cells 𝑃 and 𝑁, so that: 

 
𝜙௙ ≃

𝛿௉𝜙௉ + 𝛿ே𝜙ே

𝛿௉ + 𝛿ே
 

(96) 

where 𝛿௜ is the distance between the cell center and the face center for each cell 𝑖. For a uniform 
mesh, this reduces to: 

 
𝜙௙ ≃

𝜙௉ + 𝜙ே

2
 

(97) 

Similarly, with a central differencing scheme the gradient at the face is approximated as 
follows: 

 
ฬ

𝜕

𝜕𝑥
𝜙ฬ

௙
≃

𝜙ே − 𝜙௉

𝛿𝑥
 

(98) 

with 𝛿𝑥 being the distance between centers of 𝑃 and 𝑁 cells. By employing Eqs. (97) and (98), 
and assuming a uniform mesh, Eq. (94) can be rewritten as: 

 
𝑆௘𝐹௘ ൬

𝜙௉ + 𝜙ா

2
൰ − 𝑆௪𝐹௪ ൬

𝜙௉ + 𝜙ௐ

2
൰ = 𝑆௘ห𝑐థห

௘
൬

𝜙ா − 𝜙௉

𝛿𝑥
൰ − 𝑆௪ห𝑐థห

௪
൬

𝜙௉ − 𝜙ௐ

𝛿𝑥
൰ 

(99) 
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Eq. (99) relates the cell center value 𝜙௉ to the neighboring cell center values 𝜙ா , 𝜙ௐ and 
contains no other unknowns expressed at face centers (recall that a velocity distribution is 
assumed to be known, and thus face fluxes are known as well). For reasons that will be 
explained later, it is often convenient to arrange the terms with respect to the unknowns into 
coefficients, so that Eq. (99) can be expressed as: 

 𝑎௉𝜙௉ = 𝑎ா𝜙ா + 𝑎ௐ𝜙ௐ (100) 

with the coefficients expressed as, in this case: 

 
𝑎ா = 𝑆௘ ൭

ห𝑐థห
௘

𝜕𝑥
−

𝐹௘

2
൱ 

(101) 

  
𝑎ௐ = 𝑆௪ ൭

ห𝑐థห
௪

𝜕𝑥
+

𝐹௪

2
൱ 

(102) 

  𝑎௉ = 𝑎ௐ + 𝑎ா + (𝑆௘𝐹௘ − 𝑆௪𝐹௪) (103) 

These are the coefficients that result from a central differencing scheme. As anticipated, this is 
not the only possible differencing scheme, and the scheme introduced next consist of the 
upwind interpolation scheme. The essence of the upwind scheme is that, for a face 𝑓 that is 
shared between two cells 𝑃 and 𝑁, the value of 𝜙௙ at a face is set equal to either cell center 
value 𝜙௉ or 𝜙ே, depending on the flow direction. It is set equal to the cell center value of the 
cell that lies upstream (or upwind, hence the name) of the fluid flow. In particular: 

 
𝜙௙ ≃ ൜

𝜙௉   𝑖𝑓  𝐹௙ > 0

𝜙ே  𝑖𝑓  𝐹௙ < 0
 (104) 

This differencing scheme is often applied to the advective term, but rarely to the diffusive terms, 
which are treated here with a central differencing scheme. Thus, with reference to Fig. 12 for 
information regarding the flow direction, Eq. (94) can be written with an upwind differencing 
scheme for the advective term as: 

 
𝑆௘𝐹௘𝜙௉ − 𝑆௪𝐹௪𝜙ௐ = 𝑆௘ห𝑐థห

௘
൬

𝜙ா − 𝜙௉

𝛿𝑥
൰ − 𝑆௪ห𝑐థห

௪
൬

𝜙௉ − 𝜙ௐ

𝛿𝑥
൰ 

(105) 

which can in turn be expressed in the form of Eq. (100) with the following coefficients: 

 
𝑎ா = 𝑆௘

ห𝑐థห
௘

𝜕𝑥
 

(106) 

  
𝑎ௐ = 𝑆௪ ൭

ห𝑐థห
௪

𝜕𝑥
+ 𝐹௪൱ 

(107) 

  𝑎௉ = 𝑎ௐ + 𝑎ா + (𝑆௘𝐹௘ − 𝑆௪𝐹௪) (108) 

While the number of differencing schemes that have been historically devised that are currently 
in use is considerable, the central and upwind schemes are the two most fundamental ones 
which enjoy a large degree of application for a large variety of cases, which is why the present 
discussion will not introduce further schemes. 
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2.6.2.3. Considerations on the accuracy of differencing schemes 

The approximation implicit in the upwind scheme contains information from fewer cells than 
the centered differencing scheme i.e., there are fewer cells in the upwind computational 
molecule than in the molecule generated by the centered differencing scheme. For a given 
number of mesh cells, a larger computational molecule has the advantage of a higher spatial 
accuracy due to using more cell centroid points for the interpolation of the flow property. In 
this sense, the central differencing scheme can be characterized as having a higher order of 
accuracy if compared to the upwind scheme. In developing discretization schemes, the 
requirements to maintain accuracy of the calculation are the main drive to formulate 
discretization schemes as a blend of upwind schemes i.e., the schemes that calculate 
interpolation parameters based on different estimates of the local convective velocity and higher 
order schemes i.e., schemes that use information from increasingly large computational 
molecules. 

2.6.2.4. Temporal discretization 

The temporal derivative term that figures within any equation is usually approximated with the 
mean value theorem via taking the mean value of the temporal derivative prevailing inside a 
control volume as the value at the centroid 𝑃 of the control volume, according to Eq. (80), so 
that: 

 𝜕

𝜕𝑡
න 𝜌𝜙𝑑𝑉

௏

= න
𝜕

𝜕𝑡
𝜌𝜙𝑑𝑉

௏

≃ 𝑉 ฬ
𝜕

𝜕𝑡
𝜌𝜙ฬ

௏
 

(109) 

As for the spatial differencing scheme discussed in Section 2.6.2.2, numerous temporal 
differencing schemes exists as well. For introductory purposes, the Euler scheme is presented. 
Recalling that the volume average |𝜙|௏ over cell 𝑃 is denoted with 𝜙௉, the time derivative is 
approximated as follows: 

 
ฬ

𝜕

𝜕𝑡
𝜌𝜙ฬ

௏
≃

𝜌௉𝜙௉ − 𝜌௉
଴𝜙௉

଴

𝛿𝑡
 

(110) 

where the superscript 0 denotes that the given quantity is evaluated at the previous (or old) time 
step, while the absence of a superscript denotes the variable at the current time step, i.e., the 
unknown. For a constant density case, it follows: 

 
ฬ

𝜕

𝜕𝑡
𝜌𝜙ฬ

௏
≃ 𝜌௉

𝜙௉ − 𝜙௉
଴

𝛿𝑡
 

(111) 

However, the chosen time differencing scheme affects the treatment of all terms in governing 
equation. To better explain this, it is assumed that the discretized transport equation for 𝜙 in 
cell 𝑃 is unsteady in nature, meaning it accounts for temporal changes. By adding the discretized 
time derivative term to the upwind–discretized steady transport equation, the Eq. (105) then 
becomes: 

 
𝑉𝜌௉

𝜙௉ − 𝜙௉
଴

𝛿𝑡
+ 𝑆௘𝐹௘𝜙௉ − 𝑆௪𝐹௪𝜙ௐ = 𝑆௘ห𝑐థห

௘
൬

𝜙ா − 𝜙௉

𝛿𝑥
൰ − 𝑆௪ห𝑐థห

௪
൬

𝜙௉ − 𝜙ௐ

𝛿𝑥
൰ 

(112) 
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By considering all the 𝜙 terms in the equation, except 𝜙଴ to be the unknown new time step 
values that need to be solved for, the overall resulting time differencing scheme takes the name 
of backwards Euler scheme and is an instance of an implicit method. The implicit means that 
the unknown value of 𝜙௉ at the time step under exam depends not only on the old time step 
values, such as 𝜙௉

଴, but also on the unknown values of 𝜙 in the neighboring cells, namely 𝜙ா  
and 𝜙ௐ. The construction of a system of equations is aided by grouping the coefficients of the 
unknown terms, as it will be explained later. In particular, the Eq. (112) is rearranged as: 

 𝑎௉𝜙௉ = 𝑎ௐ𝜙ௐ + 𝑎ா𝜙ா + 𝑏௉ (113) 

where the term 𝑏௉ is the source term. The coefficients assume the following form for the case 
of Eq. (112): 

 
𝑎ா = 𝑆௘

ห𝑐థห
௘

𝜕𝑥
 

(114) 

  
𝑎ௐ = 𝑆௪ ൭

ห𝑐థห
௪

𝜕𝑥
+

𝐹௪

2
൱ 

(115) 

  
𝑎௉ = 𝑎ௐ + 𝑎ா + (𝑆௘𝐹௘ − 𝑆௪𝐹௪) + 𝑉

𝜌௉

𝛿𝑡
 (116) 

  
𝑏𝑃 = 𝑉

𝜌𝑃

𝛿𝑡
𝜙𝑃

0  (117) 

Another temporal discretization scheme consists of the forward Euler scheme. While the actual 
time derivative term is treated via Eq. (111), all the other 𝜙 terms are treated with their old time 
step values, so that the unsteady discretized transport equation becomes: 

 
𝑉𝜌௉

𝜙௉ − 𝜙௉
଴

𝛿𝑡
+ 𝑆௘𝐹௘𝜙௉

଴ − 𝑆௪𝐹௪𝜙ௐ
଴ = 𝑆௘ห𝑐థห

௘
ቆ

𝜙ா
଴ − 𝜙௉

଴

𝛿𝑥
ቇ − 𝑆௪ห𝑐థห

௪
ቆ

𝜙௉
଴ − 𝜙ௐ

଴

𝛿𝑥
ቇ 

(118) 

In this case, the solution for 𝜙௉ is trivial since all values are known. This category of temporal 
discretization schemes, wherein the new time step values exclusively depend on known old 
time step values, are called explicit schemes, and while significantly faster in principle 
compared to implicit scheme, these are severely constrained by the limitations of the maximum 
admissible value for the time step 𝛿𝑡, as it will be shown. Therefore, it is useful to express Eq. 
(118) in the following way: 

 𝑎௉𝜙௉ = 𝑎௉
଴𝜙௉

଴ + 𝑏௉ (119) 

where 

 
𝑎௉ = 𝑉

𝜌

𝛿𝑡
 (120) 

   
  

𝑎௉
଴ = 𝑉

𝜌

𝛿𝑡
− 𝑆௘𝐹௘ − 𝑆௘ห𝑐థห

௘

1

𝛿𝑥
− 𝑆௪ห𝑐థห

௪

1

𝛿𝑥
 

(121) 

   
  

𝑏௉ = 𝑆௪𝐹௪𝜙௪
଴ + 𝑆௘ห𝑐థห

௘

𝜙௘
଴

𝛿𝑥
+ 𝑆௪ห𝑐థห

௪

𝜙௪
଴

𝛿𝑥
 

(122) 
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2.7. INTRODUCTION TO NUMERICAL SOLUTION METHODS 

When using the finite volume method, the simulation domain is subdivided into control 
volumes of arbitrary shapes. The integral form of the fundamental conservation law applied to 
each control volume generates a system of linear equations, linking neighbor control volumes, 
to be solved numerically. 

2.7.1. Solution of linear systems of equations 

A system of 𝑛 linear algebraic equations for an unknown 𝝓 can be expressed in matrix notation 
as: 

 𝑨𝝓 = 𝒃 (123) 

with 

 
𝑨 = ൥

𝑎ଵଵ ⋯ 𝑎ଵ௡

⋮ ⋱ ⋮
𝑎௡ଵ ⋯ 𝑎௡௡

൩ 
(124) 

   
  

𝝓 = ൥
𝜙ଵ

⋮
𝜙௡

൩ 
(125) 

   
 

𝒃 = ൥
𝑏ଵ

⋮
𝑏௡

൩ 
(126) 

where 𝑎௜௝ are the matrix coefficients, 𝜙௜ the unknown and 𝑏௜ the source term for the 𝑖–th 
equation. 

2.7.1.1. Iterative solution approaches 

Linear system of equations can always be solved via a direct method, however particular 
features of convection–diffusion equations and of their discretization with the finite volume 
method generate large linear system of equations i.e., systems with many (often millions) 
equations, characterized by sparse matrices i.e., matrices whose only non zero coefficients are 
the diagonal and near diagonal coefficients. This is due to a nature of numerical frameworks 
considered that subdivide the simulation domain in many subregions and that result in 
discretized equations linking a subregion to its neighboring subregions. The typical equation 
for control volume 𝑃 can be used to infer the basic features of the matrix 𝑨 corresponding to 
the linear system containing the equations for all control volumes in the computational domain. 
As an example, a discretized transport equation in the form of Eq. (113) would figure in the 
linear system as: 

 
𝑨 = ൥

⋱ 0 0
0 −𝑎ௐ     𝑎௉    − 𝑎ா 0
0 0 ⋱

൩ 
(127) 



 

33 

  

𝝓 =

⎣
⎢
⎢
⎢
⎡

⋮
𝜙ௐ

𝜙௉

𝜙ா

⋮ ⎦
⎥
⎥
⎥
⎤

 

(128) 

 
𝒃 = ൥

⋮
𝑏௉

⋮
൩ 

(129) 

For solving a linear system with a large sparse coefficient matrix, an iterative solution method 
is more convenient than a direct solution method i.e., an iterative numerical method requires 
less computational time than a direct method (such considerations apply also to numerical 
frameworks alternative to the finite volume method). 

Iterative methods seek to find an approximate solution 𝝓௠ to the system of equations 𝑨𝝓௠ =
𝒃௠ via repeatedly updating 𝝓 a given number 𝑚 of times, starting from an initial guess 𝝓௢, 
typically multiplying the approximate solution by an iteration matrix 𝑴 computed from 𝑨 as in 
𝝓௠ାଵ = 𝑴(𝑨)𝝓௠. The approximate solution 𝝓௠ at iteration 𝑚 satisfies the following: 

 𝑨𝝓௠ = 𝒃 − 𝒓௠ (130) 

 where the quantity 𝒓௠ is called residual and is defined as: 

 𝒓௠ = 𝑨(𝝓 − 𝝓௠) (131) 

The requirement that any iterative method must fulfill is that 𝒓௠ decreases for increasing 
numbers of iterations, and that for any sufficiently large 𝑚 one has 𝝓௠ ≃ 𝝓, so that 𝝓௠ can 
be considered as an approximation of the true solution 𝝓 to 𝑨𝝓 = 𝒃. Since the fundamental 
solution 𝝓 is ultimately unknown during the solution process, one generally relies on a pseudo 
residual rather than the residual defined by Eq. (131). This pseudo residual is defined as: 

 𝒓௠ = 𝑨(𝝓௠ − 𝝓௠ିଵ) (132) 

The residual itself depends on the coefficient matrix 𝑨; such matrix is generally required to 
have certain properties if the desired behavior for 𝒓௠ is for it to get smaller as the number of 
iterations 𝑚 increases. This behavior is also known as convergence of the iterative solution. 

2.7.1.2. Impact of matrix coefficient properties on linear system convergence 

The rigorous determination of requirements on matrix coefficient for guaranteeing applicability 
and performance of iterative numerical methods is a complex subject. Here only two 
fundamental results from this vast area of mathematical research are explained, which can be 
used to derive recommendations of practical use for determining discretization parameters 𝛿𝑥 
and 𝛿𝑡. Referring to the example matrix 𝑨, a sufficient condition that guarantees convergence 
of at least one iterative method is that: 

 |𝑎௉| ≥ |𝑎ௐ| + |𝑎ா| (133) 

This concept is known in linear algebra as diagonal dominance. A matrix is diagonally 
dominant if the magnitude of the terms on the diagonal (i.e., the 𝑎௉ term for every matrix row) 



 

34 

are greater or equal to the sum of the magnitudes of the off–diagonal terms (i.e., 𝑎ௐ, 𝑎ா) for 
each matrix row. This condition, while being sufficient, is not necessary. 

A further condition that has consequences on CFD applications is that all coefficients of the 
discretized equations have the same sign. This condition has a physical interpretation; if 
property 𝜙 increases in cell 𝑃, then it must also increase in the neighboring cells 𝑊 and 𝐸. In 
practice, if the signs are not all equal, the solution exhibits oscillations in space (i.e., from cell 
to cell) in an unphysical manner. Such a solution typically oscillates from iteration to iteration 
as well for any given cell, and the iterative approach fails to determine a solution. 

The condition related to diagonal dominance applies to most numerical methods commonly 
used in engineering, while the second one is a bit more subtle, and, in that it has important 
implications in CFD.  

2.7.1.3. Deriving conditions on spatial and temporal discretization 

Among the platitude of parameters that shape the convergence properties of the linear system 
as well as the accuracy of the numerical solution, the mesh size 𝛿𝑥 and time step size 𝛿𝑡 play 
an important role. 

In principle, the mesh size and time step size should be refined (i.e., reduced) until the obtained 
numerical solution stops changing with any further refinements being performed. Such a 
solution is said to be mesh independent and time step independent. However, certain values of 
time step and mesh size are not guaranteed to yield a solution at all, as the iterative solution 
process might become unstable and diverge, rather than converge towards a well defined 
solution. This topic is broadly known as numerical stability analysis, and it deals with 
establishing valid ranges for these parameters that are necessary, but not necessarily sufficient, 
for convergence. 

Some specific examples are presented to illustrate the overall logic and results of stability 
analysis. First, a steady state convection–diffusion problem for a quantity 𝜙, spatially 
interpolated with a central differencing scheme is considered, i.e., in the form of Eq. (99). A 
viscous flow oriented along the 1D 𝑥 axis is considered, so that 𝐹௪ > 0 and 𝐹௘ > 0. The 
continuity equation imposes 𝐹௘ − 𝐹௪ = 0 for every cell. In addition to this, it was previously 
stated that one of the conditions to be respected is that all matrix coefficients need to have the 
same sign. Recalling that the matrix coefficients for this case are given by Eq. (101)Eq. (103), 
the following considerations can be made: 𝑎ௐ = 𝑆௪ (ห𝑐థห

௪
𝜕𝑥⁄ + 𝐹௪ 2)⁄ , which is always 

positive. Thus, all other coefficients need to be positive. Conversely, for 𝑎ா = 𝑆௘(ห𝑐థห
௘

𝜕𝑥⁄ −

𝐹௘ 2⁄ ) to be positive it is required: 

 𝐹𝑒𝛿𝑥 

ห𝑐థห
௘

< 2 
(134) 

which need to hold true for all cells in the domain. By recalling the definition of face flux 
provided by Eq. (93) and considering that one cell’s 𝐸 face is the neighboring cell’s 𝑊 face, 
Eq. (134) can be better formulated as: 

 
𝑃𝑒థ =

𝜌𝑢𝛿𝑥

𝑐థ
< 2 

(135) 
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where 𝑃𝑒థ is the Peclet number of the convection–diffusion problem of quantity 𝜙, meaning 
the ratio between the advective and diffusive components of the overall transport of quantity 
𝜙. Thus, a necessary condition for the stability of the solution algorithm when solving Eq. (99) 
via an iterative process is given by Eq. (135), for each mesh cell. Thus, returning to the original 
problem that deals with a given velocity field, Eq. (135) can be employed to derive the 
maximum allowable size of the mesh 𝛿𝑥 for the solution process to converge. 

We now consider an unsteady 1D convection dominated flow with 𝐹௪ > 0, 𝐹௘ > 0 that is 
discretized spatially with an upwind scheme and temporally with a forward Euler (i.e., explicit) 
scheme. This would be equivalent to the model described by Eq. (118). However, an analogy 
can be drawn: as the stability of an implicit method (as iterations are performed) for each time 
step depends on the relationship between coefficients of neighboring cells in space (i.e., 
coefficients of 𝜙ௐ and/or 𝜙ா , depending on the spatial differencing scheme), the stability of an 
explicit method (as the time steps are advanced) depends on the coefficients of neighboring 
cells in time (i.e., the coefficient of 𝜙௉

଴ for a forward Euler scheme). This parallelism is 
represented in FIG. 13. 

 

FIG. 13. (a) Representation of a neighbourhood of a cell 𝑃 in space, and (b) and time. An upwind spatial 
discretization, only the upwind cell 𝑊 is highlighted in the spatial neighbourhood case. In the temporal 
neighbourhood case, the case is spatially the same (cell 𝑃) but seen at two different moments in time, with different 
associated coefficients. 

A criterion necessary but not sufficient for the stability of an explicit scheme as new solutions 
are obtained for each new time step 𝑡∗ is that the coefficients that multiply the different field 
values at different time steps (i.e., 𝜙௉, 𝜙௉

଴ in this case) for any given cell all have the same sign. 
These coefficients consist of 𝑎௉ given by Eq. (120), which is always positive, so that 𝑎௉

଴  given 
by Eq. (121) needs to be always positive as well for the criterion to hold. This results in: 

 
𝑉

𝜌

𝛿𝑡
− 𝑆௘𝐹௘ − 𝑆௘ห𝑐థห

௘

1

𝛿𝑥
− 𝑆௪ห𝑐థห

௪

1

𝛿𝑥
> 0 

(136) 

For the initially made assumption that the transport is dominated by convection (i.e., that 𝐹௙ ≫

ห𝑐థห
௙
 everywhere in the domain), and by generalizing for any face 𝑓, Eq. (136) reduces to: 



 

36 

 
𝑆௙𝐹௙ < 𝑉

𝜌

𝛿𝑡
 (137) 

By recalling the definition of face flux 𝐹௙ given by Eq. (93) as well by defining a characteristic 
dimension 𝐿 = 𝑉/𝑆௙ for the fluid flow, it follows: 

 
𝐶𝑜 =

𝑢𝛿𝑡

𝐿
< 1 

(138) 

which constitutes the definition of Courant number 𝐶𝑜 as well as a necessary (but not sufficient) 
condition, also known as the Courant–Friedrichs–Lewy condition, for the stability of an explicit 
solution scheme with a forward Euler approach. For the case of a mesh where all the cell surface 
areas 𝑆௙ are equal, then 𝐿 = 𝛿𝑥, and for the case in which that does not hold, the mesh size 𝛿𝑥 
is still a good approximation of the characteristic size 𝐿. This condition sets a maximum value 
on the allowable time step size 𝛿𝑡 for any choice of mesh size 𝛿𝑥, and this constraint can often 
be quite severe for explicit solution approaches that seek a high spatial resolution. In cases 
wherein diffusive phenomena are not negligible, it can be shown that the constraints on the time 
step size are loosened, but Eq. (159) still represents a very useful indicator when choosing a 
particular time step for a simulation. 

2.8. SOLUTION ALGORITHMS 

This section focuses on the solution of Navier–Stokes equations describing fluid flow, namely 
the solution of the coupled systems of equations for mass conservation (continuity) and 
momentum conservation. For simplicity, the focus is on an incompressible, constant viscosity 
formulation of Navier–Stokes equations in their differential, conservation from, represented by 
Eq. (77) and Eq. (78) which are here repeated, however without any additional external 
momentum source terms: 

 𝛻 ⋅ 𝒖 = 0 (139) 
  𝜕

𝜕𝑡
𝜌𝒖 + 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) = −𝛻𝑝 + 𝜇𝛻ଶ𝒖 

(140) 

For simplicity, it is assumed that density is constant so that the advective term in the momentum 
equation can further be simplified as follows: 

 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) = 𝜌𝛻 ⋅ (𝒖 ⊗ 𝒖) = 𝜌൫𝒖(𝛻 ⋅ 𝒖) + 𝒖 ⋅ (𝛻𝒖)൯ = 𝜌𝒖 ⋅ (𝛻𝒖) (141) 

The kinematic viscosity 𝜈 is defined with: 

 
𝜈 =

𝜇

𝜌
 (142) 

so that the momentum equation can be now expressed as: 

 𝜕

𝜕𝑡
𝒖 + 𝒖 ⋅ (𝛻𝒖) = −

1

𝜌
𝛻𝑝 + 𝜈𝛻ଶ𝒖 

(143) 

The principal issue with the Navier–Stokes equations is that pressure 𝑝 is not dependent 
variable to be solved (in Eq. (139) and Eq. (143)): the continuity relation is expressed in terms 
of velocity and the set of equations that does not contain an equation that could be explicitly 
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solved for the pressure. The approach to deal with such a problem is to solve the momentum 
and continuity equations sequentially and to enforce continuity through a derived equation for 
the pressure (effectively a pressure equation). This solution strategy is called a segregated 
solution approach in that it relies on sequential solution of the equations. 

An effective pressure equation is derived by taking the divergence of the momentum equation. 
The momentum equation here considered contains numerical approximations of the differential 
operators and temporal derivative: 

 𝒖 − 𝒖𝟎

𝛿𝑡
+ 𝒖 ⋅ (𝛻௡𝒖) = −

1

𝜌
𝛻௡𝑝 + 𝜈𝛻௡

ଶ𝒖 
(144) 

where subscript 𝑛 denotes numerical approximation of the differential operators and the 
temporal derivative is approximated with the Euler scheme. In this form, the equation does not 
imply errors due to the yet unspecified segregated procedure used to solve it and is referred to 
as the exact equation even though it is expressed in terms of numerical approximations of its 
component terms. By taking the divergence of Eq. (144) it follows: 

 
𝛻 ⋅ ൭

𝒖 − 𝒖𝟎

𝛿𝑡
+ 𝒖 ⋅ (𝛻௡𝒖)൱ = 𝛻 ⋅ ൬−

1

𝜌
𝛻௡𝑝 + 𝜈𝛻௡

ଶ𝒖൰ 

→
𝛻௡ ⋅ 𝒖 − 𝛻௡ ⋅ 𝒖𝟎

𝛿𝑡
+ 𝛻௡ ⋅ (𝒖 ⋅ (𝛻௡𝒖)) = −

1

𝜌
𝛻௡ ⋅ (𝛻௡𝑝) + 𝜈𝛻௡

ଶ(𝛻௡ ⋅ 𝒖)  

 

(145) 

 

Since 𝛻௡ ⋅ 𝒖 = 0 and 𝛻௡ ⋅ 𝒖଴ = 0, and considering that 𝛻௡ ⋅ (𝛻௡𝑝) = 𝛻௡
ଶ𝑝, Eq. (145) becomes: 

 𝛻௡
ଶ𝑝 = −𝜌൫𝛻௡ ⋅ (𝒖 ⋅ 𝛻௡𝒖)൯ (146) 

2.8.1. Solution algorithms of practical importance 

The rationale behind segregated solution methods is to enforce continuity 𝛻௡ ⋅ 𝒖 = 0 via 
generating an effective equation for the pressure. The pressure calculated via solving such an 
effective pressure equation is used to correct the velocity and therefore enforce that the velocity 
so corrected satisfies continuity. Segregated solutions methods are illustrated here using a 
popular solution algorithm, the semi–implicit method for pressure linked equations (SIMPLE) 
[5], as an example. Historically, the SIMPLE method is the first of a numerous group of 
segregated solution algorithms based on the same principle, often referred to as the SIMPLE 
family of methods. Another important method of the SIMPLE family is the pressure implicit 
with splitting of operators (PISO) method [6], which is described next. 

The core idea of the SIMPLE method can be summarized with the following steps: 

1. Use a guess value for the pressure field 𝑝* to solve a momentum equation in the form 
of Eq. (144). This step is called velocity predictor as it yields a velocity 𝒖∗ that is not 
guaranteed to satisfy the continuity equation, namely 𝛻୬ ⋅ 𝒖 = 0. 

2. Construct a pressure equation from the continuity equation and solve it to yield a 
pressure field 𝑝. 

3. Use the new pressure field to correct the velocity with a correction term 𝒖′ so to have a 
velocity 𝒖∗∗ = 𝒖∗ + 𝒖′. This step is called velocity corrector. 
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4. Repeat the process starting from the first step (step 1.) until the convergence criteria are 
met. 

This whole set of steps is repeated for each time step, although it should be stressed out that the 
SIMPLE method was originally devised for steady state scenarios. The following is a discussion 
in greater details regarding each of these steps. 

The idea behind the velocity predictor is to solve and equation in the following form: 

 𝒖∗ − 𝒖𝟎

𝛿𝑡
+ 𝒖ෝ ⋅ (𝛻௡𝒖∗) = −

1

𝜌
𝛻௡𝑝̂ + 𝜈𝛻௡

ଶ𝒖∗ 
(147) 

where quantities under the hat symbol  ̂ represent the latest available values or a guess value. 
The advective term uses the latest available velocity 𝒖ෝ so that it can be linearized with respect 
to 𝒖∗. The solution of Eq. (147) yields 𝒖∗ which is not guaranteed to satisfy continuity. Thus, 
the next step is to find a pressure correction 𝑝′ such that the pressure field 𝑝∗ = 𝑝̂ + 𝑝′ gives 
rise to a velocity field 𝒖∗∗ = 𝒖∗ + 𝒖′ that does satisfy 𝛻௡ ⋅ 𝒖∗∗ = 0. Ideally, the field also 
satisfies the momentum equation, such that: 

 𝒖∗∗ − 𝒖𝟎

𝛿𝑡
+ 𝒖∗∗ ⋅ (𝛻௡𝒖∗∗) = −

1

𝜌
𝛻௡𝑝∗ + 𝜈𝛻௡

ଶ𝒖∗∗ 
(148) 

However, as the difference between 𝒖∗∗ and 𝒖∗ diminishes as iterations are performed (as the 
solutions progresses towards convergence), it proves to be more useful to require 𝒖∗∗ to satisfy 
a slightly modified version of the momentum conservation equation: 

 𝒖∗∗ − 𝒖𝟎

𝛿𝑡
+ 𝒖ෝ ⋅ (𝛻௡𝒖∗) = −

1

𝜌
𝛻௡𝑝∗ + 𝜈𝛻௡

ଶ𝒖∗ 
(149) 

The reason why this requirement is deemed useful is that it enables to derive an explicit equation 
that relates the velocity correction 𝒖ᇱ and the pressure correction 𝒑′. By subtracting Eq. (147) 
from Eq. (149) it is obtained: 

 𝒖∗∗ − 𝒖∗

𝛿𝑡
= −

1

𝜌
𝛻௡(𝑝∗ − 𝑝̂) 

(150) 

This result is used to compute the velocity correction 𝒖ᇱ = 𝒖∗∗ − 𝒖∗ from the pressure 
correction 𝑝ᇱ = 𝑝∗ − 𝑝̂, in the step 3. of the algorithm, while the pressure correction itself is 
computed from a pressure equation constructed from taking the divergence of both sides of Eq. 
(150) while considering that 𝛻௡ ⋅ 𝒖∗∗ = 0, so that: 

 
𝛻௡ ⋅ ൬

𝒖∗∗ − 𝒖∗

𝛿𝑡
൰ = 𝛻௡ ⋅ ൭−

1

𝜌
𝛻௡(𝑝∗ − 𝑝̂)൱ → 

𝛻௡
ଶ(𝑝∗ − 𝑝̂) =

𝜌

𝛿𝑡
𝛻௡ ⋅ 𝒖∗ 

 

(151) 

This is the pressure correction equation that is solved at step 2. to obtain 𝑝ᇱ = p∗ − pො. Thus, the 
algorithm that is executed at every time step may be more accurately formulated as: 
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1. Use the latest available pressure field 𝑝̂ to solve Eq. (147) for 𝒖∗, which does not in 
principle satisfy the continuity equation. 

2. Use 𝒖∗ to solve a pressure correction equation in the form of Eq. (151) for 𝑝ᇱ = p∗ − pො.  
3. Use the pressure correction 𝑝′ to compute the velocity correction 𝒖′ via Eq. (150), which 

is used to correct the velocity 𝒖∗∗ = 𝒖∗ + 𝒖′ that is divergence–free. 
4. Repeat the process starting from step 1. Until some convergence criteria are met. The 

final velocity and pressure distributions are given by 𝒖∗∗ and 𝑝∗, respectively. 

Many iterations of the loop are required within every time step; therefore, the SIMPLE method 
is often referred to as an iterative method. For steady problems, an under relaxation parameter 
replaces the time step. The underrelaxation parameter has no physical meaning and its value is 
typically set to the largest value that guarantees stability of the SIMPLE procedure to maximize 
the computational speed. 

Finally, while the incompressible, constant viscosity formulation used for illustration purposes 
to describe the algorithm, the SIMPLE method can be adopted for the simulation of any flow 
type. 

2.8.2. Pressure implicit with splitting of operator method 

The principal issue with the SIMPLE method concerns typically slow convergence of the ∇୬ ⋅
𝐮∗ term in the pressure correction equation, Eq. (151), which should vanish as the iterations are 
performed within each time step. It should vanish as, ultimately, for a converged solution one 
has 𝒖∗∗ ≃ 𝒖∗ within a certain tolerance, and 𝒖∗∗ satisfies continuity by construction, namely 
that ∇୬ ⋅ 𝐮∗∗ = 0. In practice, the term ∇୬ ⋅ 𝐮∗, arises in the pressure correction equation, Eq. 
(151), from the fact that the momentum equation for 𝒖∗∗ that is used for its construction, Eq. 
(149), uses the precited velocity 𝒖∗, which does not satisfy continuity, for the formulation of 
the advective and diffusive terms. 

To further illustrate why this is a problem, it can be useful to build a pressure equation for 𝑝∗ 
and compare it with the exact pressure equation, Eq. (146). By taking the divergence of the Eq. 
(149) and considering ∇୬ ⋅ 𝐮∗∗ = 0 it follows: 

 
𝛻 ⋅ ൭

𝒖∗∗ − 𝒖𝟎

𝛿𝑡
+ 𝒖ෝ ⋅ (𝛻௡𝒖∗)൱ = 𝛻 ⋅ ൬−

1

𝜌
𝛻௡𝑝∗ + 𝜈𝛻௡

ଶ𝒖∗ ൰ 

→
𝛻௡ ⋅ 𝒖∗∗ − 𝛻௡ ⋅ 𝒖𝟎

𝛿𝑡
+ 𝛻௡ ⋅ ൫𝒖ෝ ⋅ (𝛻௡𝒖∗)൯ = −

1

𝜌
𝛻௡ ⋅ (𝛻௡𝑝∗) + 𝜈𝛻௡

ଶ(𝛻௡ ⋅ 𝒖∗) → 

→ 𝛻௡
ଶ𝑝∗ =

𝜌

𝛿𝑡
൫∇୬ ⋅ ൫𝐮ෝ ⋅ (∇୬𝐮∗)൯ − 𝜈𝛻௡

ଶ(∇୬ ⋅ 𝐮∗)൯ 

 

 

(152) 

Compared to the exact pressure equation, namely Eq. (146), the previous equation contains the 
−𝜈𝛻௡

ଶ(∇୬ ⋅ 𝐮∗) term, which tends to 0 as iterations progress, but its presence can increase the 
overall number of iterations required to reach convergence within a time step. This is a 
limitation of the SIMPLE approach. 

The idea behind the PISO approach is to take the overall logic of the SIMPLE approach, but to 
construct further corrections to the velocity and pressure fields. The reason why this is 
advantageous is now illustrated. A further set of corrected fields is defined as velocity 𝒖∗∗∗ =
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𝒖∗∗ + 𝒖′′ and pressure 𝑝∗∗ = 𝑝∗ + 𝑝′′. Just as 𝒖∗∗ is constructed so that ∇௡ ⋅ 𝒖∗∗ = 0, 𝒖∗∗∗ is 
also constructed so to enforce ∇௡ ⋅ 𝒖∗∗∗ = 0. In a similar manner, this is done by constructing a 
momentum equation for 𝒖∗∗∗ in the same way as for 𝒖∗∗: 

 𝒖∗∗∗ − 𝒖𝟎

𝛿𝑡
+ 𝒖ෝ ⋅ (𝛻௡𝒖∗∗) = −

1

𝜌
𝛻௡𝑝∗∗ + 𝜈𝛻௡

ଶ𝒖∗∗ 
(153) 

There is a formal equivalence between Eq. (153) (i.e., the momentum equation for 𝒖∗∗∗) and 
Eq. (149) (i.e., the momentum equation for 𝒖∗∗). However, and this is the crucial aspect of the 
PISO approach, 𝒖∗∗ in Eq. (153) satisfies continuity by construction, while 𝒖∗ in Eq. (149) does 
not. Thus, to construct a pressure equation for 𝑝∗∗ by taking the divergence of Eq. (158), a 
pressure equation is then obtained in the following form: 

 
𝛻௡

ଶ𝑝∗∗ =
𝜌

𝛿𝑡
൫𝛻௡ ⋅ ൫𝒖ෝ ⋅ (𝛻௡𝒖∗∗)൯ − 𝜈𝛻௡

ଶ(𝛻௡ ⋅ 𝒖∗∗)൯ =
𝜌

𝛿𝑡
𝛻௡ ⋅ ൫𝒖ෝ ⋅ (𝛻௡𝒖∗∗)൯ (154) 

which, unlike Eq. (157), is formally equivalent to the exact pressure equation defined by Eq. 
(146). Practical consequence of this, due to the absence of terms such as −𝜈𝛻௡

ଶ(∇୬ ⋅ 𝐮∗∗) that 
slowly converge to 0, is that having a second pressure correction and velocity correction step 
after the first one can significantly reduce the number of iterations required to reach 
convergence within each time step. Historically, it is important to note that it is precisely the 
PISO algorithm that enabled feasible transient (i.e., unsteady) simulations. 

The relationship between the second velocity correction 𝑢′′ and the second pressure correction 
𝑝′′, as well as the second pressure correction equation is derived as follows. The relationship 
between the correction fields is obtained by subtracting the momentum equation for 𝒖∗∗, Eq. 
(149) from the momentum equation for 𝒖∗∗∗, Eq. (153): 

 𝒖∗∗∗ − 𝒖∗∗

𝛿𝑡
+ 𝒖ෝ ⋅ (𝛻௡𝒖ᇱ) = −

1

𝜌
𝛻௡(𝑝∗∗ − 𝑝∗) + 𝜈𝛻௡

ଶ𝒖ᇱ 
(155) 

This equation relates the second pressure correction field 𝒖ᇱᇱ = 𝐮∗∗∗ − 𝐮∗∗ to the second 
pressure correction field 𝑝ᇱᇱ = 𝑝∗∗ − 𝑝∗ and is explicit in 𝒖ᇱᇱ as all other fields are known. 

To derive the pressure correction equation, a divergence of Eq. (155) in combination with 𝛻௡ ⋅
𝒖∗∗∗ = 0 and 𝛻௡ ⋅ 𝒖∗∗ = 0 leads to: 

 𝛻௡
ଶ(𝑝∗∗ − 𝑝∗) = 𝜌𝛻௡ ⋅ ൫𝜈𝛻௡

ଶ𝒖ᇱ − 𝒖ෝ ⋅ (𝛻௡𝒖ᇱ)൯ (156) 

The PISO algorithms with two corrector steps can be now fully described. The first three steps 
are the same as for the SIMPLE algorithm: 

1. Use the latest available pressure field 𝑝̂ to solve Eq. (147) for 𝒖∗, which does not in 
principle satisfy the continuity equation. 

2. Use 𝒖∗ to solve the first pressure correction equation in the form of Eq. (151) for 
𝑝ᇱ = 𝑝∗ − 𝑝̂.  

3. Use the pressure correction 𝑝′ to compute the velocity correction 𝒖′ via Eq. (150), 
which is used to correct the velocity 𝒖∗∗ = 𝒖∗ + 𝒖′ that is divergence–free. 

4. Use 𝒖′ to solve the second pressure correction equation in the form of Eq. (161) for 
𝑝ᇱᇱ = 𝑝∗∗ − 𝑝∗. 
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5. Use the pressure correction 𝑝′′ to compute the velocity correction 𝒖′′ via Eq. (155), 
which is used to correct the velocity 𝒖∗∗∗ = 𝒖∗∗ + 𝒖ᇱᇱ. 

6. Repeat the process starting from step 1. until some convergence criteria are met. The 
final velocity and pressure distributions are given by 𝒖∗∗∗ and 𝑝∗∗ respectively. 

The PISO algorithm can be expanded to any number of correction steps, generally called PISO 
iterations. This is achieved by repeating steps 4., and 5. an arbitrary number of times by setting 
𝒖ᇱ = 𝒖′′, 𝒖∗∗ = 𝒖∗∗∗ 𝑝∗ = 𝑝∗∗ after the end of step 6., before the start of step 5. 

2.8.3. Conclusive remarks 

It was demonstrated [6] that two PISO steps are in practice sufficient to drive the error 
introduced by the PISO procedure to a small enough value i.e., to an amount no larger than that 
the discretization error associated with the temporal derivative. Due to such an attractive 
feature, the PISO method enables a drastic reduction of computation times compared to the 
SIMPLE method. Similar segregated solution algorithms [7] e.g., SIMPLER, PRESTO, etc., 
are developed by combining different aspects of fundamental SIMPLE and PISO approaches. 
As the basic principle of the segregated solution strategy is originally laid out by the SIMPLE 
method of Patankar, segregated solution algorithms are often referred to as the SIMPLE family 
of methods. Merged PISO–SIMPLE (PIMPLE) is the name given to the popular PISO 
implementation available in many CFD solvers in the popular OpenFOAM library of CFD 
analysis. As a further example, recent versions of the STAR–CCM+ code offer an 
implementation of the PISO method for some applications.  

Choice of the appropriate solution algorithm depends on the specific problem under 
consideration. For steady state problems, the performance of the SIMPLE method with under 
relaxation is often comparable to the PISO method. For unsteady problems, the SIMPLE 
method requires a very large number of iterations, when compared to the PISO approach to 
attain accuracy within a time step, which makes the method unsuitable for time dependent 
simulation, wherein the PISO approach is preferred. Drastic reduction of simulation times that 
can be attained by using the PISO method effectively enabled realistic scale resolving time 
dependent simulation, such as large eddy simulations or pseudo–direct numerical simulation, 
and their application to industrially relevant flows in complex geometries. In this context, the 
success of PISO based solution methodologies available in actual CFD codes is at least in part 
due to implementations of the PISO method specific to the various solvers available in the 
OpenFOAM CFD toolbox.  

3. FUNDAMENTALS OF TURBULENCE MODELLING – FROM REYNOLDS 
AVERAGED NAVIER STOKES TO DIRECT NUMERICAL SIMULATION  

This chapter describes the turbulence modelling, and it is focused on RANS and unsteady 
RANS (URANS) modelling. It covers the basics of turbulence and turbulent flows and 
describes different types of turbulent flows. Prediction methods used to predict such flows are 
described. The RANS/URANS approach is discussed in detail as well as various turbulence 
models used to close the governing equations of RANS/URANs modelling.  

3.1. INTRODUCTION TO TURBULENCE AND TURBULENT FLOWS 

Mostly fluid flows are turbulent. The transport and mixing of matter, momentum, and heat in a 
fluid flow is of prime importance in many industrial engineering applications and turbulence 
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considerably improves the rates of these processes. This motivates engineers to study turbulent 
flows. In turbulent flows, there exist the continuous mixing of adjacent layers of the fluid. The 
mixing of fluid elements from different mean velocity layers causes the net momentum transfer 
which is far more effective as compared to the transfer resulting from viscous stresses. 
Subsequently, in a turbulent flow, the mean velocity profile becomes more uniform. 

There is no easy way to define turbulence. It is mostly described by investigating the dissipative 
and non local flow features at high Reynolds numbers including irregularity, diffusivity, and 
rotational features. It is a continuum phenomenon that is not a property of fluid but fluid flow. 
Unsteadiness, convection, production, diffusion, and dissipation are a few physical processes 
that are involved in turbulent flows [8]. 

In 1922, Richardson presented the energy cascade mechanism – a hypothesis that shows the 
characterization of turbulent flows at an infinite number of time and length scales. The eddies 
of different sizes also describe the turbulence. The sizes of eddies vary from the flow length 
scale 𝐿 to the smallest eddies. There exists a characteristic velocity 𝑢(𝑙) and timescale 𝑡(𝑙) =
𝑢(𝑙)/𝑙 of an eddy of length size 𝑙. The largest eddies exist at length scales near to the flow 
length scale 𝐿. Each eddy has a Reynold number and large eddies have large Reynold numbers 
hence negligible viscous effects. The smaller eddies gain energy produced from the breaking 
up of large eddies and then the smaller ones undergo the same disintegration and so on. This 
goes on and the energy cascades until the Reynold number is small enough that the eddies have 
stable motion and molecular viscosity causes energy dissipation i.e., energy is dissipated only 
by viscous effects. In 1941, Kolmogorov proposed the smallest energy dissipating scales in the 
flow. These are Kolmogorov length scale 𝜂, velocity scale 𝑢ఎ and time scale 𝑡ఎ and are 
calculated as follows: 

 
𝜂 = ቆ

𝜈ଷ

𝜀
ቇ

଴.ଶହ

 
(157) 

  𝑢ఎ = (𝜀𝜈)଴.ଶହ (158) 

  
𝑡ఎ = ቀ

𝜈

𝜀
ቁ

଴.ହ

 
(159) 

The unsteady nature, the presence of a wide range of eddies, and its strong dependence on initial 
conditions make the computation of the turbulent flow a challenging task. Proper computational 
modelling requires addressing all these features. 

3.1.1. Types of turbulent flows 

Turbulent flows are mainly divided into three groups: boundary layers or wall bounded flows, 
shear layers, and grid generated turbulent flows. In wall bounded turbulent flows, near the wall 
is where most of the kinetic energy of a turbulent flow is produced. The wall bounded turbulent 
flows are often categorized into turbulent boundary layers or fully developed turbulent flows. 
A surface and a free stream bound turbulent boundary layers while in fully developed turbulent 
flows it is bounded by a wall e.g., channel or a pipe. In the case of turbulent shear layers, flow 
grows up in a streamwise direction and develops self preserving universal characteristics. This 
type of flow may be categorized into three different types i.e., free shear layers, jets, and wakes. 
Typical mean velocity profiles of shear flows are shown in Fig. 14. 
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FIG. 14. Representation of three principal types of turbulent flows: (a) jet flow; (b) free sear layer flow; (c) wake 
flow (adapted from [8]). 

3.1.2. Fundamental concepts of turbulent flows 

Usually, a turbulent boundary layer is divided into regions and in each region, the turbulence 
behavior is described. The first region is a very thin layer of fluid near the surface that is known 
as a viscous sublayer and the second region is the outer layer where the fluid flow is turbulent, 
called a fully turbulent region. The region in between the two is referred to as a buffer zone. 
Turbulent flows are described by these three regions. The turbulent boundary layers can also 
be divided into inner and outer regions. The viscous sublayer, buffer zone, and a portion of the 
fully turbulent zone make up the inner region while the rest of the part lies in the outer region. 
To identify the various regions within the turbulent boundary layer, a non dimensional velocity 
𝑢ା and a normalized wall distance 𝑦ା are defined as follows: 

 
𝑢ା =

𝑢

𝑢ఛ
 (160) 

  
𝑦ା = 𝑦

𝑢ఛ

𝜈
 (161) 

where 𝑦 is the real wall distance coordinate, 𝜈 is fluid kinematic viscosity, and 𝑢ఛ is frictional 
velocity defined with: 

 

𝑢ఛ = ඨ
𝜏௪

𝜌
 

(162) 

where 𝜏௪ is the shear stress value at the wall. The normalized wall distance is useful for 
identifying different regions of the boundary layer flow. In particular, the region of the fluid 
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flow that lies within the 𝑦ା ≤ 2~8 range is known as viscous sublayer, the one in the 2~8 <
𝑦ା < ~50 range is known as a buffer zone, and in the 𝑦ା > ~50 range is known as fully 
turbulent zone [9].  

3.2. OVERVIEW OF PREDICTION METHODS FOR TURBULENT FLOWS 

In CFD, different predication methods are used for computing turbulent flows. The most 
important ones consist of DNS, RANS, LES, and hybrid methods which consists of a blending 
of different approaches, such as RANS–LES hybrid methods.  

3.2.1. Direct numerical simulation 

Under the hypothesis of continuum, the Navier-Stokes equations solely can describe all fluid 
flows including turbulent flows. In DNS, time dependent Navier-Stokes equations are solved 
resolving all the spatial and turbulence temporal scales. If used as a technique for design and 
analysis, there are two challenges to consider. To solve complex problems at high 𝑅𝑒 numbers, 
current computers lack required memory and computational speed. The number of grid points 
has to be proportional to 𝑅𝑒଴.଻ହ in case of a 2D problem, while representing the fluid flows in 
3D it needs to be proportional to 𝑅𝑒ଶ.ଶହ. Parallel processing can be used to increase performance 
and computational speed. The other important challenge is to develop a solution algorithm 
without numerical error. This is related to selected grid system, numerical scheme, and 
boundary conditions. To use DNS, it is recommended to generate higher order grids and apply 
higher order numerical schemes. The use of DNS in practical problems is still limited. However, 
in transition and turbulent flows that are difficult to analyze experimentally, the DNS still 
provides useful data. Therefore, in understanding turbulence and its degree of practical 
applicability to problems of engineering interests, the DNS plays an important role [8]. 

3.2.2. Reynolds averaged Navier–Stokes 

In the RANS, the technique decomposes solution variables in the Navier-Stokes equation into 
mean and fluctuating components with respect to time. As a result of this, some additional 
unknowns appear in the equations making the system of governing equation more complex to 
model. In order to close the system of governing equations, additional relations known as 
turbulence models are used.  

3.2.3. Large eddy simulation 

DNS method focusses on resolution of all scales of turbulence, whereas in RANS all scales are 
not directly resolved but modelled. Large eddy simulations provide a compromise between 
DNS and RANS. As most of the eddy energy is contained outside the dissipation range i.e., the 
smallest scales, the core idea of LES is to model these small scales that have universal 
characteristics while fully resolving the larger scales. In LES, large scales are resolved and the 
small scales (subgrid, i.e., smaller than the mesh cell size) are modeled. Sub grid scale models 
are used for sub grid turbulent scales and are applicable to an extensive range of flow regimes 
and are used for subgrid turbulent scales. Fig. 15 shows how the LES approach provides better 
results to resolve shorter length scales compared to RANS approach at the cost of more 
computational power. 
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FIG. 15. Spatial ranges of what can be resolved versus what needs to be modelled for each type of turbulence 
modelling approach (conceived from [10]). 

3.2.4. Hybrid approach 

In a hybrid approach put forth by Spalart et al. [11] in 1997, regions with turbulent length scales 
less than the grid dimensions are solved using the RANS, and regions with length scales higher 
than the grid dimensions are solved using the LES. A suitable interface is used to switch 
between RANS and LES and therefore, cost of computing is therefore lower than LES. 

3.3. REYNOLDS AVERAGED NAVIER–STOKES 

To consider turbulence effects in flow fields, the governing equations of fluid flow are revised. 
The approach discussed here is how to obtain a set of governing equations that describe, and 
model turbulence based on the RANS approach. The application of this approach to the initial 
Navier–Stokes equations results in the so called RANS equations. 

For simplicity, but without losing generality in the derivation, the constant density, constant 
viscosity, incompressible Navier–Stokes equations in their differential form, namely Eq. (77) 
and Eq. (78), are considered and formulated as follows: 

 𝛻 ⋅ 𝒖 = 0 (163) 

  𝜕

𝜕𝑡
𝒖 + 𝛻 ⋅ (𝒖 ⊗ 𝒖) = −

1

𝜌
𝛻𝑝 + 𝜈𝛻ଶ𝒖 

(164) 

As previously introduced, the idea behind Reynolds averaging is to first define each variable of 
interest 𝜙 in terms of a mean component 𝜙ത  as well as a fluctuating component 𝜙′. This is called 
Reynolds decomposition and consists of: 

 𝜙(𝒙, 𝑡) = 𝜙ത(𝒙, 𝑡) + 𝜙′(𝒙, 𝑡) (165) 

In the most general case, the mean component is given by an ensemble average operator 𝜙ത =
𝜙തா . The ensemble average assumes to conceptually perform an experiment under identical 
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conditions for a certain number of 𝑁 → ∞. Then, the ensemble average 𝜙തா(𝒙, 𝑡) is the value 
that 𝜙 assumes at position 𝒙 and time 𝑡 averaged across all experimental realizations. Then, for 
the 𝑖–th realization with 𝜙௜(𝒙, 𝑡), it follows: 

 
𝜙തா(𝒙, 𝑡) = 𝑙𝑖𝑚

ே→ஶ

1

𝑁
𝜙௜(𝒙, 𝑡) 

(166) 

One can generally distinguish between steady flows and unsteady flows. These flows are 
distinguished based on the behavior of the ensemble average, such that steady flows are 
statistically steady in the sense that:  

 𝜕

𝜕𝑡
𝜙ത(𝒙, 𝑡) = 0 

(167) 

Conversely, unsteady flows do not necessarily satisfy Eq. (167) for all 𝑡 and 𝒙. These two flow 
scenarios are illustrated in Fig. 16. 

 

FIG. 16. Representation of (a) steady mean value and (b) unsteady mean values. 

The equations obtained by applying the Reynolds decomposition and ensemble averaging to 
the equations governing an unsteady flow case are typically referred to as URANS equations. 
For completeness, it should be noted that in the steady case, the ensemble average corresponds 
to the time average 𝜙തா = 𝜙ത் so that: 

 
𝜙ത = 𝜙തா = 𝜙ത்(𝒙) = 𝑙𝑖𝑚

௱௧→ஶ

1

𝛥𝑡
න 𝜙(𝒙, 𝑡)𝑑𝑡

௱௧

଴

 
(168) 

The Reynolds averaging process relies on applying the ensemble averaging operator to all terms 
in the Navier–Stokes equations. As a consequence of the definition of such operator, for any 
two fields of interest 𝜙 and 𝜓, the following properties can be demonstrated: 

 𝜙ᇱതതത = 0 (169) 

  𝜙തത = 𝜙ത (170) 
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 𝜙ത + 𝜙ᇱതതതതതതതതത = 𝜙ത (171) 

   𝜙 + 𝜓തതതതതതതത = 𝜙ത + 𝜓ത (172) 

  𝜙ത𝜓തതതത = 𝜙ത𝜓ത (173) 

  𝜙ത𝜓′തതതതത = 0 (174) 

  𝜙𝜓തതതത = 𝜙ത𝜓ത + 𝜙ᇱ𝜓ᇱതതതതതത (175) 

  𝜙ᇱ𝜓ᇱതതതതതത ≠ 0 (176) 

  𝜙ᇱଶതതതതത ≠ 0 (177) 

 𝜕

𝜕𝑥
𝜙

തതതതതത
=

𝜕

𝜕𝑥
𝜙ത 

(178) 

 
න 𝜙 𝑑𝑥
തതതതതതതതത

= න 𝜙 ഥ 𝑑𝑥 
(179) 

It is significant to point out that the products of fluctuating terms do not average out to zeros in 
general. In fact, these are very relevant for turbulent flow modelling because of velocity 
fluctuations. Reynolds decomposition when applied to two unknowns, the velocity 𝒖 and 
pressure 𝑝 in the Navier–Stokes equations represented by Eq. (163), Eq. (164) lead to: 

 𝒖 = 𝒖ഥ + 𝒖′ (180) 

  𝑝 = 𝑝̅ + 𝑝′ (181) 

By applying the averaging operator to the Navier–Stokes equations it follows: 

 𝛻 ⋅ 𝒖ഥ = 0 (182) 

  𝜕

𝜕𝑡
𝒖ഥ + 𝛻 ⋅ (𝒖ഥ ⊗ 𝒖ഥ) = −

1

𝜌
𝛻𝑝̅ + 𝜈𝛻ଶ𝒖ഥ +

1

𝜌
𝛻 ⋅ 𝝉ோ 

(183) 

These equations are collectively known as the URANS equations when 𝜕𝒖ഥ 𝜕𝑡⁄ ≠ 0, and RANS 
equations otherwise. However, this use of the acronyms is not strict, and it is not unusual to 
encounter the URANS equations being called RANS equations. There are several differences 
between the RANS equation and the original Navier–Stokes equations, Eqs. (163) and (164) 
defined earlier. In the RANS equations, all the variables are (ensemble) averaged variables. In 
addition, the RANS equations give rise to an additional term in the momentum equations, 
namely the divergence of what is known as Reynolds stress 𝝉ோ. Physically, it represents 
macroscopic momentum exchange due to turbulence and can be interpreted as an additional 
shear stress, often called turbulent shear stress, as: 

 

𝝉ோ = 𝜌൫𝒖ᇱ ⊗ 𝒖ᇱതതതതതതതതതത൯ = 𝜌 ൦

𝑢௫
ᇱ 𝑢௫′തതതതതതത 𝑢௫

ᇱ 𝑢௬′തതതതതതത 𝑢௫
ᇱ 𝑢௭′തതതതതതത

𝑢௬
ᇱ 𝑢௫′തതതതതതത 𝑢௬

ᇱ 𝑢௬′തതതതതതതത 𝑢௬
ᇱ 𝑢௭′തതതതതതത

𝑢௭
ᇱ 𝑢௫′തതതതതതത 𝑢௭

ᇱ 𝑢௬′തതതതതതത 𝑢௭
ᇱ 𝑢௭′തതതതതതത

൪ 

(184) 

Reynolds stress fundamentally adds additional unknowns to the governing equations and has 
to be modelled in a way to close the system of RANS equations. Thus, additional relations 
known as turbulence models are used to complete the system of governing equations. These 
models use empirical constants derived from trials to connect the fluctuating variables with the 
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mean flow quantities. The RANS equations can be closed using two different categories of 
models, namely eddy viscosity models and Reynolds stress models. 

3.3.1. Eddy viscosity models 

Eddy viscosity models employ the Boussinesq approximation to relate the Reynolds stress 𝝉ோ 
to the mean velocity gradients 𝛻𝒖ഥ, initially proposed by Boussinesq in 1877 [12]. This 
approximation states that the Reynolds stress is proportional to the mean strain rate tensor 𝛻𝒖ഥ +
(𝛻𝒖ഥ)், multiplied by a constant which is known as eddy viscosity or turbulent viscosity 𝜇். 
This hypothesis is like the one made when considering Newtonian fluids where the shear 
stresses are proportional to shear strain rate i.e., velocity gradient. The Boussinesq 
approximation simplifies the turbulence modelling and instead of having separate equations for 
the different components of the Reynolds stress, it determines the appropriate value of eddy 
viscosity or turbulent viscosity 𝜇் (and a kinematic turbulent viscosity 𝜈் = 𝜇்/𝜌). It is 
important to note that turbulent viscosity is not a fluid property, rather, it is an artificial property 
of the flow which is devised to model the effects of turbulence. Mathematically, the Reynolds 
stress can be related with the mean strain rate tensor using the Boussinesq approximation as 
follows: 

 
𝝉ோ = −𝜌൫𝒖ᇱ ⊗ 𝒖ᇱതതതതതതതതതത൯ =  𝜇் ൬𝛻𝒖ഥ + (𝛻𝒖ഥ)் −

2

3
𝜌𝑘𝕀൰ 

(185) 

or, in cartesian notation for the 𝑖, 𝑗 component of 𝝉ோ: 

 
𝜏ோ,௜௝ = −𝜌𝑢ప𝑢ఫതതതതത = 𝜇் ቆ

𝜕𝑢పഥ

𝜕𝑥௝
+

𝜕𝑢ఫഥ

𝜕𝑥௜
ቇ −

2

3
𝑘𝛿௜௝  

(186) 

 where 𝑘 is the turbulent kinetic energy, defined with: 

 
𝑘 =

1

2
𝒖ᇱ ⋅ 𝒖′തതതതതതതത 

(187) 

Eddy viscosity models give reasonable results for large number of problems and require less 
computational power. The main downside of such models is to model 𝜇் as an isotropic scalar 
quantity which might not be always convenient. Eddy viscosity models are cornerstone of 
turbulence modelling and help in the computation of 𝜇்The turbulence model is useful if it 
assures its wide applicability with accurate results and is enough simple for economical runs. 
From algebraic equations to systems partial differential equations to be solved, these models 
vary in terms of the degree of sophistication. The most common categories of models are the 
so called algebraic models (or zero equation models), one equation models and the two 
equations models. The number of equations signifies the number of additional partial 
differential equations to be solved. 

3.3.1.1. Algebraic models 

The turbulent fluctuating correlations are related to the mean flow field variables through the 
algebraic relations. The key assumption is that the local production rate and the dissipation rate 
of turbulence are equal (approximately). These do not include the convective transport of 
turbulence, which is conflicting to the physics of most flow fields since the of the flow history 
need to be considered. However, these models are mathematically simple, easy to implement, 
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and provide good predictions for simple flows where experimental correlations for mixing 
length exist. The Baldwin–Lomax model and the Cebeci–Smith model are used frequently for 
the external flow applications [8]. 

3.3.1.2. One equation models 

These models typically solve a partial differential equation for turbulent kinetic energy 𝑘, 
whereas the turbulent viscosity 𝜇் is given by an algebraic relation involving turbulent kinetic 
energy as well as length scale 𝑙, which is specified algebraically. This length scale is generally 
assumed to be proportional to e.g., the thickness of the boundary layer, the width of a jet or a 
wake. The turbulent viscosity is thus typically modelled as: 

 𝜇் = 𝜌𝑘଴.ହ𝑙 (188) 

The main disadvantage of this model is that it is not applicable to general flows since it is not 
likely to always find an algebraic expression for a length scale. The specific form of the 
transport equation for turbulent kinetic energy varies from model to model but it generally 
contains convective and diffusive transport as well as production and dissipation terms. This 
model is applicable to attached wall bounded flows, and the flows with mild separation 
recirculation. The Spalart–Allmaras model is the example of a one equation model [8]. 

3.3.1.3. Two equation models 

Two equation turbulence models are presently the most used models in industrial applications 
as these overcome some of the previously illustrated limitations of the algebraic and one 
equation models. This is done by solving two additional transport equations for certain 
turbulence properties. Such properties generally consist of turbulent kinetic energy 𝑘 and 
turbulent kinetic energy dissipation rate that is modelled either in absolute terms (𝜀, in J/kg/s) 
or specific terms (𝜔, in s-1). In fluid mechanics applications, complex flow fields occur 
frequently. These include separated flows, unsteady flows as well as flows concerning multiple 
length scales. To better understand the physics of these complex flows, there exist two equation 
models. As for the previous models, many declinations of two equation models exist. Hereby, 
an overview of the most important two equation turbulence models is provided [8]. 

Whenever partial differential equations are to be solved, the boundary conditions need to be 
provided. One non–trivial issue that is faced by both one and two equation turbulence models 
is the specification of boundary conditions for the solved turbulence quantities at domain walls. 
Physically, the flow in the immediate vicinity of the wall is always viscous (as the viscous 
sublayer is the first layer in the wall vicinity regardless of the flow conditions in the bulk), 
meaning that there are no turbulent features in these regions. Setting appropriate boundary 
conditions might not be a problem for certain turbulence quantities (such as turbulence kinetic 
energy, which is physically null at the wall), but it might well be a problem for other quantities 
(such as turbulence dissipation rate 𝜀). Additionally, as what happens nearby domain walls is 
crucial for the generation and dissipation of turbulence, one would in principle desire a 
computational domain that is able to fully resolve the near wall region (i.e., the full spatial 
domain represented in FIG. 15). However, this would generally lead to very large and dense 
computational meshes, thus leading to very large (possibly prohibitively so) computational 
costs. To circumvent both issues, RANS models typically employ so called wall functions. The 
idea is to avoid using prohibitively fine meshes in the near wall region, and to model what 
happens in between the mesh cell centres of the mesh cells that are adjacent to domain walls 
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and the domain walls themselves via a model as depicted in FIG. 15. However, care is generally 
required as the value of the 𝑦ା coordinate of the boundary cell centers (which is not an 
exclusively geometric property but depends on flow properties as well) generally imposes the 
constraints on the usability of certain wall functions over the others. 

Standard k–𝜺 model 

The standard 𝑘–𝜀 model is a semi empirical model treating the turbulence kinetic energy 𝑘 and 
its dissipation rate 𝜀 through transport equations. The transport equation for 𝑘 is derived from 
mathematically exact transport equation, while the transport equation for 𝜀 contains additional 
empirically informed terms. In the derivation of the standard 𝑘–𝜀 model, it is assumed that the 
flow is completely turbulent, and molecular viscosity effects are insignificant [8]. The turbulent 
kinetic energy and its dissipation rate are governed by, [12]: 

 𝜕

𝜕𝑡
𝑘 + 𝛻 ⋅ (𝒖𝑘) = 𝝉ோ: 𝛻𝒖 − 𝜀 + 𝛻 ⋅ ൭൬𝜈 +

𝜈்

𝜎௞
൰ 𝛻𝑘൱  

(189) 

  𝜕

𝜕𝑡
𝜀 + 𝛻 ⋅ (𝒖𝜀) = 𝐶ఌଵ

𝜀

𝑘
𝝉ோ: 𝛻𝒖 − 𝐶ఌଶ

𝜀ଶ

𝑘
+ 𝛻 ⋅ ൭൬𝜈 +

𝜈்

𝜎ఌ
൰ 𝛻𝜀൱ 

(190) 

These equations are semi empirical and depend on empirical constants, which for the standard 
𝑘–𝜀 model are 𝐶ఌଵ = 1.44, 𝐶ఌଶ = 1.92, 𝜎௞ = 1.0, 𝜎ఌ = 1.3. The closure relation that relates 
the turbulence kinetic energy to the turbulent kinematic viscosity 𝜈் is: 

 
𝜈் =

𝐶ఓ𝑘ଶ

𝜀
 

(191) 

with 𝐶ఓ = 0.09 being a further empirical constant. We recall that the turbulent viscosity 𝜇் and 
kinematic turbulent viscosity are related by 𝜇் = 𝜌𝜈். Furthermore, the turbulence time scale 
(equivalent to the specific dissipation rate 𝜔) and length scale 𝑙 are defined as follows: 

 
𝜔 =

𝜀

𝐶ఓ𝑘
 (192) 

  

𝑙 = 𝐶ఓ

𝑘
ଷ
ଶ

𝜀
 

(193) 

The standard 𝑘–𝜀 model is the most used turbulence model in industrial applications. In this 
model, the parameters are calibrated by utilizing data from the experiments. This model is 
robust and reasonably accurate for wide range of problems. However, it performs poorly for 
flows with larger pressure gradients, strong separation, and high swirling components. 
Furthermore, in regions of large strain rate, production of kinetic energy is excessive which can 
result in inaccurate model predictions. 

Low Reynolds number k–𝜺 model 

The difficulty with the standard 𝑘–𝜀 model is that equations become numerically unstable when 
the computational domain resolves the near wall region without the use of wall functions. Direct 
integration of the 𝑘–𝜀 equations for the viscous sublayer to the wall provides a better approach 
to overcoming that difficulty. Several revisions are introduced in the standard 𝑘–𝜀 model to 
allow the integration to the wall and to enhance its capability. The revised equations are called 
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the low Reynolds number 𝑘–𝜀 equations. The first model of this kind was formulated by Jones 
and Launder and later it was modified by several researchers. The low Reynolds number 𝑘–𝜀 
model for a constant density case is written as follows [8]. 

 𝜕

𝜕𝑡
𝑘 = 𝝉ோ: 𝛻𝒖 + 𝐿௞ − 𝜀 + 𝛻 ⋅ ൭൬𝜈 +

𝜈்

𝜎௞
൰ 𝛻𝑘൱ 

(194) 

  𝜕

𝜕𝑡
𝜀 = 𝐶ఌଵ

𝜀

𝑘
𝑓ଵ𝝉ோ: 𝛻𝒖 + 𝐿ఌ − 𝐶ఌଶ

𝜀ଶ

𝑘
𝑓ଶ + 𝛻 ⋅ ൭൬𝜈 +

𝜈்

𝜎ఌ
൰ 𝛻𝜀൱ 

(195) 

with the same coefficients as the standard 𝑘–𝜀 model and: 

 
𝜈் =

𝑓ఓ𝐶ఓ𝑘ଶ

𝜀
 

(196) 

 𝑓ଵ = 1 (197) 

  𝑓ଶ = 1 − 0.3𝑒ିோ௘೅
మ
 (198) 

  
𝑓ఓ = 𝑒

ି
ଶ.ହ

ଵା଴.଴ଶோ௘೅  
(199) 

  𝐿௞ = −2𝜈(𝛻(𝑘଴.ହ))ଶ (200) 

  𝐿ఌ = 2𝜈𝜈்(𝛻ଶ𝒖)ଶ (201) 

Renormalization group k–𝜺 model 

The renormalization group 𝑘–𝜀 model (often abbreviated as RNG 𝑘–𝜀 model) is derived from 
the theory of renormalization group to the instantaneous Navier–Stokes equations. The 
constants are different from those in the standard 𝑘–𝜀 model, including the additional terms and 
functions in the transport equations for 𝑘 and 𝜀. This model has a structure that is similar to the 
conventional 𝑘–𝜀 model but adds more terms to the equation to address the interactions between 
mean shear and turbulence dissipation, the impact of swirl on turbulence, the impact of turbulent 
Prandtl number, and the impact of effective viscosity. This model provides improved 
predictions for high streamline curvature and strain rate, transitional flows and wall heat 
transfer. However, it generally fails to correctly predict the spreading of a round jet [9].  

Realizable k–𝜺 model 

The term realizable means that the model satisfies certain mathematical constraints on the 
normal stresses, consistent with the physics of turbulent flows [13]. This model has the same 
turbulent kinetic energy equation as in the standard 𝑘–𝜀 model. However, there are some 
improvements in the model that eliminate the discrepancies observed in the standard 𝑘–𝜀 model 
which include improved dissipation rate equation, and a variable 𝐶ఓ in the eddy viscosity 
relationship [14]. Therefore, it provides better predictions for flows with planar and round jets, 
boundary layers subject to strong adverse pressure gradients or separation, recirculation, and 
strong streamline curvature. 

k–𝝎 model 

This model includes one equation for turbulent kinetic energy and one equation for specific 
turbulent dissipation rate 𝜔. In the 𝑘–𝜀 model, the 𝑘 equation is derived from a transport 
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equation governed by the fluid flow. However, there is another approach to developing a 
transport equation in which the equation is formulated based on some known physical processes 
along with dimensional analysis. This approach is adopted for the development of 𝜔 transport 
equation. The 𝜔 is defined as the rate of dissipation per unit of turbulent kinetic energy. This 
dissipation of energy happens at the smallest eddies level and the rate of dissipation is equal to 
the rate of turbulence energy transfer to the smallest eddies. Thus, it depends upon the large 
eddy properties. The simplest physical meaning that can be attributed to 𝜔 is that it is the ratio 
of the rate of (absolute) turbulent dissipation to turbulent mixing. There are many versions of 
the model, including one proposed by Wilcox [15], which starts with the following: 

 𝜕

𝜕𝑡
𝑘 + 𝛻 ⋅ (𝒖𝑘) = 𝝉ோ: 𝛻𝒖 − 𝛽∗𝑘𝜔 + 𝛻 ⋅ ൫(𝜈 + σ∗ν୘)𝛻𝑘൯ (202) 

  𝜕

𝜕𝑡
𝜔 + 𝛻 ⋅ (𝒖𝜔) = 𝛼

𝜔

𝑘
𝝉ோ: 𝛻𝒖 − 𝛽𝜔ଶ + 𝛻 ⋅ ൫(𝜈 + σν୘)𝛻𝜔൯ (203) 

where 𝛼 = 5/9, 𝛽 = 0.075, 𝛽∗ = 0.09, 𝜎 = 𝜎∗ = 0.5 and: 

 
𝜈் =

𝑘

𝜔
 

(204) 

  𝜀 = 𝛽∗𝜔𝑘 (205) 

  
𝑙 =

𝑘଴.ହ

𝜔
 

(206) 

Transport equation for the specific 𝜔 can be obtained from the transport equation of the 
turbulence dissipation rate 𝜀 using Eq. (205), but it involves a significant number of further 
manipulations; these are not presented in this publication. Different variants of this model are: 
Wilcox (1998) 𝑘–𝜔 model, Wilcox (2006) k–ω, and Menter (2003) shear stress transport 𝑘–𝜔 
model [15]. Each variant is developed to overcome deficiencies of the previous formulations. 
The 𝑘–𝜔 family of turbulence models are y+ insensitive. These work by blending the viscous 
sublayer formulation and the logarithmic layer formulation based on 𝑦ା. Unlike the standard 
𝑘–𝜀 model, the 𝑘–𝜔 model can be integrated through viscous sublayer without the need for 
wall functions. The wall boundary conditions for turbulent variables are obtained as follows: 

 𝑘 = 0 (207) 

  
𝜔 =

6𝜈

𝛽଴𝑑ଶ
 

(208) 

  𝛽଴ = 0.075 (209) 

Shear stress transport model 

In the laminar sublayer and the logarithmic regions of the boundary layer, the 𝑘–𝜔 model 
performs better than the 𝑘–𝜀 model. Though, outside the boundary layer 𝑘–𝜔 model is shown 
to be sensitive to the specification of the freestream value of 𝜔. Thus, in the wake region of the 
boundary layer 𝑘–𝜔 model is not observed to be a better option. In contrast, the 𝑘–𝜀 model 
performs better for the outer and wake region of the boundary layer, and it is not a good option 
for the inner region as compared to 𝑘–𝜔 model. The shear stress transport model applies the 𝑘–
𝜔 model for the inner region of the boundary layer and for the outer and the wake region, it 
utilizes the 𝑘–𝜀 model. It incorporates the two models using a blending function that is designed 
in a way that in the vicinity of the wall region it equals one, thus implementing the 𝑘–𝜔 model, 
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and in the region far away from the wall it equals zero, thereby implementing the 𝑘–𝜀 model 
[8].The model predicts well the flow even with the adverse pressure gradients.  

3.3.2. Reynolds stress models 

Unlike eddy viscosity models, the Reynolds stress models (RSM) provides for the Reynolds 
stress 𝝉ோ using transport equations that consist of six independent terms present in the Reynolds 
stress. This enables the RSM model to treat turbulence in a fully anisotropic manner, which 
contrasts with the definition of a scalar turbulent viscosity as seen in eddy viscosity model. This 
characterizes RSM model as the most complete classical description of turbulence. An equation 
for turbulent dissipation is also required for closure. Therefore, in 2D fluid flow five more 
equations and in 3D seven more equations are to be solved. In comparison to eddy viscosity 
models, these require more processing power and are a better choice for complex 3D turbulent 
fluid flow problems that include streamlined curvatures, swirl, rotation, and high strain rates 
such as cyclone flow, swirling combustor flows, rotating flow passages, and flows involving 
separation. The exact equation for the transport of each Reynolds stress component 𝜏ோ,௜௝ is as 
follows: 

 𝜕

𝜕𝑡
𝜏ோ,௜௝ + 𝐶௜௝ = 𝑃௜௝ + 𝐷௜௝ − 𝜀௜௝ + 𝜋௜௝ + 𝛼௜௝  

(210) 

where:  
𝐶௜௝: stress convection 
𝑃௜௝: stress production 
𝐷௜௝: stress diffusion 
𝜀௜௝: stress dissipation 
𝜋௜௝: transport due to turbulent pressure strain interactions 
𝛼௜௝: transport due to system rotation.  

Variable 𝐷௜௝ requires further closure to model the turbulent diffusion component, as well as 𝜋௜௝ 
and 𝜀௜௝. In Eq. (210), the production term and the transport due to rotation are kept the same. A 
gradient diffusion is assumed to model the diffusive term. The dissipation related to 𝜀 is 
calculated from the standard 𝑘–𝜀 model. The pressure fluctuations due to eddies' interactions 
with each other and the interactions between eddies and different mean velocities flow regions 
are included in the pressure strain interactions. Overall, it decreases shear stresses and makes 
the normal stresses more isotropic and it does not alter the total turbulent kinetic energy. The 
Launder model is the most commonly used [10]. 

3.3.3. Near wall modelling 

The presence of walls greatly affects the turbulent flows. The mean velocity affects the no slip 
boundary condition at the wall. The fluctuations in the tangential velocity are reduced by 
viscous damping very near the wall. However, the production of turbulent kinetic energy due 
to high gradients in mean velocity quickly increases the turbulence in the outer part of the near 
wall region. The solutions are considerably impacted by the near wall modelling since the main 
source of mean velocity and turbulence are walls. There exist large gradients in the solution 
variables in the near wall region. Therefore, to obtain correct results accurate modelling is 
required in the near wall region for wall bounded flows [9]. As was discussed, the 𝑘–𝜀 models 
and RSM models are valid if applied for the regions far from the wall. On the other hand, 𝑘–𝜔 
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model can be applied through the wall provided near wall mesh resolution is adequate. For 
clarity, the reader is referred to FIG. 15 for a representation of the various near wall regions. 
Traditionally there are two approaches i.e., wall function, and enhanced wall treatment that are 
used for modelling the near wall region. 

3.3.3.1. Wall functions 

This approach does not resolve between the viscous sublayer and buffer layer. Instead, to bridge 
the region affected by viscosity between the wall and the fully turbulent region it uses semi 
empirical relations also known as wall functions. The need to revise the turbulence model to 
accommodate the presence of the wall is eliminated by using wall functions. As in this approach 
the near wall region, where there exist the large gradients in the solution variables, does not 
require resolution, in high Reynolds number flows it significantly saves computation time. 
Since the approach is economical, robust, and reasonably accurate it is prevalent. For the 
treatment of industrial flow problems near the wall, this approach is a practical choice. The 
hypothesis underlying the approach becomes invalid where the low Reynolds number effects 
are persistent in the flow domain and hence the approach becomes insufficient for such 
conditions. Near wall models applicable under the viscosity affected region are required in such 
conditions and may be applied up to the wall. Based on the method proposed by Launder and 
Spalding, the standard wall functions are used for many industrial problems [9].  

3.3.3.2. Enhanced wall treatment 

In the enhanced wall treatment model, it resolves the near wall region completely from the 
turbulent region to the viscous sublayer.  

To indicate both 𝜀 and the turbulent viscosity in the computational mesh cells near the wall, 
this two layer approach is used. This approach subdivides the whole domain into two regions: 
viscosity affected region and a fully turbulent region. The turbulent Reynolds number 𝑅𝑒௬ that 
depends on the wall distance separates the two regions and is defined as: 

 
𝑅𝑒௬ =

𝜌𝑦𝑘଴.ହ

𝜇
  

(211) 

where the boundary for the fully turbulent regions lies at 𝑅𝑒௬ > 200. In this region, the 𝑘–𝜀 or 
the RSM models are employed, while in the viscosity affected region (𝑅𝑒௬ ≤ 200) one equation 
models such as the one by Wolfstein are employed [16].  

Differences between wall function approach and enhanced wall treatment approach alongside 
the respective computational meshes in the near wall region are illustrated in Fig. 17. 
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FIG. 17. (a) Meshing guidelines for near wall regions when employing the wall function approach or (b) enhanced 
wall treatment approach (conceived from [10]). 

4. FUNDAMENTALS OF TWO PHASE FLOW MODELLING 

This section describes the modelling options and their classification based on the space and 
time filtering or based on the averaging of the fundamental governing equations. Various flow 
processes to be modelled by closure relations are linked to each of these methods and the 
applicability of each of these methods to a specific flow regime is discussed. 

4.1. OVERVIEW OF TWO PHASE FLOW MODELLING APPROACHES 

Two phase CFD, also known as computational multi fluid dynamics is applied to the analysis 
of nuclear reactors in which two phase flow features are relevant either by design e.g., in boiling 
water reactors (BWRs), or in safety relevant scenarios, such as undesired flow boiling in the 
pressurized water reactors (PWRs). Modelling the flow configurations in steam–water two 
phase flow is very complex, and myriads of model options are available in the vast domain of 
computational multi fluid dynamics, with various treatments of turbulence and interfaces 
between the fluid phases. For an open medium, considering only the Eulerian approaches there 
are five different methods that can be used: RANS, pseudo DNS, and three types of space 
filtered methods.  

4.1.1. Review of single phase computational fluid dynamics methods 

This section describes a classification of one phase CFD. Three main categories of single phase 
CFD simulations are RANS, LES, and DNS models, and are compared in TABLE 1.  

The RANS models are widely accepted for nuclear reactor applications. Summary on the 
selection of the models according to the application in reactor safety analysis are provided by 
the OECD Working Group for the Analysis and Management of Accidents (OECD–WGAMA) 
[17].  
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TABLE 1. OVERVIEW OF SINGLE PHASE TURBULENCE METHODS 
Modelling method 
/ Modelling aspect  

RANS LES DNS 

Ensemble or time 
averaging 

Yes 

Used by some methods 
(detached eddy simulation, very 

large eddy simulation, scale 
adaptive simulations) 

No 

Spatial filtering No Yes No 

Eddy resolution 
Generally, all eddies modelled, but 

largest eddies (e.g., vortex shedding) 
may be simulated with URANS 

Large eddies are simulated, 
small eddies are modelled 

All eddies 
simulated 

Closure 
requirements 

Closure required for Reynolds stress 
tensor, turbulent diffusion of scalars, 

wall functions 

Closure required for: turbulent 
diffusion of momentum and 

scalars, wall functions 
None 

Modelling 
complexity 

Large Intermediate Small 

Modelling locality 
and universality 

Small Intermediate Large 

4.1.1.1. Reynolds averaged Navier–Stokes methods 

Although time averaging and ensemble averaging of local instantaneous equations (mass 
momentum and energy) when applied in RANS, are different, these can be considered as 
equivalent (ergodicity) in analysing the steady or quasi steady flows. Given that the closure 
(assumption) laws for Reynolds stress are validated against time averaged measured flow 
parameters, it is considered that RANS model is time averaged. In time averaged equations 
eddies are transported by the mean flow and therefore both time and space resolution in Eulerian 
approach are affected.  

The most widespread RANS models (i.e., 𝑘–𝜀 models) are based on two equation turbulence 
model with Boussinesq approximation. There is a number of variations of two equation 
turbulence modelling approach such as but not limited to 𝑘–𝑙, 𝑘–𝜔, shear stress transport, RNG 
𝑘–𝜀, and nonlinear 𝑘–𝜀. RANS was initially devoted to steady flows but, it was seen that it may 
be applied to unsteady flows in its URANS formulation if the time scale of the mean flow is 
larger than the time scale of the largest eddies. The RANS method can predict large scale Von 
Karman alleys if numerical scheme does not induce too much of artificial numerical viscosity. 

4.1.1.2. Eddy–resolving methods 

To predict large eddies, in case of insufficiently fine computational grid, a space filter is applied 
to the basic balance equations known as super grid scale. However, the effects of smaller eddies 
are modelled in a statistical way, presenting the basis of LES. The detached eddy simulation 
and very large eddy simulation belong to the same class of eddy–resolving methods, also 
referred to as scale resolving methods.  

The scale adaptive methods are on the other hand, hybrid methods between URANS and LES 
where the LES method requires transient calculation with fine meshing in 3D space. Since the 
high order space discretization schemes and high order time integration methods are needed, it 
makes LES method much more computationally intensive than RANS method.  
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4.1.1.3. Direct numerical simulation 

Direct numerical simulation means that solution is obtained without any averaging or filtering. 
In case of a turbulent flow, it is therefore required to have very fine meshing to be able to 
capture the smallest eddies at the Kolmogorov scale. Therefore, the approach is computationally 
expensive, and it is limited to simple cases. 

4.1.1.4. Considerations of locality and universality of modelling methods 

Since the RANS and LES methods require the averaging of filtering procedure, both methods 
thus also require the closure laws. The modelling of relevant physics processes depends only 
on local flow variables such as velocity, density, and internal energy, inclusive of their time and 
space local derivatives. As an example, RANS and LES approaches both capture the Reynolds 
stresses and turbulent heat fluxes. The wall functions are the only exception to the principle of 
locality since the meshing can be relatively coarse in high shear regions close to the wall 
because the closure terms depend on the distance to the wall. The principle of locality is more 
relevant to LES than RANS method, meaning that in LES models, the effects of small eddies 
close to a given point of flow need to be modeled, while in RANS method, the effects of largest 
eddies on local physics have to be modelled. Therefore, different RANS models are suggested 
for different flows such as but not limited to boundary layer, wake, mixing layer, or jet. In that 
respect the LES models tend to be more universal. When using the RANS method, the local 
models are more geometry dependent compared to LES. However, it is worth noticing that DNS 
provides a full application of the principle of locality given the molecular transfers are the only 
ones present. 

4.1.2. Two phase flow features and averaging procedure 

4.1.2.1. Two phase flow features 

Three main categories of prediction techniques, similar to RANS, LES, and DNS can be as 
well identified using computational multi fluid dynamics to describe two phase flow. 
However, the additional complexities call for yet an extended list of modelling options [18].  

A two phase flow exhibits various types of moving interfaces between gas and liquid and is 
also a juxtaposition of a mean flow and turbulent eddies. This limit Eulerian open medium 
models with the treatment of mass momentum and energy equation with: 

 Averaging or filtering turbulent scales (similarly to single phase CFD); 
 Usage of phase averaging or field averaging technique; 
 Interface treatment (interface tracking, recognition, filtering, and statistical treatment). 

How various averaging procedures affect description of a complex two phase flow is 
illustrated in Fig. 18 that shows a complex stratified flow with three interface types: 

 Free surface (an interface with a large extension of space); 
 Bubbles interface (closed surfaces with limited extension of space); 
 Drops interface (closed surfaces with limited space extension). 
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FIG. 18. Complex gas liquid flow, i.e., stratified flow with a breaking free surface resulting in bubbles and 
droplet entrainment. 

Between interfaces, mass transfer (vaporization or condensation), momentum t ransfer  and 
heat transfer exist that further split the space domain into fluid fields as follows: 

 Continuous liquid field: limited by possible free surfaces and/or bubble interfaces; 
 Continuous gas field: limited by possible free surfaces and/or bubble interfaces and 

is opposite to the liquid field; 
 Bubble field or 𝑁௕ several bubble fields if different bubble shapes or size are 

grouped into different fields; 
 Droplet field or 𝑁ௗ several droplet fields if different droplet shapes or size are 

grouped into different fields. 

Thus, there may be up to 2+Nb+Nd fields (i.e., 2 continuous fields + Nb bubble fields + Nd 
droplet fields). In addition to mass transfers by vaporization or condensation, the other mass 
transfers mechanisms are: 

 Continuous liquid field→droplet field: by entrainment of drops from free surface 
waves; 

 Droplet field→ continuous liquid field: by fall of drops to free surface; 
 Continuous gas field→ bubble field: by capture of gas (breaking waves); 
 Bubble field→ continuous gas field: by bubble burst at free surface; 
 Bubble field↔ droplet field: from a single bubble field to multiple bubble fields 

(bubble breakup) or from multiple bubble fields to a single bubble field (bubble 
coalescence); 

 Droplet field↔ droplet field: from a single droplet field to multiple droplet fields 
(droplet breakup) or from multiple droplet fields to a single droplet field (droplet 
coalescence). 

To describe local structure of two phase flow at certain point in space and time, only a few local 
flow configurations can be identified as follows: 

 Continuous liquid field (single phase liquid); 
 Continuous gas field (single phase gas); 
 Continuous liquid field–bubble field (dispersed bubbly flow); 
 Continuous gas field–droplet field (dispersed droplet flow); 
 Continuous liquid field–continuous gas field (separate phase flow); 
 Continuous liquid field–continuous gas field–droplet field (complex two phase flow); 
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 Continuous liquid field–continuous gas field–bubble field (complex two phase flow 
when continuous liquid, continuous gas, and bubbles are present in the space and/or 
time domain); 

 Continuous liquid field–continuous gas field–droplet field–bubble field (complex two 
phase flow when continuous liquid, continuous gas, droplets and bubbles are present in 
the space and/or time domain as illustrated in Fig. 18).  

Any CFD method or model describing the two phase flow when uses a time or a space averaging 
or filtering may require identification of local interfacial structures. The same analysis can be 
applied to complex annular flows (including annular mist flows) because of the same types of 
interfaces, same fields, and same transfers. Equally complex two phase churn flow has the 
presence of both small bubbles and large distorted bubbles, as sketched in Fig. 19.  

 

FIG. 19. Complex gas liquid flow, i.e., churn flow with small bubbles as well as large distorted bubbles. 

4.1.2.2. Effect of spatial filter on two phase flow description 

A space filter once applied to turbulent single phase flow creates certain loss of information 
about local flow structure as the smallest eddies are eliminated while the largest ones are kept. 
The same space filter applied to two phase flow affects interfaces, because it the space domain 
both liquid and gas could exist and exist with any kind of interface. In such a case, a volume 
fraction can be defined for each phase or for each field, as well as interfacial area density for 
each type of interfaces. To illustrate this, Fig. 20 shows how the space filtering affects 
description of complex stratified flows: 

 Subgrid interfaces vanish: The only known parameters for smaller bubbles or drops are 
statistical or averaged values; their positions in space and time cannot be used to identify 
them (volume fraction, interfacial area density). If small bubble and drop interfaces are 
referred to as subgrid interfaces, then such subgrid interfaces will vanish throughout the 
filtering process. 

 Large interface discontinuities are smoothed: When the space filter condenses the 
interface of big and deformed bubbles in churn flows, free surface in stratified flows, or 
film surface in annular flows, density discontinuity is replaced by density gradient. 
Large interface positions can be reconstructed using numerical methods, as shown in 
Fig. 20. 

 Subgrid waves of large interfaces vanish: waves at free surface of small wavelengths or 
small scale interface deformations (such as distorted bubbles) are no more visible.  
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FIG. 20. Representation of loss of information in a complex flow field associated with application of spatial 
filter: (a) detail flow description, (b) application of spatial filter smoothens the interfaces, which are then best 
identified by strong field gradients leading to the loss of information pertaining smaller bubbles or droplets, (c) 
large scale interface reconstruction starting from spatially averaged field. 

Subgrid processes (and their relationships and effects) that require modelling when employing 
a spatially filtered flow modelling method are summarized in FIG. 21. 

 

FIG. 21. Subgrid processes (and their relationships) that require modelling when employing a spatially filtered 
flow modelling method. 
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4.1.2.3. Effect of time or ensemble averaging on two phase flow description 

When applying time averaging (or filtering) to turbulent single phase flow, the information 
about local flow features is lost (all eddies are eliminated as in RANS, or all eddies except the 
large ones are eliminated as in URANS). Similar loss of information appears on the interfaces 
when time filtering is applied as an average over a time period Δ𝑡, or space filtering (with an 
equivalent space filter of size 𝐿 = |𝒖|Δ𝑡). This causes subgrid interfaces to vanish, large 
interface discontinuities to besmeared, and subgrid waves of large interfaces to vanish. This 
method is appropriate for complex stratified flows as shown in Fig. 18 with comparable loss of 
information as illustrated in Fig. 20. Given the space resolution depends on the magnitude and 
direction of local velocity u it is neither uniform nor isotropic. This results in a much more 
complex and unclear closure issue. As an example, consider a bubble in a high velocity zone, 
with the size smaller than the filter scale 𝐿 = |𝒖|Δ𝑡, becomes larger than 𝐿 when comes to a 
low velocity zone in the simulated domain after passing through the subgrid domain. Hence, 
URANS is applicable only in a few quasi parallel flows with a preferential flow direction e.g., 
stratified, or annular flows in a duct. In such flow regimes large wavelengths are simulated 
while the large interface and small wavelength waves are filtered. It is worth mentioning that 
large wavelength waves (at free surface or film surface) may disappear while averaging in case 
of pure RANS for steady flow or URANS with the of a large time integration step Δ𝑡. Therefore, 
to have a clear difference among small interfaces (which may be statistically treated) and large 
interfaces (which can be predicted as filtered interfaces), space filtering is more effective than 
the time filtering. 

4.1.3. Two phase computational fluid dynamics approaches 

Depending on which operations are applied, different modelling approaches can be obtained. 
These choices allow to distinguish various methods accordingly. With specific reference to 
interface treatment, the following approaches can be distinguished: 

 Deterministic interfaces or simulated interfaces: When space and time position is 
simulated or actually predicted without any simplification, it is referred as deterministic 
interface. This requires the use of an ITM; 

 Statistical interface: When a space or time averaging or filtering procedure does not 
allow to predict its space and time position, it is referred as statistical interface. 
Quantities like a void fraction or an interfacial area density can only be used to predict 
statistical information on several interfaces. This is the case for small bubble and droplet 
interfaces as shown in Fig. 20; 

 Filtered interface: When space and time position is predicted with some filtering of the 
smaller scale deformations, it is referred as filtered interface. This filtering may result 
either from space filter or from time averaging. The free surface in FIG. 20(c) is an 
example of a filtered interface. 

TABLE 2 distinguishes five different types of Eulerian two phase CFD techniques for open 
media. The way the fundamental mass, momentum, and energy balance equations are handled 
varies amongst them. These are obtained by the application of the operations taken from the 
following list:  

 Mass, momentum, and energy multiplication by phase indicator functions (for each of 
the two phases in a two fluid approach) or by the field indicator functions (for each of 
the 2 + 𝑁௕ + 𝑁ௗ fields for a multi field method); 



 

62 

 Time filtering (i.e., averaging); 
 Space filtering; 
 Adoption of an interface tracking method (ITM) or an interface reconstruction technique 

either for some or all the interfaces. 

Depending on which operations are applied, different modelling approaches can be obtained. 
These choices allow to distinguish various methods accordingly. With specific reference to 
interface treatment, the following approaches can be distinguished: 

 Deterministic interfaces or simulated interfaces: When space and time position is 
simulated or actually predicted without any simplification, it is referred as deterministic 
interface. This requires the use of an ITM; 

 Statistical interface: When a space or time averaging or filtering procedure does not 
allow to predict its space and time position, it is referred as statistical interface. 
Quantities like a void fraction or an interfacial area density can only be used to predict 
statistical information on several interfaces. This is the case for small bubble and droplet 
interfaces as shown in Fig. 20; 

 Filtered interface: When space and time position is predicted with some filtering of the 
smaller scale deformations, it is referred as filtered interface. This filtering may result 
either from space filter or from time averaging. The free surface in FIG. 20(c) is an 
example of a filtered interface. 

TABLE 2. CLASSIFICATION OF EULERIAN SIMULATION METHODS FOR TWO 
PHASE COMPUTATIONAL FLUID DYNAMICS 

Method Pseudo–DNS 
LES with 

deterministic 
interfaces 

Hybrid LES 
with filtered 

and statistical 
interfaces 

LES with 
statistical 
interfaces 

RANS/URANS 
with statistical 

and filtered 
interfaces 

Category Pseudo DNS Eddy resolving Eddy resolving Eddy resolving RANS/URANS 
Time or 

ensemble 
averaging 

No No No No Yes 

Spatial filtering No Yes Yes Yes No 
Multiplication 
by indicator 

function 
No No Yes Yes Yes 

Interface 
treatment 

Deterministic 
ITM 

Deterministic 
ITM 

Filtered and 
statistical ITM 

Statistical with 
no tracking or 
reconstruction 

Statistical and 
filtered with no 

tracking or 
reconstruction 

Modelling 
effort 

? 1 5 2 4 

Modelling 
locality and 
universality 

5 4 3 3 1 

Modelling of wall transfers, interfacial transfers, inter field transfers and turbulent transfers 
depends on the method. Each method is described in the following subsections. 

4.1.3.1. Pseudo DNS method 

In the pseudo DNS method, space and time average equations are not used. However, to track 
the interface, ITM is required using one fluid approach. It is frequently necessary to use 
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additional models, for instance, to apply a film splitting criterion when two bubbles merge or 
to determine the contact angles at a triple solid-liquid-gas line. These additional models are the 
reason that pseudo DNS is used in place of DNS in two phase flow since certain very small 
scale physics is merely modelled and not solved. Because neither averaging nor filtering are 
applied, Pseudo DNS should be capable of simulating all interfaces.  

4.1.3.2. Reynolds averaged NavierStokes method 

The RANS method (as it applies to URANS as well) is by far the cheapest, most mature, and 
most adopted approach for two phase CFD modelling. In this method, all the turbulent scales 
and two phase intermittency scales are filtered. In addition, all the interfaces are statistically 
treated. This method is employed when the time scales of variation of the mean variables are 
longer than the longest time scales of turbulence and two phase intermittencies (time between 
passing of two interfaces at any given point). Large interfaces (free surface or film interface) 
can be thought of as filtered interfaces for stratified flows or annular flows. All two phase flow 
regimes are theoretically compatible with RANS if steady or quasi steady, and for the dispersed 
droplet flow or dispersed bubbly flow, the condition is easy to satisfy. For stratified flows and 
annular flows, the averaging process filters interfacial waves in an unclear manner: although 
the modelling of turbulent diffusion via RANS avoids the large eddies simulations, however, it 
does not avoid the irrotational waves (predicted by Kelvin-Helmholtz instabilities). As a result, 
both a filtered interface treatment and a statistical interface treatment are compatible with 
RANS and URANS. The intermittency caused by the passage of these bubbles’ correlates to 
relatively long time scales for slug and churn flows with huge bubbles. RANS filters even these 
vast scales, therefore it cannot forecast this intermittency, but it can predict the typical 
behaviour. 

4.1.3.3. LES with deterministic interface 

This method combines a turbulent fluctuation filtering with an ITM at all the interfaces. It was 
first proposed for free surface flow by Liovic and Lakehal [19], [20], then pursued by Bois et 
al [21], Toutant et al. [22], [23], Magdeleine [24], Lakehal [25], [26]. Lakehal and Labois [27] 
reformulated the concept in a better way and referred it as a large eddy and interface simulation. 
An important requirement for deterministic interface is that all the phenomena having influence 
on space and time position of the interface needs to be simulated.  

The interfaces with deformations on a smaller scale are affected by the turbulent fluctuations 
and the surface tension. Weber number limiting value i.e., 𝑊𝑒௟௜௠ defines the applicability limit 
of LES along with a deterministic interface, such that: 

 
𝑊𝑒 =

𝜌𝑢(𝑙)ଶ𝑙

𝜎
≤ 𝑊𝑒௟௜௠ 

(212) 

where 𝜎 is the fluid surface tension and 𝑢(𝑙) is the velocity scale of turbulent fluctuations for 
eddies of size 𝑙. The shape of an interface can only be affected by velocity fluctuations at a 
minimal length scale l, which corresponds to this limit. Below this threshold, the mechanical 
impacts of velocity fluctuations are outweighed by the effects of surface tension. For a 
particular turbulence spectrum, it may provide maximum value of the filter scale i.e., 𝑙௙௜௟௧௘௥: 

 
𝑙௙௜௟௧௘௥ ≤

𝑊𝑒௟௜௠𝜎

𝜌𝑢(𝑙௙௜௟௧௘௥)ଶ
 

(213) 
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Alternatively, less restrictive limit is related to Laplace scale: 

 

𝑙௙௜௟௧௘௥ ≤
1

𝑛
ඨ

𝜎

𝑔𝛥𝜌
  

(214) 

where Δ𝜌 is the density difference between the two fluid phases, 𝑔 is the strength of 
gravitational acceleration and 𝑛 is to be determined, but typically in the 510 range. 
Considering no high turbulence density, Laplace scale associated to the smallest wavelength of 
capillary waves also known as free surface waves or film waves. When the denser phase is 
above the less dense phase, it is the first wavelength of an interface's deformation brought on 
by Taylor instability. If there are very small bubbles or droplets much smaller than the Laplace 
scale as there will be in boiling flow, the filter scale should provide a better description of the 
interfaces of the smallest bubbles of diameter 𝑑௠௜௡, which results in a limitation: 

 
𝑙௙௜௟௧௘௥ ≤

1

𝑚
𝑑௠௜௡ 

(215) 

Magdeleine [28] claims that m can be taken as 6 at most without affecting the outcomes. Taking 
into account all these limitations, LES with deterministic interface approach is one to two orders 
of magnitude less computationally intensive than pseudo DNS, however, still very expensive. 
Therefore, it is rarely utilised to address issues at scales of engineering significance and is 
mostly used as a research tool, as a support for the modelling and validation of coarser 
techniques. 

4.1.3.4. LES with statistical interfaces  

An LES method is practically used with a filter scale smaller than the big eddy scale but larger 
than the two phase scale to enable a statistical treatment when the largest interfacial scale is 
relatively small and much smaller than the largest turbulent eddies. The idea was first developed 
by Lakehal et al [28], set the filtered two fluid equations and suggested including a bubble-
induced diffusion model into Lilly and Germano's dynamic method. The authors formulated the 
so called Milleli criterion for the least permitted filter width, which according to their systematic 
sensitivity analysis should scale with the largest bubble diameter 𝑑௠௔௫ as 𝑙௙௜௟௧௘௥ > 1.5𝑑௠௔௫. 
Dhotre et al. [29], [30] and Niceno et al. [31], [32] applied this method to turbulent dispersed 
flow with some success. Such a method is computationally much less intensive than the other 
methods i.e., pseudo DNS and the LES with deterministic interface, however, it can only be 
applied to certain flow situations. Such situation includes dispersed bubble or dispersed drops. 
Nevertheless, this is not suitable in slug or churn flow where the largest bubbles and the largest 
eddies are of the size of the geometrical dimensions of the flow. This approach works with the 
two fluid model and multi-field models, which allow size groups to be applied to the dispersed 
bubbles or droplets.  

4.1.3.5. Hybrid LES with filtered statistical interfaces 

This method filters the smaller eddies and treats the small droplets or small bubbles statistically 
as illustrated in Fig. 20. The space filter removes the small bubbles that are statistically handled 
and thickens and filters the large bubble interface, which can be restored using a form 
simplification. There may be certain analyses for a two fluid model without a turbulence model 
that are similar to this method, even though it has not been defined and used with clarity 
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(Bartosiewicz et al. [33], [34]). D. Lakehal [26] discussed the difficulties of this method in 
comparison to LES with simulated interfaces. It may be a less computationally intense way of 
modelling the complex two phase flow e.g., churn or slug flow without filtering the large two 
phase structures. The closure problem, however, is quite complicated, and the current state of 
the art is not particularly advanced. Before obtaining a satisfactory modelling of all flow 
regimes, difficult challenges need to be addressed [35]. The two fluid approach and multiple 
field models are both compatible with this methodology. Reconstructing the large, filtered 
interfaces and modelling the mass transfers between continuous and dispersed fields may be 
aided by a four field model comprising a continuous gas field, a continuous liquid field, a 
dispersed bubble field, and a dispersed droplet field. This method has more closure terms than 
the LES with deterministic interfaces. It was found that many ITM-using applications 
approaches to LES type with deterministic interfaces which are hybrid methods. The ITM's 
interface tracking is poorly resolved, and simulated interfaces are filtered rather than 
deterministic. The modelling process should consider every influence brought on by subgrid 
waves at large interfaces. 

4.1.3.6. Modelling locality and universality 

The use of principle of locality of the modelling is similar in two phase CFD as in single phase 
CFD as the closure laws are described as functions of velocity, density, internal energy, 𝑙௙௜௟௧௘௥ 
and their derivatives (both spatial and temporal). However, this principle of locality cannot be 
applied to wall functions, as some of the closure terms in this case depend on the distance from 
the wall and interfacial function, which is like wall functions close to large interfaces between 
fluids. These allow the use of a rather coarse mesh in high shear regions close to a wall or close 
to a large interface, thereby reducing computational costs compared to the case where these 
high shear regions are resolved numerically via very fine meshes. When the processes to be 
described at any one place in space and time exclusively depend on the flow conditions nearby, 
principle of locality becomes increasingly relevant. Since the subgrid local turbulent viscosity 
in LES models primarily affects small eddies that are close to point P, the principle of locality 
in single phase CFD is better addressed by LES approaches than by RANS. In a two phase flow, 
there are small interfaces and large scale interfaces, free surface in stratified flow, and the film 
surface in annular flow. Henceforth, in the flow regimes with large interfaces, the principle of 
locality may only be reasonably applied in LES with deterministic or filtered interfaces. 

4.1.4. Applicability limits of two phase computational fluid dynamics  

The applicability along with the degree of maturity of the various two phase CFDs to every 
flow regime are summarized in TABLE 3 detailing whether an approach is routinely applied to 
the investigation of such flow type and is thus reasonably mature, if it is in principle possible 
to apply in spite of a lack of maturity, if it is impossible to apply due to intrinsic limitation, and 
whether it is computationally expensive or too expensive. It is to be emphasized that only 
RANS (or URANS) and LES with filtered and statistical interfaces can be used to simulate 
physical conditions where both two phase flow regimes may occur. The former, however, is 
more accomplished than the latter. 

All flow regimes can be addressed by the pseudo DNS and LES with deterministic interfaces, 
but are practically constrained by the required computer resources, which are prohibitive in the 
majority of complex flow scenarios. Large interfaces cannot be treated by LES with statistical 
interfaces, and thus is inherently restricted to scattered flows.  
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Three popular flow regimes extensively simulated by various methods are: i) dispersed bubbly 
flow; ii) dispersed droplet flow (mist flow); iii) and the stratified flow. All currently used 
techniques have been used to model and simulate adiabatic bubbly flows, with the RANS two 
fluid appearing most frequently. For the purpose of predicting gas fraction profiles, efforts were 
made to model the forces acting on bubbles. Some progress was made to extend wall functions 
to two phase situations [36]. 

Boiling bubbly flows have also so far been simulated with the RANS two fluid methods in view 
of investigating departure from nucleate boiling. The prediction of bubble size was first made 
using algebraic models, then using interfacial area transport equation and later using a 
modelling of the poly dispersion. Wall transfer modelling was also investigated. Turbulence in 
the liquid phase is generally modeled with extensions of the 𝑘– 𝜀 model to two phase conditions 
[37]. Dispersed droplet flows are modelled and simulated with RANS in the frame of dry out 
investigations. Such flows are also modelled with RANS for containment sprays simulation 
[38]. Free surface flows are simulated with pseudo DNS, LES with simulated interfaces, and 
URANS with filtered interface. One fluid with ITM is compared to two fluid model with an 
interface reconstruction method applied to the unstable free surface flow. Efforts are made to 
model interfacial transfers of momentum, heat, and mass. The subgrid wave profile, which can 
be treated as a roughness, need to be considered when free surface is treated as a filtered 
interface. Different models and codes are validated against steam–water condensing flow tests 
[18].  

TABLE 3. DEGREE OF MATURITY OF EULERIAN METHODS FOR THE MODELLING 
AND SIMULATION OF DIFFERENT FLOW REGIMES 

Approach 
Flow 

Pseudo DNS 
LES with 

deterministic 
interfaces 

Hybrid LES 
with filtered 

and statistical 
interfaces 

LES with 
statistical 
interfaces 

RANS/URANS 
with statistical 

and filtered 
interfaces 

Bubbly 
Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Slug–churn 

In principle 
possible,  
Computationally 
too expensive 

In principle 
possible,  

Computationally 
expensive 

In principle 
possible 

Impossible to 
apply 

In principle 
possible 

Annular 

In principle 
possible,  
Computationally 
expensive 

In principle 
possible,  

Computationally 
expensive 

In principle 
possible 

Impossible to 
apply 

Routinely 
applied 

Annular mist 

In principle 
possible,  
Computationally 
too expensive 

In principle 
possible,  
Computationally 
too expensive 

In principle 
possible 

Impossible to 
apply 

In principle 
possible 

Mist 
Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Stratified 
Routinely 
applied 

Routinely 
applied 

Routinely 
applied 

Impossible to 
apply 

Routinely 
applied 

Stratified mist 

In principle 
possible,  
Computationally 
too expensive 

In principle 
possible,  
Computationally 
too expensive  

In principle 
possible 

Impossible to 
apply 

In principle 
possible 

All regimes 
Computationally 
too expensive 

Computationally 
too expensive 

In principle 
possible 

Impossible to 
apply 

In principle 
possible 
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4.1.5. Guidelines for the application of two phase computational fluid dynamics 

A multistep methodology is necessary for application of two phase CFD to nuclear reactor 
analysis. Application of two phase CFD bring useful new simulation capabilities, but the degree 
of maturity strongly depends on the method employed. In every new application, choice of 
modelling options, a validation effort, and a clear application methodology to be followed to 
obtain reliable results must be considered. A general approach in using two phase CFD is 
illustrated in Fig. 22 as proposed in [39]. 

 

FIG. 22. General methodology dependencies for the application of two phase CFD to nuclear reactor analyses. 

4.1.5.1. Identification of important flow processes 

Many reactors analysis typically involve complex two phase phenomena in complex 
geometries. It is always needed to identify the thermal hydraulics phenomena of interest before 
selecting a code from the lot of available two phase CFD codes. CFD codes cannot be used as 
a black box to obtain a solution of complex problem without selecting the adequate options to 
provide the appropriate answer. The significance of each of these fundamental phenomena must 
be ranked for the reactor analysis. This can be done using a process identification and ranking 
table (PIRT) study. Identification of the phenomenon may be greatly aided by preliminary 
analysis of the experiments. Given the intrinsic complexity of any two phase flow, it is 
necessary to revisit this list of crucial operations multiple times. The relative significance of 
each phenomenon may change as a result of modelling and validation. Additionally, the study 
of some experimental data may bring to light previously undetected phenomena. The 
methodology could then be iterative. 

4.1.5.2. Modelling choices 

As already introduced, the main modelling choices consists of the field treatment options (i.e., 
one field per phase or multiple fields per phase, e.g., continuous and discontinuous fields for 
each phase), space and time filtering options, and interface treatment options. Any two phase 
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flow can be thought of as a juxtaposition of several phases and fields. In the absence of clear 
criterion to identify the limits of each field (phase), one may define that the field (phase) 𝑘 
indicator function 𝜒௞(𝒙, 𝑡) which is equal to 1 or 0, depending on the field 𝑘 presence at position 
𝒙 at time 𝑡. The local instantaneous equations for mass, momentum, and energy may then be 
averaged after being multiplied by this indicator function. Then, for each of the N fields, the 
three balance equations for mass, momentum, and energy are averaged to provide a set of 3N 
field balance equations.  

The CFD tools offer various models, to name a few are, one fluid homogeneous, two fluid, 
multi field models. For two phase flows, the separation of flows into several fields (as discussed 
above) is particularly necessary when there is a large variation of important parameters e.g., 
velocity, and temperature, among the fields. The most complex basic model for two–phase flow 
would have 2 +  𝑁௕  +  𝑁ௗ  fields and 3 × (2 +  𝑁௕  +  𝑁ௗ) basic balance equations, where 𝑁௕ 
being the number of bubble fields, and 𝑁ௗ being the number of droplet fields. In many cases, it 
is not necessary to use such a complex model. The second important choice pertains to the type 
of averaging or filtering of the governing equations. The two fluid model is typically based on 
a time averaging of equations over a long enough time period as compared to turbulence time 
scales and two phase intermittency scales. This is completely in accordance with the 
conventional RANS equations used to model single phase flow turbulence. CFD of single phase 
turbulent flows can also be performed by alternative method i.e., URANS, LES, or very large 
eddy simulation when some large scale phenomena need to be deterministically treated. It is 
possible to extend these approaches to two phase CFD by splitting turbulent scales and two 
phase intermittency scales into the larger ones whereas a statistical description is applied to the 
smaller ones. Interfaces with a wide range of geometrical configurations exist for the two phase 
flows. There are locally closed interfaces for dispersed fields, such as bubbles and drops, and 
locally open interfaces for free surfaces, falling film interfaces, jet interfaces, and so on. A 
deterministic approach to an interface anticipates the position of the interface in space as a 
function of time and may call for an ITM, such as the volume of fluid (VOF) technique, front 
tracking method, level set method, lattice Boltzmann method, and others. The existence of 
interfaces is described statistically using averaged characteristics like volume fraction, 
interfacial area density, etc. To choose the best closure laws for the interfacial transfers in the 
case of a pure statistical approach, one might need to identify the local interfacial structure. 

4.1.5.3. Closure laws selection 

Closure laws should be adopted for modelling interfacial transfer phenomena (i.e., transfers of 
mass, momentum, energy), turbulent transfers as well as wall transfers. These phenomena range 
significantly in complexity; the following is a brief description of interfacial transfers. 

For a large interface, an adequate model may require information of exact position of interface 
(by using an ITM or any other method). After the identification of local interfacial structure, 
the choice of adapted closure laws is possible. When available, mass momentum and energy 
interfacial transfers necessitate modelling and validation using so called separate effect tests. 
Whatever approach is used, modelling interfacial transfers is a fundamental question in two 
phase flow. 

4.1.5.4. Verification and validation 

To test the capabilities of a numerical technique and measure the accuracy of the resolution, 
numerical benchmarks may be required. The method is therefore applied to each of the selected 
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problems and gaps are identified at every step of the method for every problem. Considering a 
methodology is applied to many two phase flow situations, precise guidelines will be provided 
to CFD code users. This will help the users to choose the right options relevant for the specific 
application. Currently, only limited number of such best practice guidelines exist. To 
qualitatively validate the capability of a modelling approach to capture all the basic flow 
processes demonstration tests are necessary. And for the quantitative evaluation, model for 
models for interfacial, turbulent and wall transfer terms of the equations, validation tests 
including separate effect tests and global test are necessary. In some cases, DNS data can be 
utilised to support experimental validation. However, only fully validated DNS simulations 
may be used as numerical experiments. 

4.1.6. Best practices guidelines 

An example of practical guidance for the application of CFD tools to the analysis of thermal 
hydraulics for nuclear reactor safety is given by Mahaffy et al. [40] titled “Best Practice 
Guidelines for the Use of CFD in Nuclear Reactor Safety Applications”. The whole spectrum 
of subjects for accurate flow simulations is covered in this report. It includes sections on 
selecting simulation tools after properly defining the problem. The flow processes, as well as 
the turbulence and two phase flow scales to be addressed in the computation, are significant 
determinants in this choice. This method works for both single phase and multi phase 
simulations. It also describes techniques for the quantification and reduction of numerical 
errors. These were developed for single phase flows but are also applicable to multi phase flows; 
single and multi phase flow formulations are both based on conservation equations and thus 
mathematically similar. However, the presence of different phases, sharp interfaces, and an 
increased tendency to instability and unsteady state behaviour pose a significant additional 
challenge for multiphase flows. Due to the presence of such sharp interfaces, much finer grid 
resolution is often required than for corresponding single phase flows. On coarse grids, the 
higher affinity to physical instabilities may be suppressed, but it may appear after grid 
refinement. This property, combined with the additional model equations, results in extremely 
high computational demands for multiphase flows. An evaluation of CFD capabilities must 
ensure that various error types are properly recognized and addressed. For example, single 
phase studies have shown that model errors can only be quantified if numerical and systematic 
errors are reduced to an acceptable level. In an ideal situation, this would imply that solutions 
for grids and with time steps fine enough that numerical errors become negligible. This ideal 
separation of errors cannot always be achieved because it is not a simple task and would 
necessitate very large computing resources. These fundamental difficulties are exacerbated 
when multiphase flow physics and unsteady state are incorporated into numerical simulations. 

4.1.6.1. Example guideline checklist 

The following is a step-by-step procedure proposed for application of two phase CFD to a 
nuclear reactor analysis [39]. First is the identification of important flow processes: 

 Identifying fundamental processes of interest that one would like to obtain from the 
application of a CFD code (e.g., fluid temperature, local heat transfer, peak pressure at 
a specific location); 

 Identifying secondary processes that are coupled to fundamental processes of interest; 
 Identifying several spatial dimensions that suffice the characterization of the processes 

of interest; 
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 Establishing spatial and temporal domain sizes required for characterization of the 
processes of interest; 

 Assess how many different two phase flow regimes are expected to occur in the domain 
of interest; 

 Assess whether phenomenon of interest can be best described by a transient or a steady 
state simulation; 

 Assess minimum temporal scale (if the simulation is transient) and spatial scales (i.e., 
mesh size) required by simulation. While initial guesses can be made based on multiple 
conditions (ranging from the Courant condition to turbulence scale related conditions), 
this process is likely to be highly iterative depending on the nature of the processes to 
be resolved. 

Secondly, the selection of fundamental modelling options, specifically the selection of suitable 
wall, interfacial and turbulent transfer models (for mass, momentum, energy) depending on the 
process to be investigated. Thirdly, if the material and temporal conditions of the investigation 
allow for it, a validation process would prove beneficial to further improve the modelling 
capabilities and the subsequent results obtained by the simulation. This validation process 
entails the following steps: 

 Identification of available experimental data that covers the processes of interest; 
 Assessment of whether selected models, with specific regard to wall, interfacial and 

turbulent transfer models, are covered by available experimental data; 
 If any of the previous two steps are not satisfied and if temporal material conditions 

allow for it, the design of an experiment, from integral to separate effect tests, such as 
to provide further validation data would prove highly beneficial. 

4.1.6.2. Consistency checks 

Several choices are made during the successive steps of a general methodology, which 
necessitate some consistency checks. The following checks are particularly notable:  

 Fundamental selection of several fields must be adapted to a physical situation or to an 
acceptable level of simplification. If the PIRT determines that specific behaviour of two 
fields is important, these must be treated separately; 

 Experimental effect test validation matrix should include all identified flow processes; 
 All interfacial, interfiled, turbulent, and wall transfers should be validated by the 

experimental effect test validation matrix; 
 In the ideal scenario, the number of measured flow parameters in the experiments should 

be consistent to the complexity of the chosen model. Necessary condition for the 
validation of a model defined by a set of 𝑛 equations having a set of principal variables 
𝑋௜ is that one should be able to measure 𝑛 parameters giving the 𝑛 principal variables; 

 To provide a clear definition of principal variables and closure terms in equations, the 
averaging procedure must be specified. The filtering of turbulent scales and the 
intermittency of two phases must be fully consistent; 

 Averaging of measured variables must be consistent with the averaging of the equations; 
 Use of an ITM for interface treatment necessitates the simulation or deterministic 

treatment of all phenomena influencing the interface; 
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 Formulation of an appropriate interfacial transfer must be consistent with the interface 
treatment (deterministic, filtered, statistical) and with the identification of local 
interfacial structure. 

4.1.6.3. Examples of common modelling errors 

Due to availability of many modelling options in commercial CFD codes such as FLUENT, 
STARCCM+, CFX, or NEPTUNE_CFD [41], [42], it is possible that some inconsistent choices 
will be made. Most errors are due to inconsistent space and/or time resolution choices for 
interfacial, wall, and turbulent transfer modelling. Here are a few examples of common 
mistakes. A common error consists in adopting the interfacial transfers models devised for 1D 
system codes for simulations to be performed with 3D CFD codes. The interfacial transfer 
formulation in 3D modelling relates a local flux 𝐹௑ of a quantity 𝑋 to a difference between local 
phase variable 𝑋௞ multiplied by a local transfer coefficient 𝐶௑, so that, for a system of two 
phases labelled e.g., 𝑙 and 𝑣 it follows: 

 𝐹௑ = 𝐶௑,ଷ஽(𝑋௟ − 𝑋௩) (216) 

The interfacial transfer formulation in 1D modelling is based on area averaged quantities. This 
area averaging is over the flow cross section perpendicular to the principal flow direction. Thus, 
by denoting the area averaged quantity 𝑋 with ⟨𝑋⟩, in 1D, it follows: 

 ⟨𝐹௑⟩ = 𝐶௑,ଵ஽(⟨𝑋௟⟩ − ⟨𝑋௩⟩) (217) 

Even if the flow is one directional e.g., in a pipe, there is no reason to expect 𝐶௑,ଵ஽ = 𝐶௑,ଷ஽ . 
These can differ by up to several orders of magnitude. It would be exact only in case of spatially 
uniform fields of 𝑋௟  and 𝑋௩ which cannot be generally the case in a 1D model since area 
averaging contains boundary layers along walls in which all variables have generally strong 
gradients. The same logic applies when discussing the errors committed when applying 
correlations developed to model phenomena in a porous medium to open media i.e., media that 
do not contain volume averaged structures are do not entail boundary layers. Similarly, the use 
of models for interfacial and wall transfers devised for porous media in open fluid (also called 
clear fluid, meaning regions that do not contain any volume averaged structures) is also 
incorrect. The volume averaging in a space domain containing solid structures homogenizes the 
wall transfer terms in a porous medium. In an open medium, the transfers with walls generally 
use the wall function method. Common issues can also be identified in 2D or 3D two fluid 
simulations without turbulence modelling. A time averaging over a long period of time covering 
two phase intermittency scales is included in the two fluid model. This averaging procedure 
filters all or a portion of the turbulence spectrum as a result, adding turbulent stresses (Reynolds 
stresses) and turbulent diffusion to the momentum and energy equations as previously shown. 
For instance, only the fluid meshes along the wall of a heated pipe with a two phase flow can 
be accurately heated by the wall, but the transfer to the core flow can only be accurately 
characterized by a turbulent transfer model in energy equations. 

A common mistake might also lie in the adoption of models for interfacial coefficients devised 
for averaged or statistically treated interfaces when the underlying simulation is intended to be 
LES or DNS instead, meaning in scenarios in which the interfaces are deterministic. 
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4.1.7. Conclusive remarks 

The huge variation of flow configurations in two phase flow (steam water), as well as the 
multitude of model options available in CFD codes, with various turbulence and interface 
treatments, make the selection of model options depending on the application rather complex. 
If there are many possible model option combinations, only a few of them provide consistent 
approaches. Several CFD applications with inconsistent approaches and some common errors 
are as follows [43]: 

 Use of a 1D model for modelling interfacial transfers in 2D or 3D CFD models; 
 Use of a 3D two fluid models without any turbulence modelling; 
 Use of averaged interfacial transfer coefficients in a DNS or LES models. 

Another common mistake is to believe that an interface is deterministic when ITM is used, 
when in fact it is a filtered interface with degraded prediction of interface movement and 
deformation. Because of this error, there is no modelling for subgrid waves at large interfaces. 
In general, many attempts to combine two fluid models for dispersed flow with an ITM for 
large interfaces use a partial modelling of all the processes that a hybrid LES with filtered and 
statistical interfaces should include. The fundamental steps in a two fluid CFD analysis are as 
follows: 

 Selection of the time and spatial filtering approach, if any; 
 Selection of an interface treatment method consistent with previously adopted filtering 

approach; 
 Selection of phases and/or fields required by phenomena to be investigated; 
 Selection of adequate closure laws. 

4.2. INTERFACE RESOLVING TECHNIQUES 

Interface resolving, also called interface tracking techniques, are developed to capture the shape 
and topology of fluid–fluid interfaces. Thus, detailed, and transient phenomena related to 
liquid–gas free surface can be simulated. For example, deformation of bubbles and droplets is 
directly calculated together with the interfacial area, as shown in Fig. 23 (a). Meanwhile, in 
case of Euler–Euler (also known as Eulerian, phase averaged, or two fluids) method, the bubble 
interface cannot generally be captured, and only distributions of averaged volume fraction are 
computed, as illustrated in Fig. 23 (b). From Fig. 23 (a) one can intuitively understand the 
possibility of ITM to reproduce the real bubbly flow for example shown in Fig. 23 (c). In 
Eulerian model, since the bubble surface is not captured, all dynamics related to bubble motion 
are modeled. e.g., drag, lift, turbulent dispersion, wall lubrication, bubble diameter, interfacial 
area concentration etc., which introduces modelling uncertainties into simulations. 

The main advantage of ITM is that it can resolve local phenomena, while its principal 
drawbacks are fine mesh required to capture small scale bubbles and droplets, unsteady 
simulation required for most flows, and occasional occurrence of numerical artifacts such as 
spurious currents [44] and numerical coalescence (i.e. instantaneous merger of two different 
bubbles whenever parts of their interfaces end up in the same mesh cell). Thus, the computation 
using ITM requires large computational resources such as a cluster computer. The comparison 
of ITM and Eulerian model is reviewed by Yadigaroglu [45]. Several types of ITMs are VOF 
[46], level set [47], front tracking [48], phase field [49], arbitrary Langrangian-Eulerian [50], 
to name just a few. In VOF, the volume of liquid and/or gas in a control volume is tracked in 
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volume conservative manner. In the level–set method, a distance function is transported in 
accordance with the fluid flow. This distance function represents the distance of the fluid–fluid 
interface from a mesh cell. In a front tracking method, the interface is explicitly represented by 
segments in 2D or polygons in 3D, and transported together with the phase fraction. 

 

(a)                                      (b)                                            (c) 

FIG. 23. Examples of bubbly flow: (a) computed with ITM; (b) computed with Eulerian method; (c) experimentally 
observed. 

4.2.1. The volume of fluid method 

4.2.1.1. Governing equations 

The governing equations describing conservation of mass and momentum, namely the Navier–
Stokes equations, are hereby recalled: 

 𝜕

𝜕𝑡
𝜌 + 𝛻 ⋅ (𝜌𝒖) = 0 (218) 

  𝜕

𝜕𝑡
𝜌𝒖 + 𝛻 ⋅ (𝜌𝒖 ⊗ 𝒖) = −𝛻𝑝 + 𝛻 ⋅ ቀ𝜇௘௙௙(𝛻𝒖 + (𝛻𝒖)்)ቁ + 𝒇௕ (219) 

where 𝜇௘௙௙ = 𝜇 + 𝜇௧ is the effective viscosity, namely the sum of the molecular and turbulent 
viscosities assuming an eddy viscosity turbulence modelling. In a VOF method, density 𝜌 and 
velocity 𝒖 represent weighted volume averages over both phases in each mesh cell. In practice, 
by defining a phase fraction 𝛼௜ as fraction of volume 𝑉௜ occupied by a phase 𝑖 in a mesh cell of 
volume 𝑉, it follows:  

 
𝛼௜ =

𝑉௜

𝑉
 

(220) 

then, for a two phase system with phases labelled as 𝑙 and 𝑣, by considering that 𝛼௩ = 1 − 𝛼௟ 
for a two phase system and renaming 𝛼 = 𝛼௟, it follows: 

 𝜌 = 𝛼𝜌௟ + (1 − 𝛼)𝜌௩ (221) 

 
𝒖 =

1

𝜌
(𝛼𝜌௟𝒖𝒍 + (1 − 𝛼)𝜌௩𝒖௩) (222) 
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In contrast to Eulerian–Eulerian methods that solve conservation equations for both phases, in 
VOF method (and ITMs in general) a single continuity and momentum equations are solved 
and are thus representative of the overall two phase mixture mass and momentum conservation. 
Other mixture properties can be defined in a similar way, such as molecular viscosity of 
mixture: 

 𝜇 = 𝛼𝜇௟ + (1 − 𝛼)𝜇௩ (223) 

However, other averages can be employed instead of the arithmetic one, such as harmonic 
average given by the following Eq. (224): 

 1

𝜇
=

𝛼

𝜇௟
+

(1 − 𝛼)

𝜇௩
 

(224) 

or an arithmetic average based on the continuity of tangential stresses (i.e., momentum 
conservative) at the interface given by the following Eq. (225): 

 𝜌

𝜇
=

𝛼𝜌௟

𝜇௟
+

(1 − 𝛼)𝜌௩

𝜇௩
 

(225) 

Regarding body force source term 𝒇௕ in Eq. (219), in VOF method it typically includes both 
gravity and surface tension forces. To consider the effect of buoyancy, the Boussinesq 
approximation is introduced to body force via density difference between liquid and vapor. The 
continuum surface force model by Brackbill [51] is usually used to represent the surface tension 
effect. The other surface tension model is continuum surface stress model [52], in which the 
force is introduced to the momentum equations via a stress tensor rather than the body force 
vector. The problem known as the spurious current can be seen in both models: continuum 
surface force and continuum surface stress models. By substituting 𝜌 with 𝜌௟, 𝜌௩ according to 
Eq. (221), and assuming that the flow is incompressible in the sense that the phasic densities 
are constant, the continuity equation can be reduced to: 

 𝜕

𝜕𝑡
𝛼 + 𝛻 ⋅ (𝛼𝒖) = 0 (226) 

In finite volume method, the (volume integral of the) divergence of 𝛼𝒖 is calculated in terms 
of face sums of the value of 𝛼𝒖 at mesh cell faces, meaning that it depends on the selected 
spatial discretization schemes. These is expanded later, as the phase fraction equation has some 
additional constraints on its solution, as the value of the phase fraction should always be 
bounded between 0 and 1. The choice of the spatial discretization scheme typically affects the 
solution behavior in terms of a tradeoff between boundedness and solution accuracy (numerical 
diffusion). 

4.2.1.2. Phase fraction advection discretization 

The difficulty with transport equation of the phase fraction, Eq. (226), lies in the errors 
associated with discretization of advection term. As an example, in 2D model, the transport of 
square phase fraction distribution (i.e., an idealized bubble with an initially square shape) is 
prescribed as uniform velocity field. The initial condition and the prescribed velocity are 
represented in Fig. 24 (a). Periodic boundary conditions are applied to all side boundaries. The 
time discretization is explicit, while the time step is set to have a Courant number of 0.25. The 
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solution using upwind scheme with a Superbee flux limiter (overall second order) is shown in 
Fig. 24 (b).  

 

(a)                                                               (b) 

FIG. 24. (a) Initial phase fraction distribution (arrows indicating direction of uniform velocity field), (b) Final 
phase fraction distribution after certain time, subsequently to advection by uniform velocity field. 

The problems of the solution phase fraction field are deformation of the shape and diffusion of 
the phase fraction distribution, meaning that the phase fraction gradient becomes smoother. 
These are the results of numerical errors that arise from the choice of spatial discretization made 
for the advective term. To avoid these, i.e., the deformation and diffusion, two types of VOF 
methods are proposed, the geometric and the algebraic VOF. 

In geometric VOF, the value at the surface of the control volume is calculated based on the 
geometry of the interface. In case of piecewise linear construction approach [53], the interface 
topology is simplified to be a flat plane/line, as sketched in Fig. 25 (a). Based on Fig. 25 (b), 
the geometric shape coloured blue is transported in accordance with the velocity defined in each 
control volume. Since total area of the geometric shapes does not change, total mass is strictly 
satisfied. After the transport of the phase fraction, i.e., Fig. 25 (b), the interface topology is lost, 
yet the value of α is updated as sketched in Fig. 25 (c). Then, based on the α, the new interface 
topology is created, which is called reconstruction, as shown in Fig. 25 (d). The implementation 
of geometric VOF [54], although based on geometry only, is algorithmically complicated, but 
it is nonetheless implemented in commercial codes such as ANSYS Fluent. 

The solution for 2D transport of the square using geometric VOF is displayed in Fig. 26. The 
condition of simulation is same as in previous case shown in Fig. 24 (a). The square is still 
deformed as it becomes rounded, but the deformation is smaller than that seen in Fig. 24 (b). 
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FIG. 25. Steps in the application of piecewise linear construction approach in 2D: (a) initial conditions wherein 
the interface in each cell is modelled by a linear segment, (b) transport of the phase polygons across mesh 
borders according to the velocity field, (c) update of the phase fraction values based on step (b), (d) 
reconstruction of new interface topology in each cell. 

 

FIG. 26. Final phase fraction distribution after certain time, subsequently to advection by uniform velocity field 
starting from the conditions depicted in Fig. 24 (a). 

The strategy to solve transport equation for the volume fraction without resorting any 
geometrical reconstructions is based on higher order spatial discretization schemes such as but 
not limited to high resolution interface capturing scheme [55], compressive interface capturing 
scheme for arbitrary meshes [56], constrained interpolation profile scheme [57], tangent of 
hyperbola for interface capturing [58]. The mass conservativeness is ensured by the schemes 
listed above. Compared to geometric VOF, the programming of these schemes is rather simple 
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when compared to the complex geometrical treatment for interface advection and 
reconstruction that geometric VOF entails. However, the smearing of a transported phase 
fraction shape can still occur in algebraic VOF approaches. To avoid this, a so called sharpening 
equation can be introduced in order to keep the interface thickness constant without changing 
the interface shape. This typically consists of an additional equation for phase fraction that is 
solved after the phase fraction conservation equation, Eq. (226). The actual implementation and 
reasoning that lies behind the construction of such sharpening equations vary between computer 
codes [59]. 

4.2.1.3. Surface tension modelling 

In a continuum surface force model, the surface tension (that appears in 𝑓௕ in Eq. (219)), is 
defined as: 

 𝒇ఊ = 𝛾𝜅𝛻𝛼 (227) 

where 𝛾 is the value of the surface liquid tension and 𝜅 is a curvature calculated with: 

 
𝜅 = −𝛻 ⋅ 𝒏 = ൬

𝛻𝛼

|𝛻𝛼|
൰ (228) 

where 𝒏 is the surface normal of the interface between the two phases in each cell where an 
interface exists. It can be seen that the calculation of the curvature implies calculation of the 
gradient of the phase fraction, which typically changes from unity to null in the span of one or 
two mesh cells (particularly for sharp interfaces), as represented in Fig. 27. This means that 
calculated curvature typically suffers from numerical errors, which are greater for sharper 
interfaces, and the resulting errors give rise to so called spurious currents. These currents consist 
of actual momentum sources caused by an imbalance between pressure gradient and surface 
tension force. To reduce these errors, different approaches exist [60], [61]. 

 

FIG. 27. Example of a fraction distribution in the computational cells around VOF interface.  
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4.2.2. Volume of fluid method for phase change 

4.2.2.1. Governing equations 

In case of boiling flows, the governing equations are modified to take the phase change into 
account. This manifests itself in the form of additional source terms in the continuity equation 
(to represent mass exchange) and in momentum equation (to represent momentum exchange 
associated with the phase change). By denoting with 𝑚̇ the mass exchange per unit volume, per 
unit time from the liquid phase 𝑙 to the vapour phase 𝑣, by recalling that 𝛼 = 𝛼௟, the mass 
conservation equation for the liquid phase therefore becomes: 

 𝜕

𝜕𝑡
𝛼𝜌௟ + 𝛻 ⋅ (𝛼𝜌௟𝒖) = −𝑚̇ (229) 

Considering constant density flows, the phase fraction equation becomes: 

 𝜕

𝜕𝑡
𝛼 + 𝛻 ⋅ (𝛼𝒖) = −

𝑚̇

𝜌௟
 (230) 

which is formally identical to Eq. (226) except for a source term on the right hand side. It is 
worth noting that even for constant density flows, the divergence of the mixture velocity is not 
null if phase change occurs. To show this, by considering that 𝛼௩ = 1 − 𝛼௟ = 1 − 𝛼, the vapour 
phase fraction conservation equations become: 

 𝜕

𝜕𝑡
(1 − α) + 𝛻 ⋅ ((1 − 𝛼)𝒖) =

𝑚̇

𝜌୴
 

(231) 

By subtracting the liquid phase fraction equation from the vapor phase fraction equation, it 
follows: 

 
𝛻 ⋅ 𝒖 = ൬

1

𝜌௩
−

1

𝜌௟
൰ 𝑚̇ ≠ 0 (232) 

Regarding the momentum equation, it is equal to Eq. (219) with the modification that the source 
term 𝒇௕ is inclusive of a momentum change due to the phase change. More specifically, it is 
inclusive of a recoil force 𝒇௥ due to the interface motion due to phase change, so that: 

 
𝒇௥ = ൬

1

𝜌௩
−

1

𝜌௟
൰ 𝑚̇ଶ𝒏 (233) 

which also highlights the fact that such force is in the direction of the interface surface normal. 
While an energy equation is not typically entailed by the Navier–Stokes equations, an energy 
equation is nonetheless required when simulating phase change phenomena, as these are 
typically thermally driven phenomena. While there are many ways in which an energy equation 
might be formulated, a considered energy equation is with respect to mixture enthalpy ℎ =
𝑐௣(𝑇 − 𝑇଴), with 𝑇 being mixture temperature, 𝑐௉ mixture heat capacity and 𝑇଴ arbitrary 
reference temperature. Then, an enthalpy equation can be formulated with respect to the mixture 
temperature as: 

 𝜕

𝜕𝑡
൫𝜌𝑐௣𝑇൯ + 𝛻 ⋅ (𝜌𝑐௉𝑇𝒖) = 𝛻 ⋅ ൫𝜅௘௙௙𝛻𝑇൯ +  𝑞̇ (234) 
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with 𝜅௘௙௙ = 𝜅 + 𝜅௧ being the effective mixture thermal conductivity, given by the sum of 
turbulent and molecular mixture thermal conductivities and 𝑞̇ being the heat source associated 
with phase change. This source term is generally modelled as: 

 𝑞̇ = −𝑚̇𝐿 (235) 

where 𝐿 is the latent heat of evaporation and ṁ represents the liquid to vapour mass transfer 
rate as defined before, which is positive for evaporation and negative for condensation. The 
mass transfer rate can be computed in different ways, although the most popular is with heat 
conduction limited model. In this model, the mass transfer compensates for heat flux 
imbalances across the interface: 

 
𝑚̇ =

𝑞̇௜௟ + 𝑞̇௜௩

𝐿
 (236) 

where 𝑞̇௜௟ and 𝑞̇௜௩ represent heat flux from the liquid bulk to the interface and from the vapour 
bulk to the interface, respectively, in each computational cell. The interfacial heat fluxes are 
computed in each mesh cell as follows: 

 
𝑞̇௜௟ =

𝑆

𝑉
𝜅௟𝒏 ⋅ 𝛻𝑇 (237) 

   
𝑞̇௜௩ = −

𝑆

𝑉
𝜅௩𝒏 ⋅ 𝛻𝑇 (238) 

where 𝑆 is the interface area in the computational cell, 𝒏 its surface normal and 𝑉 the cell 
volume, as sketched in Fig. 28. This model is consistent with the fact that phase change occurs 
only in interfacial cells, the cells where 0 < 𝛼 < 1, as 𝑆 = 0 in mesh cells that do not contain 
an interface. It should be noted that heat conduction limited models are more readily employed 
in Euler–Euler multiphase treatments, wherein the definition of interfacial heat flux can take 
advantage of the actual phase temperature fields, instead of a mixture temperature such as in a 
VOF approach. 

 

FIG. 28. Representation of heat fluxes from the bulk of each phase to the interface in an interfacial cell of 
volume 𝑉 with total interface area 𝑆. 

4.2.2.2. Nucleation site modelling 

When simulating boiling starting from a single phase scenario, there is no numerical interface 
across which the mass transfer can be computed. Physically, in case of nucleate/heterogeneous 
boiling [62], vapor bubbles start to grow from nucleation sites, which are cavity or small gas 
trapped on wall. Since the cavities or the small gas bubbles trapped on walls are generally far 
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smaller than the computational mesh size, these cannot be directly resolved. Thus, it is 
necessary to use a mechanistic model, a nucleation site model. In this model proposed by Sato 
and Niceno [63] the location of nucleation sites along with nucleation activation temperature 
for each site is prescribed a priori on the heat transfer surface. When temperature at a particular 
nucleation site equals to its activation temperature value, a small vapor bubble (also known as 
seed bubble) is formed at the site. The seed bubble is assumed to be initially hemispherical in 
shape, the radius being typically one cell width of the underlying grid. The locations of 
nucleation site are set randomly using the random number generators. The activation 
temperature for each site is given in such a way that the given activation temperature agrees 
with correlation for nucleate site density, as per Kocamustafaogullari and Ishii [64], Hibiki and 
Ishii [65].  

4.3. EULERIAN–EULERIAN METHOD 

4.3.1. Introduction  

The Eulerian–Eulerian method is a CFD method developed to model multiphase flows with the 
ability to provide reasonably accurate predictions of such flows at affordable computational 
cost. The multiphase flows can be regarded as a tessellation of single phase flow domains joined 
together through an interface at which mass, momentum and energy are transferred from one 
phase to the other. Each domain may have different properties, like density and viscosity, and 
may be in different thermodynamic states (hence, multiphase). Examples are bubbly flows in 
reactor primary cooling systems, oil/water flows in the petrochemical industry, stratified flows 
including those that can be observed in loss of coolant accidents [66] or particle/droplet flows 
like clouds, aerosols or pollutants in the atmosphere as can potentially be released during severe 
nuclear accidents. An example of different flow regimes of importance to nuclear engineering 
applications is exemplified in Fig. 29. In these applications, engineers would like to have tools 
to make predictive statements of the outcomes of such flows in terms of system performance, 
durability, robustness, efficiency, or impact. More specifically, in nuclear context, accurate 
modelling of such flows is pivotal in computationally driven optimization and safety 
assessments of reactor components, at both normal operation and during the accident 
conditions. The Eulerian–Eulerian method offers a platform to achieve such goals. From a 
macroscopic point of view, two phase interface is almost infinitesimally thin (it has some finite 
thickness, as for example modeled in diffuse interface methods). Thus, interfacial transfer 
processes are generally associated with length scale, which is prohibitively expensive to resolve 
with numerical method. Even if interfacial processes are considered in an averaged way, i.e., 
modelled from macroscopic perspective rather than from first principles, the multiphase 
structures that emerge in realistic flows still remain out of reach of contemporary computing 
power to be directly simulated as such. Interface resolving techniques, as suggested by their 
name, are designed to resolve multiphase structures. However, their use remains limited to 
simplified domains and/or to subproblems of realistic applications, always at moderate 
Reynolds numbers to allow for affordable mesh resolution. The challenge of modelling 
multiphase flows bears a resemblance with the challenge of modelling turbulent flows; in both 
problems one is limited by prohibitively small length and time scales that cannot be resolved 
directly. As for turbulent flows, averaging, as leveraged in the RANS or LES frameworks, is a 
way out of the computational impasse, the key idea being that computational requirement is 
exchanged with modelling effort (and, of course, associated modelling uncertainty). In the same 
spirit, the Eulerian–Eulerian method makes a similar trade off, by applying averaging to 
multiphase flows so that multiphase behavior is modeled. The Eulerian–Eulerian method 
formulation by considering the so called local instant formulation (LIF) to which the averaging 
is applied, gives rise to multiphase closure terms. In turn, those closure terms, capturing the 
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interfacial transfer processes of which an explicit formulation is lost in the averaging of the LIF, 
is described and includes an introduction to the treatment of interfacial mass, momentum and 
energy transfer models, as well as poly disperse size distribution models designed to describe 
the behavior of populations of bubbles, droplets or particles. The adequate modelling of 
multiphase closure terms stands at the heart of the Eulerian–Eulerian method and is, in fact, an 
area of research to which much scientific study is currently still dedicated.  

 

FIG. 29. Schematic of multiphase flow regimes encountered during boiling in a channel with heated walls. 

4.3.1.1. Motivation and description of problems of interest in nuclear engineering 

Typical designs of conventional water cooled nuclear reactor cores, such as in PWRs or BWRs, 
generally consist of vertically positioned fuel pin assemblies suspended in a primary coolant. 
The fuel pins generate heat because of fission, which is transferred to the primary coolant 
through the cladding of the fuel pins. The flow inside the core is from bottom to top. Fig. 29 
shows a schematic overview of the multiphase flows that can be encountered during boiling in 
such a nuclear reactor core. More specifically, Fig. 29 portrays a simplified heated cylindrical 
subchannel conduit in which the primary coolant flow is from left to right so that gravity points 
from right to left. Realistic subchannels would have all sorts of complicated geometric features, 
such as vanes to promote flow mixing, assembly supports or wires with which fuel pins are 
wrapped to prevent damage from pin vibrations. Here, however, such complexities are not 
considered but an idealized conduit, which is sufficient to qualitatively explore typical 
subchannel flow phenomena. Fig. 29 considers scenario in which there is a sufficient heat 
transfer to the coolant to cause the boiling. This is, in principle, a desired situation in BWRs at 
normal operation, but highly undesired in PWRs, which keep the coolant at high pressure to 
avoid just that. Even so, also in PWRs boiling may occur in the core during accident scenarios, 
for example when the system is depressurized due to pipe breakage. In any case, the design and 
operation of the reactor should be such that sufficient heat is removed from the core to prevent 
dangerously high temperatures of the core inventory. Per Fig. 29, subcooled liquid enters the 
conduit and is heated. At some point, the onset of nucleate boiling point is reached. Microscopic 
bubbles are formed at the wall of the conduit, remain attached until grown sufficiently big to 
detach from the whole as a result of hydrostatic forces acting on it. While heat is being 
transferred from wall to liquid coolant, at some point in the conduit steam may evaporate onto 
the bubbles, which is called the onset of vapor generation. As temperatures increase, the coolant 
may reach and surpass the saturation temperature. From that point onward, boiling is much 
more significant, and bubbles may be formed not just at the wall but also in the fluid itself 
because of the onset of nucleate significant boiling. This leads to rapid growth of bubbles, which 
can migrate freely to the core of the conduit to coalesce into bigger bubbles and even form 
slugs. Higher up in the conduit the rapid formation of vapor leads to an increase in volume. In 
turn, the flow accelerates and starts to form a core of continuous steam enveloped by a film of 
liquid at the wall. Such flow is called annular flow. The film can be wavy, intermittently 
entraining steam or forming droplets which are then suspended in the steam, and which can 
evaporate or re–entrain back into the film. When there is enough heat put into the coolant that 
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the liquid film disappears, dry out of the conduit is established. This is an extremely dangerous 
situation, because the heat transfer from cladding to steam is much lower than from cladding to 
liquid coolant, thus resulting in a sharp increase of core inventory temperatures potentially 
leading to a meltdown. The heat flux at which dry out occurs is referred to as the CHF and is a 
key safety parameter of the nuclear reactor design. Assuming that the situation is stable, the 
droplets may still be suspended in the steam which, eventually, will evaporate altogether, 
leading to single phase superheated steam flow. The situation sketched in Fig. 29 displays a 
transition from single phase subcooled liquid (water) flow to single phase superheated vapor 
(steam) flow, by means of several multiphase flow regimes: bubbly, slug, annular and droplet 
flow.  

4.3.1.2. Eulerian multiphase modelling methods 

Four possible Eulerian modelling techniques applicable to core boiling problem are described 
in this section. FIG. 30 (a) depicts fully resolving modelling approach. In theory, one can model 
core boiling from first principles. In that case, all relevant length and time scales must be 
resolved, much like in DNS applied to turbulent flows. Clearly, this approach is superior in its 
accuracy, but it is prohibitively expensive. In practice, fully resolved approach is thus not very 
effective. Nevertheless, it is useful as fundamental starting point for the development of coarser 
models, resulting in a hierarchy of models that have a direct relationship with first principles 
and in which the assumptions and approximations that are made are mathematically clear. Fig. 
30 (b) depicts a so called multiple flow regime Eulerian–Eulerian method [67]. For the flow in 
the core conduit, a spatial and temporal averaging of that flow over short space and time 
intervals can be imagined, possibly supplemented by ensemble averaging of different 
realizations of the same flow. In that case, small multiphase structures would no longer be 
visible as such, but would rather be smeared. It can be seen in Fig. 30 (b) that bubbles and 
droplets are no longer present as discrete elements but are rather captured by some sort of 
concentration or droplet density indicator. On the other hand, larger structures such as slugs or 
films would still prevail and can be captured using fully resolved like methods. Multiple flow 
regime Eulerian–Eulerian methods have only recently been under development and form a 
hybrid modelling approach leveraging accurate resolved techniques for structures that can be 
captured on coarse grids, and using conventional Eulerian–Eulerian method for structures that 
cannot be resolved. 

 

FIG. 30. Schematic overview of possible modelling techniques for the core boiling problem: (a) fully resolved, 
(b) multiple flow regime Euler–Euler, (c) Euler–Euler and (d) 1D thermal hydraulics system code. 

Fig. 30 (c) represents a standard Eulerian–Eulerian method. By further reducing the model 
complexity compared to multiple flow regime Eulerian–Eulerian method, one can apply a full 
temporal averaging (and a partial spatial averaging as imposed by a coarse computational grid). 
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This would result in 3D representation of a flow field in which all multiphase structures are 
averaged. As a result, the interfacial mass, momentum, and energy transport need to be modeled 
by incorporation of appropriate source terms in their respective conservation equations. These 
source terms are subject to prevailing multiphase flow regime, which is no longer immediately 
obvious but can potentially be inferred from spatial gradients in the flow fields. The Eulerian–
Eulerian method offers an affordable balance between accuracy and cost for many real world 
industrial multiphase problems. The multiple flow regime Eulerian–Eulerian methods rely 
heavily on the models that are originally developed in the Eulerian–Eulerian framework. Fig. 
30 (d) presents a type of thermal hydraulics representation attainable by 1D Eulerian analysis, 
which is commonly adopted in the system codes. A full spatial averaging along the cross section 
of the conduit then can be applied. This would result in 1D description of the flow, in which 
special geometric features of the conduit itself can no longer be incorporated as is. Moreover, 
whereas in Eulerian–Eulerian models the prevailing flow regime could be inferred from 3D 
spatial information, this is no longer the case for thermal hydraulics system codes, thus fully 
relying on empirical flow regime maps. The thermal hydraulics system code approach is almost 
exclusively the only method used in the nuclear industry to model complete reactor systems. It 
is relatively fast, allowing for fast evaluations of a range of flow scenarios.  

This discussion helps to position Eulerian–Eulerian methods within the hierarchy of multiphase 
Eulerian methods. The conclusions extend readily to multiphase flow problems other than 
boiling in a core. Next, before embarking on the actual model development, we first consider 
what Eulerian means and how it relates to Lagrangian multiphase methods as a further extension 
of what was discussed in Section 2.2.  

4.3.1.3. Eulerian and Lagrangian modelling strategies 

The Eulerian description of a system is attributed to Leonhard Euler (1707–1783). It generally 
considers a system from a fixed reference frame and involves fields of variables. The 
Lagrangian description of a system, on the other hand, is attributed to Joseph–Louis Lagrange 
(1736–1813) and considers a system with respect to a moving reference frame attached to that 
system. The two phase Eulerian–Eulerian method, as the name suggests, thus adopts an Eulerian 
description for both phases. This method, however, is also used by interface resolving models 
(like VOF or level set as discussed in other chapters), but these are, perhaps quite ambiguously, 
not part of the Eulerian–Eulerian class of methods. What is characteristic to Eulerian–Eulerian 
method is that the two phase structures, which are usually of a dispersed nature, are unresolved 
as the result of averaging or filtering. The terminology of Eulerian, Lagrangian and resolved, 
unresolved gives rise to four types of two phase modelling strategies: 

 Resolved Eulerian. The system is described from Eulerian point of view and two phase 
interface is resolved. Usually, in addition to the mass, momentum and energy 
conservation equations, an indicator function advection equation is solved. This holds 
for so called one equation models like VOF or level set. The indicator function 
determines the phase which locally prevails. The interface is localized, and interfacial 
mass and energy transfer can be modeled. Resolved Eulerian methods are relatively 
straight forward in their use for highly deforming interfaces, as the computational grid 
can remain fixed throughout the course of the simulation. 

 Resolved Lagrangian. Two phase structures, like particles, are fully resolved and an 
equation of motion for each particle is solved by an integration of the forces acting on 
the structure. The carrier phase is often still treated with Eulerian model. Resolved 
Lagrangian methods are useful for when the typical size of two phase structures is larger 
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than the smallest length scales of the turbulent flow (i.e., the Kolmogorov length scale). 
In that case it is important that the wake induced by flow around the structure is 
modeled, which means that the structure must be resolved. The resolved Lagrangian 
approach is attractive when the two phase structure does not deform much, e.g., in the 
case of solid particles, or bubbles and droplets that have high sphericity as a result of 
large surface tension. 

 Unresolved Lagrangian. In dispersed two phase flow regimes where the typical length 
scale of the dispersed structures is smaller than the Kolmogorov length scale, the effect 
of the dispersed structures on the carrier phase, and vice versa, can be appropriately 
modeled by considering the structures as unresolved point particles. For each particle, 
a Lagrangian equation of motion is then solved considering a number of forces that act 
on the particle. As such, all mass, momentum, and energy transfer are subgrid. 
Unresolved Lagrangian methods are useful for particle laden flows like particulate flows 
or aerosol flows, with many disperse elements. Non sphericity of the particles can be 
included in the subgrid transfer models. 

 Unresolved Eulerian. Finally, by extension of the former, unresolved Eulerian methods 
treat the two phase structures in an unresolved way too, but from the Eulerian point of 
view. The unresolved Eulerian method is synonymous to Eulerian–Eulerian method. In 
comparison to the other three modelling frameworks, Eulerian–Eulerian method is 
probably the most generic in the sense that it can deal with a large array of two phase 
flow regimes at relatively large scale, by it does not explicitly track anything like 
Lagrangian methods. Nevertheless, this may come at the price of relatively large 
modelling uncertainty. 

4.3.2. Eulerian–Eulerian modelling theory 

The general Eulerian–Eulerian method formulation is derived in this section starting from the 
LIF. The LIF is not very practical in its direct use but offers solid mathematical foundation for 
the derivation of the Eulerian–Eulerian method formulation. 

4.3.2.1. Local instantaneous formulation 

A volume Ω shown in Fig. 31 is composed of gas with the volume Ω௚ and liquid of volume Ω௟. 
The gas and liquid volumes are strictly separated by an interfacial surface 𝛤௜ , and do not 
overlap. Using separation of phases, the state of each phase in terms of local instant variables 
can be defined as 𝐹௞(𝒙, 𝑡), where 𝐹 is the variable of interest, subscript 𝑘 denoted either liquid 
phase 𝑙 or gas phase 𝑔, 𝒙 is a position vector in the chosen coordinate system and 𝑡 is the time. 
The variable 𝐹௞ is only defined if phase 𝑘 is present at (𝒙, 𝑡). For convenience, it is set to zero 
otherwise. In Ω௞, a phase 𝑘 of mass density 𝜌௞(𝒙, 𝑡), phase 𝑘 velocity 𝒖௞(𝒙, 𝑡), phase 𝑘 pressure 
𝑝௞(𝒙, 𝑡) and phase 𝑘 internal energy 𝑒௞(𝒙, 𝑡) are defined so that the standard single phase 
conservation equations for mass, momentum, and energy are: 

 𝜕

𝜕𝑡
𝜌௞ + 𝛻 ⋅ (𝜌௞𝒖௞) = 0 

(239) 

  𝜕

𝜕𝑡
𝜌௞𝒖௞ + 𝛻 ⋅ (𝜌௞𝒖௞ ⊗ 𝒖௞) = −𝛻𝑝௞ + 𝛻 ⋅ 𝝈ௗ,௞ + 𝜌௞𝒈 

(240) 

  𝜕

𝜕𝑡
𝜌௞𝑒௞ + 𝛻 ⋅ (𝜌௞𝑒௞𝒖௞) = −𝛻 ⋅ 𝒒̇′′௞ + 𝛻 ⋅ (𝝈௞ ⋅ 𝒖௞) + 𝜌௞𝒈 ⋅ 𝒖௞ + 𝑞̇𝒌 

(241) 
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wherein 𝜎ௗ,௞ is the deviatoric stress tensor defined in Eq. (51), 𝒒̇′′௞ = 𝜅௞𝛻𝑇௞ is the heat flux, 
 𝜎௞ = −𝑝௞𝕀 + 𝝈ௗ,௞ is the total stress tensor and 𝑞̇𝒌 is a volumetric heat source term. For each 
phase, these equations need to be closed using constitutive equations. More precisely, an 
equation of state has to be introduced which relates density to pressure and temperature, such 
as the ideal gas law or an incompressible equation of state. In turn, the temperature must be 
related to the internal energy, which is usually done with a heat capacity coefficient. Finally, 
mechanical, and energetic constitutive equations need to be introduced. Examples are the 
Newtonian assumption for momentum diffusion, setting the shear stress proportional to the 
gradient of velocity, or Fourier’s law for heat diffusion, setting the heat flux proportional to the 
gradient of temperature. It is assumed here that these relations are known. Further discussion is 
out of scope, and the reader is referred to Bird et al. [68] for more details.  

 

FIG. 31. Schematic of two phase system of total volume 𝛺 (gas volume 𝛺௚ and liquid volume 𝛺௟ are bounded by 
interface 𝛤௜). 

While the interface 𝛤௜ does not contain any mass, it does have a velocity 𝒖௜ with which it 
propagates throughout the domain. Moreover, it can have an interfacial energy 𝒖௜ . Across the 
interface, which locally has a normal 𝒏௞ pointing into phase k, we have a mass conservation 
equation: 

 
෍ 𝑚̇′′௞ = 0

௞∈(௚,௟)

 (242) 

where 

 𝑚̇′′௞ = 𝜌௞𝒏௞ ⋅ (𝒖௞ − 𝒖௜) (243) 

where 𝑚′′̇ ௞ thus represents the net mass influx (kg/mଶ/s) into phase 𝑘. The Eq. (243) states 
that whenever the velocity of the fluid in the immediate neighborhood of the interface is 
different than the velocity of the interface itself, mass transfer is occurring. Similarly, 
momentum conservation at the interface can be stated in terms of a balance of forces per unit 
interface area (i.e., in terms of pressures) as: 

 
෍ (𝑚̇′′௞𝒖௞ − 𝒏௞ ⋅ 𝝈ௗ,௞)

௞∈(௚,௟)

+ 𝛥𝑝ఊ = 0 (244) 

where the first term under the summation accounts for pressure associated with the transfer of 
mass, the second term accounts for pressure due to mechanical stress and the third term is the 
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pressure due to the surface tension (given by e Young–Laplace equation). Note that if there is 
no phase change, a non–zero surface tension term must be balanced by a difference in 
mechanical stress across the interface, in order to satisfy Eq. (244). An interfacial energy 
conservation equation can as well be formulated. However, since the interface may hold non 
zero energy 𝑒௜ (unlike momentum, because it has zero mass), the interfacial energy conservation 
equation becomes an advection equation for 𝒖௜.: 

 𝜕

𝜕𝑡
𝑒௜ + 𝒖௜ ⋅ 𝛻𝒖௜ = ෍ (𝑚̇ᇱᇱ

௞
𝑒௞ − (𝒏௞ ⋅ 𝝈ௗ,௞) ⋅ 𝒖𝒌 

௞∈(௚,௟)

+ 𝛥𝑝ఊ ⋅ 𝒖௞) 
(245) 

where the first term represents the energy transfer associated with mass transfer, the second 
term is the energy transfer due to mechanical stress, the third one is due to heat flux (e.g., 
conduction) and the last one is due to surface tension. Note that the field 𝑒௜ may act as a buffer 
in which energy is stored or from which energy can be extracted.  

The set of equations Eq. (240) through Eq. (245), complemented by the required constitutive 
equations/laws, is a fully closed system that may be solved numerically. However, in the 
following section it is shown how to use it as a mathematical foundation for the derivation of 
the Eulerian–Eulerian method, by making use of volume averaging. 

4.3.2.2. Volume averaging 

In most cases, the LIF is much too complicated for realistic situations, because multiple 
deformable interfaces are complicated to capture accurately, all time and length scales need to 
be resolved and significant discontinuities of properties may lead to numerical instabilities. 
However, the detail that is offered by the LIF is typically not needed, particularly for 
engineering purposes. Thus, by proper averaging of the LIF a model reduction can be achieved 
which eliminates the three challenges associated with the LIF. In turn, instead of solving for 
local instant fields 𝐹௞(𝒙, 𝑡) we reduce the problem to be defined in averages 𝐹௞

തതത, where the 
overline, or bar, denotes an averaging operator. A spatial averaging operator is defined over an 
arbitrary domain 𝛺௦ (which might be a volume as well as a surface, e.g., a cross section 
perpendicular to a flow direction) as follows: 

 
𝐹௞(𝑡)തതതതതതത =

1

|𝛺௦|
න 𝐹௞(𝒙, 𝑡)

ఆೞ

𝑑𝒙 
(246) 

The result of averaging over the cross section of a subchannel is shown in Fig. 30 (d). A 
temporal averaging operator, on the other hand, is given by: 

 
𝐹௞(𝒙)തതതതതതത =

1

|𝛺௧|
න 𝐹௞(𝒙, 𝑡)

ఆ೟

𝑑𝑡 
(247) 

in which 𝛺௧ is the temporal domain (i.e., time interval) over which the average is taken. The 
result of temporal averaging is shown in Fig. 30 (c). Finally, we can also apply a spatial filtering 
operator, as defined by: 

 
𝐹௞(𝒙௔, 𝑡௕)തതതതതതതതതതതതത =

1

|𝛺௦,௔|

1

|𝛺௧,௕|
න න 𝐹௞(𝒙, 𝑡)𝑑𝒙𝑑𝑡

ఆ೟,್ఆೞ,ೌ

 
(248) 
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with 𝑎, 𝑏 being indices of the spatial and temporal subdomains of 𝛺௦, 𝛺௧ under consideration. 
A straightforward example in a computational setting would be a single mesh cell as a spatial 
subdomain of the overall spatial domain of interest and a single time step as a temporal 
subdomain of the overall time domain of interest. As previously discussed in Section 2.6, the 
nature of the finite volume method (based on which most Eulerian–Eulerian method are 
numerically developed) consists of an integration over discrete volumes and time steps, much 
like the filtering operation described in Eq. (248). 

Averaging in two phase systems, however, is more complex than simply applying the averaging 
operators to the conservation equations. It is convenient to define special two phase averaging 
operators which apply certain weighting to distinguish between the phases. In this way, separate 
conservation equations can be derived for each phase. Such averaging operators are needed in 
order to keep the conservation equations for the averages interpretable and meaningful. 
𝑀௞(𝒙, 𝑡) representing the instantaneous indicator function of phase 𝑘 is defined as follows: 

 
𝑀௞(𝒙, 𝑡) = ቄ

 1          𝑖𝑓 𝑝ℎ𝑎𝑠𝑒 𝑘 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 (𝒙, 𝑡)
 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

 (249) 

The average phase 𝑘 volume and/or time fraction (depending on the definition of the averaging 
operator) is defined as: 

 𝛼௞ = 𝑀௞
തതതത (250) 

The quantity 𝛼௞ is important as it describes how much fraction of phase 𝑘 there is in the 
averaging domain. Using the indicator function, more formally the generic phase 𝑘 quantity 𝐹௞ 
can be written as follows: 

 
𝐹௞(𝒙, 𝑡) = 𝑀௞(𝒙, 𝑡)𝐹(𝒙, 𝑡) = ቄ

 𝐹(𝒙, 𝑡)          𝑖𝑓 𝑝ℎ𝑎𝑠𝑒 𝑘 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 (𝒙, 𝑡)
 0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

 (251) 

Thus, 𝐹௞ can be understood as an instantaneous value of a global filed 𝐹 filtered by the presence 
of phase 𝑘. To clarify this with an example, fluid velocity is taken as an example. At a physical 
level, each point in space and time (𝒙, 𝑡) is characterized by the presence of a single phase. 
Thus, one can think of the velocity field 𝒖 as a single field that, at each point in space and time 
(𝒙, 𝑡), describes the velocity of a fluid phase that occupies that point in space and time. 
Conversely, one can image separate velocity fields 𝒖௞, one for each fluid phase, that describe 
the velocity of phase 𝑘 at each point in space and time, such that the field is different than zero 
only within the spatial and temporal subdomains that are occupied by phase 𝑘. Using these 
results, the phase average of phase 𝑘 becomes: 

 
𝐹௞
തതതതതത =

𝑀𝑘𝐹𝑘തതതതതതത

𝑀𝑘തതതത
=

𝐹𝑘തതത

𝛼𝑘

 
(252) 

This special two phase averaging operator, called phase average or intrinsic average, expresses 
the average of 𝐹 by only taking into account 𝐹 whenever phase 𝑘 is present at the point (𝒙, 𝑡) 
that belongs to the spatial and temporal subdomains of interest to the averaging. A very simple 
example would be a two phase system in which the gas phase has constant temperature 𝑇௚ and 
the liquid phase has constant temperature 𝑇௟. The phase average of temperature 𝑇, i.e., 𝑇௞, is 
then equal to 𝑇௚ for 𝑘 =  𝑔 and to 𝑇௟ for 𝑘 =  𝑙. In the same spirit as the phase average, the 
mass weighted average is defined as follows: 
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𝐹෠௞ =

𝜌௞𝐹௞
തതതതതത

𝜌௞തതത
=

𝜌௞𝐹௞
തതതതതതതതതതതത

𝜌௞തതതതതത
 

(253) 

The reason for weighting 𝐹 with density 𝜌 is that the quantities represented by 𝐹 are generally 
expressed in specific terms (i.e., per unit mass), so that mixture values can be calculated as: 

 
𝐹෠ =

∑ 𝛼௞𝜌௞തതതതതത
௞ 𝐹෠௞

∑ 𝛼௞𝜌௞തതതതതത
௞

 
(254) 

4.3.2.3. Two fluid model: averaging the local instantaneous formulation 

With these operators as tools, the LIF conservation equations can be averaged for each phase k. 
As an illustration, the averaging is discussed for the mass conservation equation, Eq. (239). 
Applying the averaging operator, and assuming that this operator is commutative (e.g., the 
divergence of the average is the average of the divergence), it follows: 

 𝜕

𝜕𝑡
𝜌௞തതത + 𝛻 ⋅ (𝜌௞𝒖௞തതതതതതത) = 0 

(255) 

Considering relationship between the average and the phase average established by Eq. (252) 
it follows that 𝜌௞തതത = 𝛼௞𝜌௞തതതതതത, and using the mass weighted average 𝜌௞𝒖௞തതതതതതത = 𝛼௞𝜌௞തതതതതത𝒖ෝ௞. Introducing 
these two relationships in the averaged mass conservation equations it is possible to show that: 

 𝜕

𝜕𝑡
𝛼௞𝜌௞തതത + 𝛻 ⋅ (𝛼௞𝜌௞തതതതതത𝒖ෝ௞) = 𝛬௞ 

(256) 

where Λ௞ represents an interfacial mass transfer term which appears whenever a liquid–gas 
interface falls within the spatial and temporal subdomains used for the averaging. When 
inspecting Eq. (256), it can be observed that this form is very similar to the phase 𝑘 LIF mass 
conservation equation Eq. (239). It is convenient, because it has products of averages and not 
averages of products (unlike the original averaged mass conservation equation, Eq. (255)). This 
is purely a result of the choice of the phase density 𝜌௞ and phase velocity 𝒖ෝ௞. Conversely, if the 
averaged mass conservation equation is to have a form like Eq. (256) in which the products of 
averages exist, then the density has to carry the meaning of a phase average and the velocity 
the meaning of a mass weighted average. In the same way as for the mass conservation equation, 
the phase 𝑘 averaged momentum and energy conservation equations can be derived [69]. The 
phase k averaged momentum equation is given by: 

 𝜕

𝜕𝑡
𝛼௞𝜌௞തതതതതത𝒖ෝ௞ + 𝛻 ⋅ (𝜌௞തതതതതത𝒖௞ ⊗ 𝒖௞)

= −𝛼௞𝛻𝑝௞തതതതതത + 𝛻 ⋅ ቀ𝛼௞൫𝝈ௗ,௞തതതതതതതതതതതത + 𝝈௧,௞൯ቁ + 𝛼௞𝜌௞തതതതതത𝒈 + 𝑴௞ 

(257) 

with interfacial momentum transfer term 𝑴௞ and turbulent stress tensor 𝝈௧,௞ which results from 
the application of the averaging operator to the non linearity of the convective term, the 
discussion of which is out of the scope for this section and for which the reader is referred to 
Section 3 or to Wilcox [70], or Durbin [71].  

The phase 𝑘 averaged energy equation is given by: 
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 𝜕

𝜕𝑡
𝛼௞𝜌௞തതതതതത𝑒̂௞ + 𝛻 ⋅ (𝛼௞𝜌௞തതതതതത𝑒̂௞𝒖ෝ௞)

= −𝛻 ⋅ ൬𝛼௞ ቀ𝒒̇ᇱᇱ
௞

തതതതതതതതതത + 𝒒̇ᇱᇱ
௧,௞

ቁ൰ + 𝛻 ⋅ ൫𝛼௞𝝈ௗ,௞തതതതതതതതതതതത ⋅ 𝒖௞൯ + 𝛼௞𝜌௞തതതതതത𝒈 ⋅ 𝒖ෝ௞

+ 𝐸௞ 

(258) 

with an interfacial energy transfer term 𝐸௞ and turbulent heat flux 𝒒̇ᇱᇱ
௧,௞

 for which a description 

is omitted here for the same reason as for 𝝈௧,௞. The set of mass, momentum and energy 
conservation equations, Eq. (256) through Eq. (258), for 𝑘 ∈ (𝑔, 𝑙) constitute the popular 
Eulerian–Eulerian two fluid model. It is called that way because each fluid is modeled 
separately and is subject to its own set of conservation equations. These conservation equations 
are generally coupled to each other by the modelling choices underpinning the interfacial 
transfer terms. Upon comparison against the set of LIF conservation equations, Eq. (239) 
through Eq. (241), the following key differences can be observed: 

 Conservation equations in Eulerian–Eulerian method are defined in terms of the rate of 
change of void fraction weighted quantities, 𝛼௞𝜌௞തതതതതത, 𝛼௞𝜌௞തതതതതത𝒖ෝ௞ and 𝛼௞𝜌௞തതതതതത𝑒̂௞, i.e., phase 𝑘 
mass, phase 𝑘 momentum and phase 𝑘 total energy, respectively. As a result of the 
averaging, a statistical coexistence of both phases is obtained. It is said that the two fluid 
model, and by extension the Eulerian–Eulerian method, allows for interpenetrating 
phases, as can also be observed in Fig. 30 (c). This is probably the most important 
concept of the Eulerian–Eulerian method; locally, the two phase flow is modeled as a 
mixture of phase concentrations. 

 Averaging has introduced a turbulent momentum and heat flux, which must be modeled 
in a RANS or LES context, depending on the chosen averaging operator. 

 Conservation equations are extended to include interfacial mass, momentum, and 
energy transfer terms 𝛬௞, 𝑴௞ and 𝐸௞. These transfer terms, often referred to as closure 
terms, model the effect of the averaged interfacial conservation equations that were 
explicitly available in the LIF, but were lost throughout the averaging process. Because 
of conservation, it follows:  

 
෍ 𝛬௞

௞∈(௚,௟)
= 0 (259) 

  
෍ 𝑴௞ = 0

௞∈(௚,௟)
 (260) 

  
෍ 𝐸௞

௞∈(௚,௟)
= 0 (261) 

where Eq. (260) is valid only if neglecting surface tension forces [69].  

The adequate modelling of multiphase closure terms stands at the heart of the Eulerian–Eulerian 
method. We note that much of the formal averaging notation used in Eq. (256) through Eq. 
(258), such as the overlines and hats, is dropped in many works so that the meaning of variables 
is only implied. Nevertheless, the set Eq. (256) through Eq. (258) constitutes the proper 
definition of the Eulerian–Eulerian method two fluid model and may be convenient in the 
interpretation of models in works that adhere to a less strict notation. The two fluid model treats 
each phase separately and, as such, reports phase specific quantities. However, in many 
engineering problems the behavior of the two phase mixture is of interest and not so much the 
behavior of individual phases. Fundamentally, the drift flux model considers the mixture, 
instead of two phases separately. This yields a simpler formulation than the two fluid model, 
however it requires drastic assumption which may not necessarily hold in situations where 
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coupling between the two phases, and thus explicit knowledge of phase specific quantities, is 
needed. As the basic idea of the Eulerian–Eulerian method is sufficiently illustrated by the two 
fluid model [69]. As was previously observed, the LIF is complicated due to presence of 
deformable interfaces, expensive due to the presence of small time and length scales and 
numerically challenging due to strong discontinuities in variables. These three drawbacks have 
effectively been removed by averaging, resulting in the two fluid or drift flux Eulerian–Eulerian 
methods. This comes with a need to develop suitable models for the closure terms needed to 
model turbulence and interfacial mass, momentum, and energy transfer. While the former is 
subject to classical turbulence modelling theory which can be studied mostly in a single phase 
setting, the former is specific to the Eulerian–Eulerian method and requires much more 
attention. In the next Section, the modelling of interfacial transfer is described. 

4.3.3. Interfacial transfer closure 

The Eulerian–Eulerian method introduces a formulation in which phases are interpenetrating. 
Locally, there is a statistical coexistence of two phases in the sense that on average (referring 
to the choice of the averaging operator, namely time, space, ensemble, or mixed average) there 
are to some extent both phases present. In the two fluid model, each phase adheres to its own 
set of conservation equations which are coupled via interfacial mass, momentum, and energy 
transfer terms. These transfer terms should reflect the actual two phase physics that were filtered 
out in the averaging process. However, this is where a problem arises. Namely, from the two 
volume fractions 𝛼௞ with 𝑘 ∈ (𝑔, 𝑙), it is not necessarily possible to infer the actual two phase 
flow regime. For example, the averaged solution may be that of a slug flow but may also be 
that of a bubbly one. Most Eulerian–Eulerian method make an assumption on the two phase 
flow regime and adhere to that choice statically, and therefore, are tailored to the two phase 
flow regime that is to be expected a priori. More advanced methods will have some sort of 
regime map or other decision mechanism, based on which the models underpinning the 
interfacial transfer closures are dynamically adjusted to reflect the actual two phase flow 
regime. Eulerian–Eulerian methods are mostly used (but certainly not exclusively) for dispersed 
flows. Within that context, there are commonly used dispersed interfacial transfer closures for 
mass, momentum, and energy. Instead of using the subscripts 𝑔 and 𝑙 for two phases, the two 
phases are distinguished with more general subscripts 𝑐 for the continuous phase (sometimes 
also referred to as carrier phase) and 𝑑 for dispersed phase (e.g., bubbles and droplets). This 
makes the theory applicable to all types of dispersed flows like bubbly flow, droplet flow or 
solid particle flow. 

4.3.3.1. Interfacial momentum transfer closure 

The momentum transfer closure term 𝑴ௗ captures the momentum transfer from the continuous 
phase onto the dispersed phase through the interface between two phases. Conversely, by 
extension of Eq. (260), 𝑴௖ captures the momentum transfer from the dispersed phase onto the 
continuous phase. A strategy in modelling 𝑴ௗ is to consider the forces acting on a single 
dispersed particle (particle refers to bubbles, droplets, or solid particles altogether) and to then 
multiply those forces by the number of particles per unit volume, i.e., particle number 
concentration 𝑁. Assuming that dispersed particles are mono dispersed (i.e., having the same 
volume), by denoting the average particle volume with 𝑣, the number concentration is then 
given with: 

 
𝑁 =

𝛼ௗ

𝑣
 (262) 
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In case of poly dispersed size distribution, this relation still holds if 𝑣 represents an appropriate 
average particle volume. Let 𝑭ௗ(𝒙, 𝑡) be the sum of all forces locally exerted from continuous 
phase to dispersed phase on a particle with volume 𝑣, then the interfacial momentum transfer 
term is given as follows: 

 
𝑀ௗ(𝒙, 𝑡) = 𝑁𝑭ௗ(𝒙, 𝑡) =

𝛼ௗ

𝑣
෍ 𝑭ௗ,௜(𝒙, 𝑡)

௜
= ෍ 𝑴ௗ,௜(𝒙, 𝑡)

௜
 (263) 

in which 𝐹ௗ,௜(𝒙, 𝑡) for 𝑖 ∈ ൫1, … 𝑁௙൯ are the 𝑁௙ individual forces acting on a single particle, and 
𝑀ௗ,௜(𝒙, 𝑡) are the respective individual momentum transfer terms. 

Drag force 

The most important force, by virtue of its relative magnitude, is the drag force. It expresses the 
resistance felt by a particle as it moves through the continuous phase. The drag momentum 
transfer term can be expressed as: 

 
𝑴ௗ,ௗ௥௔௚ =

3

4
𝐶஽

𝛼ௗ𝜌௖

𝑑
|𝒖௖ − 𝒖ௗ|(𝒖௖ − 𝒖ௗ) 

(264) 

where 𝑑 is particle diameter, 𝜌௖ is continuous phase mass density and 𝐶஽ is drag coefficient. 
The drag coefficient models the resistance of the particle against motion relative to the 
continuous phase, and it is a function of the object shape and the dispersed particle Reynolds 
number defined as: 

 
𝑅𝑒ௗ =

𝜌௖|𝒖௖ − 𝒖ௗ|𝑑

𝜇௖
 

(265) 

with continuous phase dynamic viscosity c. The dispersed Reynolds number uniquely 
characterizes the flow dynamics around the particle, and therewith controls the effective drag 
coefficient. Fig. 32 shows the classical drag coefficient curve for a spherical particle as function 
of the dispersed Reynolds number [72].  

A schematic depiction of the flow pattern transition around a spherical particle as a function of 
increasing dispersed Reynolds number is shown in Fig. 33. For very small Red, the flow is 
viscous and does not detach from the particle. Streamlines are smooth. This regime is called 
Stokes flow, and the drag coefficient is then known to be inversely proportional to the Reynolds 
number: 

 
𝐶஽ =

24

𝑅𝑒 ௗ
 

(266) 

which is a well known law analytically derived by Sir George Stokes in 1851. Substituting this 
expression into Eq. (264) and using the definition of 𝑅𝑒ୢ, it is shown that the drag force is 
linearly proportional to the relative velocity difference between the phases 𝒖௖ − 𝒖ௗ, and 
inversely proportional to 𝑑ଶ. This linearity in the relative velocity allows for simple analytical 
solutions of, e.g., the sedimentation velocity of small particles. However, such solutions only 
hold in the linear Stokes flow regime. As Reynolds number increases, streamlines remain 
smooth with an asymmetry observed in the flow. This is associated with drag coefficient that is 
no longer inversely proportional to 𝑅𝑒ୢ as seen in Fig. 32. 
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FIG. 32. Drag coefficient curve for a spherical particle (as presented in [72]). 

 

FIG. 33. Schematic of flow patterns around spherical particle as a function of dispersed Reynolds number 𝑅𝑒ௗ. 

For even larger Reynolds numbers, flow detachment occurs on the aft side of the particle, which 
induces stable recirculation in the wake of the particle as long as Reynolds number remains 
below roughly 150. Beyond that point, instability in the flow is observed at all 𝑅𝑒ୢ values. First, 
still close to 𝑅𝑒ୢ = 150, an oscillating motion of the wake occurs. This is associated with a 
further flattening of the (mean) drag coefficient curve as a function of 𝑅𝑒ୢ. Towards 𝑅𝑒 ୢ =

103 multiple vortices may be formed as these are shed by the particle. A so called Von Karman 
vortex street is formed. Note that flow, up to this point, is laminar. The wake flow is unstable, 
but the Reynolds number is still sufficiently low to prevent transition into turbulence. The onset 
of this transition is beyond roughly 𝑅𝑒ୢ = 103, where the wake will become fully turbulent. As 
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a result, the drag coefficient curve is fully flattened, with a drag coefficient of roughly 0.44. 
The boundary layer of flow is still laminar at the sphere’s surface, and the flow is only turbulent 
in the wake. Somewhere around 𝑅𝑒ୢ = 420 , the laminar boundary layer becomes turbulent, 
and an extreme reduction in the drag coefficient is observed. This point is called the drag crisis. 
A golf ball has a dimpled surface to reduce the drag coefficient exactly for this phenomenon. 
The dimples cause instability in the boundary layer at the ball surface, triggering turbulence 
and therewith reducing the drag coefficient. Clift et al. [72] present a table of ten drag 
correlations that are each applicable in a distinct range in 𝑅𝑒ୢ, therewith fully capturing the drag 
coefficient curve as shown in Fig. 32. However, such an accurate description of the drag 
coefficient curve is generally not needed. For many dispersed two phase systems, the Schiller–
Naumann drag coefficient [73], given by: 

 
𝐶஽ =

24

𝑅𝑒ௗ
൫1 + 0.15𝑅𝑒ௗ

଴.଺଼଻൯ 
(267) 

is sufficient. It is applicable up to a Reynolds number of 10ଷ, which is usually not exceeded by 
bubbles or small particles. This captures empirically the deviation of the 𝐶஽ curve from the 
Stokes drag curve. 

 

Until now, only spherical particles are considered. In case of a bubbly flow, however, 
deformation of the bubbles may have an effect on the effective drag coefficient of such bubbles. 
A measure of the deformation of bubbles is the Eötvös number, given by: 

 
𝐸𝑜 =

|𝜌௖ − 𝜌ௗ|𝑔𝑑ଶ

𝛾
 

(268) 

where 𝛾 is the surface tension and 𝑔 represents gravitational acceleration. Generally, for small 
𝐸𝑜 numbers, particles tend to be spherical because of the surface tension. For large 𝐸𝑜, bubbles 
tend to deform subject to hydrostatic forces into ellipsoids, wobbly shapes, spherical cap shapes 
or even skirted shapes. Additionally, the Morton number (𝑀𝑜) plays a role in the shape of a 
particle, as it brings in the effect of continuous phase viscosity. The Morton number is a non 
dimensional group which only depends on material properties and not on particle diameter or 
velocity and is thus constant for a given two–phase mixture. In yet another well known graph, 
Clift et al. [72] present a regime map for bubble shapes as a function of 𝐸𝑜, 𝑀𝑜 and Re. More 
practically, Tomiyama et al. [74] present a drag coefficient correlation tailored to bubbly flows 
subject to bubble deformation. It is given by: 

 
𝐶஽ = 𝑚𝑎𝑥 ൬𝑚𝑖𝑛 ൬

24

𝑅𝑒ௗ
൫1 + 0.15𝑅𝑒ௗ

଴.଺଼଻൯,
72

𝑅𝑒ௗ
൰ ,

8

3

𝐸𝑜

𝐸𝑜 + 4
൰ 

(269) 

While this drag coefficient is known to not always be very accurate, it is remarkably popular in 
its use.  

Lift force 

In addition to drag force, particles can also experience a lift force lateral to the direction of 
relative velocity. As the particles generally have cylindrical symmetry along an axis in line with 
the direction of relative motion, such as spherical, ellipsoidal, spherical cap or skirted shapes, 
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lift force is not induced by particle shape as opposed to, for example, an air foil. Instead, lift 
force is caused by rotation of the continuous phase flow around the particle, or rotation of the 
particle itself. The latter, called the Magnus effect, is less relevant for bubbly flows. Rotation 
can be quantified by the vorticity, namely: 

 𝝎௖ = 𝛻 × 𝒖௖ (270) 

The so called Saffman lift force then takes the general form [75]: 

 𝑴ௗ,௟௜௙௧ = 𝐶௅𝛼ௗ𝜌௖(𝒖௖ − 𝒖ௗ) × 𝝎௖ (271) 

where lift coefficient 𝐶௅, carrying similar meaning as drag coefficient. Fig. 34 presents a 
schematic of a particle embedded into a continuous phase velocity field with a gradient, 
inducing a lift force. This simple quasi 2D setting is useful in understanding the working 
principle of Eq. (271). Let the horizontal direction, from left to right, be denoted by 𝑥, and the 
vertical direction, from bottom to top, be denoted by 𝑦. The 𝑥 component of the continuous 
phase velocity is assumed to be a linearly increasing function of 𝑦, i.e., 𝜕𝑢௫,௖/𝜕𝑦 = 𝑐𝑜𝑛𝑠𝑡 >

0, where 𝑢௖,௫ denotes the component of 𝒖௖ in the 𝑥 direction. All other gradients of the 
continuous phase velocity components are zero. Then, the only non zero component of the 
continuous phase vorticity 𝝎௖ is its 𝑧 component 𝜔௖,௭, and is given by 𝜔௖,௭ =  −𝜕𝑢௖,௫/𝜕𝑦. The 
relative velocity vector 𝒖௖  − 𝒖ௗ is assumed to only have a non zero component in the 𝑥 
direction, which is set to be negative, mimicking the case of bubbly flow in our vertical conduit 
with 𝑢ௗ,௫  > 𝑢௖,௫ due to bubble buoyancy. The cross product between the relative velocity 
vector and the continuous phase vorticity, as present in Eq. (271), can then be expressed as: 

 
(𝒖௖ − 𝒖ௗ) × 𝝎௖ = ൥

0
−൫𝑢௖,௫ − 𝑢ௗ,௫൯𝜔௖,௭

0

൩ = ൥
0

−൫𝑢௖,௫ − 𝑢ௗ,௫൯𝜕𝑢௖,௫/𝜕𝑦

0

൩ 
(272) 

whose 𝑦 component is the only non zero component, being always negative for this particular 
flow because 𝑢௖,௫ − 𝑢ௗ,௫ < 0 and 𝜕𝑢௫,௖/𝜕𝑦 > 0. This implies that a positive lift coefficient 𝐶௅ 
is associated with dispersed motion against the positive direction of the gradient and vice versa 
for a negative lift coefficient.  

 

FIG. 34. Schematics of a particle embedded in a continuous phase velocity field with a gradient, inducing a lift 
force. 

Extending this to wall bounded flows, in which the gradient of the (mean) streamwise velocity 
is positive in the direction away from the wall, a positive 𝐶௅ thus implies wall ward dispersed 
motion for vertical wall bounded bubbly flow. Frequently used lift coefficients are the ones of 
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Drew [76] with 𝐶௅ = 0.5 for weakly sheared inviscid flow, Zun [77] with 𝐶௅ = 0.3 for single 
bubbles suspended in a tap water stream or Lopez de Bertodano et al. [78] with 𝐶௅ = 0.02 and 
𝐶௅ = 0.1 to match different sets of experimental data for bubbly flows in vertical ducts. All 
these works consider relatively small spherical bubbles, resulting in positive lift coefficients 
with generally 0 < 𝐶௅ < 0.5. Another lift coefficient model, specifically tailored to bubbles, is 
that of Tomiyama et al. [79], given by: 

 
𝐶௅ = ൝

𝑚𝑖𝑛(0.288 𝑡𝑎𝑛ℎ(0.121𝑅𝑒ௗ) , 𝑓)                     𝐸𝑜 ≤ 4
𝑓                                                                  4 < 𝐸𝑜 ≤ 10
−0.27                                                                 10 ≤ 𝐸𝑜

 
(273) 

  𝑓 = 0.474 − 0.0204𝐸𝑜 − 0.0159𝐸𝑜ଶ + 0.000105𝐸𝑜ଷ (274) 

This model has, just like the Tomiyama drag model, a dependence on the Eötvös number and, 
as such, a dependence on the non sphericity of bubbles. Bubbles with small diameters have 
relatively small 𝐸𝑜 and thus a positive 𝐶௅; these bubbles move towards the wall in a wall 
bounded flow. Larger bubbles have a relatively larger 𝐸𝑜 and thus deform much more. This 
leads to a lift coefficient inversion, giving a negative lift and moving bubbles away from the 
wall in wall bounded flow. In turn, such a lift force would improve heat transfer in our conduit, 
as steam is transported away from the wall, leading to quenching. Therefore, accurate modelling 
of the lift force is important in this type of settings. 

Other forces 

Apart from the drag and lift forces, there are many more interfacial momentum transfer closures 
that can play significant roles. While more complete discussion on such momentum transfer 
mechanism can be found in literature [80], the most relevant ones are briefly summarized as 
follows: 

 Virtual mass force. When the continuous phase undergoes acceleration or deceleration, 
the dispersed phase will also accelerate or decelerate, as a result of drag. However, in 
addition to the mass of the particle that changes momentum, also an additional mass that 
is present in the wake of the particle must adjust its velocity. This can be modelled by 
giving the particle an added mass. In case of solid particles in a gas, this added mass is 
usually very small compared to the mass of the particle itself, so that the virtual mass 
force can be neglected. In case of a bubble in a liquid, however, the added mass can be 
significant. 

 Turbulent dispersion force. In the formulation of Eulerian–Eulerian method, a filtering 
or averaging of turbulent structures is introduced. In the RANS framework, this leads 
to a steady solution for the mean flow. However, turbulence generally has a dispersive 
nature; it enhances mixing and tends to smear out sharp gradients in transported 
quantities such as temperature, but also dispersed phase concentrations. To model this 
behaviour, a turbulent dispersion force is included for which there are several models 
proposed in literature [78], [81]. These models propose a proportionality of a turbulent 
dispersion force to the amount of turbulence locally present (as expressed by turbulent 
kinetic energy or by turbulent viscosity) and to the negative gradient of dispersed void 
fraction, −𝛻𝛼ௗ, driving particles in the direction where their concentration is low. As 
such, the turbulent dispersion force has a smearing effect on the solution, reflecting the 
dispersive nature of turbulence. 
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 Wall lubrication force. The use of lift and turbulent dispersion may lead to nonphysical 
dispersed fraction peaks near the wall in wall bounded flows, because the Eulerian–
Eulerian method is unaware of the spherical shape of particles and would thus predict 
particles overlapping with the wall. The volume fraction of a dispersed phase will 
always decrease towards zero near the wall, as particles only touch the wall in a single 
point. To counteract nonphysical dispersed fraction peaks, a wall lubrication force is 
introduced in many Eulerian–Eulerian method, particularly in bubbly flows. The wall 
lubrication force pushes particles away from the wall, and no longer mathematically 
overlap with the wall. Wall lubrication force models are often quite heuristic and depend 
on the wall distance 𝑦, decaying for 𝑦/𝑑 >  1. Some commonly used wall lubrication 
force models are those of Antal et al. [82] and Hosokawa et al. [83]. 

4.3.3.2. Interfacial energy and mass transfer closure 

Mass and heat transfer are intimately connected with each other. Mass transfer between phases 
is caused by phase change, which is the result of heating or cooling. Conversely, if mass is 
changing phase, e.g., by evaporation or condensation, this will require or produce heat, 
respectively. In Eulerian–Eulerian method, the modelling of 𝛬௞ as the phase 𝑘 mass source and 
𝐸௞ as the phase 𝑘 heat source always goes jointly, and we will therefore discuss the two 
together. Like interfacial momentum transfer, we may model 𝐸௞ by considering the heat transfer 
rate from or to a single particle, and then multiplying that rate by the total number concentration 
of particles. Such a single particle is schematically shown in Fig. 35. The disperse particle is 
held at temperature 𝑇ௗ while the continuous phase is held at temperature 𝑇௖. The interface has 
temperature 𝑇௜ , which is assumed to be at saturation temperature, i.e., the pressure dependent 
temperature at which phase change occurs between the two phases.  

 

FIG. 35. Schematics of heat and mass transfer mechanisms acting on dispersed particle at temperature 𝑇ௗ 
suspended in a continuous phase held at temperature 𝑇௖; interface is at temperature 𝑇௜  . 

Two heat transfer mechanisms can be identified. The first is the conductive heat transfer as a 
result of temperature differences across the interface, 𝑞̇୼்,௞

ᇱᇱ , and the second is the heat transfer 
due to mass transfer, 𝑞̇௠,௞

ᇱᇱ . The total heat transfer rate to phase 𝑘 is then given by: 

 𝐸௞ = 𝑞̇௱்,௞
ᇱᇱ + 𝑞̇௠,௞

ᇱᇱ  (275) 
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Conductive heat transfer 

The conductive heat transfer can be partitioned in two, i.e., from continuous phase to interface 
and from dispersed phase to interface. The conductive heat from continuous phase to the 
interface is given by: 

 𝑞̇௖→௜
ᇱᇱ = ℎ௖𝑎௜(𝑇௖ − 𝑇௜) (276) 

with interfacial area density ai giving the total amount of interfacial surface area per unit of 
volume locally available, and continuous phase heat transfer coefficient per unit of interfacial 
area ℎ௖ given by: 

 
ℎ௖ =

𝜅௖

𝑑
𝑁𝑢 (277) 

with continuous phase thermal conductivity 𝜅௖ and Nusselt number 𝑁𝑢. The Nusselt number 
signifies the enhancement of heat transfer due to convective flow and is therefore a function of 
the dispersed Reynolds number. A commonly used relation is the Ranz–Marshall [84] given 
by: 

 𝑁𝑢 = 2 + 0.6ඥ𝑅𝑒ௗ ඥ𝑃𝑟௖
య  (278) 

with 𝑃𝑟௖ the continuous phase Prandtl number giving the ratio between kinematic viscosity and 
thermal diffusivity of the continuous phase. For particles that are suspended in the continuous 
phase without any relative velocity (i.e., 𝑅𝑒ௗ = 0), the Nusselt number reduces to 2. The 
interfacial area ai can be computed from the product of the surface area of a single particle 
multiplied by the total number of particles. For spherical particles, this gives: 

 
𝑎௜ =

6𝛼ௗ

𝑑
 

(279) 

Analogously to Eq. (276), the conductive heat transfer from dispersed phase to interface is given 
by: 

 𝑞̇ௗ→௜
ᇱᇱ = ℎௗ𝑎௜(𝑇ௗ − 𝑇௜) (280) 

and dispersed phase heat transfer coefficient per unit of interfacial area ℎௗ. In case of boiling 
flow, however, the bubble temperature can be assumed to be at saturation temperature, so that 
𝑇ௗ − 𝑇௜ = 0. 

Heat transfer due to mass transfer 

As stated above, the conductive transfer of heat from continuous phase to particle, or vice versa, 
is associated with mass transfer. If we assume that all the heat transferred to the interface is 
used for phase change, then: 

 
𝛬௜ =

𝑞̇௖→௜
ᇱᇱ + 𝑞̇ௗ→௜

ᇱᇱ

𝐿
 

(281) 

with 𝐿 the latent heat, i.e., the heat required per unit of mass of phase change. When 𝛬௜ > 0, 
there is a net supply of energy to the interface which is associated with evaporation and thus a 
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positive flux to the gas phase, which can be either continuous or dispersed depending on the 
problem. Conversely, when 𝛬௜ < 0, there is a net removal of energy from the interface which 
is associated with condensation and thus a positive mass flux to the liquid phase. In the situation 
of bubbly flow, therefore 𝛬ௗ = 𝛬௜ and 𝛬௖ = −𝛬௖. Clearly, in the case of droplet flow, the 
situation would be reversed.  

The heat transfer model given by Eq. (275) can now be completed. The conductive heat flux of 
phase 𝑘 is simply given by the heat lost to the interface, i.e., 𝑞̇୼்,௞

ᇱᇱ = −𝑞̇௞→௜
ᇱᇱ . The heat flux due 

to mass transfer is given by the mass transfer rate multiplied by the specific enthalpy of phase 
𝑘 at saturation temperature, ℎ௞(𝑇௦). This gives: 

 𝐸௞ = −𝑞̇௞→௜
ᇱᇱ + 𝛬௞ℎ௞(𝑇௦) (282) 

where 𝑞̇௞→௜
ᇱᇱ  is given by Eq. (276) or Eq. (280) and 𝛬௞ by Eq. (281) in the case of bubbly flow. 

Wall boiling model 

So far, a single particle suspended in a continuous phase is considered, and from that the mass 
and heat transfer terms are derived based on the interfacial area concentration, which, in turn, 
could simply be related to the amount of dispersed phase volume available. Such a model is 
suitable for homogeneous boiling but fails to predict complicated boiling physics taking place 
at the wall of our conduit beyond the onset of nucleate boiling point, see Fig. 29. Traditionally, 
the so called RPI model (named after the Rensselaer Polytechnic Institute where it was 
considered) is used to include wall boiling physics into the Eulerian–Eulerian method. The RPI 
model partitions the heat flux in three contributions: single phase convection from wall to 
liquid, removal of heat by the evaporation of water onto bubbles, and heat flux due to the 
quenching at bubble nucleation sites. RPI like models, which make such a partition, depend on 
many parameters, including nucleation site density, the average bubble diameter with which 
bubbles depart from the wall and the bubble departure frequency. The reader is referred to 
Lahey et al. [85] for a recent overview of the modelling state–of–the–art in the field of wall 
boiling. 

4.3.3.3. Dispersed size distribution models 

The momentum and energy transfer closure models, it can be observed that closure models are 
heavily particle size dependent through parameters such as dispersed phase Reynolds number 
(proportional to 𝑑) and Eötvös number (proportional to 𝑑ଶ), or the interfacial area density 
(proportional to 𝑑ଶ). The simplest way of resolving this dependence is by assuming a constant 
dispersed phase diameter, implying that particles are mono dispersed. Alternatively, a simple 
so called isothermal diameter model can be used for compressible particles in the form of: 

 

𝑑 = 𝑑଴ ඨ
𝑝଴

𝑝

య

 
(283) 

which signifies the fact that volume is inversely proportional to pressure for compressible 
fluids. Still, the user needs to specify pressure 𝑝଴ at which diameter equals 𝑑଴. In practice, 
particle populations are almost never mono dispersed. Instead, certain sizes locally appear with 
certain likelihood, giving rise to a poly dispersed population of particles, also called the size 
distribution. The size distribution can be denoted by 𝑛(𝑑, 𝒙, 𝑡) and is defined such that the 
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product 𝑛(𝑑, 𝒙, 𝑡)d𝑑 gives the total number of particles per unit of volume having a diameter 
in the interval [𝑑, 𝑑 + d𝑑] at (𝒙, 𝑡). Fig. 36 (a) schematically shows size distribution function, 
and the area 𝑛(𝑑, 𝒙, 𝑡)d𝑑 marked in blue. The size distribution 𝑛(𝑑, 𝒙, 𝑡) is an Eulerian 
description of a spatially distributed collection of dispersed particles and, as such, aligns well 
with the spirit of Eulerian–Eulerian method in the sense that a statistical description is adopted, 
rather than a deterministic one. Note that here we base the size distribution on the particle size 
𝑑, however, it can be also expressed in terms of particle volume 𝑣, particle mass 𝑚 or any other 
size. The size distribution adheres to its own conservation equation, which can be derived by 
considering the physical phenomena which change 𝑛(𝑑, 𝒙, 𝑡) in time. This conservation 
equation is referred to as the population balance equation, and is expressed as [86]: 

 𝜕𝑛(𝑑)

𝜕𝑡
+ 𝛻 ⋅ ൫𝒖(𝑑)𝑛(𝑑)൯ + 𝛻ௗ൫𝐺(𝑑)𝑛(𝑑)൯ = 𝐽(𝑑) 

(284) 

with 𝒖(𝑑) being the disperse velocity distribution, 𝛻ௗ ≔ 𝜕/𝜕𝑑 denoting a gradient in the 
particle size space 𝑑, 𝐺(𝑑) a condensational growth term and 𝐽(𝑑) representing a collection of 
various source term that describe the generation or removal of particles of size 𝑑, such as 
nucleation, breakup, or coalescence. The explicit dependence on (𝒙, 𝑡) of the various variables 
has been omitted for simplicity. Population balance equations are notoriously difficult to solve, 
because of their dimensionality, i.e., their dependence on three spatial dimensions, one temporal 
dimension and, in addition, one internal dimension (here, 𝑑).  

 

FIG. 36. Schematics representation of: (a) size distribution with highlight of a specific population within the 
distribution; (b) mono dispersed size distribution; (c) moment representation of a size distribution and (d) size 
group representation of a size distribution. 

To solve a population balance equation, there are three main branches of size distribution 
methods. The first one, being the mono dispersed method. This is an extremely crude reduction 
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of the size distribution 𝑛(𝑑, 𝒙, 𝑡) to be represented by a single size as 𝑁(𝒙, 𝑡)𝛿(𝑑 − 𝑑଴, 𝒙, 𝑡) 
with the Dirac delta function 𝛿, as sketched in Fig. 36 (b). More advanced methods are moment 
methods and size group methods, which are discussed next. 

Moment methods 

The 𝑎–th moment of a size distribution 𝑛(𝑑, 𝒙, 𝑡) is defined by: 

 
𝑀௔ = න 𝑑௔𝑛(𝑑, 𝒙, 𝑡)𝑑𝑑

ஶ

଴

 
(285) 

and it is depicted in Fig. 36 (c). Some moments of the size distribution carry a relevant physical 
meaning. For example, the zero–th moment represents the total number concentration, the 
second moment multiplied by 𝜋 is the interfacial area concentration ai and the third moment 
multiplied by 𝜋/6 is the volume concentration 𝛼ௗ. 

Each moment is governed by its own so called moment transport equation. The 𝑎–th moment 
transport equation can be derived from the population balance equation by multiplying it by 𝑑௔ 
and taking the integral over the total domain of 𝑑௔. This yields: 

 𝜕𝑀௔

𝜕𝑡
+ 𝛻 ⋅ (𝒖௔𝑀௔) +

𝑎

3𝜌ௗ

𝜕𝜌௚

𝜕𝑡
𝑀௔ = 𝐽௔ 

(286) 

with 𝒖௔ being the 𝑎–th moment velocity and 𝐽௔ the 𝑎–th moment source term. The third term 
on the left hand side represents change in the distribution due to compressibility of particles. It 
can be shown that when 𝑎 = 3 and Eq. (286) is multiplied by 𝜋/6, the dispersed phase volume 
fraction equation, Eq. (256), is obtained, therewith establishing a consistent mathematical 
connection between the population balance equation and the two fluid model and, by extension, 
the Eulerian–Eulerian method. 

Without going into details, it can be generally observed that models which describe the physical 
mechanisms underpinning Jγ, such as particle coalescence and break up, are dependent on 
moments of the size distribution. In most situations, we will have that: 

 𝐽௔ = 𝐽௔(𝑀଴, 𝑀ଵ, … 𝑀௔ , 𝑀௔ାଵ, … ) (287) 

i.e., the source term of moment 𝑎 depends on higher order moments 𝑎ᇱ > 𝑎. In turn, those 
higher order moments will depend on even higher order moments beyond them. This generates 
a closure problem.  

To create closure, there are several subbranches in the field of moment methods. Probably the 
most intuitive approach is the presumed number density function approach, in which an 
assumption is made on the mathematical form of the size distribution (e.g., a log normal size 
distribution). This presumed number density function has some degrees of freedom, which must 
be closed by the same number of moment transport equations. In turn, when the form of the 
size distribution is known, any moment of that size distribution can be calculated readily. An 
example of such a method is the LogMoM method [87]. Another popular way of establishing 
moment closure is the quadrature method of moments, in which the problem is rewritten in 
terms of fictive particles, or nodes, that form a discretized size distribution. Each node consists 
of an abscissa and weight, from which, using quadrature rules, the moments can be 
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reconstructed. The number of nodes may increase or decrease adaptively. The reader is referred 
to Marchisio and Fox [88] for an extensive discussion on the family of such methods. 

Size group methods 

The concept of moment methods is quite abstract, in the sense that the size distribution is only 
known in terms of a finite set of integral moments. Perhaps more intuitively, size group methods 
make a full discretization of the size domain, much like how finite volume or finite element 
methods make a discretization of the space domain. The most straight forward size group 
methods make a fixed discretization on a number of 𝑁௦ size intervals/sections/size groups. The 
total number concentration in such an interval is defined as: 

 
𝑁௜(𝒙, 𝑡) = න 𝑛(𝑑, 𝒙, 𝑡)𝑑𝑑

௎೔

௅೔

 
(288) 

with [𝐿௜, 𝑈௜] being the interval which is represented by size group 𝑖. Intervals are adjacent and 
non overlapping. These intervals cover some finite range of 𝑑 ∈ [0, ∞) which must be selected 
a priori. Next, we can approximate the full size distribution by a constellation of 𝑁௦ mono 
dispersed size distributions, i.e.: 

 
𝑛(𝑑, 𝒙, 𝑡) ≈ ෍ 𝑁௜(𝒙, 𝑡)𝛿(𝑑௜ − 𝑑, 𝒙, 𝑡)

ேೞ

௜ୀଵ
 

(289) 

as schematically shown in Fig. 36 (d). The diameter 𝑑௜ is called the representative diameter 
belonging to size group 𝑑௜. Particles within size group 𝑖 are assumed to all have size 𝑑௜ . 
Integrating the population balance equation over the interval [𝐿௜, 𝑈௜], and using Eq. (289), a 
conservation equation for each size group is obtained in the form of: 

 𝜕𝑁௜

𝜕𝑡
+ 𝛻 ⋅ (𝒖௜𝑁௜) = 𝐽௜ 

(290) 

with 𝒖௜ being the velocity of particles in group 𝑖 and 𝐽௜ the rate of change of the number 
concentration of particles in group 𝑖 due to condensational growth, coalescence, breakup, 
nucleation, etc. This source term can be calculated relatively intuitively, by considering the 
rates at which a particle of group 𝑖 interacts with a particle of group 𝑗, 𝑗 ≠ 𝑖. A drawback of the 
size group method is that it requires 𝑁௦ additional conservation equations to be solved. The 
number of size groups 𝑁௦ is required to be sufficiently large to prevent numerical smearing of 
the size distribution in size space as a result of redistribution of particles due to 𝐽௜ . Moreover, 
in principle each size group has its own transport velocity 𝒖௜, which requires the two fluid 
model to be extended to an 𝑁 fluid model in which each size group adheres to its own set of 
mass, momentum, and energy conservation equations. While this is an extremely accurate 
method to capture poly disperse two phase flows, it can also be computationally extremely 
expensive. A popular size group method is iMUSIG [89], which has recently also been 
implemented in the open source CFD platform OpenFOAM [90], [91] and is therewith freely 
accessible. A key benefit of iMUSIG is that it makes a distinction between size groups and 
velocity groups. A velocity group will contain at least one size group but may contain many 
more. Each velocity group has its own set of mass, momentum, and energy conservation 
equations. By assigning multiple size groups to the same velocity group, a dramatic reduction 
of the number of equations to be solved can be achieved, making the size group method much 
more computationally tangible. In some cases, it can be sufficient to use up to only two velocity 
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groups. Such an approach is able to capture the lift inversion as seen in the Tomiyama lift force 
model [79], by choosing one velocity group that represents particles with a diameter smaller 
than the inversion point, and one velocity group that represents particles that are larger. 

4.3.4. Eulerian simulations of bubbly flow 

In the previous Sections, the Eulerian–Eulerian method was derived, concluded that the 
Eulerian–Eulerian method requires interfacial transfer closure terms, and have subsequently 
introduced several such mass, momentum, and heat transfer closures terms. The simulation of 
bubbly two phase flow described in the TOPFLOW experiments by Prasser et al. [92], and 
using the two fluid model is implemented in the open source CFD package OpenFOAM. The 
OpenFOAM simulation examples are available in the literature and online [93]. The 
TOPFLOW experiments were performed in a circular vertical pipe in which both water and air 
are flowing upward. The air is added to the water from a circular inlet section as depicted in 
Fig. 37. As the bubbles are carried further downstream by the water, these will be redistributed 
in the domain to establish a new distribution along the radius of the pipe.  

The TOPFLOW measurements include data on the bubble size distribution at both the inlet and 
the outlet, allowing for a detailed validation of the predictions of the Eulerian–Eulerian method. 
Computational fluid dynamics simulations of the TOPFLOW setting are performed using a 
quasi 2D wedge mesh imposing axi symmetric symmetry. The domain is mapped by uniformly 
sized cells with 30 cells in the radial direction and 500 cells in the axial direction, giving a total 
of 15,000 cells. The pipe has a radius of 100 mm and a length of 7.8 m. The 
multiphaseEulerFoam solver of OpenFOAM is used, which is OpenFOAM’s implementation 
of the two fluid model as previously discussed.  

 

FIG. 37. (a) Schematics of the TOPFLOW experiment with inlet section and measurement section; (b) Eulerian–
Eulerian representation. Gravity points from right to left and the flow is from left to right. 

OpenFOAM allows the selection of many interfacial closure terms. In the case of TOPFLOW, 
the flow is adiabatic so that heat and mass transfer are assumed to be negligible, and the only 
selection is of suitable momentum closure models. For the drag force, the Ishii and Zuber [94] 
model is selected. For the lift force, the Tomiyama et al. [79] model is selected. Wall lubrication 
is modeled with the Frank [95] model and turbulent dispersion using the Burns et al. model 
[81]. Virtual mass was enabled with the virtual mass coefficient set to 0.5. Turbulence in both 
the continuous and dispersed phase is modeled using the two phase 𝑘–𝜀 model of Behzadi et 
al. [96]. Bubble induced turbulence is modeled using the formulation of Lahey [97]. Poly 
dispersion is simulated using both a moment method and a size group method. The moment 
method relies on LogMoM, which establishes moment closure using the assumption that the 
size distribution has a log normal shape. This shape has three degrees of freedom: its height, its 
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width, and its displacement in diameter space. As such, three moment transport equations are 
solved, for which the zeroth moment, second moment and third moment are selected. However, 
the third moment, being the volume fraction, is already solved by the two fluid model so that 
only two additional moment transport equations must be solved. For the size group method, we 
use the fixed pivot technique (FPT) [98] which is implemented in OpenFOAM. The number of 
size groups is set to 30, and covers the size domain [0.5, 50] mm with size groups distributed 
uniformly in 𝑙𝑜𝑔(𝑑) space. Because the flow is turbulent, bubbles are subject to coalescence 
and break up. This must be modeled, as both coalescence and breakup have a significant effect 
on the bubble size distribution and, therefore, on the two fluid solution via the right hand side 
closure terms. In both LogMoM and FPT, we use the same coalescence and breakup models. 
However, the way that the right hand side source terms Jγ and Ji for LogMoM and FTP, 
respectively, are computed differ. For breakup, we use the model of Luo and Svendsen [99] and 
for coalescence we use the model of Prince and Blanch [100]. For FPT, these two models are 
readily implemented in OpenFOAM. For LogMoM, a custom and open source library is 
developed [93], which uses Gauss quadrature to compute the right hand side breakup and 
coalescence source terms.  

Fig. 38 shows the solution of model in terms of the gas void fraction 𝛼௚ and streamwise gas 
velocity |𝒖௚|, both at the measurement section of the TOPFLOW experimental setup and both 
as a function of the radial coordinate 𝑟. Shown are the experimental measurements of Prasser 
et al. [92] and the Eulerian–Eulerian method two fluid model predictions of FPT (triangles) and 
LogMoM (circles). The FPT and LogMoM show good agreement with each other, and also 
appear to match the experimental data reasonably. The two solutions are the result of a complex 
interplay of drag, lift, turbulent dispersion, wall lubrication, coalescence, and breakup. An 
interesting feature that can be observed is that while bubbles are injected from the wall (see Fig. 
37 (a)), tend to migrate to the bulk region of the pipe towards small radii. This is the result of 
turbulent dispersion and lift force. The latter, as we have seen above, tends to be away from the 
wall for sufficiently large bubbles. The TOPFLOW facility was also used to perform 
experiments with wall peaking, which requires smaller bubbles than those observed in the 
current configuration.  

The FPT and LogMoM methods allow to reconstruct the full bubble size distribution at the inlet 
and outlet. At the inlet, the size distribution is imposed by the numerical model. At the outlet, 
however, it is the outcome of the Eulerian–Eulerian method two fluid model and the used 
momentum closure and breakup/coalescence closure models. 

Fig. 39 shows the average size distribution recorded at both the inlet and measurement sections 
of the pipe. It can be seen that at the inlet, the LogMoM method fails to reproduce the 
experimentally observed size distribution as a result of its presumed number density function 
(which is log normal while the measurements are certainly not).  

The FPT, on the other hand, can be configured to represent any size distribution reasonably 
accurately, as long as a sufficiently large number of intervals is chosen. It can be seen that for 
the chosen 30 intervals, the FPT mimics the experimental input data almost perfectly at the inlet 
section. At the outlet section, it can be seen that the experimental measurements suggest a 
transition from an initially bimodal size distribution to a single modal one. Both the LogMoM 
and FPT model show good agreement with the experimental data, showing that the choice for 
a log normal size distribution is a reasonable one. 
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(a)                                                                                                (b) 

FIG. 38. (a) Radial profiles of gas void fraction and (b) streamwise gas velocity at the measurement section in 
the TOPFLOW experimental setup. 

 

(a)                                                                                                (b) 

FIG. 39. (a) Bubble size distribution at the inlet section and (b) measurement section of the TOPFLOW 
experimental setup. 

5. APPLICATION OF COMPUTATIONAL FLUID DYNAMICS TO REACTOR 
DESIGN AND ANALYSES 

This chapters delves into further aspects pertaining to the application of CFD tools to the 
analysis of nuclear reactors. This is tackled from two different perspectives. First, it is addressed 
from the perspective of the numerical challenges associated with the simulation and 
investigation of advanced and innovative nuclear reactor concepts, which often transcend the 
scope of existing established simulation software. Secondly, it is tackled from the perspective 
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of large scale plant simulations, regardless of the particular underlying reactor technology, 
which require multi scale approaches in order to be performed. 

5.1. COMPUTATIONAL FLUID DYNAMICS FOR INNOVATIVE REACTORS 

5.1.1. Overview of advanced reactor concepts 

The Generation IV International Forum (GIF) was established in the year 2000 as a cooperative 
international framework for carrying out research and development of the next generation 
reactors. The innovative nuclear reactors selected by this forum have the intention to deliver 
significant advances compared to water cooled reactors with respect to the efficiency of the use 
of nuclear fuel, the reduction of waste produced, and the economic performance, while meeting 
the stringent standards of safety and proliferation resistance. With these goals in mind, 
numerous reactor concepts were evaluated, and six reactor technologies were selected for 
further development. These include the supercritical water reactor, molten salt reactors, both 
molten salt cooled and fuelled, very high temperature reactors, liquid metal cooled reactors, 
primarily sodium and lead based alloys cooled and gas cooled fast reactors, as shown in Fig. 40 
(a)(f).  

 

FIG. 40. Simplified overview of different innovative reactor concepts: (a) supercritical water reactor; (b) molten 
salt reactor; (c) very high temperature reactor; (d) sodium cooled fast reactor; (e) lead cooled reactor; (f) gas 
cooled reactor. 

Innovative reactors typically employ coolants and moderators (if any) different than water. In 
summary: 

 High melting points of liquid metals require pre heaters to keep the coolant liquid at 
operating conditions and are causing a risk of solidification (freezing) in accident 
situations, potentially blocking the coolant flow path; 

 High boiling point may prevent coolant from forming voids which might affect neutron 
transport behaviour in nuclear reactor, while a low boiling point might increase the risk 
of voiding the core; 
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 High density may allow to design compact passive safety systems based on buoyancy 
forces but at the same time it may increase seismic and vibration risks; 

 High specific heat capacity ensures storing a lot of energy in the coolant, increasing the 
margin to boiling and potential core voiding. 

Modelling and simulation play a large role in the design support of innovative nuclear reactors 
as is the case for water cooled reactors. From a thermal hydraulics point of view, modelling and 
simulation is traditionally performed with system codes and sub channel codes. However, with 
increasing computer power and advancements in numerical algorithms, the use of 3D CFD is 
rapidly increasing. Fundamental challenges in the use of CFD for innovative reactors rise from 
the heat transport, especially for reactors cooled with so called non unity Prandtl number fluids, 
i.e., supercritical water cooled reactors, liquid metal cooled reactors, and molten salt reactors. 
Design specific challenges and CFD applications for various innovative reactor designs is 
discussed in the subsequent sections. 

5.1.2. Computational considerations on turbulence modelling 

As famously stated by Feynman in 1963, turbulence remains the most important unsolved 
problem in classical physics [101]. When considering applications of CFD to innovative nuclear 
reactor designs, turbulence and turbulent heat transfer modelling are fundamental challenges to 
be solved. The first challenge is related to the fact that many locations in a reactor require 
turbulence models which go beyond the widely used isotropic models, like the 𝑘–𝜀 and the 
shear stress transport 𝑘–𝜔 turbulence models. A good example where these models fail, is 
illustrated in Fig. 41 for the axial flow in a grid spaced fuel assembly. Fig. 41 (b) show the 
measurements from Vonka [102], clearly indicating the secondary flow structures in a 
triangular lattice fuel assembly sub channel. Fig. 41 (a) represents the solution using an 
isotropic turbulence model, while Fig. 41 (c) shows the solution using an anisotropic turbulence 
model. It is clear the the isotropic turbulence model fails to capture the secondary flow 
structures, while the main (axial) flow structure (represented by colours) is captured by both 
models.  

 

FIG. 41. Velocity distributions obtained by: (a) an isotropic turbulence model; (b) experimental measurements; 
(c) an anisotropic turbulence model (adapted from [102]). 
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While momentum transport is an important aspect, for many nuclear applications, heat transport 
is equally, if not more, important. Modelling of heat transport for non unity Prandtl number 
fluids like supercritical water, liquid metals, or molten salts, requires fundamentally different 
solutions than the Reynolds analogy which is nowadays implemented and used in CFD codes. 
Traditionally, most attention is paid to low Prandtl turbulence modelling for liquid metals. 
Grötzbach [103] provided a summary of the state of the art both in academic models as well as 
industrial modelling approaches. The latter was updated in Roelofs et al. [104] in which 
practical solutions for liquid metal forced convection heat transfer are considered. However, 
for nuclear applications, also the mixed and natural convection flow regimes will be important. 
A recent status update of international efforts into this direction is provided by Shams et al. 
[105]. Fig. 42 based on the information provided in that reference indicates that the international 
efforts on turbulence (heat transfer) modelling balance the robustness and accuracy. From this 
trend in can be concluded that the main effort in the coming years may be to combine 
anisotropic eddy viscosity turbulence models or Reynolds stress models with algebraic heat 
flux models. One such example is the development outlined by Shams et al. [106]. 

 

FIG. 42. Turbulent momentum and heat transport modelling matrix: robustness decreases, and accuracy 
increases from left to right across the columns, from top to bottom across the rows. 

5.1.3. Reactor specific computational considerations 

5.1.3.1. Supercritical water cooled reactors 

One of the most peculiar aspects of water as a coolant at or after its supercritical point is its heat 
transfer properties, in the sense that, unlike liquid metals or molten salts, the Prandtl number 
shows a peak value at the critical temperature [107]. Additionally, other physical properties of 
supercritical water show a clear transition near the supercritical point [108]. 

An overview of the state–of–the–art of heat transport in supercritical water is provided in [109]. 
Modelling of a heat transfer requires taking into account strong variation in Prandtl number 
close to the (pseudo) critical temperature which is often taking place in a small temperature 
range. Apart from that, differences are observed between upward and downward flow in 
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experimental as well as numerical studies that are caused by the influence of a buoyancy. 
Because of this influence, the heat transfer might be enhanced or deteriorated. This issue is 
especially a challenge for the development of practical CFD turbulence models. Papukchiev et 
al. [110] assess such practical engineering CFD models. A general takeaway from their work is 
that two equation 𝑘–𝜀 produce qualitatively good results in regions far from the pseudo critical 
conditions, but consistently overestimate the wall temperature trend in the vicinity of the pseudo 
critical threshold. On the other hand, two equation 𝑘–𝜔 models usually underestimate the wall 
temperature trend. Algebraic heat transfer models seem to be an interesting choice to be made 
to improve the prediction quality. Unfortunately, considering all the operating conditions, there 
is no clear evidence that a single model is better than the others. Peeters et al., showed that local 
physical property variations can cause decreased or increased turbulent motions in heated or 
cooled supercritical fluids [108]. 

In addition to the mean profiles of density and molecular Prandtl number, fluctuations in density 
and molecular Prandtl number are important in understanding heat transfer to fluids at 
supercritical pressure [111]. In practice, this means that heat transfer to a fluid at supercritical 
pressure depends on physical properties of so called hot ejections and cold sweeps near the 
wall. Pucciarelli et al., explains how to apply an algebraic heat flux model for the calculation 
of a turbulent Prandtl number distribution in the energy equation [112]. Though this approach 
maintains a simple gradient approach, it leads to promising results. 

A further important consideration regarding supercritical water reactors pertains to the core 
thermal hydraulics. The design of a supercritical water reactor is largely based on existing 
PWRs and especially BWRs. Description of current designs can be found in [113]. As an 
example, the European high performance light water reactor (HPLWR), is considered to 
illustrate that in order to avoid hot spots in the core reaching too high temperatures [114] via 
the mixing through a three–pass core concept, more details can be found in Ref. [115].  

In this design, the coolant flows through the central part of the core in upward direction in a 
first stage called the evaporator. Subsequently, the coolant flows in a second stage downward 
through an annular section of the core, which acts as a first superheater. Finally, the coolant 
flows upwards in stage three through the outer part of the core which acts as a second 
superheater. In between, the flow is being mixed in the upper and lower mixing chamber. The 
upper and lower mixing regions are geometrically complex plena filled with connection tubes 
and headpieces connecting the evaporator stage and the superheater stages. In the first step of 
modelling, both mixing chambers are assumed to have constant properties. The optimized 
designs were checked in a second step in which the effect of variable properties and the large, 
expected variation of the Prandtl number were taken into account. The CFD simulations showed 
that due to the flow mixing, buoyancy effects did not have dominant influence. 

5.1.3.2. Gas cooled reactors 

Compared to LWRs, gas cooled reactors may employ different type of fuel. Generally speaking, 
very high temperature gas reactors may employ fuel in the form of graphite pebbles or in the 
form of graphite prismatic blocks, while others may employ traditional pin type fuel or plate 
type fuel. In this section, the focus is on pebble type fuel since the flow dynamics and heat 
transfer in such reactor cores is specifically challenging and has attracted the interest in using 
the CFD. However, this does not mean that there are no challenges for prismatic block, pin, or 
plate type fuel assembly designs. 
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The strategies for nuclear pebble bed simulations depends on the scale of geometric resolution 
as shown in Fig. 43 [116]. Detailed experimental data for the flow and heat transport in the 
heated randomly stacked pebble bed were unavailable at the time, so that numerical approach 
using high resolution CFD is an alternative. In this approach, the starting point was the flow 
around the single pebble in a single face cubic cantered domain. Details of quasi-DNS data and 
true DNS data created from the artificial pebble bed domain in which pebbles don’t touch one 
another can be found in Refs. [117]. Whereas the validation of the lower resolution CFD 
models, ranging from LES to RANS are detailed in Ref. [118]. For the purpose of validating 
lower resolution simulation models, the limited sized random beds are usually considered [116]. 
A study of the effect of the special pebble stacking near solid wall is given in Ref. [119]. 
Impressive demonstrations of CFD capabilities to that respect are found in [120]–[123]. 

 

FIG. 43. Different strategies for nuclear pebble bed simulations and practical examples (adapted from [116]). 

While the CFD simulation of the flow and heat transport in randomly stacked static pebble beds 
is already complex enough on its own, one should also consider that these pebbles are constantly 
moving in the reactor. These pebble movements can typically be simulated with finite element 
methods which need to be combined with CFD analyses for a clearer view on flow and heat 
transport phenomena. Furthermore, one should also notice that the pebbles, approximately the 
size of a tennis ball, contain fuel which is distributed in small, coated particles, approximately 
1 mm diameter. The generated nuclear heat will be influenced by the configuration of the bed. 
This requires a multi physics approach coupling neutron transport codes to CFD. Such 
developments are ongoing. In addition to high resolution CFD approaches, lots of work is being 
dedicated to improving the existing lower resolution porous media approaches. These are 
typically employed in traditional nuclear system codes, as well as, occasionally, in CFD 
simulations which consider the complete primary system of a pebble bed reactor. Next to the 
core region, the core outlet region of high temperature gas cooled reactors is of great interest 
since the jets exiting the core at elevated but possibly different temperatures might give rise to 
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high cycle thermal fatigue issues, e.g., in the core support structures and the hot duct connecting 
the reactor vessel and the heat exchanger.  

5.1.3.3. Liquid metal cooled reactors 

Similarly, the simulation strategy for liquid metal cooled reactors ranges from subchannel to 
full core simulations as represented in Fig. 44. The modelling starts at subchannel level for 
which high resolution experiments and simulations serve as references, allowing to validate 
lower resolution modelling. Such approaches allow to model and validate a full scale fuel 
assembly, while based on that experience, an extrapolation can be made to full core simulations, 
in which the details of the pins are typically omitted and modelled through a porous medium 
approach, in the meantime simulating the inter wrapper flow between the fuel assemblies in full 
CFD. 

 

FIG. 44. Different scales for liquid metal cooled fast reactors analysis. 

Significant efforts have been dedicated to validating CFD models for both wires wrapped as 
well as grid spaced liquid metal cooled reactor fuel assemblies. An overview for validation 
efforts of simulations of wire wrapped fuel assemblies can be found in Roelofs et al. [124]. 
These efforts typically concentrate on the prediction of pressure drop, flow and temperature 
field of fuel assemblies because of their design on the drawing board and under the expected 
operational conditions. However, validation of the simulation model should be expanded to 
various kinds of other conditions.  

The possible occurrence and effect of vibrations needs to be assessed as well. Computationally 
this is difficult since it often involves a coupling between structural mechanics solver and CFD 
solver. It is well known that fuel assemblies typically are subject to some degree of deformation, 
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even under operational conditions. The effects of such deformations need to be studied if 
possible, and their onset as well. If one goes beyond operational conditions, the formation and 
especially the effects of local or global blockages in fuel assemblies deserve attention as well 
as the influence of the inter wrapper flow region in accidental transients.  

Regarding the modelling of the pool, given the current computer power, reasonably detailed 
models consisting of millions of computational cells are standard and allow for steady state and 
(short) transient simulations [125]. The large components in a reactor pool, such as reactor core, 
the above core structure, heat exchangers, and pumps, require a geometric and modelling 
approximation by using porous medium methods combined with momentum and heat sources. 
In addition, several studies indicated that for a correct prediction of local temperatures, 
inclusion of heat transfer in internal structures through conjugate heat transfer is necessary.  

Examples of pool thermal hydraulics CFD simulations and their results for various 
experimental facilities in support of liquid metal reactor designs as well as actual liquid metal 
reactor designs can be found in [126]–[133].  

Full system thermal hydraulics is traditionally solved numerically with lumped parameter 
codes, also known as system codes. However, for many innovative nuclear reactor designs, 
these 0D or 1D codes have a significant drawback in their accuracy when solving for 3D flows 
in non conventional geometries, as those of the innovative reactors. One possibility is to model 
a complete system in CFD. However, this needs the implementation of models for large 
components which are readily available in system thermal hydraulics codes for the core, the 
pumps, and heat exchangers. Apart from that, the computational effort might become too large 
by modelling pipe systems in CFD. Another possibility is to couple existing system thermal 
hydraulic codes to CFD codes and use the benefits of both codes. Such a computational 
approach is called a multi scale approach. Several representative examples of such approaches 
can be found in Refs. [134], [135].  

5.1.4. Summary 

The CFD plays an important part in the design and safety assessment of nuclear reactors. The 
main future challenge is to integrate the application of CFD in the licensing process. This will 
require proper validation of the models and simulation approaches with suitable reference data, 
being a combination of experiments and high resolution simulations. This is also true for the 
modelling of innovative nuclear reactors which use different coolants rather than water. For 
such reactors, turbulent heat transfer raises specific challenges, since the widely applied 
Reynolds analogy is not valid for supercritical water, and liquid metals. Important challenges 
specific to the various innovative reactor types are: 

 Modelling of heat transfer enhancement and deterioration in supercritical water cooled 
reactors; 

 Modelling of pebble beds and bypass flows in gas cooled reactors; 
 Multi scale modelling of the primary systems and energy conversion loops of liquid 

metal cooled reactors. 
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5.2. MULTI SCALE REACTOR SIMULATIONS 

5.2.1. Overview of multi scale reactor simulation models and modelling scales 

5.2.1.1. Modelling scales in reactor thermal hydraulics analysis 

A wide range of fluid mechanics phenomena contribute to the thermal hydraulic behaviour of 
complex, large-scale systems such as nuclear reactors. In principle, these phenomena can be 
directly modelled using direct simulation of the Navier-Stokes equations. Nevertheless, such a 
reactor scale DNS approach is not feasible, given that such a model needs to span a range of 
spatial scales 𝑙 and temporal scales 𝑡 between: 

 Microscopic scales based on molecular diffusion: 𝑙 < 10ି଺ m, 𝑡 ~ 10ି଺ s; 
 Millimetric scales based on the smallest features in the core or heat exchangers: 𝑙 <

10ିସ − 10ିଷ m; 
 Large scales based on the reactor behavior itself, i.e., 𝑙 ~ 10 m, 𝑡 ~ 10 ଺ s for long 

transients. 

An DNS model requires ~ 10ଵହ10ଵ଼ mesh cells and up to 10ଵ଴ time steps (depending on the 
reactor transient). While these estimates are rough, it seems likely that reactor scale direct 
simulations will not be feasible until the 2050 s at least. Averaging over turbulent fluctuations 
(as in RANS) reduces these estimates to 10ଽ10ଵ଴ mesh cells, around the edge of feasibility 
[136]. However, it probably takes a decade or so for this type of study to become common. 
While the large scale range remains an impediment to direct simulations, it does provide a path 
to an efficient way of modelling reactor thermal hydraulics. Almost always, small scale 
phenomena are locally complex, and only affect larger scales through statistical properties 
(average and variance). When these scales are separated, the overall effect of a given 
microscopical phenomenon on a larger scale can be accurately represented by a simple model 
describing its average behaviour. Such a model can in turn be constructed: 

 Theoretically, by assuming that small scale behavior is self averaging (this assumption 
is at the root of most turbulence models); 

 Experimentally, by performing analytical or intermediate scale experiments, to directly 
formulate a correlation for the phenomenon. These correlations are widely applied to 
model, at large scales, without dealing the small scale turbulent phenomena; 

 Numerically, by performing small scale simulations of the local phenomena for all 
relevant input conditions (this is known as numerical experiment); 

 By combining two or more of these methods. 

Practically, this scale separation has also contributed to the wide variety of thermal hydraulics 
codes currently used to simulate nuclear reactor thermal hydraulics. For the smallest level, DNS 
CFD codes can directly simulate microscopic phenomena, however, practically, these are 
mostly limited to the simulation of smaller domains, typically of the size smaller than a single 
reactor subassembly.  

For the larger scales, LES and RANS CFD codes can be used to model larger domains by 
employing turbulence models, as long as the domain under study can be meshed with the 
required precision without incurring exorbitant costs. At a further scale larger than that of 
RANS CFD codes, subchannel and so called coarse mesh CFD codes have been developed to 
model domains in which local geometric features are too complex to be meshed directly: this 
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is the case for complete core models, for which a detail geometrical meshing of mixing vanes 
(in LWRs) or wire wrappers (in sodium fast reactors (SFRs)) is prohibitive. In these codes, 
correlations are used to describe the effects of unresolved geometrical features. At the coarsest 
of scales, system thermal hydraulics (STH) codes have been developed to model the overall 
behaviour of a nuclear reactor (complete) for long transients, usually via a combination of 0D, 
1D and 3D elements. At this scale, almost all physical phenomena need to be described by 
correlations.  

5.2.1.2. Interactions between scales 

The thermal hydraulics simulations usually involve modelling of large components (e.g., the 
core) or even a complete circuit (such as the primary circuit in PWR). Given practical 
limitations outlined in the previous section, these simulations must often be performed at the 
system scale. Because the simulation scale used in STH is relatively coarse, physical models 
must be used to describe all local phenomena that may impact a given transient of interest; 
however, establishing and validating these models can be challenging. The following are some 
examples of PWRs and liquid metal cooled reactors (LMRs). 

In PWRs, coolant flow path is from the cold legs to the core inlet, via the downcomer and inlet 
plenum, and from the core outlet to the hot legs, via the outlet plenum strongly influences the 
reactor behaviour during asymmetric transients such as loss of coolant accidents, steam 
generator tube ruptures, or steam line breaks. For forced convection, mixing effects can be 
modelled in STH using experimentally validated mixing matrices. However, at a smaller flow 
rates or flow reversal conditions, flow patterns within these regions become complex and the 
mixing matrix approach is no more reliable [137]. 

LMRs mostly have pool type design for primary circuit to minimize loss of coolant accident 
risks and to provide a strong thermal inertia. Therefore, residual heat removal commonly relies 
on passive natural convection: which results in the large sodium plena around the core stratify, 
while the jets at the outlet of the core and heat exchangers transition from velocity to buoyancy 
driven flow. Heat exchanges between the hot and cold pools, as well as lateral cooling of the 
core assemblies, influence the natural convection regime. These phenomena have such a strong 
influence on natural convection that failing to account for them can result in a 50% 
overestimation of flowrate through the core [138]. Furthermore, convection loops between the 
core and its outlet plenum can contribute up to 30% of total decay heat removal.  

Water cooled small modular reactors, such as NuScale design or NUWARD design, adopt an 
integrated primary circuit layout in which the core is located at the bottom of a large primary 
vessel; during natural convection, there is complex buoyant flow with large hot plume above 
the core for SFR. The traditional method for accounting for the effects presented thus far for 
these various reactor types at the system scale is to introduce conservative propositions into the 
modelling (for example, by assuming that mixing effects in the outlet plenum are as 
unfavourable as possible) along with the increase in the design margins as required. Recent 
advanced in numerical simulations have made it possible to simulate a number of these 
phenomena. 

5.2.1.3. Simulating multi scale phenomena 

Using available thermal hydraulics tools, two main approaches can be used to simulate local 
phenomena. The first method, referred to as a single scale approach, calls for a model of the 
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entire domain at the smallest scale necessary to describe all of the phenomena of interest 
(usually, a coarse CFD scale). The second option is to use a multi scale model in which each 
part of the reactor is modelled at the coarsest scale capable of describing the local phenomena 
of interest. Both of these methods are used for PWRs and LMRs. 

The single scale approach has its pros and cons: the main advantage is that the existing 
numerical framework of a CFD code can be used (with its associated verification/validation 
matrix), whereas the disadvantage is that the whole domain (typically a reactor) must be 
modelled at CFD scale, including the regions of no interest. Additionally, existing models must 
be reprogrammed to include neutronics (for core power), pump and coarse scale heat exchange 
models, and subchannel pressure drop and/or mixing models. Once developed, these require 
verification and validation so to be consistent with the original code(s). The main benefit of a 
multi scale approach is that each scale can be modelled using the existing codes, remedying the 
need to use new models. To use them jointly as part of the multiscale model, these codes may 
need to be modified, which is one of the disadvantages of this approach. Typically, this involves 
creating a coupling interface with features that can control each code and exchange data with a 
different supervisor or master code. A new numerical scheme needs to be created for the overall 
coupled calculation, which is another drawback. This framework is anticipated to explain how 
scale interfaces are handled (for example, at the boundary between a system and a CFD 
domain); it should also converge to a multiscale solution that is consistent across scales, with 
no remaining inconsistencies between the solutions obtained by each code. Properties that 
conserve mass and energy are also very desirable. Once created, this coupling scheme needs to 
undergo the same level of validation and verification as the initial codes. 

Several examples of implementation of abovementioned strategies are deployed as follows: 

 Multi scale models of a complete loop/reactor coupling a CFD code (used to model a 
specific part of the circuit, such as a plenum) with a system code (used to model the rest 
of the circuit) [139]; 

 Multiscale models of an entire LMR core that couple a CFD model of the surrounding 
plenum to a subchannel model of the inside of the subassemblies [140]. In some 
instances, this kind of model is coupled with a system/CFD to create a three scale model 
of an entire reactor plenum. [141];  

 Single scale CFD models of a complete reactor primary circuit using integrated coarse 
models (i.e., porous media based or 1D) for the core, heat exchangers and pumps. 

In general, the multiscale approach is highly attractive as it the plausible to reuse the existing 
codes; and small algorithms implementing a code–to–code coupling can solve the problems in 
a relatively short time. Although the implementation of a verification and validation strategy 
typically necessitates the development of generic coupling. This generic coupling can be used 
for the modelling of both reactor cases and the experiments and further be used to validate a 
method. The development and verification of a coupled numerical scheme is potentially 
difficult and may require important or unexpected modifications as well as the development of 
a coupled model of a given experiment or reactor design can be undertaken ad hoc. To ensure 
that the validation studies can be extrapolated to the reactor applications, it is deemed crucial 
that this capability be present. Additionally, experiments that can take a long time are required 
to validate the effects predicted by a single scale or multiscale approach. 
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5.2.2. Multi scale coupling algorithms 

This section describes multiscale coupling scheme using the existing codes, focusing on 
describing prevalent approaches and associated advantages and disadvantages. 

5.2.2.1. Domain decomposition and domain overlapping 

The search for an appropriate modelling scale for each domain of interest constitutes the first 
step in the development of a multiscale code coupling; in most cases, a PIRT like process results 
in the selection of the coarsest scale capable of representing all local phenomena that may have 
an impact on the system's overall behaviour. In turn, this procedure will result in the 
identification of: 

 One or more (so called) fine domains, enclosing regions where local effects may occur, 
for which the obvious choices are subchannel or CFD codes; 

 Coarse domain, enclosing the rest of the reactor or loop with possible inclusion of 
additional circuits and secondary loops, which should be modelled by a system code. 

Once this choice is made, the actual domains for computation are then to be chosen; two choices 
are available.  

 First option entails fitting each code's computational domain to the fine and coarse 
domains identified above in order to assign each of them to a single code. The 
interactions between codes in this so-called domain decomposition approach only occur 
at the boundaries between coarse and fine domains, which typically results in a simpler 
design for the coupling algorithm. Such an approach is schematically represented in Fig. 
45 (a). However, this choice requires a tight coupling between the codes; considering 
the fact that the overall pressure field is strongly coupled in incompressible systems, 
needs to be shared between several codes. This makes the convergence more difficult 
in the coupling algorithm.  

 

(a)                                                                                            (b) 

FIG. 45. (a) Domain decomposition and (b) domain overlapping approaches to multi scale coupling of a two 
scale system (adapted from [142]). 
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 Second choice consists of having a complete representation of a domain of interest in 
coarse computational domain, namely inclusive of the fine domain as well, modelled in 
some way. This is schematically represented in in Fig. 45 (b). 

 To produce an overall coupled calculation using this domain overlapping approach, the 
coarse results from the system code's fine computational domain must be overlaid with 
the results from the CFD/subchannel scale.  

Compared to decomposition approach, the domain overlapping approach has its own 
advantages and disadvantages. As the system code computes the overlapped domain, 
exchanging coupling data at the fine domain's boundaries may not be sufficient. The coupling 
ensures that the outside part of the system scale computation is consistent with the findings 
obtained with the CFD/subchannel code in the overlapped domains. Furthermore, due to the 
additional complexity, an overlapped coupling is inherently more difficult to implement and 
verify than a decomposition coupling; whereas an error in the coupling algorithm usually results 
in easily visible defects in a decomposition coupling, an error in an overlapped coupling usually 
results in spurious use of system scale. This results in a significantly visible degradation of the 
coupled solution, which may be difficult to detect or track down. Some of the tight coupling 
issues associated with the decomposition approach are usually avoided by using an overlapped 
coupling. The pressure field calculations performed by the system and CFD codes are not 
tightly coupled in an overlapped coupling and can be implemented using the source terms. For 
this reason, numerical implementation of an overlapped coupling algorithm may indeed to be 
simpler. The system scale model used for coupled calculations is self sufficient in the 
overlapped approach to perform standalone calculations. This capability can be used to provide 
an initial state for the coupled calculation without the need for a different STH model (as 
coupled calculations are typically initialised from a STH steady state); it also enables easy 
comparison of differences between the coupled calculation and its original STH calculation. 

Sections 5.2.2.2 and 5.2.2.3 deliberate on practical applications of overlapped and 
decomposition approaches in two specific cases: when the coupling boundary separate domains 
undergoing fluid exchanges and when the coupling interface is placed at a boundary between a 
solid a fluid. 

5.2.2.2. Coupling at hydraulic boundaries 

The most common case of coupling in multi scale calculation is boundary between two fluid 
domains. Coupling strategy at such boundary, requires the following to constitutes a good start: 

A. Boundary needs to conserve mass, exiting flow from one the domains (STH or CFD) is 
equal to the flow coming into another domain (CFD or STH); 

B. Boundary needs to similarly conserve energy, transported enthalpy going out from one 
domain being equal coming into another domain; 

C. Boundary needs to ensure a consistent pressure field, so that both codes get the same 
pressure at the boundary. For incompressible flows, it is sufficient to ensure this equality 
up to a constant; hence, it is needed to ensure the consistency of the pressure differences 
between any two boundaries. 

To guarantee a consistent multi scale calculation, this conservation approach is sufficient but 
not necessary. In fact, one may prefer a coupling algorithm in which one of these constraints is 
relaxed but which would nonetheless converge, in time and/or space, to a consistent result. In 
situations when numerous repetitions are required for the exact verification of certain criteria, 
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such non conservative techniques may be appealing. The implementation of matching inlet and 
outlet boundary conditions on the STH and CFD sides, with a pressure boundary condition on 
one side matching a flowrate boundary condition on the other, can ensure that conditions A and 
C are met for domain decomposition couplings. If code to code exchanges are utilized to ensure 
that the flowrate or pressure computed by one code at the boundary is used as a boundary 
condition on the other side, then conditions A and B can be satisfied. This is represented in FIG. 
46 (a). 

For the domain overlapping, STH code computed flow rates can be used as a boundary 
condition on the CFD side in order to guarantee A condition (for incompressible systems, it is 
sufficient to impose flowrate at all but one inlets/outlets). Pressures can be applied directly to 
the STH side to verify the pressure consistency C condition, resulting in a coupling algorithm 
akin to those used for domain decomposition; alternatively, source terms can be added inside 
the STH domain, as indicated in FIG. 46 (b). 

 

(a)                                                                                                             (b) 

FIG. 46. Examples of hydraulic coupling strategies between system and CFD domain in (a) domain 
decomposition and (b) domain overlapping approaches (adapted from [142]). 

The disparity in scales between the coarse and fine domains necessitates yet another 
consideration. The STH code typically computes (or requires) a single, average velocity to 
describe the flow at the boundary. In contrast, the CFD code computes (or requires) a 2D 
velocity profile at the boundary. As indicated by Fig. 47, this can lead to several problems.  

If the velocity profile is imposed by the boundary condition on the CFD side, the simplest option 
is to impose a constant velocity equal to those computed by the system code. The flow leaving 
the boundary, however, won't develop in the CFD domain at that point. The most elegant way 
to address this is to impose a fully developed velocity profile that complies with the mass 
conservation condition on the CFD side. In order to reduce this developing flow effect, most 
users prefer to extend the CFD domain of their calculations by a few hydraulic diameters at the 
inlet/outlet. One may decide to include a flow development region outside of the coupled CFD 
domain in the domain overlapping approach, as represented in Fig. 47 (b), to allow the CFD 
flow to develop without affecting the overall computation procedure. Secondly, the CFD code 
may compute a velocity profile with local flow inversions if the boundary condition on the CFD 
side is of the imposed pressure type. Although it is possible to make such a profile consistent 
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with conservation conditions A, B, and C, it is undesirable because it cannot be accurately 
described on the STH side. Using flowrate boundary conditions as much as possible, especially 
in areas where two way flow may develop, is a common way to prevent this situation. 

 

(a)                                                                                                 (b) 

FIG. 47. Possible velocity profiles at a STH/CFD boundary satisfying the flowrate consistency condition. (a) 
Imposing constant velocity equal to those computed by the STH code results in non developed flow condition on 
the CFD side; (b) flow is already fully developed when it enters the coupled region (adapted from [142]). 

The energy passing through the boundary must remain equal on the STH and system sides in 
order to satisfy the energy conservation condition C. This condition reads as follows when 
comparing the STH and CFD descriptions of the boundary: 

 
𝐻ௌ்ு𝑣ௌ்ு𝑆 = න𝐻஼ி஽𝒗஼ி஽ ⋅ 𝑑𝑺

ௌ

 (291) 

where 𝑆 is the area of the boundary 𝑆, 𝐻ௌ்ு and 𝑣ௌ்ு are the advected liquid enthalpy and 
velocity across the boundary on the system side, respectively, and 𝐻஼ி஽ and 𝒗஼ி஽ are their 
counterparts for the CFD side. This equation need to be fulfilled by the coupling algorithm via 
adjusting either 𝐻ௌ்ு (for CFD → STH flow) or 𝐻஼ி஽ (for STH → CFD flow), considering 
discretization and advection schemes used by each code.  

In common case where the system code uses a staggered grid discretization with an upstream 
convection scheme (such as RELAP, CATHARE, TRACE, etc.), this condition can be satisfied, 
as long as no two way flow occurs, by the scheme as described in Fig. 48. In this figure, the 
average temperature 𝑇஼ி஽ is obtained by taking a flow weighted average of the temperature on 
the surface of the boundary on the CFD side; it can be imposed in the system code either by 
replacing the energy equation in the relevant mesh (if possible) or by adding heat source/sink 
terms to this equation. A more complex formulation is adopted if the system code uses a 
different advection scheme (such as a centred scheme). It can be noted that these hydraulic 
coupling interfaces lead to approximations in the momentum and energy equations at the 
boundary. Fig. 48 shows that the effects of heat diffusion in the meshes around the boundary 
are neglected. These effects are typically regarded as minor (except for the case for a liquid–
to–wall coupling). 
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(a)                                                                                 (b) 

FIG. 48. Thermal coupling at a hydraulic boundary between a STH and a CFD code in (a) domain 
decomposition and (b) domain overlapping approaches (adapted from [142]). 

5.2.2.3. Coupling at thermal boundaries 

Heat conduction effects through the boundary are typically ignored at coupling interfaces at 
hydraulic boundaries. In rare cases, thermal exchanges between domains described by different 
codes may need to be modelled:  

 To incorporate the CFD model of the primary circuit into a reactor model that includes 
descriptions of the intermediate heat exchangers and their secondary circuits, the heat 
transfers occurring at the intermediate heat exchanger must be modelled by a coupling 
between the CFD model of the intermediate heat exchanger primary side and the system 
model of the intermediate heat exchanger secondary side. 

 Heat removal by the inter wrapper flow must be modelled in complete core models 
coupling a subchannel description of the inside of the subassemblies to a CFD model of 
the inter wrapper region. This is done by coupling the wrappers (modelled by the 
subchannel code) to the inter wrapper CFD.  

The high surface to volume ratios of the exchange surfaces in these two geometries cause a 
strong coupling between the energy equations of the two codes involved, which can be difficult 
to model efficiently. Fig. 49 shows the decomposition and overlapping techniques' examples of 
coupling procedures at thermal coupling boundaries. In both situations, the STH or subchannel 
code computes the wall; the CFD domain meshes are connected to this wall by interpolating 
the wall temperature onto the CFD meshes and adding a source term to the CFD energy equation 
of the following form: 

 𝛷஼ி஽ = ℎ(𝑇஼ி஽
௅ − 𝑇ௌ்ு

ௐ ) (292) 

where 𝑇ௌ்ு
ௐ  is the interpolated wall temperature of the system code, 𝑇஼ி஽

௅  is the liquid 
temperature in the CFD code and where the volumetric exchange coefficient h can either be 
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computed locally by the CFD code or globally by the system code (this is often the case in an 
overlapped coupling). The CFD code is in charge of calculating the heat flux through the wall 
when using this source term; at the subsequent iteration of the STH code, this heat flux is 
interpolated onto the STH mesh and imposed to the STH, substituting its own calculation. 

The consistency of the heat flow in all CFD meshes relating to a single STH mesh might result 
in unphysical temperatures when computing the heat flux in the STH code and then applying 
this flux to the CFD domain. The CFD meshes with slower flow on the CFD side typically 
experience continual heat removal, resulting in temperatures that are lower than those on the 
secondary side. In the overlapped case, simply projecting the CFD domain's liquid temperature 
onto the overlapped domain at the next STH iteration is insufficient; while this method 
converges to a consistent solution, the heat fluxes calculated in the STH and CFD codes are 
equal, violating energy conservation. In the source term given by Eq. (292), the use of the STH 
wall temperature and the local wall–tofluid heat exchange coefficient leads to a very strong 
coupling in liquid metal system, along with the associated timestep stability conditions. Instead, 
some system codes are able to provide the susceptibility of the wall heat flux to the liquid 
temperature of the adjacent mesh: 

 𝛷ௌ்ு = 𝛷଴ + 𝜉(𝑇ௌ்ு
௅ − 𝑇଴) (293) 

where the susceptibility coefficient 𝜉 is typically one or two orders of magnitude less than the 
heat exchange coefficient ℎ. Therefore, 𝜉 can be used instead of ℎ in the heat source term on 
the CFD side, together with an equivalent wall temperature (equivalent to Eq. (292)): 

 𝛷஼ி஽ = 𝛷଴ + 𝜉(𝑇஼ி஽
௅ − 𝑇଴) = 𝜉(𝑇஼ி஽

௅ − 𝑇෨) (294) 

  
𝑇෨ = 𝑇଴ −

𝛷଴

𝜉
 

(295) 

 

(a)                                                                             (b) 

FIG. 49. Coupling strategies at thermal boundary between a STH and a CFD code in (a) overlapping and (b) 
domain decomposition approaches (adapted from [142]). 
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5.2.2.4. Time schemes and internal iterations 

The previously discussed coupling strategies can be used to couple two or more codes, with the 
aim to simulate a given transient via a multi scale approach. This time advancement scheme for 
the algorithms can be: 

 Explicit scheme: the coupling approach guarantees consistency between calculation 
domains before each timestep; 

 Implicit scheme: the coupling algorithm guarantees consistency of the computation 
domains for each timestep. 

The coupling algorithm often only needs to exchange data across codes before the start of each 
time step, after which each code runs independently for duration of time step. If both runs are 
successful, time can be advanced, and the coupled global scheme can proceed to the following 
time step. Data exchanges can also take place only at certain synchronization points, allowing 
the codes to run at different timesteps. This functionality is most frequently utilized to let the 
CFD code use bigger timesteps than the system code. A typical implicit coupling method 
performs iterations for each code at a predetermined time step, coordinating data exchanges 
between iterations until the coupling parameters (defined, for example, at the boundary) 
converge to common values. Iterations may be necessary in thermal boundaries until the wall 
temperature on the STH side converges; iterations may be necessary in hydraulic boundaries 
until the pressure field converges (in a decomposition approach) or the pressure differences 
between coupled boundaries converge (in the overlapping approach). These iterations add to 
the numerical cost; however, these are required for the coupling strategies discussed previously: 

 As shown in FIG. 46 and Fig. 47, are necessary to ensure that pressure field consistent 
between the two codes is reached at the end of the timestep; 

 Thermal coupling, described in Fig. 49, requires at least a second STH iteration to 
ensure the equality between heat fluxes on the system and CFD sides. 

The most prevalent iterative scheme is first order iteration (such as Gauss-Seidel), which 
involves passing coupling information back and forth between the codes until convergence to 
common values. Variants where the STH code iterates more frequently than the CFD code can 
offer an intriguing trade off because STH iterations are typically less expensive than CFD 
iterations. These schemes can also employ acceleration methodologies as well. Nonetheless, 
the Gauss-Seidel algorithm's convergence speed may be insufficient in some cases. A second 
order system, like Newton-Raphson, cannot typically be implemented directly since the 
coupling interfaces of the codes do not make the matrix elements necessary for this approach 
available. However, discrete derivatives can still be used to create a Newton-Raphson matrix 
for the coupled boundary variables [143]; and Jacobi free Newton-Krilov-like techniques can 
be used to solve the Newton-Raphson system using the first order data of the codes. 

5.2.2.5. Extension to two phase flows 

When two phase flows are possible, mass conservation in the domain overlapping approach 
becomes much more difficult; imposing the flowrate at a single boundary, as shown in FIG. 46 
(b) is no longer sufficient as boiling is attained in the domain while the overlapped STH domain 
remains liquid. Consequently, the domain overlapping approach is rarely used for two phase 
flows, and the domain decomposition approach is much more common. Because domain 
decomposition tends to require more iterations to obtain common pressure field compared to 
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domain overlapping, an efficient iteration algorithm is indispensable for the overall simulation 
to be efficient. In practice, implementing a complete Newton algorithm seems to be the best 
choice [137]. As shown in Fig. 47, the flow consistency effects are much more pronounced in 
two phase flows; a two phase mixture with 𝛼 =  0.5 in the STH code may correspond to a 
stratified flow, a slug flow or churn flow on the CFD side. Treating these flow effects in the 
CFD domain thus becomes especially important. As a consequence of these observations, two 
phase multiscale coupling is much less attempted, and much less mature field than its single 
phase counterpart. 

5.2.3. Verification and validation of multi scale simulations 

In the context of reactor safety applications, validation and qualification efforts often add up to 
a major part of the development of any new code. For multi scale simulations, these efforts 
have, until now, mainly been focused on LMR applications. This is because two major reactor 
projects have integrated multi scale simulations: (a) French ASTRID SFR project used as the 
reference simulation method for natural convection and asymmetric transients a multi scale 
MATHYS model and coarse CFD StarCCM+/CATHARE model, and (b) Belgian MYRRHA 
lead bismuth reactor project also uses, in a more exploratory role, a multi scale model and a 
coarse CFD model. These two applications provide the impetus to develop a full validation 
approach for LMR multi scale simulations, as a prelude to full verification, validation, and 
uncertainty quantification [144]. 

5.2.3.1. Analytical verification of coupling algorithms 

Analytical validation has a unique interpretation in a coupled code than it does in a system or 
CFD code. Individual effects anticipated by a coupled model are, by definition, the output of a 
computation by one of the codes (included in the model); novel phenomena foreseen by a 
coupled code, such as those brought about by the interaction of multiple scales, are typically 
viewed as combined effects. In order to ensure that the coupling algorithm is valid at the 
coupling boundaries between the codes, it is sufficient to construct a number of analytical test 
cases that cover all possible types of coupling boundaries that the algorithm may encounter. 

5.2.3.2. Small and intermediate scale experiments 

A few small scale facilities are used to validate multi scale approaches. For example, the 
TALL–3D facility [145] is an experiment designed at KTH Royal Institute of Technology in 
Sweden to study the coupling between liquid lead bismuth eutectic (LBE) three leg loop and a 
cylindrical 3D test section subjected to local effects such as stratification and jet impingement. 
The facility is specifically intended to foster interactions in between local effects and the global 
loop scale; the 3D section is located in one of two hot legs, with the other hot leg having a 
simpler pipe geometry. Both legs compete for natural convection flows during loss of flow 
transients, resulting in strong oscillations. These oscillations are then heavily influenced by 
local effects in the 3D section. The coupled models of TALL–3D is described in [146], and 
summarized in TABLE 4.  

The NACIE–UP facility at ENEA Brasimone [147] is an LBE loop that includes a 19 pin wire 
wrapped subassembly, an argon gas lift section which is used to induce forced convection in 
the loop, and a heat removal exchanger. Only subchannel or CFD codes can model local 
phenomena in the subassembly; detailed instrumentation is available to validate these local 
effects. These local effects are only expected to influence overall behaviour at the scale of the 



 

123 

entire loops through their averaged properties (such as the assembly pressure drop): thus, 
system scale models are expected to already provide good results. In this case, using a coupled 
model allows one to compare the correlation that would be used at the system scale to the CFD 
code prediction. Two different multiscale models are developed for NACIE–UP [148], as 
shown in Table 5. 

TABLE 4. SUMMARY OF COUPLED MODELS BY DIFFERENT INSTITUTIONS FOR 
THE ANALYSIS OF TALL–3D FACILITY 

Institution STH CFD Domain scheme Time scheme 
KTH Royal Institute of 
Technology (Sweden) 

RELAP5 StarCCM+ Overlapping Implicit 

Gesellschaft für Anlagen 
und Reaktorsicherheit 

(GRS), Technical University 
of Munich (TUM) 

(Germany) 

ATHLET ANSYS Decomposition Explicit 

Atomic Energy Commission 
(CEA) (France),  

National Agency for New 
Technologies, Energy and 

Sustainable Economic 
Development (ENEA) 

(Italy) 

CATHARE TrioCFD Overlapping Implicit 

Nuclear Research Center 
(SCK-CEN) (Belgium) 

RELAP5 FLUENT Decomposition Implicit 

TABLE 5. SUMMARY OF COUPLED MODELS BY DIFFERENT INSTITUTIONS FOR 
THE ANALYSIS OF NACIE–UP FACILITY 

Institution STH CFD Domain scheme Time scheme 
University Pisa (Italy) RELAP5 FLUENT Decomposition Implicit 
National Agency for 
New Technologies, 

Energy and Sustainable 
Economic Development 

(ENEA) (Italy) 

CATHARE TrioCFD Overlapping Implicit 

The THEADES facility at Karlsruhe Institute of Technology [149] aims to validate lateral heat 
exchanges between each subassembly in the core and the surrounding liquid metal though 
hexagonal wrappers enclosing each subassembly; it consists of three LBE cooled 7 pin 
subassemblies. Its results have been used to validate the MATHYS subchannel/CFD coupling 
[141], as well as to validate RANS CFD models. 

5.2.3.3. Integral effects experiments 

Integral effects tests (IETs) are rare for LMRs compared to LWRs. The coupled and/or CFD 
approach offer a large potential advantage, because the use of subchannel and/or CFD allow to 
predict geometrical effects. The following liquid metal IETs are used for multiscale validation. 
The CIRCE experiment is a substantial scale, integral LBE designed to illustrate and investigate 
core cooling through natural convection in an LMRs. Installed and tested are several different 
test sections, such as CIRCE-ICE [150] in which a dipped hear exchanger is used to remove 
heat; CIRCE–HERO in which HERO steam generator is used to remove heat. The first 
implemented model of CIRCE–HERO was by NRG, using the SPECTRA STH code coupled 
with ANSYS–CFX for the CFD side, with a domain overlapping coupling approach and explicit 
time scheme [151]. The E–SCAPE experiment at SCK/CEN is a large scale LBE facility 
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designed in a 1 to 6 similarity with the MYRRHA reactor [152]. Aside from direct STH 
validation, this facility is used to validate a coupled model by SCK/CEN employing RELAP5 
for the STH side, FLUENT for the CFD side, a domain decompositions scheme for coupling 
between the two codes and an implicit time scheme. At Japanese Atomic Energy Agency, the 
PLANDTL facility is a large sodium loop designed in similarity to the JSFR reactor; its 
simulated core is surrounded by large plenum simulating the hot pool. In the first version of 
this experiment, PLANDTL–1, the core consisted of 7 subassemblies [153]; a more recent 
version, PLANDTL–2 [154] has a core consisting of 55 simpler subassemblies. Both 
experiments can be used to validate coupling between different paths for decay heat removal in 
a LMR (via normal primary circulation, via recirculation loops between subassemblies and via 
inter wrapper flow around the subassemblies); these are used to validate system, multi scale 
and CFD models. 

5.2.3.4. Reactor validation 

Integral validation on reactor tests is the final, and often most complex part, of the validation 
database before reactor application. The PHENIX reactor was a 250 MWe oxide fueled SFR 
operated by CEA, France, from 1973 and 2009. During the last year of its operation various 
end of life tests were done, including a natural convection test [155] (featuring a loss of the 
primary pumps) and an asymmetric test (consisting of a sudden trip in one of the intermediate 
loops while remaining in forced convection). Table 6 shows multi scale models of PHENIX 
that are benchmarked and validated [156]. 

TABLE 6. SUMMARY OF COUPLED MODELS BY DIFFERENT INSTITUTIONS FOR 
THE ANALYSIS OF THE PHENIX REACTOR 

Institution STH CFD Domain scheme Time scheme 
CEA CATHARE TrioMC/CFD Overlapping Implicit 

Karlsruhe Institute 
of Technology 

(KIT) 

ATHLET OpenFOAM Decomposition Sequential 

NRG SPECTRA ANSYS–CFD Overlapping Explicit 
Argonne National 

Laboratory 
scale adaptive 

simulations 
Nek5000 Overlapping Implicit 

The EBR–II reactor was a 20 MWe metal fuelled SFR operated by Department of Energy 
(DOE) and at Idaho National Laboratory (USA) from 1964 to 1994. From 1984 to 1986, it was 
used for an extensive shutdown heat removal test (SHRT) programme.  

Two tests from this programme (POLF, SHRT–18, and ULOF, SHRT–45R) were analysed as 
part of an IAEA coordinated research project [157]; two additional tests (PLOHS and ULOHS) 
are analysed in the framework of an OECD GIF benchmark. Multi scale models of this reactor 
are under development at CEA, Japanese Atomic Energy Agency, and DOE. The FFTF reactor 
was a 400 MWth oxide fuelled SFR operated by DOE at Pacific National Laboratory (USA) 
between 1980 and 1992. In 1986, it underwent a series of passive safety tests; the most 
challenging of those tests, ULOF transient from 50% of nominal power, is analyzed in the 
framework of an IAEA coordinated research project.  

5.2.4. Summary 

Nuclear reactors are occasionally subject to transients where phenomena occurring at different 
scales start to interact: this can happen in large LWRs, but is quite common in pool type designs 
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such as LMRs or integral small modular reactors. Local effects in these reactors can influence 
global behaviour in a variety of situations, such as transition to natural convection and passive 
removal of decay heat power. In the presence of such situations, accurate modelling necessitates 
a method for incorporating the simulation of small, local effects into a model of the entire 
system. Multi scale models enable the construction of such a model while maximizing the use 
of existing codes for reactor thermal hydraulics at the system, subchannel, and CFD scales.  

A multi scale model can reflect every part of the system at the description scale needed by the 
phenomena that should be modelled by coupling two or more of these codes, trying to eliminate 
the need to use a fine description of the entire domain. A coupling algorithm provides 
consistency across time between the various domains computed by each code, especially at the 
coupling boundaries separating two domains simulated at various scales; if this is the case, the 
multi scale calculation can predict global effects caused by the interaction of phenomena 
occurring at different scales. Practically, implementation of multi scale coupling remains a non 
trivial task. It is not always easy to ensure consistency at the coupling interfaces when the codes 
under consideration include data exchange interfaces.  

The coupling strategies used to achieve consistency frequently necessitate an iterative process 
between the codes. This process can be especially costly in incompressible cases where the 
pressure field calculations of the codes are interdependent. This problem can be solved by using 
an overlapping approach, in which the system code contains the full computational domain; 
however, this method makes it more challenging to guarantee code-to-code consistency. Also, 
implementation of acceleration methods may also improve the convergence speed of the code–
to–code iterations. Adapting these strategies to two phase flows is still an open problem. 
Eventually, it is expected that multi scale couplings will be used in the safety demonstration of 
advanced (future) reactors [144]. To achieve this, coupling strategies will need to undergo an 
extensive verification, validation, and uncertainty quantification. 

6. UNCERTAINTY QUANTIFICATION AND ERROR ANALYSIS 

This section summarizes some of the experiences gathered in the domain of uncertainty 
quantification of one phase CFD applied to nuclear reactor thermal hydraulics issues. Single 
phase CFD is used for design and safety analysis of LWRs. The WGAMA launched initiatives 
to promote the use of CFD for nuclear reactor safety analysis.  

A list of safety issues for which CFD could be useful were identified. Recommended practice 
guidelines for single phase CFD have been written and the requirements for assessment are also 
addressed. By defining the conditions and requirements for having confidence in the 
predictions, these activities increase confidence in the application of CFD. However, no 
applicable methods are written about possible quantitative evaluation of prediction uncertainty, 
which is required in a best estimate approach.  

The methodology for determining the uncertainty of CFD predictions applied to reactor thermal 
hydraulics is then reviewed in a new activity. Because there are available methods, a 
comparison with system codes may be useful. A comparison with system codes may be useful 
since available methods are rather mature. 
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6.1. APPLICATION OF SINGLE PHASE COMPUTATIONAL FLUID DYNAMICS 

In this section the best practice guidelines are summarized [17], [18], [158]. The classification 
of identified problems of interest to uncertainty quantification in CFD is summarized in Table 
7. With some overlaps, the data is roughly grouped into problems relevant to reactor core, 
primary circuit, and containment. 

TABLE 7. PHENOMENA OF INTEREST TO UNCERTAINTY QUANTIFICATION IN 
CFD APPLIED TO REACTOR ANALYSIS 

NRS problem System classification Accident classification Flow type 

Erosion, corrosion, 
deposition 

Core, primary, secondary Operational Single and multi phase 

BWR core instability Core Operational Multi phase 

BWR transition boiling Core Operational Multi phase 

BWR recriticality Core BDBA1 Multi phase 

Reflooding Core DBA2 Multi phase 

Lower plenum debris 
coolability, melt 

distribution 
Core BDBA Multi phase 

Boron dilution Primary circuit DBA Single phase 

Mixing: stratification, 
hot leg heterogeneities 

Primary circuit Operational Single and multi phase 

Heterogeneous flow 
distribution  

Primary circuit Operational Single phase 

BWR lower plenum flow Primary circuit Operational Single and multi phase 

Water hammer 
condensation 

Primary circuit Operational Multi phase 

Pressurized thermal 
shock 

Primary circuit DBA Single and multi phase 

Pipe break Primary circuit DBA Multi phase 

Induced break Primary circuit DBA Single phase 

Thermal fatigue Primary circuit Operational Single phase 

Hydrogen distribution Containment BDBA Single and multi phase 

Chemical reactions Containment BDBA Single and multi phase 

Aerosol deposition, 
atmospheric transport 

Containment BDBA Multi phase 

Direct contact 
condensation 

Containment, primary 
circuit 

DBA Multi phase 

Bubble dynamics in 
suppression pools 

Containment DBA Multi phase 

Behavior of gas–liquid 
interfaces and surfaces 

Containment, primary 
circuit 

Operational Multi phase 

Special considerations 
for advanced reactors 

Containment, primary 
circuit 

DBA/BDBA Single and multi phase 

 

1 BDBA: beyond design basis accident 
2 DBA: design basis accident 
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As far as single phase issues are concerned, it seems that the majority of these are related to 
turbulent mixing problems, such as temperature mixing or mixing of chemical components in 
a multi component mixture, boron dilution, mixing and stratification in the hot legs, lower 
plenum flows in BWRs, pressurized thermal shocks, thermal fatigue, hydrogen distribution, 
chemical reaction up to combustion and detonation, and special considerations for advanced 
reactor concepts. All these mixing phenomena may be simulated with both RANS and LES, 
with the consideration that RANS models require less computational time and are thus likely 
to be preferred [17].  

The uncertainty evaluation of CFD need to be focused on mixing problems with density effects 
in steady state or in slow transients, since it covers most envisaged applications. 

6.2. BEST ESTIMATE AND UNCERTAINTY APPROACH 

6.2.1. Nuclear reactor thermal hydraulics analysis 

Reactor safety assessment requires the analyses of complex problems related to various 
operating conditions. Two options to demonstrate the reactor safety are experimental and 
numerical simulations. The experiments require simplifications to reproduce realistic scenarios 
at a practical cost, and the computational tools cannot simulate the scenarios by solving the 
rigorous equations. It is only practical to conduct small scale experiments to study the 
phenomenon, and only an approximate system of equations can be solved to determine the time 
and/or space averaged parameters with errors due to numerical calculations and 
imperfections in the closure laws. Therefore, to address a problem, complex techniques such as 
PIRT analysis, a scaling analysis, the selection of a numerical simulation tool, the selection of 
scaled IET or combined effect tests and separate effect tests, the verification and validation of 
the tool, the application of the code to the safety issue of interest, and the use of an uncertainty 
method to evaluate the uncertainty of code prediction are necessary. This approach is shown in 
Fig. 50. 

 

FIG. 50. Overview of the methodology for numerical simulation of a complex reactor thermal hydraulics 
phenomena. 
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6.2.2. Process identification and ranking table 

Identification of phenomena is the process of collapsing a complicated thermal hydraulics 
scenario (dependent on several thermal hydraulic variables) into a set of simpler processes or 
phenomena that primarily depend on a limited number of thermal hydraulic quantities. During 
the physical analysis, it is useful to discern the dominant parameters, called figures of merit, 
from the parameters which have an influence on the figures of merit. The figure of merit can be 
scalar or a multidimensional value, or a dimensional less number (depending on the scenario). 
For any type of figure of merit, one has to give a required accuracy. This desired accuracy needs 
to be kept in mind when judging the pertinence of all later steps of the verification, validation 
and uncertainty quantification. Ranking refers to the practice of creating a hierarchy of 
identified processes based on their impact on the figures of merit. The PIRT is a recognized 
method detailed in Ref. [159]. Its use is suggested by OECD WGAMA best practice guidelines 
[17]. The main steps of the physical analysis based on PIRT are: 

 Identify the analysis purpose and specify the details of reactor transient (or situation) of 
interest; 

 Define the dominant parameters and figure of merit; 
 List the involved physical phenomena and associated parameters. Identify and rank key 

phenomena (or the parameters associated to each phenomenon for a more accurate 
PIRT) with respect to their influence on the figure of merit. To enforce PIRT evaluation 
one can add the level of knowledge of each parameter (by this way one can highlight 
the weakness of the analysis based on what has a high influence coupled with a limited 
knowledge); 

 Identify dimensionless numbers controlling the dominant phenomena and the 
representativeness. 

 The PIRT can be derived from expert evaluation, experiment analysis, and sensitivity 
analyses carried out with the aid of simulation tools. WGAMA recommends performing 
sensitivity analyses to improve the justification in a nuclear reactor safety 
demonstration, although practically speaking, PIRT analysis traditionally in the US 
leans more largely on the first one (PIRT validation). As a result, it's critical to use 
testing and analysis to validate the PIRT. Sensitivity studies can be used for both the 
PIRT's final validation and to assess the relative importance of phenomena [160]. 

6.2.3. Scaling considerations 

The word scaling can be used in several contexts with different meaning: 

 With reference to experiments: scaling is the process of determining how and to what 
extent a physical process (such as a reactor transient) can be accurately simulated by an 
experiment at a smaller scale (or at different values of specific flow parameters, such as 
pressure and fluid characteristics).; 

 With reference to numerical simulation: Scaling is the process of illustrating how and 
to what extent a numerical simulation tool can be applied with sufficient confidence to 
the real or integral process after being validated on one or more reduced scale 
experiments (or at various values of some flow parameters like pressure and fluid 
properties). 

The scaling uses information from a scaled experiment, as mentioned in Oberkampf and Roy 
[161]. The simulation tool is used to extrapolate from experiments to reactor situations (i.e., 
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upscaling) and the degree of confidence on this extrapolation is part of the scaling. A single 
phase CFD tool's extrapolation to a reactor situation induces several aspects and raises several 
questions: 

 How to ensure that a CFD code is capable of extrapolating from a reduced (smaller) 
scale validation trial to a full scale application; 

 How to extrapolate the nodalization/meshing from the one used for the reduced scale 
validation experiment to a full scale application; 

 How to extrapolate results for different experimental conditions (e.g., different values 
of non dimensional numbers). 

The accuracy of the numerical simulation of the scaled experiments is defined by the error that 
must be determined when extrapolating to the reactor situation. As a result, scaling associated 
with CFD application is part of the uncertainty evaluation of the CFD code and is a necessary 
preliminary step in uncertainty evaluation. In 1991, the US NRC, developed a well known 
methodology known as hierarchical two tiered scaling [162]. This work established a theoretical 
framework as well as systematic procedures for conducting scaling analyses. This method is a 
progressive and hierarchized scaling system organized in two steps. The first is a top down step, 
and the second as a bottom up step. The top down step, which is organized at the system or 
plant level, is used to construct non dimensional groups using mass, energy, and momentum 
conservation equations derived from PIRT relevant systems. These non dimensional groups are 
employed to determine the scaling hierarchy, or which phenomena should be scaled first, as 
well as which phenomena must be considered in the bottom up analysis. The bottom up analysis 
is the second step in the hierarchical two tiered scaling process. To ensure that all pertinent 
phenomena are accurately represented in the governing equations, a thorough study is 
conducted at the component level. In the context of nuclear reactor analysis, the use of CFD is 
envisaged due to the limitations of system codes to simulate complex 3D flows. But this 
difficult request addressed to CFD requires rigorous approaches based on codes and methods 
to give confidence in the results of interest. The process, which is based on physical analysis 
and includes verification, validation, application to an industrial scale, and uncertainty 
quantification, serves to justify CFD results. It must be demonstrated that each phase of this 
process is consistent with the previous ones and with the simulations' ultimate purpose. To 
accomplish this uniformity, the physical study using PIRT devoted to a particular reactor 
scenario is essential. That view is in accordance with Oberkampf and Roy [161] and the best 
practice guidelines from OECD mentioned earlier. The PIRT is the basis of the scaling analysis, 
but it can also benefit the PIRT with the ranking of phenomena. When employing, for instance, 
the hierarchical two tiered scaling method with both top down and bottom up approaches, the 
PIRT may result in the scaling of experimental data of the IET type, and the scaling may also 
identify the requirement for separate effect tests (SETs). The selection of numerical tool (CFD 
code or a coupling of CFD with other thermal hydraulics codes) need to be consistent with 
PIRT; the selected physical model can describe the dominant processes. The chosen numerical 
tool must then be verified and validated using the selected SETs and IETs. Afterwards, code 
application towards a specific reactor transient requires to include a UQ step which may use 
code validation results. It will also be used to evaluate the impact of some sources of 
uncertainties. 

6.2.4. Verification and validation 

Code verification aims to assess the correctness of numerical implementation of a physical 
model defined by a set of governing equations. Code developers typically carry out the 
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verification, however occasionally independent verification is carried out by code users. 
Practically, verification consists in assembling and simulating idealized test cases that enable a 
comparison of simulation results against analytical or reference solutions.  

Code validation uses comparisons between computational simulations and experimental data to 
assess the accuracy of the physical models used by the code. In a broad way, validation is done 
to give assurance that a code can accurately predict the values of important parameters. To 
ascertain the degree of uncertainty in certain of the code's constitutive laws, use the validation 
findings. Developers of the code or code users may perform the validation. Developmental 
assessment refers to the first, and independent assessment to the second. Typically, so called 
validation matrices are used in the validation process. A validation matrix is a collection of 
carefully chosen experimental data used for thorough, methodical code validation. The 
validation matrix usually includes SETs, IETs or combined effect tests, and nuclear power plant 
data. Separate effect tests are experimental procedures designed to examine a single physical 
process, either alone or in circumstances that permit measurements of the process's 
consequences. A constitutive relation can be independently validated using SET from other 
relations. IETs, on the other hand, are experimental tests that mimic the behaviour of a complex 
system by simulating all the interactions between different fluxes and heat transfer processes 
that take place in distinct system components. Through initial and boundary conditions, the IET 
for nuclear accident thermal hydraulics may model the entire primary cooling circuit and the 
accident scenario. The way in which validation results are employed is an important 
differentiating aspect between the various uncertainty quantification methodologies. 

6.3. METHODS FOR UNCERTAINTY QUANTIFICATIONS 

Reactor thermal hydraulics code uncertainty approaches were originally developed for system 
codes that mimic a variety of transients in a wide range of single phase and two phase flows. 
These approaches relied on either accuracy extrapolation techniques or the propagation of the 
uncertainty of the input parameters (so called uncertainty propagation methods) [163]. 

6.3.1. Uncertainty propagation based methods 

The method using propagation of code input uncertainties for thermal hydraulics with a link to 
nuclear reactor analysis follows the pioneering idea of the code scaling and applicability 
uncertainty methodology, later extended by GRS [164]. It is the mostly commonly used class 
of methods. The first list of uncertain input parameters includes beginning and boundary 
conditions, material characteristics, and closure laws. For each input parameter, probability 
density functions are determined. Following that, each set of parameters is sampled in 
accordance with their probability functions, and reactor simulations are performed. According 
to the density function of each input parameter, all input parameters are simultaneously 
modified in the GRS proposal's Monte Carlo sampling. The Wilks theorem is frequently used 
to handle the outcomes of uncertainty propagation, possibly because it just requires a few 
assumptions. With a certain degree of confidence, this method enables one to predict the limits 
of the uncertainty range for any code. Even if slightly more code runs, typically 150 to 200, are 
advised to have a greater precision on the uncertainty ranges, the number of code runs needed 
for an adequate level of confidence is around 100. In general, the propagation of uncertainty 
necessitates numerous calculations to bring statistical estimators to convergence, which may be 
challenging with CFD due to the lengthy computation time. Fortunately, a rough estimate of 
the uncertainty coming from small datasets may be obtained using relatively straightforward 
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statistical procedures (e.g., bootstrapping). In terms of uncertainty propagation methods, there 
are mainly three groups of approaches: 

 Monte Carlo approaches: use a rather large number of simulations wherein all input 
parameters are sampled from probability distribution functions representative of their 
uncertainty. The resulting probability distribution function of output variables is then 
established, while the accuracy is not dependent on the number of uncertain input 
parameters; 

 Metamodels: some methods, to reduce the number of code simulations, take into 
account only important uncertain input parameters and run small number of calculations 
based on the variation of the input parameters to build a metamodel that can replace the 
code and determine the uncertainty on any code output at a low computational cost; the 
Monte Carlo method is used with these metamodels, with many thousands of runs. 
Metamodel usage, including Kriging and polynomial chaos expansion metamodels, 
gained popularity. These metamodels offer a mapping between erratic inputs and model 
outputs based on a small number of model assessments (i.e., simulations). These 
metamodels necessarily rely on assumptions and should be treated with caution when 
these assumptions are difficult to confirm.  

 Deterministic approaches: In deterministic techniques, the whole probability 
distribution functions are not attempted to be propagated. It spreads statistical moments 
instead. The known statistical moments are represented by the deterministic samples 
that have been chosen. The uncertainty can be represented by two samples if just the 
mean and standard deviation, or the first and second moments, are known. These are 
selected in a way that ensures to have the specified mean and standard deviation. A 
Gaussian distribution's first four moments can be represented by three samples. More 
samples in the ensemble can be used to satisfy arbitrarily higher moments. 

To determine the uncertainties of closure laws, preliminary research is necessary for the 
uncertainty propagation methods. For a better demonstration, statistical methods based on 
numerous validation computations can be used instead of expert judgement in this assessment. 
When data are provided that are susceptible to a single closure law, it may be simple to calculate 
the uncertainty band or PDF for each closure. Data are sensitive to a few closure laws very 
frequently in practice, and methods have been developed to compute uncertainty bands or 
probability density functions for several closure laws based on a number of data comparisons 
with predictions [165]. 

6.3.2. Accuracy extrapolation methods 

For system codes, the methods identified as propagation of code output errors are based on the 
extrapolation of accuracy. One can mention the uncertainty methodology based on accuracy 
extrapolation (UMAE) [166] and the code with the capability of internal assessment (CIAU) 
approach [167], [168]. A thorough validation of system codes (on SETs and IETs both) allows 
measurement of code prediction accuracy in a wide range of situations. For UMAE and CIAU, 
Fourier transforms are used to define a metric for quantifying accuracy. The experimental 
database contains results from various scales, and assuming that the accuracy of code results is 
independent of scale, this accuracy can be extrapolated to reactor scale. Methods based on 
validation experiment extrapolation may only require one reactor transient simulation, but 
many preliminary validation calculations of integral test facilities are required. 
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6.3.3. Verification and validation standards 

One of the most comprehensive standards for validation and verification is that by the American 
Society of Mechanical Engineers, known as ASME V&V20. According to this verification and 
validation standard in computational fluid dynamics and heat transfer, "the concern of V&V3 
is to assess the accuracy of a computational simulation." This viewpoint is clearly compatible 
with the principle of extrapolation from validation experiments. Current industrial CFD models 
(non DNS) produce results from both a solved and modelled part of the Navier-Stokes 
equations. Even for complex flows, verification of correct equation solving is feasible, and once 
completed, physical model uncertainty is a legitimate concern. It is well known that different 
experiments produce significantly different model parameter values in calibration, indicating 
that the form and generality of the model itself must be investigated.  

6.3.4. Methods comparison 

Methods based on validation results extrapolation have a poor mathematical foundation, but 
their comparison to reality (even in scaled experiments) can provide insight into the impact of 
model inadequacy on full scale results. When simulations are compared to experiments, the 
impact of non modeled phenomena is also considered, which is not the case for uncertainty 
propagation. Obviously, regardless of the method used, transferring results from scaled 
experiments to full scale is nearly impossible to justify rigorously. It will be possible to define 
an exact model if the physical model uncertainty can be precisely estimated. Another distinction 
between propagation and extrapolation is the ability to perform sensitivity analysis. Sensitivity 
analyses can be performed using propagation by employing the results of uncertainty analysis 
for the previous runs. However, it is impossible with extrapolation based methods as these do 
not account for individual uncertainty sources. Knowing the main sources of code uncertainty 
is the first step toward code improvement. Benchmarking with system codes of methods from 
two different classes was carried out as part of the international projects launched by the 
OECD/CSNI [169]. For CFD, no relevant benchmark has been yet set up to compare different 
approaches. 

6.4. APPLICATION OF AN UNCERTAINTY PROPAGATION METHOD 

The method based on propagation of input uncertainties is broadly used for system codes. This 
method consists of performing Monte Carlo code runs without using a metamodel. 
Consequently, rather numerous codes run (in the order of hundreds) of the CFD code are 
needed, which raises a difficulty for CFD code applications. After these code runs, statistical 
quantities for the responses (such as percentiles or tolerance intervals) are obtained using the 
order statistics. Following the uncertainty analysis, a simple sensitivity analysis at the first order 
can be performed using the results of the code runs. There is no restriction on the number, and 
type of uncertain input parameters that can be considered. Also, initial and boundary conditions, 
as well as physical model parameters, can be specified. But it is also possible to consider 
different options of physical modelling (for example the turbulence modelling) and of 
numerical schemes (for example the convection schemes), if best practice guidelines do not 
give clear indications to the best option. It is done by the use of the so called categorical 
variables, more frequent for CFD codes than for system codes. A difficulty of the method is 
that it is compulsory to estimate the probability density functions of these numerous uncertain 
input parameters. More details are given in [170]. The method was applied to a simple case 
with experimental data, illustrated in FIG. 51. It comprises of a 2D square cold cavity, filled 
with air at 15 °C, and have a hot floor at temperature of 35 °C. Cold air at 15 °C enters the 
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cavity, and leaves the cavity from the bottom right hand corner. The flow is modelled as 2D, 
steady and presents buoyancy effects. It is calculated by the CFD code Trio_U developed by 
CEA with RANS 𝑘 − 𝜀 turbulence model.  

 

FIG. 51. Representation of the simulation domain with characteristic dimensions and boundary conditions. 

The available experimental data consists of velocity profiles along the two axes at different 
positions in the domain. The input parameters that affect results are the parameters related to 
meshing, such as the mesh topology, mesh density in the cavity bulk as well as close to the 
walls, the choice of numerical discretization schemes and their parameters, the parameters 
related to physical modelling, such as fluid properties models (e.g. for density, viscosity, 
thermal conductivity, etc.) as well as wall laws for the turbulence model and turbulence model 
parameters, and initial and boundary conditions. Arbitrary uncertainties are assigned to these 
parameters. These are supposed to be distributed according to Gaussian distribution, with an 
assumed relative standard deviation of 5% unless experimental uncertainties are available 
(which is the temperatures and the inlet velocity). The different levels of the categorical 
variables are assumed to be equiprobable. A total of 100 code runs are performed, each with 
different sampling of the input parameters. The 100 values of the responses of interest (i.e., 
velocity and temperature profiles along certain axes at different locations) are ranked by 
increasing order and the third largest value (resp. the 98th highest value) is considered for the 
2.5% percentile (resp. the 97.5% percentile). The possible issue regarding the potential non 
continuity of the probability distribution function of the responses (due to the presence of 
categorical variables is not met). All the values of the responses are different and ranking them 
by increasing order does not pose any problem.  

The calculated profiles for the quantities of interest are compared against the experimental 
values in Fig. 52 for temperature and Fig. 53 for the velocity. The temperature results are 
satisfactory as the experimental results are entirely within the 95% confidence interval of the 
calculated results. As can be seen in Fig. 53 there are certain regions in which experimental 
results fall outside the confidence interval of the calculated results. Nonetheless, this serves as 
a reasonable case for illustrating the presented methodology. 
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FIG. 52. Comparison of temperature profile and its 95% confidence interval against the experimentally 
measured temperature profile along the horizontal axis at height of 0.1m.  

Despite the large number and variety of uncertain input parameters, the uncertainty bands do 
not completely encircle the experimental data. The first possible explanation is that the k - 
turbulence model used isn't the best fit for this scenario. A second explanation is that 2D 
modelling of the cavity inherently removes 3D effects from the analysis, which might be 
suspected, at this stage, to play a role. Additional explanation is that the ranges of variation of 
the input parameters (i.e., the variance of the Gaussian distributions for different input 
parameters) were arbitrarily determined and one can assume these were perhaps not wide 
enough. 

 

(a)                                                                                                  (b) 

FIG. 53. Comparison of (a) horizontal velocity component profile and its 95% confidence interval against the 
experimentally measured profile along the vertical axis at length of 0.1 m; (b) vertical velocity component 
profile and its 95% confidence interval against the experimentally measured profile along the horizontal axis at 
a height of 0.1 m. 

Overall, the advantages and drawbacks of this methodology are summarized as follows: 

 The main advantage is the possibility to consider numerous and miscellaneous input 
parameters. Estimating an error band coming from the discretization error with a method 
such as Richardson extrapolation and grid convergence indices [171] would be perhaps 
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better option, however, the discretization error does not represent all the potential 
sources of numerical uncertainties (e.g., the choice among different meshing options); 

 An important issue not really addressed in the application case is the quantification of 
the uncertainty of the input parameters. This is for all the methods based on the 
propagation of input uncertainties. 

The main drawback of the methodology is the high number of converged (i.e., successful) code 
runs. 

6.5. UNCERTAINTY QUANTIFICATION VIA ACCURACY EXTRAPOLATION 

The uncertainty method based on accuracy extrapolation (UMAE) was proposed by the 
University of Pisa, Italy, in the late eighties and then further developed [166]. In contrast to 
uncertainty propagation methods, the UMAE focuses on code output errors; information 
regarding accuracy is stored in a suitable validation database, and the accuracy from relevant 
integral experiments is extrapolated to the size of a power plant to determine the final 
uncertainty. In the application of the UMAE, an iterative process involving validation against 
experimental data achieves qualified nodalizations so that the related prediction accuracy meets 
given acceptance thresholds. Then, using similar criteria, a qualified nodalization for power 
plant analysis (also known as an analytical simulation model) is obtained, provided that the 
proper analysis shows that the phenomena observed in test facilities and predicted by the plant 
calculations are similar. User qualification is crucial in addition to nodalization qualification. 
With the qualified nodalization, a single calculation is more than sufficient for a given 
transient–the associated uncertainty is then found through accuracy extrapolation, using a 
relevant database which is supposed to have been acquired.  

The accuracy evaluation is another key step, which involves appropriate metrics for 
quantification, and acceptance criteria. The accuracy evaluation tool in the framework of 
UMAE–CIAU is the fast Fourier transform based method [172], which characterizes, by 
appropriate figures of merit. The key steps of the UMAE methodology are summarized in [170]. 
The code with the CIAU was proposed in 1997 and further developed and applied ever since, 
with the resolve to overcome the limitation of other uncertainty methodologies.  

The CIAU tool basically couples UMAE approach with RELAP5 and evaluate uncertainty (in 
the form of uncertainty bands enveloping the code results for selected target variables) 
associated with a specific transient calculation. The concepts used in the implementation and 
use of CIAU: UMAE qualification are as follows: the status approach for characterizing 
transient scenarios, the separation and recombination of time and quantity error, and the error 
filling and error extraction processes. To determine the status of the plant, the status approach 
uses an arbitrary set of relevant thermal hydraulics parameters representative of the selected 
scenario, as well as the time elapsed since the transient start. In other words, plant status is 
corresponding to a point in a multidimensional phase space. 

One fundamental assumption is that all plant statuses within each discrete plant state have the 
same level of code prediction uncertainty for specified output variables. As a result, using an 
uncertainty evaluation method, a seven dimension matrix of quantity uncertainties and a vector 
of time uncertainties can be filled up (error filling process), forming a sort of uncertainty 
database that can be searched. As the uncertainty database is available, the application of the 
CIAU requires negligible computing effort and engineering judgement, which, on the other 
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hand, are embedded in the filling process. Some reflections for extending the UMAE–CIAU 
approach to CFD were summarized in the Ref. [170].  

7. APPLICATIONS IN TRAINING AND EDUCATION 

This chapter provides one example of how to structure the training course based on the contents 
provided in this publication. The scope of the course is structured such to provide the graduate 
students and professionals with theoretical foundations and examples for application of CFD 
modelling in nuclear engineering. The need for high fidelity nuclear reactor thermal hydraulic 
simulations has led to increased application of the CFD codes that are prevailing substitute of 
currently established 1D system thermal hydraulics codes and coarse mesh subchannel analyses 
codes. The course scope is aimed at discussing how the CFD constitutes the third approach in 
the philosophical study and development of the whole discipline of fluid dynamics. Combining 
the power of experimentation and theory, this approach has made possible the accounting of 
flow fields in complex geometries.  

The suggested contents of the training course are derived from the virtual ICTP (Abdus Salam 
International Center for Theoretical Physics) and IAEA Joint Course on Theoretical 
Foundations and Applications of Computational Fluid Dynamics in Nuclear Engineering, 
conducted 1317 January 2021. 

The following sessions and lectures with hands-on examples may constitute the course suitable 
for various levels of background knowledge in the field: 

 Session 1: History and theory of computational fluid dynamics 
o Basics of vector calculus and conservation equations (governing equations in 

fluid dynamics) 
o Solving the equations 
o Hands on Session 1: Quarter subchannel geometry and meshing 

 Session 2: Basics of turbulence modelling 
o RANS and URANS modelling for turbulent flows 
o Turbulence resolving simulations: DNS, LES, and hybrid methods 
o Hands on Session 2: Quarter subchannel modelling options 

 Session 3: Two phase CFD 
o Various modelling approaches in two phase flow 
o Interface resolving techniques 
o Eulerian – Eulerian approach 
o Hands on Session 3: Quarter subchannel simulation and post processing 

 Session 4: Application of CFD codes in nuclear reactor design and analysis 
o Water cooled reactor (design basis accidents and other operation conditions) 
o CFD analysis of water cooled reactors severe accident phenomena 
o CFD analysis of innovative reactor concepts 
o Introduction to multi scale models 
o Hands on Session 4: CFD modelling challenges for problems related to nuclear 

reactors 
 Session 5: Uncertainty quantification and error analysis 

  



 

137 

REFERENCES 

[1] INTERNATIONAL ATOMIC ENERGY AGENCY, Passive Safety Systems in 
Water Cooled Reactors: An Overview and Demonstration with Basic Principle 
Simulators, IAEA-TCS-69, IAEA, Vienna (2019). 

[2] ANDERSON, J. D., Fundamentals of Aerodynamics, McGraw-Hill, New York 
(2016). 

[3] CENGEL, Y. A., Fluid Mechanics Fundamentals and Applications, McGraw-Hill, 
New York (2013). 

[4] ANDERSON, J.D., Computational Fluid Dynamics: The Basic with Applications, 
McGraw-Hill, New York (1995). 

[5] PATANKAR, S.V., SPALDING, D. B., A calculation procedure for heat, mass and 
momentum transfer in three-dimensional parabolic flows, International Journal of 
Heat and Mass Transfer 15 10 (1972) 1787, 1806. 

[6] ISSA, R. I., Solution of the implicitly discretised fluid flow equations by operator-
splitting, Journal of Computational Physics 62 1 (1986) 40, 65. 

[7] FERZIGER, J. H., PERIC, M., STREET, R. L., Computational Methods for Fluid 
Dynamics, Springer, Berlin (2002). 

[8] HOFFMAN, K. A., CHIANG, S. T., Computational Fluid Dynamics, Vol. 3, 
Engineering Education System, Wichita (2000). 

[9] ANSYS FLUENT Theory Guide 2013, USA (2011). 
[10] BAKKER, A., Applied CFD-Turbulence Modelling (2005). 
[11] SPALART, P., R., Comments on the Feasibility of LES for Wings, and on a Hybrid 

RANS/LES approach, Proceeding of First AFOSR International Conference on 
DNS/LES, Ruston, LA (1997). 

[12] FRISCH, U., Turbulence, Cambridge University Press, UK (1995). 
[13] SHIH, T., H., LIOU, W., W., SHABBIR, A., YANG, Z., ZHU, J., A new eddy-

viscosity model for high Reynolds number turbulent flows model development and 
validation, Computers and Fluids 24 3 (1995) 227, 238. 

[14] REYNOLDS, W. C., Fundamentals of Turbulence for Turbulence Modeling and 
Simulation, Stanford University, USA (1987). 

[15] WILCOX, D.C, Turbulence Modelling for CFD, DCW Industries, California 
(1993). 

[16] WOLDSTEIN, M., The velocity and temperature distribution of one-dimensional 
flow with turbulence augmentation and pressure gradient, International Journal of 
Heat and Mass Transfer 12 3 (1969) 301, 318. 

[17] MAHAFFY, J., Best Practice Guidelines for the Use of CFD in Nuclear Reactor 
Safety Applications, Rep. NEA/CSNI/R(2014)11, OECD, Nuclear Energy Agency, 
(2015). 

[18] BESTION, D., et al., Extension of CFD Codes Application to Two-Phase Safety 
Problems – Phase 3, Nuclear Safety, Rep. NEA/CSNI/R(2014) 13, (2014) 

[19] LIOVIC, P., LAKEHAL, D., "Interface-turbulence interactions in large-scale 
bubbling processes, International Journal of Heat and Fluid Flow 28 (2007) 127, 
144. 

[20] LIOVIC, P., LAKEHAL, D., Multi-physics treatment in the vicinity of arbitrarily 
deformable gas-liquid interfaces, Journal of Computational Physics 222 2 (2007) 
504, 535. 



 

138 

[21] BOIS, G., et al., Towards Large Eddy Simulation of Two-Phase Flow with Phase-
Change: Direct Numerical Simulation of a Pseudo-Turbulent Two-Phase 
Condensing Flow, 7th International Conferenece on Multiphase Flow, ICMF 2010, 
Tampa, FL, USA (2010). 

[22] TOUTANT, A., et al., Jump conditions for filtered quantities at an under resolved 
interface. Part 1: theoretical development, International Journal of Multiphase Flow 
35 12 (2009) 1100, 1118. 

[23] TOUTANT, A., et al., “Jump conditions for filtered quantities at an under resolved 
interface. Part 2: a priori tests, International Journal of Multiphase Flow 35 12 
(2009) 1119, 1129. 

[24] MAGDELEINE, S., DNS Up-Scaling Applied to Volumetric Interfacial Area 
Transport Equation, 7th International Conference on Multiphase Flow, ICMF 2010, 
Tampa, FL, USA (2010). 

[25] LAKEHAL, D., et al., Turbulence and heat transfer in condensing vapor-liquid 
flow, Physics of Fluids 20 6 (2008) 065101 

[26] LAKEHAL, D., LEIS for the prediction of turbulent multifluid flows applied to 
thermal hydraulics applications, Nuclear Engineering and Design 240 10 (2010) 
2096, 2106. 

[27] LAKEHAL, D., LABOIS, M., A new modelling strategy for phase-change heat 
transfer in turbulent, International Journal of Multiphase Flow 37 (2011) 617, 639. 

[28] LAKEHAL, D., et al., Large eddy simulation of bubbly turbulent shear flows, 
Journal of Turbulence 3 25 (2002) 1 ,21. 

[29] DHOTRE, M. T., et al., CFD simulation of bubbly flows: random dispersion model, 
Chemical Engineering Science 62 (2007) 7140, 7150. 

[30] DHOTRE, M. T., et al., Large eddy simulation of a bubble column using dynamic 
sub-grid scale model, Chemical Engineering Journal 136 (2008) 337, 348. 

[31] NICENO, B., et al., One equation sub-grid scale (SGS) modeling for euler-euler 
large eddy simulation (EELES) of dispersed bubbly flow, Chemical Engineering 
Science 63 (2008) 3923, 3931. 

[32] NICENO, B., et al., Euler-Euler large eddy simulation of a square cross-sectional 
bubble column using the Neptune CFD code, Science and Technology of Nuclear 
Installations 2009 (2008).  

[33] BARTOSIEWICZ, Y., et al., A Validation Case for the NEPTUNE_CFD Platform; 
Instabilities in a Stratified Flow. Experimental, Theoretical and Code to Code 
Comparison, NURETH-12, Pittsburgh, Pennsylvania, USA (2007). 

[34] BARTOSIEWICZ, Y., et al., A first assessment of the NEPTUNE_CFD code: 
Instabilities in stratified flow, comparison between the VOF method and a two-field 
approach, International Journal of Heat and Fluid Flow 29 (2008) 460, 478. 

[35] BESTION, D., The difficult challenge of a two-phase CFD model for all flow 
regimes, Nuclear Engineering and Design 279 (2014) 116, 125. 

[36] KREPPER, E., et al., CFD modeling of adiabatic bubbly flow, Multiphase Science 
and Technology 23 2-4 (2011) 129, 164. 

[37] KONCAR, B., et al., CFD modeling of boiling bubbly flow for departure from 
nucleate boiling investigations, Multiphase Science and Technology 23 2-4 (2011) 
165, 222. 

[38] ANGLART, H., CARAGHIAUR, D., CFD modeling of boiling annular-mist flow 
for dryout investigations, Multiphase Science and Technology 23 2-4 (2011) 223, 
251. 

[39] BESTION, D., Extension of CFD code application to two-phase flow safety 
problems, Nuclear Engineering and Technology 42 4 (2010) 365, 376. 



 

139 

[40] MAHAFFY, J., Best Practice Guidelines for the Use of CFD in Nuclear Reactor 
Safety Applications, Rep. NEA/CSNI/R(2014)11, OECD, Nuclear Energy Agency 
(2015). 

[41] BESTION, D., GUELFI, A., Status and perspective of two-phase flow modelling in 
the NEPTUNE multiscale thermal-hydraulic platform for nuclear reactor 
simulation, Nuclear Engineering and Technology 16 1-3 (2005) 1, 5.  

[42] GUELFI, A., et al., NEPTUNE a new software platform for advanced reactor 
thermal hydraulics, Nuclear Science and Engineering 156 3 (2007) 282, 324. 

[43] BESTION, D., From the direct numerical simulation system to system codes: 
Perspective for the multi-scale analysis of LWR thermal hydraulics, Nuclear 
Engineering and Technology 42 6 (2010) 608, 619. 

[44] POPINET, S., Numerical models of surface tension, Annual Review of Fluid 
Mechanics 50 (2018) 49, 75. 

[45] YADIGAROGLU, G., Computational fluid dynamics for nuclear applications: from 
CFD to multi-scale CMFD, Nuclear Engineering and Design 235 2-4 (2005) 153, 
164. 

[46] HIRT, C. W., NICHOLS, B. D., Volume of fluid (VOF) method for the dynamics 
of free boundaries, Journal of Computational Physics 39 (1981) 201, 225. 

[47] SUSSMAN, M., SMEREKA, P., OSHER, S., A level set approach for computing 
solutions to incompressible two-phase flow, Journal of Computational Physics 114 
(1994) 146, 159. 

[48] UNVERDI, S. O., TRYGGVASON, G., A front-tracking method for viscous, 
incompressible, multi-fluid flows, Journal of Computational Physics 100 (1992) 25, 
37. 

[49] CAHN, J. W., HILLIARD, J. E., Free energy of a nonuniform system : Interfacial 
free energy, The Journal of Chemical Physics, 28 (1958) 258, 267. 

[50] FRANK, R. M., LAZARUS, R. B., Mixed Eulerian-Langrangian methods, Methods 
in Computational Physics 3 (1964) 47, 67.  

[51] BRACKBILL, J. U., KOTHE, D. B., ZEMACH, C., A continuum method for 
modeling surface tension, Journal of Computational Physics 100 2 (1992) 335, 354 

[52] LAFAURIE, B., NARDONE, C., SCARDOVELLI, S., ZALESKI, S. ZANETTI, 
G., Modelling merging and fragmentation in multiphase flows with SURFER, 
Journal of Computational Physics, 113 (1994) 134, 147. 

[53] YOUNGS, D. L., “Time-dependent multi-material flow with large fluid distortion”, 
Numerical Methods for Fluid Dynamics, Academic Press, US (1982), 237-257 pp. 

[54] AULISA, E., MANSERVISI, S., SCARDOVELLI, R., ZALESKI, S., Interface 
reconstruction with least-squares fit and split advection in three-dimensional 
Cartesian geometry, Journal of Computational Physics 225 (2007) 2301, 2319.  

[55] MUZAFERIJA, S., PERIC, M., SAMES, P., SCHELIN, T., A Two-Fluid Navier-
Stokes Solver to Simulate Water Entry, Proceeding of the 22nd symposium of naval 
hydrodynamics, Washington, DC (1998). 

[56] UBBINK, O., ISSA, R. I., A method for capturing sharp fluid interfaces on arbitrary 
meshes, Journal of Computational Physics 153 (1999) 26, 50. 

[57] YABE, T., XIAO, F., UTSUMI, T., The constrained interpolation profile method 
for multiphase analysis, Journal of Computational Physics 169 (2001) 556, 593. 

[58] XIAO, F., HONMA, Y., KONO, T., A simple algebraic interface capturing scheme 
using hyperbolic tangent function, International Journal of Numerical Methods in 
Fluids 48 9 (2005) 1023, 1040. 

[59] OLSSON, E., KREISS, G., A conservative level set method for two phase flow, 
Journal of Computational Physics 210 (2005) 225, 246. 



 

140 

[60] FRANCOIS, M., et al. A balanced-force algorithm for continuous and sharp 
interfacial surface tension models within a volume tracking frameword, Journal of 
Computational Physics 213 (2006) 141, 173. 

[61] LOPEZ, J., et al., An improved height function technique for computing interface 
curvature from volume fractions, Computer Methods in Applied Mechanics and 
Engineering 198 (2009) 2555, 2564. 

[62] CAREY, V. P., Liquid-Vapor Phase Change Phenomena: An Introduction to the 
Thermophysics of Vaporization and Condensation Processes in Heat Transfer 
Equipment, 2nd ed., CRC Press, Taylor & Francis, Boca Raton (2007). 

[63] SATO, Y., NICENO, B., A depletable micro-layer model for nucleate pool boiling, 
Journal of Computational Physics 300 (2015) 20, 52.  

[64] KOCAMUSTAFAGULLARI, G., ISHII, M., Interfacial area and nucleation site 
density in boiling systems, International Journal of Heat and Mass Transfer 26 
(1983) 1377, 1387. 

[65] HIBIKI, T., ISHII, M., Active nucleation site density in boiling systems, 
International Journal of Heat and Mass Transfer 46 (2003) 2587, 2601. 

[66] LUCAS, D., et al., On the Simulation of Two-Phase Flow Pressurized Thermal 
Shock (pts)”, 12th International Topical Meeting on Nuclear Reactor Thermal 
Hydraulics, NURETH-12, USA (2007).  

[67] BESTION, D., The difficult challenge of a two-phase CFD modelling for all flow 
regimes, Nuclear Engineering and Design 279 (2014) 116, 125.  

[68] BIRD, R. B., STEWART, W. E., LIGHTFOOT, E. N., Transport Phenomena, John 
Wiley and Sons, New York (2006). 

[69] ISHII, M., HIBIKI, T., Thermo-fluid Dynamics of Two-Phase Flow, Springer 
Science and Business Media, New York (2010). 

[70] WILCOX, D. C., Turbulence Modeling for CFD, Vol. 2, DCW Industries LA 
Canada, CA (1998). 

[71] DURBIC, P. A., REIF, B. A. P., Statistical Theory and Modeling for Turbulent 
Flows, John Wiley and Sons, UK (2011). 

[72] CLIFT, R., GRACE, J. R., WEBER, M. E., Bubbles, Drops and Particles, Courier, 
Dover Publications, New York (2005). 

[73] SCHILLER, L., NAUMANN, Z., A drag coefficient correlation, Zeitschrift des 
Vereins Deutscher Ingenieure 77 318 (1935) 323. 

[74] Tomiyama, A., et al., Drag coefficients of bubbles (2nd report: Drag coefficient for 
a swarm of bubbles and its applicability to transient flow), Nippon Kikai Gakkai 
Ronbunshuu 61 (1995) 61-588.  

[75] STAFFMAN, P.G.T., The lift on a small sphere in a slow shear flow, Journal of 
Fluid Mechanics 22 2 (1995) 385, 400. 

[76] DREW, D.A., The force on a small sphere in slow viscous flow, Journal of Fluid 
Mechanics 88 2 (1978) 393, 400. 

[77] ZUN., I., The transverse migration of bubbles influenced by walls in vertical bubble 
flow, International Journal of Multiphase Flow 6 6 (1980) 583, 588. 

[78] DE BERTODANO, M. L., LAHEY, R.T., JONES, O.C., Phase distribution in 
bubbly two-phase flow in vertical ducts, International Journal of Multiphase Flow 
20 5 (1994) 805, 818.  

[79] TOMIYAMA, A., TAMAI, H., ZUN, I., HOSOKAWA, S., Transverse migration 
of single bubbles in simple shear flows, Chemical Engineering Science 57 11 (2002) 
1849, 1858. 



 

141 

[80] SALNIKOVA, T., Two-Phase CFD Analyses in Fuel Assembly Sub-Channels of 
Pressurized Water Reactors under Swirl Conditions, PhD thesis, Technical 
University Dresden (2010). 

[81] BURNS, A.D., FRANK, T., HAMILL, I., SHI, J.M., et al., The Favre Averaged 
Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows”, 5th 
International Conference on Multiphase Flow, ICMF, Vol. 4, Japan (2004), 1-17 pp.  

[82] ANTAL, S. P., LAHEY, R. T., FLAHERTY, J. E., Analysis of phase distribution 
in fully developed laminar bubbly two-phase flow, International Journal of 
Multiphase Flow, 17 5 (1991) 635, 652. 

[83] HOSOKAWA, S., TOMIYAMA, A., MISAKI, S., HAMADA, T., Lateral 
Migration of Single Bubbles due to the Presence of Wall, Fluids Engineering 
Division Summer Meeting, Vol. 36150, Montreal, Quebec, Canada (2002) 855-860. 

[84] RANZ, W. E., Evaporation from drops, Chemical Engineering Progress 48 3 (1952) 
141, 146. 

[85] LAHEY, R. T., BAGLIETTO, E., BOLOTNOC, I. A., Progress in multiphase 
computational fluid dynamics, Nuclear Engineering and Design 374 (2021) 111018.  

[86] RAMKRISHNA, D., Population Balances: Theory and Applications to Particulate 
SYSTEMS in Engineering, Academic Press, USA (2000).  

[87] FREDERIX, E. M. A., COX, T. L. W., KUERTEN, J.G.M., KOMEN, E.M.J., Poly-
dispersed modeling of bubbly flow using the log-normal size distribution, Chemical 
Engineering Science 201 (2019) 237, 246. 

[88] MARCHISIO, D. L., FOX, R. O., Computational Models for Polydisperse 
Particulate and Multiphase Systems, Cambridge University Press, USA (2013). 

[89] KREPPER E., LUCAS, D., FRANK T., PRASSER, H.M., ZWART, P. J., The 
inhomogeneous MUSIG model for the simulation of polydispersed flows, Nuclear 
Engineering and Design 238 7 (2008) 1690, 1702.  

[90] TEKAVCIC, M., MELLER, R., SCHLEGEL F., Validation of a morphology 
adaptive multi-field two-fluid model considering counter-current stratified flow 
with interfacial turbulence damping, Nuclear Engineering and Design, 346 (2021) 
111223. 

[91] MELLER, R., SCHLEGEL, F. LUCAS, D., Basic verification of a numerical 
framework applied to a morphology adaptive multifield two-fluid model 
considering bubble motions, International Journal for Numerical Methods in Fluids, 
93 3 (2021) 748, 773. 

[92] PRASSER, H. M., et al. Evolution of the structure of a gas-liquid two-phase flow 
in a large vertical pipe, Nuclear Engineering and Design 237 15-17 (2007) 1848, 
1861. 

[93] FREDERIX, E.M.A., HABIYAREMYE, V., LogMOM OpenFOAM library, 
Nuclear Research and Consultancy Group, Netherlands, 
http://github.com/edofrederix/LogMoM. 

[94] ISHII, M., ZUBER, N., Drag coefficient and relative velocity in bubbly, droplet or 
particulate flows, AlChE Journal, 25 5 (1979) 843, 855. 

[95] FRANK T., Advances in Computational Fluid Dynamics (CFD) of 3-Dimensional 
Gas-Liquid Multiphase Flows, NAFEMS Seminar: Simulation of Complex Flows 
(CFD)- Applications and Trends, Wiesbaden, Germany (2005) 1-18. 

[96] BEHZADI, A., ISSA, R.I., RUSCHE, H., Modelling of dispersed bubble and 
droplet flow at high phase fractions, Chemical Engineering Science 59 4 (2004) 759, 
770. 

[97] LAHEY, R.T., The simulation of multidimensional multiphase flows, Nuclear 
Engineering Design 235 10-12 (2005) 1043, 1060. 



 

142 

[98] KUMAR, S., RAMKRISHNA, D., On the solution of population balance equations 
by discretization- 1. A fized pivot technique, Chemical Engineering Science, 51 8 
(1996) 1311, 1332. 

[99] LUO, H., SVENDSEN, H.F., Theoretical model for drop and bubble breakup in 
turbulent dispersions, AIChE Journal, 42 5 (1996) 1225, 1233.  

[100] PRINCE, M. J., BLANCK, H.W., Bubble coalescene and break-up in air-sparged 
bubble columns, AIChE Journal 36 10 (1990) 1485, 1499. 

[101] FEYNMAN, R. P., LEIGHTON, R. B., SANDS, M., The Feynman Lectures on 
Physics, Vol. 1, Addison-Wesley, USA (1963). 

[102] VONKA V., Measurement of secondary flow vortices in a rod bundle, Nuclear 
Engineering and Design 106 (1988) 191, 207. 

[103] GRÖTZBACH, G., Challenges in low-Prandtl number heat transfer simulation and 
modelling, Nuclear Engineering and Design 264 (2013) 41,55. 

[104] ROELOFS, F., et al., Status and perspective of turbulence heat transfer modelling 
for the industrial application of liquid metal flows, Nuclear Engineering and Design 
290 (2015) 99, 106. 

[105] SHAMS, A., et al., A collaborative effort towards the accurate prediction of 
turbulent flow and heat transfer in low-Prandtl number fluids, Nuclear Engineering 
and Design 366 (2020) 110750. 

[106] SHAMS, A., DE SANTIS, A., ROELOFS, F., An overview of the AHFM-NRG 
formulations for the accurate prediction of turbulent flow and heat transfer in low-
Prandtl number flows, Nuclear Engineering and Design 355 (2019) 110342. 

[107] KASSEM, S., PUCCIARELLI, A., AMBROSINI, W., Insight into a fluid-to-fluid 
similarity theory for heat transfer at supercritical pressure: Results and perspectives, 
International Journal of Heat and Mass Transfer 168 (2021) 120813. 

[108] PEETERS, J., PECNIK, R., ROHDE, M., VAN DER HAGEN, T., BOERSMA, B., 
Turbulence attenuation in simultaneously heated and cooled annular flows at 
supercritical pressure, Journal of Fluid Mechanics 799 (2016) 505, 540. 

[109] JACKSON, J. D., Fluid flow and convective heat transfer to fluids at supercritical 
pressure, Nuclear Engineering and Design 264 (2013) 24, 40. 

[110] PAPUKCHIEV, A., ROELOFS, F., SHAMS, A., LECRIVAIN, G., AMBROSINI, 
W., Development and application of computational fluid dynamics approaches 
within the European project THINS for the simulation of next generation nuclear 
power systems, Nuclear Engineering and Design 290 (2015) 13, 26. 

[111] PEETERS, J., PECNIK, R., ROHDE, M., VAN DER HAGEN, T., BOERSMA, B., 
Characteristics of turbulent heat transfer in an annulus at supercritical pressure, 
Physical Review Fluids 2 (2017) 024602. 

[112] PUCCIARELLI, A., AMBROSINI W., Improvements in the prediction of heat 
transfer to supercritical pressure fluids by the use of algebraic heat flux models, 
Annals of Nuclear Energy 99 (2017) 58-67. 

[113] INTERNATIONAL ATOMIC ENERGY AGENCY, Status of Research and 
Technology Development for Supercritical Water Cooled Reactors, IAEA-
TECDOC-1869, IAEA, Vienna (2019). 

[114] SCHULENBERG, T., et al., European supercritical water cooled reactor, Nuclear 
Engineering and Design 241 (2011) 3505, 3513. 

[115] WANK, A., STARFLINGER, J., SCHULENBERG, T., LAURIEN, E., Mixing of 
cooling water in the mixing chambers of the HPLWR – High Performance Light 
Water Reactor, Nuclear Engineering and Design 240 (2010) 3248, 3258. 



 

143 

[116] SHAMS, A., ROELOFS, F., KOMEN, E.M.J., BAGLIETTO, E., Large eddy 
simulation of a randomly stacked nuclear pebble bed, Computers and Fluids 96 
(2014) 302, 321. 

[117] SHAMS, A., ROELOFS, F., KOMEN, E.M.J., BAGLIETTO E., Quasi-direct 
numerical simulation of a pebble bed configuration. Part 1: Flow (Velocity) field 
analysis and Part 2: Temperature field analysis, Nuclear Engineering and Design, 
263 (2013) 473, 499. 

[118] FICK, L., MERZARI, E., HASSAN, Y., Direct numerical simulation of pebble bed 
flows: Database development and investigation of low-frequency temporal 
instabilities, Journal of Fluids Engineering 139 (2017) 51301. 

[119] FICK, L., MERZARI, E., HASSAN, Y., Inertial effects and anisotropy for the flow 
in a domain of close packed spheres with a bounding wall, Nuclear Technology, 
208 3 (2022) 539, 561. 

[120] WU, H., GUI, N., YANG, X., TU, J., JIANG, S., Numerical simulation of heat 
transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation, 
International Journal of Heat and Mass Transfer 110 (2017) 393-405. 

[121] SHAVER D., NEAMS Thermal-Hydraulics Deep Dive, Thermal-Hydraulics 
Technical Area Deep Dive and Center of Excellence Workshop (Virtual). 

[122] BLANFORD E., et al., Kairos power thermal hydraulics research and development, 
Nuclear Engineering and Design 364 (2020) 110636. 

[123] YILDIZ, M., HASSAN, Y., MERZARI, E., Numerical simulation of the flow 
through a randomly packed pebble bed with small bed to pebble diameter ratio, 
Transactions of American Nuclear Society 123 1 (2020) 1493, 1496. 

[124] ROELOFS, F., et al., CFD and Experiments for Wire-Wrapped Fuel Assemblies, 
18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 
NURETH18, Portland, USA (2019).  

[125] ROELOFS, F., GOPALA, V.R., JAYARAJU, S., SHAMS, A., KOMEN, E.M.J., 
Review of fuel assembly and pool thermal hydraulics for fast reactors, Nuclear 
Engineering and Design 265 (2013) 1205, 1222. 

[126] VAN TICHELEN, K., MIRELLI, F., GRECO, M., VIVIANI, G., E-SCAPE: A 
scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations, 
Nuclear Engineering and Design 290 (2015) 65, 77. 

[127] ZWIJSEN, K., UITSLAG-DOOLAARD, H., ROELOFS, F., WALLENIUS, J., 
Thermal-Hydraulic Design Support and Safety Analyses of SEALER UK Demo, 
International Conference on Nuclear Engineering (ICONE28), Vol. 83785, 
American Society of Mechanical Engineers (2020). 

[128] VISSER, D., et al., CFD analyses of the European scaled pool experiment E-
SCAPE, Nuclear Engineering and Design 358 (2020) 110436. 

[129] BHATIA, H., BIEDER, U., GORSSE, Y., GUENADOU, D., Thermal-Hydraulic 
Analysis of the Flow in the MICAS Experimental Facility using CFD, 
Computational Fluid Dynamics for Nuclear Reactor Safety Conference 
(OECD/CFD4NRS-8), Paris (2022). 

[130] VISSER, D., et al., CFD Analysis of the ALFRED Hot Plenum, FR22, Beijing, 
China (2022). 

[131] KOLOSZAR, L., PLANQUART, P., VAN TICHELEN, K., KEIJERS, S., 
Numerical simulation of Loss-of-Flow transient in the MYRRHA reactor, Nuclear 
Engineering and Design 363 (2020) 110675. 

[132] ZWIJSEN, K., DOVIZIO, D., MOREAU, V., ROELOFS, F., CFD modelling of the 
CIRCE facility, Nuclear Engineering and Design 353 (2019) 110277. 



 

144 

[133] ZWIJSEN, K., MARTELLI, D., BREIJDER, P., FORGIONE, N., ROELOFS, F., 
Multi-scale modelling of the CIRCE-HERO facility, Nuclear Engineering and 
Design 355 (2019) 110344. 

[134] GERSCHENFELD, A., Towards more efficient implementations of multiscale 
thermal-hydraulics, Nuclear Engineering and Design 381 (2021) 111322. 

[135] TOTI, A., VIERENDEELS, J., BELLONI, F., Extension and application on a pool-
type test facility of a system thermalhydraulic/CFD coupling method for transient 
flow analyses, Nuclear Engineering and Design 331 (2018) 83, 96. 

[136] FANG, J., et al., Feasibility of full-core pin resolved CFD simulations of small 
modular reactor with momentum sources, Nuclear Engineering Design 378 (2021) 
111143. 

[137] YOON, H.Y., PARK, I.K., LEE, J.R., CHO, Y.J., LEE, S.J., Multi-Scale and Multi-
Physics Nuclear Reactor Simulation for the Next Generation LWR Safety Analysis, 
18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 
NURETH-18, Portland, USA (2019). 

[138] GERSCHENFELD, A., “Multiscale and Multiphysics Simulation of Sodium Fast 
Reactors: from Model Development to Safety Demonstration”, 18th International 
Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-18, Portland, 
USA (2019).  

[139] BANDINI, G., et al., Assessment of systems codes and their coupling with CFD 
codes in thermal-hydraulic applications to innovative reactors, Nuclear Engineering 
and Design 281 (2015) 22, 38. 

[140] CONTI, A., et al., Numerical Analysis of Core Thermal-Hydraulic for Sodium 
Cooled Fast Reactors”, 16th International Topical Meeting on Nuclear Reactor 
Thermal Hydraulics, NURETH-16, USA (2015), 1006-1019 pp. 

[141] GERSCHENFELD, A., et al., “Development and Validation of Multi-Scale 
Thermal Hydraulics Calculation Schemes for SFR Applications at CEA”, 
International Conference on Fast Reactors and Related Fuel Cycles, Yekaterinburg, 
Russia (2017). 

[142] ROELOFS, F. (Ed.), Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear 
Reactors, Woodhead Publishing, Cambridge, UK (2018). 

[143] DEGROOTE, J., HAELTERMAN, R., VIERENDEELS, J., Quasi-Newton 
Techniques for the Partitioned Solution of Coupled Problems, In 7th European 
Congress on Computational Methods in Applied Sciences and Engineering, Greece 
(2016). 

[144] NATHALIE, M., et al., VVUQ of a thermal-hydraulic multi-scale tool on 
unprotected loss of flow accident in SFR reactor, EPJ N-Nuclear Sciences and 
Technologies 7 (2021) 3.  

[145] GRISHCHENKO, D., et al., The TALL-3D facility design and commissioning tests 
for validation of coupled STH and CFD codes, Nuclear Engineering and Design 290 
(2015) 144, 153. 

[146] GRISCHCHENKO, D., et al., TALL-3D open and blind benchmark on natural 
circulation instability, Nuclear Engineering and Design 358 (2020) 110386. 

[147] DI PIAZZA, et al., Heat transfer on HLM cooled wire-spaced fuel pin bundle 
simulator in the NACIE-UP facility, Nuclear Engineering and Design 300 (2016) 
256, 267. 

[148] PUCCIARELLI, A., GALLENI, F., MOSCARDINI, M., MARTELLI, D., 
FORGIONE., N., STH/CFD coupled calculations of postulated transients from 
mixed to natural circulation conditions in the NACIE-UP facility, Nuclear 
Engineering and Design 370 (2020) 110913. 



 

145 

[149] PACIO, J., DAUBNER, M., FELLMOSER, F., WETZEL, T., Experimental study 
of the influence of inter-wrapper flow on liquid-metal cooled fuel assemblies, 
Nuclear Engineering and Design 352 (2019) 110145. 

[150] MARTELLI, D., FORGIONE, N., DI PIAZZA, I., TARANTINO, M., HLM fuel 
pin bundle experiments in the CIRCE pool facility, Nuclear Engineering and Design 
292 (2015) 76, 86. 

[151] LORUSSO, P., et al., Total loss of flow benchmark in CIRCLE-HERO integral test 
facility, Nuclear Engineering and Design 376 (2021) 111086. 

[152] VAN TICHELEN, K., MIRELLI, F., Results on Thermal Hydraulic Experiments in 
the LBE-Cooled Pool Facility E-scape in Support of the MYRRHA Design and 
Licensing, 18th International Topical Meeting on Nuclear Reactor Thermal 
Hydraulics, NURETH-18, USA (2019), 1-11 pp. 

[153] KAMIDE, H., HAYASHI, K., ISOZAKI, T., NISHIMURA, M., Investigation of 
core thermos hydraulics in fast reactors-interwrapper flow during natural 
circulation, Nuclear Technology 133 1 (2001) 77, 91. 

[154] ONO, A., TANAKA, M., MIYAKE, Y., HAMASE, E., EZURE, T., Preliminary 
analysis of sodium experimental apparatus PLANDTL-2 for development of 
evaluation method for thermal-hydraulics in reactor vessel of sodium fast reactor 
under decay heat removal system operation condition, Mechanical Engineering 
Journal 7 3 (2020) 19, 00546. 

[155] TECHINE, D., et al., International benchmark on the natural convection test in 
Phenix reactor, Nuclear Engineering and Design 258 (2013) 189, 198. 

[156] UITSLAG-DOOLAARD, H., et al., Multiscale modelling of the Phénix 
dissymmetric test benchmark, Nuclear Engineering and Design 356 (2020) 110375. 

[157] INTERNATIONAL ATOMIC ENERGY AGENCY, Bechmark Analysis of EBR-
II Shutdown Heat Removal Tests, IAEA-TECDOC-1819, IAEA, Vienna (2017). 

[158] SMITH, B. L., et al. Assessment of Computational Fluid Dynamics for Nuclear 
Reactor Safety Problems, Rep. NEA-CSNI-R—2007-13, OECD, Paris (2008). 

[159] WILSON, G. E., BOYACK, B. E., The role of PIRT process in experiments, code 
development and code applications associated with reactor safety analysis, Nuclear 
Engineering and Design 186 1-2 (1998) 23, 37. 

[160] YURKO, J., BUNGIORNO, J., Quantitative phenomena identification and ranking 
table (QPIRT) for reactor safety analysis, Transactions of the American Nuclear 
Society 104 (2011). 

[161] OBERKAMPF, W. L., ROY, C. J., Verification and Validation in Scientific 
Computing, Cambridge University Press, UK (2010).  

[162] ZUBER, N., et al., Appendix D: Hierarchical, Two-Tiered Scaling Analysis; An 
Integrated Structure and Scaling Methodology for Severe Accident Technical Issue 
Resolution, NUREG/CR-5809, USA (1991).  

[163] D’AURIA, F., GALASSI, G. M., Scaling in nuclear reactor system thermal-
hydraulics, Nuclear Engineering and Design 240 10 (2010) 3267, 3293.  

[164] GLAESER, H., HOFER, E., KLOOS, M., SKOREK, T., Uncertanity and sensitivity 
analysis of a post-experiment calculation in thermal hydraulics, Reliability 
Engineering and System Safety, 45 1-2 (1994) 19, 33. 

[165] DE CRECY, A., BAZIN, P., Quantification of the Uncertanities of the Physical 
Models of CATHARE 2, IAEA, (2004). 

[166] D’AURIA, F., DEBRECIN, N., GALASSI, G. M., Outline of the uncertainty 
methodology based on accuracy extrapolation, Nuclear Technology 109 1 (1995) 
21, 38. 



 

146 

[167] D’AURIA, F., GIANNOTTI, W., Development of a code with the capability of 
internal assessment of uncertainty, Nuclear Technology 131 2 (2000) 159, 196. 

[168] PETRUZZI, A., D’AURIA, F., Approaches, relevant topics, and internal method 
for uncertainty evaluation in predictions of thermal-hydraulic system codes, Science 
and Technology of Nuclear Installations 2008 (2007).  

[169] BAZIN, P., et al., BEMUSE Phase III Report: Uncertainty and Sensitivity Analysis 
of the LOFT L2-5 Test. Rep. NEA-CSNI-R-2007-04, OECD, Paris (2007). 

[170] BESTION, D., et al., Review of Uncertainty methods for CFD application to 
Nuclear Reactor Thermal hydraulics, NUTHOS 11-The International Topical 
Meeting on Nuclear Reactor Thermal Hydraulics, South Korea (2016). 

[171] ROACHE, P. J., Quantification of uncertainty in computational fluid dynamics, 
Annual Review of Fluid Mechanics 29 1 (1997) 123, 160. 

[172] PROŠEK, A., D'AURIA, F., MAVKO, B., Review of quantitative accuracy 
assessments with fast Fourier transform based method (FFTBM), Nuclear 
Engineering and Design 217 1-2 (2002) 179, 206. 

 

 



 

147 

CONTRIBUTORS TO DRAFTING AND REVIEW 

Batra, C. International Atomic Energy Agency 

Bestion, D. Commissariat à l’énergie atomique (CEA), France 

Bojan, N. Paul Scherrer Institute, Switzerland 

Frederix, E. Nuclear Research and Consultancy Group (NRG), 
Netherlands 

Gerschenfeld, A. Commissariat à l’énergie atomique (CEA), France 

Giustini, G. Imperial College London, United Kingdom 

Jevremovic, T. International Atomic Energy Agency 

Kelm, S. Forschungszentrum Jülich, Germany 

Khuwaileh, B. University of Sharjah, UAE 

Manera, A. Eidgenössische Technische Hochschule (ETH) Zürich, 
Switzerland 

Merzari, E The Pennsylvania State University, United States of America 

Petrov, V. Paul Scherrer Institute, Switzerland 

Qureshi, K. Pakistan Institute of Engineering and Applied Sciences 
(PIEAS), Pakistan 

Radman, S. École Polytechnique Fédérale de Lausanne, Switzerland 

Rehman, H ur. International Atomic Energy Agency 

Riaz, W. International Atomic Energy Agency 

Roelofs, F. Nuclear Research and Consultancy Group (NRG), 
Netherlands 

Sato, Y. Paul Scherrer Institute, Switzerland 

Hassan, Y. Texas A&M University, United States of America 

Meetings 

Consultancy Meeting on Theoretical Foundations and Application of Computational Fluid 
Dynamics in Nuclear Energy Course, 8–10 June 2021 

Joint ICTP-IAEA Course on Theoretical Foundations and Application of Computational Fluid 
Dynamics in Nuclear Engineering, 13–17 September 2021 





ORDERING LOCALLY
IAEA priced publications may be purchased from the sources listed below or from major local booksellers. 

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at 
the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield
15250 NBN Way, Blue Ridge Summit, PA 17214, USA
Telephone: +1 800 462 6420 • Fax: +1 800 338 4550

Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group
Gray’s Inn House
127 Clerkenwell Road
London EC1R 5DB
United Kingdom

Trade orders and enquiries:
Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640
Email: eurospan@turpin-distribution.com

Individual orders:
www.eurospanbookstore.com/iaea

For further information:
Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609
Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:
Marketing and Sales Unit
International Atomic Energy Agency
Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529
Email: sales.publications@iaea.org • Web site: www.iaea.org/publications

@ No. 26



23
-0
25
63
E



77

I N T E R N A T I O N A L  A T O M I C  E N E R G Y  A G E N C Y 
V I E N N A


	Blank Page



