Package 9

INSTRUCTION SHEET, DATA SHEET AND RESULTS REPORTING FORM FOR THE STEP 7A AUDIT

This package contains the following forms:

Instruction Sheet for quality audits of output factors of small fields shaped with an MLC;

Data Sheet for quality audits of output factors of small fields shaped with an MLC;

Certificate for the step 7a audit.

[DAN LETTERHEAD]

ADVANCED TECHNOLOGY IN RADIOTHERAPY DOSE DELIVERY QUALIT AUDIT FOR HIGH ENERGY X RAY BEAMS

INSTRUCTION SHEET

STEP 7a: Quality audits of output factors of small fields shaped with an MLC

GENERAL INSTRUCTIONS

- 1. Calculate the number of monitor units (MU) for 5 field sizes shaped with a multileaf collimator (MLC) to deliver 10 Gy on axis at 10 cm depth, 100 cm SSD in water using your treatment planning system (TPS). These calculations should be repeated for each photon beam energy used for IMRT treatments.
- 2. Calculate the dose rate (Gy/MU) for each of the five MLC defined field sizes given in Section B below and normalize each value to the 10×10 cm² value.
- 3. Fill in the Data Sheet. An evaluation of the small field dose rate dependence results is only possible if these forms are complete.
- 4. Return the Data Sheet to the [DAN].

CONFIDENTIALITY

The small field dose rate dependence results of individual radiotherapy centres are kept confidential by the [DAN] staff and will not be disseminated without the written permission of the participating centre. The statistical distribution of the results may be reported anonymously to the relevant authorities or published.

TECHNICAL INSTRUCTION

A. Aim of the small field dose rate dependence audit

The purpose of the small field dose rate dependence audit is to check dosimetric data in the treatment planning system (TPS), as used for patient Intensity Modulated Radiation Therapy (IMRT) treatments, related to a radiotherapy treatment unit equipped with an MLC. The extension of the [DAN] programme to advanced technology (IMRT) treatments using small MLC fields requires the verification of dose rate changes for small MLC defined field sizes. An independent verification of the dose calculated by treatment planning systems is an essential step in the improvement of quality assurance in radiotherapy and therefore an important extension of the [DAN] programme.

The absorbed dose rate to water at 10 cm depth for four MLC defined small fields ($6 \times 6 \text{ cm}^2$, $4 \times 4 \text{ cm}^2$, $3 \times 3 \text{ cm}^2$ and $2 \times 2 \text{ cm}^2$) normalized to a reference $10 \times 10 \text{ cm}^2$ field will be checked using published dose rate dependence values¹.

B. Calculation of monitor units for MLC defined small field sizes

- Small field size dose rates for Elekta and Siemens accelerators: a 30 × 30 × 30 cm³ water phantom will be created in the TPS. The number of monitor units will be calculated to deliver 10 Gy to a point at a depth of 10 cm on the central axis at 100 cm SSD for each MLC shaped field size set symmetrically about the central axis (10 ×10 cm², 6 × 6 cm², 4 × 4 cm², 3 × 3 cm² and 2 × 2 cm²). These calculations should be repeated for each photon beam energy used for IMRT treatments.
- Small field size dose rates for Varian accelerators: a $30 \times 30 \times 30 \text{ cm}^3$ water phantom will be created in the TPS. The number of monitor units will be calculated to deliver 10 Gy to a point at a depth of 10 cm on the

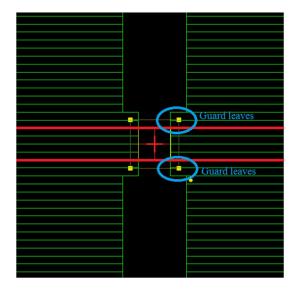


FIG. 1. Field size as defined for Elekta accelerators. For Elekta accelerators equipped with Agility or MLCi2 the fields are defined by the MLC; 1 cm of guard leaves (2 leaf pairs for Agility, 1 leaf pair for MLCi2) are opened on either side to define the in-plane profile by the jaws only.

KERNS, J. R., et al., Reference dosimetry data and modeling challenges for Elekta accelerators based on IROC-Houston site visit data, Med. Phys. **45** (2018) 2337–2344.

¹ FOLLOWILL, D. S., et al., The Radiological Physics Center's standard dataset for small field size output factors, J. Appl. Clin. Med. Phys. **13** (2012) 3962.

Erratum: The Radiological Physics Center's standard dataset for small field size output factors, J. Appl. Clin. Med. Phys. **15** (2014) 356–357.

KERNS, J. R., et al., Technical Report: Reference photon dosimetry data for Varian accelerators based on IROC Houston site visit data, Med. Phys. **43** (2016) 2374.

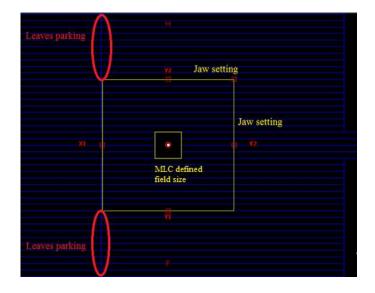


FIG. 2. Field size as defined for Varian accelerators. The secondary jaws define a $10 \times 10 \text{ cm}^2$ field while the MLC defines the segment size.

central axis, at 100 cm SSD for each MLC shaped field size set symmetrically about the central axis $(10 \times 10 \text{ cm}^2, 6 \times 6 \text{ cm}^2, 4 \times 4 \text{ cm}^2, 3 \times 3 \text{ cm}^2 \text{ and } 2 \times 2 \text{ cm}^2)$ with the secondary jaws kept at a fixed field size of $10 \times 10 \text{ cm}^2$. These calculations should be repeated for each photon beam energy used for IMRT treatments.

• The calculated monitor unit values will be recorded for each photon beam energy modelled in the TPS on the "Quality audits for dose rate dependence of small fields shaped with MLC" datasheet. The participants are also requested to provide a TPS screenshot (print screen) of the beam's eye view for each field size.

TABLE 1. IRRADIATION CONDITIONS TO BE USED. THESE ARE A REFERENCE FIELD AND FOUR DIFFERENT FIELDS WITH SHAPES AND DIMENSIONS DEFINED BY THE MLC.

Field No.	Field size	Field	Depth in water	Irradiation distance	Delivered dose
1	$10 \times 10 \text{ cm}^2$	Reference field	10 cm	100 cm, SSD	10 Gy
2	$6 \times 6 \text{ cm}^2$	Small square MLC field	10 cm	100 cm, SSD	10 Gy
3	$4 \times 4 \text{ cm}^2$	Small square MLC field	10 cm	100 cm, SSD	10 Gy
4	$3 \times 3 \text{ cm}^2$	Small square MLC field	10 cm	100 cm, SSD	10 Gy
5	$2 \times 2 \text{ cm}^2$	Small square MLC field	10 cm	100 cm, SSD	10 Gy

NOTE: For Varian accelerators, the secondary jaws are kept fixed at a $10 \times 10 \text{ cm}^2$ field size for all MLC defined field sizes.

[DAN LETTERHEAD]

ADVANCED TECHNOLOGY IN RADIOTHERAPY DOSE DELIVERY QUALITY AUDIT FOR HIGH ENERGY X RAY BEAMS

DATA SHEET

Step 7a: Quality audits for dose rate dependence of small fields shaped with an MLC

It is of a great importance for the TLD evaluation that the information requested below be completed. Please complete Part II, if additional absorbed dose to water determination was made by ionization chamber measurements.

Individuals responsible				
Radiation oncologist				
	name	position		
Medical physicist				
	name	position		
Name of institution				
Address				
Telephone number				
Fax number		:		
E-mail				
Form completed by				
Form completed by Name				
Position	□ Medical physicist □ Radiation oncologist □ Technician			
rosition	1 1			
On the day		_		
	day month year			
TLD irradiation perform	ed by			
Name	•			
Position	□ Medical physicist □ Radiation or	ncologist 🗆 Technician		
	Other:	•		
Previous participation in	an external audit or inter-institution	n comparison for this beam		
No 🗆				
Yes \Box	Date			
	2000			
Please also give informatio	n on participation in any other audit			

FOR HOSPITAL STAFF (physicist, oncologist, technician)

A. Specifications of the treatment unit

The treatment unit modelled by the TPS was

model	manufactur	er	serial number	production year
installed in the year				
				MV
The beam is \Box with \Box	Gira without the f	attening filter and	d is commissioned as \Box	standard □ SRS □ SRT beam.
The beam quality is cha	racterized by o	ne of the followin	g:	
$\Box D_{20}/D_{10} = \dots$		$0 \text{ cm} \times 10 \text{ cm}$ at 3	SSD = 1 m)	
\Box TPR ²⁰ / ₁₀ =		$0 \text{ cm} \times 10 \text{ cm}$ at a	a constant source detecto	or distance of cm)
other	co	nditions:		
The MLC used is of the	type			
model	manufactur	er	#leaves	leaf width at isocentre
B. Specification of the	treatment Pla	nning System (T	'PS)	
Treatment Planning Sys	tem used is:		Software vers	sion:

Original TPS commissioning date:/...../.....

Original software commissioning date:/...../......

C. Monitor unit (MU) calculations for the MLC defined small field sizes

Field size [cm ²]	MU*	Dose rate Gy/MU	Normalized Dose Rate
10 × 10			1.000
6 × 6			
4 × 4			
3 × 3			
2 × 2			

* The number of monitor units should be calculated to deliver 10 Gy to a point at a depth of 10 cm on the central axis at 100 cm SSD for each MLC shaped field size set symmetrically about the central axis $(10 \times 10 \text{ cm}^2, 6 \times 6 \text{ cm}^2, 4 \times 4 \text{ cm}^2, 3 \times 3 \text{ cm}^2 \text{ and} 2 \times 2 \text{ cm}^2)$.

Any additional comments:

Please return this datasheet together with TPS screenshot (Print screen) of the beam's eye view for each field.

[DAN] TLD POSTAL DOSE QUALITY AUDIT

Institution:	Institution name	TPS calculations done by:	Name
Address:	Institution address	TPS used:	TPS Model
Country:	Country name	Evaluation:	yyyy-mm-dd

STEP 7a: RESULTS OF SMALL BEAM OUTPUT FACTORS FOR HIGH-ENERGY X RAY BEAMS

		Beam 1: MV		Beam 2: MV			
Radiation unit	Field size [cm × cm]	Published* output factor	Institution output factor	<u>Institution OF</u> Published OF	Published* output factor	Institution output factor	<u>Institution OF</u> Published OF
	$ \begin{array}{c} 10 \times 10 \\ 6 \times 6 \end{array} $						
	4×4						
	3 × 3						
	2×2						

*Followill et al. (2012) The Radiological Physics Center's standard dataset for small field size output factors. Journal of Applied Clinical Medical Physics 13, pp 282-289. *Followill et al. (2014) Erratum: "The Radiological Physics Center's standard dataset for small field size output factors." Journal of Applied Clinical Medical Physics 15.

CI.	
Sign	ature
Dign	unne

Date:

[TLD Officer] – [DAN]

yyyy-mm-dd

IMPORTANT NOTICE: This information is provided only as an independent verification of small beam output against the reference data set. **IT DOES NOT CONSTITUTE A STATEMENT WITH REGARD TO THE QUALITY OF RADIOTHERAPY**