Utilization of the TRIGA Mainz

Gabriele Hampel, Institut für Kernchemie
Overview

- Introduction in the TRIGA Mainz
- Education and Training
- In-core applications: NAA and Isotope production
 - Solar grade silicon
 - Forensic investigations
 - Archaeological materials
 - Wine
- Thermal column: Medical and biological applications
 - Enhanced liver tumour therapy
 - Neutron irradiation of cell cultures
 - Dosimetry in mixed neutron and gamma fields
- Applications at the beam ports A, B, C and D
 - Transactinide research
 - TRIGA-SPEC
 - Production of Ultra Cold Neutrons
The research reactor TRIGA Mainz

3rd August 1965:
The TRIGA Mainz became critical for the first time.

3rd April 1967
Official opening with the first pulse set by Otto Hahn.

Since 22nd February 2002
(the 100th birthday of Fritz Strassmann)

Historical Place of Science

Gabriele Hampel, Institut für Kernchemie
The research reactor TRIGA Mainz

- TRIGA Mark II
- Life time core with 75 fuel elements in the core
- 7 fresh fuel on stock
- Steady state mode: 100 kW
- Pulse mode: 2 $ 250,000 kW
- Operation time: about 200 day per year, 80% steady state mode and 20 % pulse mode
- More than 17000 pulses
- Burn-up: about 4 g U-235 per year
- 4 beam ports used for experiments in fundamental physics and chemistry
- Thermal column for biological and medical applications
- Staff: members of reactor management, 4 operators, radiation protection, electronical and mecanical workshop

Gabriele Hampel, Institut für Kernchemie
IAEA 2010

Education and Training

Gabriele Hampel, Institut für Kernchemie
Various training courses in
• Reactor operation and physics
• Nuclear and radiochemistry
• Radiation protection

for
• Engineers and technicians
• Teachers
• Researchers
• University students studying nuclear engineering and/or physics nuclear chemistry

About 12 weeks a year with growing demand
Reactor operation and reactor physics

• Inspections at the reactor
• Operation of the reactor in the steady state and pulse mode
• Neutron flux measurements at different irradiation positions
• Influence of test samples to the reactor operation
• Calibration of the control rods
• Fuel inspections
• Function and sensitivity of the compensated ion chamber
• Reactivity measurements and
• Error diagnostics
Neutron Activation Analysis

Gabriele Hampel, Institut für Kernchemie
Irradiation positions for NAA

Central irradiation tube
- Neutron flux: \(4.2 \times 10^{12} \text{ n/cm}^2\cdot\text{s}\)
- Mass of the sample: about 100 mg
- Irradiation time: 1 – 30 h

Rotary specimen rack
- Neutron flux: \(0.7 \times 10^{12} \text{ n/cm}^2\cdot\text{s}\)
- Mass of the sample: about 100 mg
- Irradiation time: 1 – 30 h

Rapid system
- Neutron flux: \(1.7 \times 10^{12} \text{ n/cm}^2\cdot\text{s}\)
- Mass of the sample: about 20 mg
- Irradiation time: 1 - 5 min
Applications of NAA at the TRIGA Mainz

Alternative Energies
- Solar grade silicon for photovoltaics (N. Wiehl, J. Hampel)

Criminology (N. Scheid)
- Analysis of glass
- Brick stones
- Hair

Grapes and vine analysis (M. Feige)

Archaeometry
- Reverse paintings (I. Conjeos Sánchez, J. Riederer)
- Limestones
- Analysis of Hämatit (D. Rieth)
- Roman brick stone (J. Dolata)

Gabriele Hampel, Institut für Kernchemie
"Solar Grade" Silicon - motivation

Boom in the solar industry

⇒ Limited availability of high purity silicon (also applied in the production of semiconductors)

⇒ Increasing costs

Alternative

“solar grade silicon” (SG-Si)
SG-Si : silicon with acceptable purity grades (> 99.9999%)

Gabriele Hampel, Institut für Kernchemie
The energetic efficiency of solar cells is affected by impurities of the 3d transition metals, such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu.

Determination of the impurities in the feedstock

Development of methods to reduce the impurities

HCl gas getter

Treatment of the wafer by HCl gas at T > 900°C
Formation of volatile metal chlorides at the surface and diffusion of interstitial metals to the surface
Removal from the compounds by a stream of gas

Determination of the trace elements’ concentration after the purification

Gabriele Hampel, Institut für Kernchemie
Motivation

Based on a real murder case:
- Dead body of a murder victim was weighted down with brick stones and submerged in a lake
- Suspect has brick stones at home

Questions:
- Do these two stone samples originate from the same producer?
- Do any similarities exist between these stones?
Forensic investigation of brick stones using NAA

Strategy

- A single brick was divided into four parts → variation of the elemental composition in one brick (homogeneity)
- 4 stones of one production batch → variation in a batch/charge
- 4 stones from different production facilities → variation between different producers
Forensic investigation of brick stones using NAA

Analysis of the main components (3D plot)
For the elements V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs

Gabriele Hampel, Institut für Kernchemie
Conclusion

Variation of the elemental concentrations between bricks originating from different producers are higher than the variation between stones from the same production facility.

Elemental analysis using NAA is a valuable tool for forensic examinations of brick stones but only similarities or differences can be shown, which cannot be used as the only incriminating evidence.

Gabriele Hampel, Institut für Kernchemie
Archeological Materials

Aim
Inference about geographic origin and attribute of the materials

Method
Compositional characterization of archaeological materials in conjunction with stylistic and petrographic criteria

Compositional data answers questions about
- group of materials belonging together,
- a common origin relating materials of unknown origin to a region or a quarry
- information about trade relations in the archaeological time period

⇒ Interest for museums and art historians
Limestone

Gabriele Hampel, Institut für Kernchemie
Limestone

Broken grave stone

Randoaldus

Gabriele Hampel, Institut für Kernchemie
Results

Homogenität der Steine im Vergleich

Elementkonzentration / ppm

Elemente

Gabriele Hampel, Institut für Kernchemie
Reverse paintings of glass in the 18th and 19th centuries

Fig. 1 and 2. Daily scenes, hunting scene and a representation of parts from Europe

Fig. 3 and 4. Pictures of Saints, usually they were given as a present: St. Katharina and St. Leonhard

- Important part of the middle European cultural heritage
- Materials changed rapidly in the 18th and 19th centuries (pigments as well as glass)
- Less information about the origin of the glasses
- Are there any differences in the properties of materials in different areas or in different periods?

Gabriele Hampel, Institut für Kernchemie
Map of Southern Germany with the important centres of underglass painting in 1700-1900.
Reverse paintings of glass in the 18th and 19th centuries

Gabriele Hampel, Institut für Kernchemie
Mainz is Germany’s wine capital.

- Situated in the heart of Rheinhessen
- One of Germany’s largest wine growing areas
- A lot of small wine restaurants and wine farms
Analysis of the elements and trace elements of grapes and wine

Motivation: High quality of wine

Quality is affected by interruptions in fermentation

- Can the interruptions in fermentation be caused by trace elements?
- Can the results from the isolated experiment in a laboratory be transferred to a real case in a wine cellar?
- Are the conditions of the grapes important for the fermentation procedure?
- How is the behaviour of the minerals in the grapes during the time of growing?

Systematic determination of the element and trace element concentration independent of the time for the grapes and the wine during fermentation

Gabriele Hampel, Institut für Kernchemie
Concentration of Zn during the fermentation of the Riesling wine injected with a pure yeast to start the fermentation

Injection of pure yeast

Separation of the yeast

Addition of salts

Decrease of fermentation

Gabriele Hampel, Institut für Kernchemie
Isotope production

Isotope production at low flux reactors, such as the TRIGAs

Radioisotopes with short decay times such as

\[^{24}\text{Na}, ^{41}\text{Ar}, ^{56}\text{Mn}, ^{113m}\text{In}, ^{82}\text{Br}, ^{140}\text{La} \]

Application in the analysis of chemical-technical processes
Determination of fluid-flow, dwell time and volume measurements

Determination of the efficiency of toothpaste
Teeth are irradiated in the roundabout, then cleaned with toothpaste and the total amount of activity in the toothpaste is measured.
Thermal column:
Medical and biological applications

Gabriele Hampel, Institut für Kernchemie
Thermal column: Medical and biological applications

- Enhanced liver tumour therapy applying BNCT
- Determination of Boron using the quantitative neutron capture radiography (QNCR)
- Neutron irradiation of cell cultures
- Dosimetry in mixed neutron and gamma fields

Simulations of the TRIGA Mainz using the 3 dimensional transport code ATITLA

B. Wortmann (Steag encotec)
Boron Neutron Capture Therapy (BNCT)

- Thermal neutron capture cross section of ^{10}B: $\sigma = 3840$ barn
- High LET: $\alpha = 150$ keV/μm
 $^7\text{Li} = 175$ keV/μm
- Range in tissue 5 to 8 µm
- Local activation $^{10}\text{B}(n,\alpha)^7\text{Li}$

High enrichment with ^{10}B in the tumour cells (right) and low enrichment in the normal tissue (left) to destroy the tumor.

Gabriele Hampel, Institut für Kernchemie
Boron Neutron Capture Therapy and Liver Surgery

Principal steps:

1. Application of ^{10}B-containing drug (BPA) preferentially accumulating in tumorous lesions

2. Explanting and preservation of the liver as a whole

3. Neutron beam irradiation

4. Re-implantation of the liver

Gabriele Hampel, Institut für Kernchemie
Successful Therapy

Target parameter for clinical application:

• B-10 concentration of at least 25 ppm in tumour tissue ($\approx 10^9$ atoms per cell)
• Uptake Ratio B-10 ≥ 2.5
• Maximum dose for healthy tissue: 8 Gy
• Very short anhepatic period of time (< 2 h)

Questions:

• What is the exact boron uptake in tumour vs. healthy liver tissue?
• Are there any wash-out effects concerning the concentration gradient?
• Is the high operative risk justified?

Clinical study:
Determination of the accumulation of BPA in tumour and healthy liver tissue before and after washing the liver specimen with preservation solution.

Gabriele Hampel, Institut für Kernchemie
Study design

Licence for 15 patients, 4 done until now
- Surgical treatment of the liver metastases indicated
- Colorectal metastases in one liver lobe

Procedure
- Infusion of BPA bound to fructose in a concentration of 200 mg/kg
- Resection of the liver lobe
- Perfusion and cooling down to 4°C
- Cutting the liver lobe and taking samples
- Installation of dosimeter
- Boron concentration measurements
- Dose measurements

Gabriele Hampel, Institut für Kernchemie
Irradiation positions of the thermal column

Irradiation of the liver

Cell experiments, irradiation of liver after resection

Auto radiography

Gabriele Hampel, Institut für Kernchemie
• Measurement of tissue slices (20 µm) (healthy, tumour, mixed)
• Use of CR-39 films, sensitive only to charged particles
• Irradiation with thermal neutrons in the thermal column
• Development of the films with 7M NaOH, 96h
• Local analysis by comparison with histological images

Boron determination: Radiography

30 µm

Sample

Gabriele Hampel, Institut für Kernchemie
Cell experiments

Aim:
Information about biological effects of neutron radiation
Measurements of survival curves
Determination of relative biological effectiveness (RBE)
Uptake studies

Procedure
- Irradiation of different cell lines with thermal neutrons using Multi-Well-Plates
 - HuH7 cells of human hepatocellular liver tumour
 - Diameter of a tumour cell:
 About 30 to 50 µm
 - Age of the cells: 3 day

Gabriele Hampel, Institut für Kernchemie
Cell experiments – requirements for the irradiation

- Temperature inside the thermal column
- Neutron field inside the thermal column

Gabriele Hampel, Institut für Kernchemie
Cell experiments – results

Effect of irradiation on Huh-7-cells

Cell vitality (O.D. 560 nm)

- without irradiation
- irradiation

(fluence: 6.21 x 10^12)

Time after irradiation (min)
Applications at the beam ports A, B, C and D
Applications at the beam port A

Chemistry of the heaviest elements, Transactinide research
Calibration of neutron flux detectors for power reactors

Gabriele Hampel, Institut für Kernchemie
O. Hahn, F. Strassmann: Naturwissenschaften (1939):

„Als Chemiker müßten wir ... statt Ra, Ac, Th die Symbole Ba, La, Ce einsetzen. Als der Physik in gewisser Weise nahestehenden Kernchemiker können wir uns zu diesem, allen bisherigen Erfahrungen der Kernphysik widersprechenden Sprung noch nicht entschließen“

Chemistry with single atoms due to low production rates

Do relativistic effects alter the electronic structure of the Transactinide elements?

Fission products – available TRIGA in carrier-free amounts

12 Atome/week

Gabriele Hampel, Institut für Kernchemie
Applications at the beam port B

TRIGA-SPEC: TRIGA-TRAP and TRIGA-LASER

Gabriele Hampel, Institut für Kernchemie
High-precision measurements of nuclear ground state properties

- Improvement of nuclear models
- A better understanding of the nucleo-synthesis process
- Mass measurements
 - Provide important data for astrophysical calculations - so-called rapid neutron-capture process (r-process) - since the nuclear mass directly reflects the binding energy in the nucleus
 - Serve as test cases for nuclear mass-models in the heavy mass region
- Laser spectroscopy yields information on properties such as
 - nuclear moments and
 - charge-radii of neutron rich nuclides far from stability, which are extracted from the observed hyperfine structure and isotope shift.

⇒ Decay properties of neutron rich fission products
Applications at the beam port C and D

Sources for ultra cold neutrons (UCN)

Gabriele Hampel, Institut für Kernchemie
Ultra Cold Neutrons (UCN)

Thermal neutrons
- Velocity: $v \approx 2200$ m/s
- Energy: $1/40$ eV

Ultra cold neutrons (UCN)
- Velocity: $v \leq 7$ m/s
- Energy: 250 neV

Total reflection at materials like Stainless steel, Ni, Be, Diamond under all angles

Brechungsindex $n < 1$

\Rightarrow UCN can be stored in bottles of these materials

Gabriele Hampel, Institut für Kernchemie
Principle of the UCN source at the TRIGA Mainz

Fast neutrons $v = 0.1 \cdot c$

Thermal cold neutrons $v = 1000 \text{ m/s}$

Ultra cold neutrons (UCN) $v < 10 \text{ m/s}$

Solid Hydrogen
Temperature: 20 Kelvin (-250°C)

Solid Deuterium
Temperature: 5 Kelvin (-270°C)

UCN source

UCN experiment

20 cm

3 m

Reactor pulse

Gabriele Hampel, Institut für Kernchemie
UCN source at the TRIGA Mainz

Deuterium/Hydrogen Storage tank

Helium tank

UCN source

UCN storage experiment

Gabriele Hampel, Institut für Kernchemie
High precision experiments with free neutrons!

- Determination of the live time of the neutrons
- Search of the electrical dipole moment of neutrons

Answer of fundamental questions of astro-particle physics like the primordial synthesis (i.e. the production of the lightest elements directly after the Big Bang) or the absence of antimatter in the Universe
Electric dipole moment of the neutron: Explanation for the disequilibrium between matter and antimatter in the Universe.

Neutron lifetime: Value determines the amount of Helium built in the first 3 minutes of the Universe.
Future of the TRIGA Mainz

• TRIGA Mainz is in excellent technical state
• No fuel failure in 45 years of operation
• 7 fresh fuel elements in stock
• Operation at about 200 days per year, more than 17,000 pulses
• Extensive education and training programme
• Extensive research programme (UCN, TRIGA-SPEC, BNCT, chemistry of the heaviest elements, NAA)
• Increase of the staff

⇒ Extension of the reactor operation to at least 2020

Gabriele Hampel, Institut für Kernchemie
Thank you for your attention!