

Overview of ARIES-CS In-vessel Components: Integration of Nuclear, Economics, and Safety Constraints in Compact Stellarator Design

> L. El-Guebaly and the ARIES Team

Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

2nd IAEA TM on First Generation of Fusion Power Plants: Design & Technology June 20 - 22, 2007 Vienna, Austria

Multi-Institution ARIES Project

ARIES-CS

ARIES-ST

ARIES-IV

2

ARIES-RS

Six Stellarator Power Plants Developed Worldwide Over Past 25 y

Six Stellarator Power Plants Developed Worldwide Over Past 25 y (Cont.)

Stellarators Offer Unique Features and Engineering Challenges

Advantages:

- Inherently steady-state devices
- No need for large plasma current
- No external current drive
- No risk of plasma disruptions
- Low recirculating power due to absence of current-drive requirements
- No instability and positional control systems.

Challenges:

- Complex geometry
- Maintainability and component replacement
- Highly constrained local shielding areas
- 3-D modeling
- Managing large volume of active materials.

ARIES Compact Stellarator

Study aimed at reducing stellarators' size by:

- Developing <u>compact</u> configuration with advanced physics & technology
- Optimizing minimum plasma-coil distance (Δ_{\min}) through rigorous nuclear assessment.

3 Field Periods Configuration

Average Major Radius	7.75 m
Average Minor Radius	1.7 m
Aspect Ratio	4.5
Fusion Power	2400 MW
Average NWL	2.6 MW/m²
Net Electric Power	1000 MW _e
COE (\$2004)	78 mills/kWh

ARIES-CS Nuclear Areas of Research

Reference Dual-cooled LiPb/FS Blanket Selected with Advanced LiPb/SiC as Backup

Breeder	<u>Multiplier</u>	<u>Structure</u>	<u>FW/Blanket</u> <u>Coolant</u>	<u>Shield</u> <u>Coolant</u>	<u>Coolant</u>
Internal VV [*] :					
Flibe	Be	FS	Flibe	Flibe	H ₂ O
LiPb (backup)	-	SiC	LiPb	LiPb	H ₂ O
LiPb (reference)	-	FS	He/LiPb	Не	H ₂ O
Li ₄ SiO ₄	Be	FS	Не	Не	H ₂ O
External VV [#] :					
LiPb	_	FS	He/LiPb	He or H_2O	He
Li	_	FS	He/Li	He	Не

* VV inside magnets.

VV outside magnets.

ARIES-CS Requirements Guide In-vessel Component Design

Calculated Overall TBR Net TBR (for T self-sufficiency)	1.1 ~1.01	
Damage to Structure (for structural integrity)	200	dpa - advanced FS
Helium Production @ Manifolds and VV (for reweldability of FS)	1	He appm
S/C Magnet (@ 4 K): Peak Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to electric insulator	10 ¹⁹ 2 6x10 ⁻³ < 10 ¹¹	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational dose to workers and public	< 2.5	mrem/h

FW Shape Varies Toroidally and Poloidally: Challenging 3-D Modeling Problem

UW Developed CAD/MCNP Coupling Approach to Model ARIES-CS for Nuclear Assessment

- Only viable approach for ARIES-CS
 3-D neutronics modeling.
- Geometry and ray tracing in CAD
- Radiation transport physics in MCNPX.

Neutron Wall Loading Distribution

5.26 (0.32)	-11 (-4)	-18 (-116)

Peak/Ave. NWL = 2

13

Peak NWL

Well-Optimized Blanket & Shield Protect Vital Components (5.3 MW/m² Peak Γ)

High Performance Components at Δ_{min} Help Achieve Compactness, Minimize Major Radius, and Enhance Economics

Tritium Breeding Requirement Determined Minimum Major Radius

- Large machines breed more T as non-uniform blanket coverage decreases with R.
- Designs with R < 7.5 m will not provide T self-sufficiency.

R=7.75 m Reference Design Provides **Tritium Self-Sufficiency**

3-D model includes essential components for TBR:

- Non-uniform and full blanket/shield
- Homogenized: FW/Blanket/BW

Shield

Calculated Overall **TBR = 1.1** with 70% Li enrichment

Neutron Streaming Through Penetrations **Compromises Shielding Performance**

7 types of penetrations:

- 198 He tubes for blanket (32 cm ID)
- 24 Divertor He access pipes (30-60 cm ID)
- 30 Divertor pumping ducts (42 x 120 cm each)
- 12 Large pumping ducts (1 x 1.25 m each) _
- 3 ECH ducts (24 x 54 cm each). _
- 6 main He pipes HX to/from blanket (72 cm ID each) _
- 6 main He pipes HX to/from divertor (70 cm ID each)

Potential solutions: •

- Local shield behind penetrations
- He tube axis oriented toward lower neutron source
- Penetration shield surrounding ducts
- Replaceable shield close to penetrations
- Avoid rewelding VV and manifolds close to penetrations
- Bends included in some penetrations. _

Divertor

Access

Pipe

Divertor

Shield

Local

Shield

WERES Shield

Coolant

Supply/Return

Pipe

Blanket.

Vacuum Vessel

> Local Shield

Coolact

Manifold

Coil&Coil

Supporting

Tube

Access

Pipe

Divertor

Plate

3-D Assessment of Streaming Through Divertor He Access Pipe

Sliding

Seal

Shielding

Shield inserts help protect surrounding components

6.5

1.0 m

Plasma

Shield Attached

Blanket

Shield

Manifold

Vacuum Vessel

Magnet

to Blanket

Key Nuclear Parameters

Peak NWL Average NWL	5.3 MW/m ² 2.6 MW/m ²
Peak to Average NWL	2
Calculated Overall TBR	1.1 with 70% Li enrichment
Net TBR	~1.01
FW/blanket Lifetime	3 FPY
Shield/manifold/VV/magnet Lifetime	40 FPY
Overall Energy Multiplication	1.16
$\Delta_{ m min}$	1.3 m
Δ_{\max}	1.8 m

ARIES-CS Major Radius Approaches R of Advanced Tokamaks

Well optimized radial build along with advanced physics and technologies helped reduce ARIES-CS size

ARIES Project Committed to Radwaste Minimization

Stellarator waste volume dropped by 3-fold over 25 y study period

^{*} Actual volumes (not compacted, no replacements).

Highlights of ARIES-CS Safety Features

Environmental impact:

- Low activation materials with strict impurity control
 - \Rightarrow minimal long-term environmental impact.
- No high-level waste.
- **Minimal radioactive releases**[#] during normal and abnormal operations.

No energy and pressurization threats to confinement barriers (VV and cryostat):

- Decay heat problem solved by design
- Chemical reaction avoided
- No combustible gas generated

- Chemical energy controlled by design
- Overpressure protection system
- Rapid, benign plasma shutdown.

Occupational and public safety:

- No evacuation plan following abnormal events (early dose at site boundary < 1 rem^{*}) to avoid disturbing public daily life.
- Low dose to workers and personnel during operation and maintenance activity $(< 2.5 \text{ mrem/h}^*)$.
- Public safety during normal operation (bio-dose << 2.5 mrem/h^{*}) and following credible accidents:
 - External events (seismic, hurricanes, tornadoes, etc.).
 - LOCA, LOFA, LOVA, and by-pass events.

[#] Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.

^{* 1} rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).

In-vessel Components Exhibit Structural Integrity during LOCA/LOFA Event

- Design Base Accident scenario: <u>He LOCA</u> and <u>LiPb LOFA</u> in all modules and <u>water LOFA</u> in VV.
- <u>Plasma stays on for 3 seconds</u> after onset of LOCA/LOFA.
- Peak FW temperature remains below 740°C reusability limit for ferritic steel.

Radwaste Management Approach

- Three options examined:
 - **Disposal** in repositories: LLW (WDR < 1)
 - **Recycling** reuse within nuclear facilities (dose < 10,000 Sv/h)
 - Clearance release slightly-radioactive materials to commercial market if CI < 1.
- Lack of geological repositories and tighter environmental controls will force fusion designers to promote recycling and clearance, avoiding disposal*

 \Rightarrow minimize radwaste burden for future generations.

• There's **growing international effort** in support of this new trend.

^{*} L. El-Guebaly, "Environmental Aspects of Recent Trend in Managing Fusion Radwaste: Recycling and Clearance, Avoiding Disposal," This IAEA TM, Wednesday @ 9 AM.

Comparison Between Reference and Backup Systems

	LiPb/He/FS	LiPb/SiC
Calculated Overall TBR	1.1	1.1
FW/blanket lifetime	3 FPY	3.4 FPY
Overall energy multiplication	1.16	1.1
$\mathbf{\eta}_{ ext{th}}$	42%	56%
Structure unit cost*	103 \$/kg	510 \$/kg
Blanket/divertor/shield/manifolds cost*	\$288M	\$282M
Cost* of heat transfer/transport system	\$475M	\$175M
Pumping power	183 MW _e	
LSA factor	2	1
Cost of Electricity [*] :		
Reference design $(R=7.75 \text{ m})$	78 mills/kWh	60 mills/kWh
Full blanket/shield everywhere	87 mills/kWh	
(R=10.1 m)		

* in 2004 \$.

Conclusions

- Nuclear assessment received considerable attention during ARIES-CS design process.
- First time ever complex stellarator geometry modeled for nuclear assessment using UW newly developed CAD/MCNP coupling approach.
- Radial build satisfies design requirements in terms of breeding sufficient tritium and shielding vital components.
- Novel shielding approach developed for ARIES-CS helped reduce radial standoff by 40%, major radius by 30%, and overall cost by 10%.
- ARIES-CS demonstrates adequate performance in several safety and environmental areas.
- Successful integration of well-optimized radial build into final design, along with carefully selected engineering parameters and overarching safety and environmental constraints, delivered attractive and <u>truly compact stellarator power plant</u>.