Safety Reports Series
No. 112

Patient Radiation Exposure Monitoring in Medical Imaging

IAEA
International Atomic Energy Agency
IAEA SAFETY STANDARDS AND RELATED PUBLICATIONS

IAEA SAFETY STANDARDS

Under the terms of Article III of its Statute, the IAEA is authorized to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards.

The publications by means of which the IAEA establishes standards are issued in the IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, transport safety and waste safety. The publication categories in the series are Safety Fundamentals, Safety Requirements and Safety Guides.

Information on the IAEA’s safety standards programme is available on the IAEA Internet site

https://www.iaea.org/resources/safety-standards

The site provides the texts in English of published and draft safety standards. The texts of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the IAEA Safety Glossary and a status report for safety standards under development are also available. For further information, please contact the IAEA at: Vienna International Centre, PO Box 100, 1400 Vienna, Austria.

All users of IAEA safety standards are invited to inform the IAEA of experience in their use (e.g. as a basis for national regulations, for safety reviews and for training courses) for the purpose of ensuring that they continue to meet users’ needs. Information may be provided via the IAEA Internet site or by post, as above, or by email to Official.Mail@iaea.org.

RELATED PUBLICATIONS

The IAEA provides for the application of the standards and, under the terms of Articles III and VIII.C of its Statute, makes available and fosters the exchange of information relating to peaceful nuclear activities and serves as an intermediary among its Member States for this purpose.

Reports on safety in nuclear activities are issued as Safety Reports, which provide practical examples and detailed methods that can be used in support of the safety standards.

Other safety related IAEA publications are issued as Emergency Preparedness and Response publications, Radiological Assessment Reports, the International Nuclear Safety Group’s INSAG Reports, Technical Reports and TECDOCs. The IAEA also issues reports on radiological accidents, training manuals and practical manuals, and other special safety related publications.

Security related publications are issued in the IAEA Nuclear Security Series.

The IAEA Nuclear Energy Series comprises informational publications to encourage and assist research on, and the development and practical application of, nuclear energy for peaceful purposes. It includes reports and guides on the status of and advances in technology, and on experience, good practices and practical examples in the areas of nuclear power, the nuclear fuel cycle, radioactive waste management and decommissioning.
PATIENT RADIATION EXPOSURE MONITORING IN MEDICAL IMAGING
The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN ALBANIA ALGERIA ANGOLA ANTIGUA AND BARBUDA ARMENIA AUSTRALIA AUSTRIA AZERBAIJAN BAHAMAS BAHRAIN BANGLADESH BARBADOS BELARUS BELGIUM BENIN BOLIVIA, PLURINATIONAL STATE OF BOSNIA AND HERZEGOVINA BOTSWANA BRAZIL BRUNEI DARUSSALAM BULGARIA BURKINA FASO BURUNDI CAMBODIA CAMEROON CANADA CENTRAL AFRICAN REPUBLIC CHAD CHILE CHINA COLOMBIA COMOROS CONGO COSTA RICA CÔTE D’IVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC DEMOCRATIC REPUBLIC OF THE CONGO DENMARK DIBOUTI DOMINICA DOMINICAN REPUBLIC ECUADOR EGYPT EL SALVADOR Eritrea ESTONIA ETHIOPIA FIJI FINLAND FRANCE GABON GAMBIA GEORGIA GERMANY GHANA GREECE GRENADA GUATEMALA GUYANA HAITI HOLY SEE HONDURAS HUNGARY ICELAND INDIA INDONESIA IRAQ ISRAEL ITALY JAMAICA JAPAN JORDAN KAZAKHSTAN KENYA KOREA, REPUBLIC OF KUWAIT KYRGYZSTAN LAO PEOPLE’S DEMOCRATIC REPUBLIC LATVIA LEBANON LESOTHO LIBERIA LIECHTENSTEIN LITHUANIA LUXEMBOURG MADAGASCAR MALAWI MALAYSIA MALI MALTA MARSHALL ISLANDS MAURITANIA MAURITIUS MEXICO MONACO MONGOLIA MONTENEGRO MOROCCO MOZAMBIQUE MYANMAR NAMIBIA NEPAL NETHERLANDS NEW ZEALAND NICARAGUA NIGER NIGERIA NORTH MACEDONIA NORWAY OMAN PAKISTAN PALAU PANAMA PAPUA NEW GUINEA PARAGUAY PERU PHILIPPINES POLAND PORTUGAL QATAR REPUBLIC OF MOLDOVA ROMANIA RUSSIAN FEDERATION RWANDA SAINT KITTS AND NEVIS SAINT LUCIA SAINT VINCENT AND THE GRENADINES SAMOA SAN MARINO SAUDI ARABIA SENEGAL SERBIA SEYCHELLES SIERRA LEONE SINGAPORE SLOVAKIA SLOVENIA SOUTH AFRICA SPAIN SRI LANKA SUDAN SWEDEN SWITZERLAND SYRIAN ARAB REPUBLIC TAJIKISTAN THAILAND TOGO TONGA TRINIDAD AND TOBAGO TUNISIA TURKISH TURKMENISTAN UGANDA UKRAINE UNITED ARAB EMIRATES UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND UNITED REPUBLIC OF TANZANIA UNITED STATES OF AMERICA URUGUAY UZBEKISTAN VANUATU VENEZUELA, BOLIVARIAN REPUBLIC OF VIET NAM YEMEN YEMEN ZAMBIA ZIMBABWE

The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world”.

PATIENT RADIATION EXPOSURE MONITORING IN MEDICAL IMAGING
COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section
International Atomic Energy Agency
Vienna International Centre
PO Box 100
1400 Vienna, Austria
fax: +43 1 26007 22529
tel.: +43 1 2600 22417
email: sales.publications@iaea.org
www.iaea.org/publications

© IAEA, 2023
Printed by the IAEA in Austria
July 2023
STI/PUB/1976

IAEA Library Cataloguing in Publication Data
Names: International Atomic Energy Agency.
Title: Patient radiation exposure monitoring in medical imaging / International Atomic Energy Agency.
Classification: UDC 614.876 | STI/PUB/1976
FOREWORD

The IAEA’s Statute authorizes the Agency “[T]o establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property…, and to provide for the application of these standards”. In terms of the radiation exposure of patients during the medical use of ionizing radiation, the application of the principles of radiation protection and safety as defined in the IAEA Safety Fundamentals requires a special approach. In accordance with IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, dose limits do not apply to patients. Consequently, the focus for ensuring the radiation protection of patients is on the application of the principles of justification and optimization. In medical imaging using ionizing radiation, including X-ray diagnostic radiology, diagnostic nuclear medicine and image guided interventional procedures, radiation protection of patients is achieved by selecting the most appropriate imaging procedure for the individual needs of the patient and keeping the exposure to the minimum necessary to achieve the necessary diagnostic and interventional objective.

Reviews of the radiation exposure of patients in medical imaging have proved to be key tools for the optimization of the radiation protection of patients, the analysis of individual as well as population based exposures and the process of justification. Information on patient exposure at the population level is informative for assessing trends in collective doses and as a basis for epidemiological studies on the effects of radiation. The rapid technological developments in medical imaging have improved access to information on the exposure of patients and facilitated the analytical uses of these data.

The purpose of this publication is to respond to the lack of definitive guidelines on this subject and provide consolidated information on monitoring patient radiation exposure in medical imaging, including recording, collecting and analysing relevant patient exposure data by manual or automatic means. Considering the ease of access to a large volume of digital data on patient exposure, emphasis has been placed on the use of automatic digital systems for patient radiation exposure monitoring, for which there is also a lack of appropriate guidelines. The purpose is also to encourage the future development and use of automatic digital systems to improve access to information about patient radiation exposure and thus contribute to improved implementation of the requirements for radiation protection of patients throughout the world.

The target audience for this publication is anyone involved in setting up and implementing a patient radiation exposure monitoring programme at the level of a medical facility, group of facilities, State or region. The scope of this
publication is limited to the process of making radiation exposure data available in a meaningful way, framed for the intended purpose and user group. Guidance on patient dosimetry, as well as on specific actions for improving radiation protection and patient care through the proper management and utilization of available exposure data, is specific to each imaging modality and is outside of the scope of this publication.

This Safety Report was developed in cooperation with the World Health Organization and the United Nations Scientific Committee on the Effects of Atomic Radiation. Working Group 28 (Physics) of Digital Imaging and Communications in Medicine and Integrating the Healthcare Enterprise also contributed to this publication.

The IAEA is grateful to all those who assisted in the drafting and review of this publication, in particular H. Järvinen (Finland), E. Samei (USA) and A. Trianni (Italy) with contributions by R. Loose (Germany), M. Rehani (USA) and E. Vano (Spain). The IAEA officer responsible for this publication was J. Vassileva of the Division of Radiation, Transport and Waste Safety.

EDITORIAL NOTE

Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use.

This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

Guidance provided here, describing good practices, represents expert opinion but does not constitute recommendations made on the basis of a consensus of Member States.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this book and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.
CONTENTS

1. INTRODUCTION ... 1
 1.1. Background .. 1
 1.2. Objective .. 2
 1.3. Scope ... 3
 1.4. Structure ... 4

2. PATIENT RADIATION EXPOSURE MONITORING GOALS AND STRUCTURE 5
 2.1. Goals of patient radiation exposure monitoring in medical imaging 5
 2.2. Elements of patient radiation exposure monitoring and terminology 8

3. COMPONENTS OF PATIENT RADIATION EXPOSURE DATA ... 9
 3.1. Image acquisition and processing parameters 9
 3.2. Radiation exposure metrics 10
 3.3. Image quality metrics 18
 3.4. Overall patient risk 23

4. PATIENT RADIATION EXPOSURE MONITORING WORKFLOW .. 25
 4.1. Recording of patient radiation exposure data 26
 4.2. Collecting patient radiation exposure data 26
 4.3. Analysing and reporting patient radiation exposure data 27

5. RECORDING PATIENT RADIATION EXPOSURE DATA .. 28
 5.1. Patient radiation exposure data to be recorded 28
 5.2. Methods of recording patient radiation exposure data 29

6. COLLECTION OF PATIENT RADIATION EXPOSURE DATA ... 39
 6.1. Techniques for collecting patient radiation exposure data ... 40
1. INTRODUCTION

1.1. BACKGROUND

The use of ionizing radiation in medical imaging has brought significant benefit to human health. This benefit has encouraged increased utilization of medical imaging in recent decades and, as a consequence, there has been a marked increase in collective doses from radiological imaging [1, 2]. Although these increased utilizations are largely justified, in the light of the derived benefit, the consequent increased exposures necessitate a higher degree of oversight of radiation protection for patients. This is of particular importance in view of published reports on the unjustified and unoptimized use of radiological imaging [3–7]. Among the reasons for this are the increasing use of imaging technology by medical professionals with limited or no training in radiation protection, and the rising complexity and diversity of imaging systems and features [8, 9]. This landscape has led to several actions by the IAEA on strengthening patient radiation protection under the umbrella of the International Action Plan on Radiation Protection of Patients and the Bonn Call for Action [10–12].

Following the recommendations of the International Commission on Radiological Protection (ICRP) [13, 14], and on the basis of IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles [15], IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards [16], requirements are established for patient dosimetry in diagnostic and interventional procedures, as well as diagnostic reference levels (DRLs) to support and facilitate the optimization of radiation protection of patients. These pertain to performing and documenting the dosimetry of patients according to internationally accepted or nationally accepted protocols, determining typical doses to patients for common diagnostic radiological and image guided interventional procedures and performing local assessments and reviews to compare with DRLs. IAEA Safety Standards Series No. SSG-46, Radiation Protection and Safety in Medical Uses of Ionizing Radiation [17], provides further recommendations but does not detail the methods to meet these requirements.

The IAEA Technical Meetings held in 2015 and 2016 identified gaps in the implementation of the GSR Part 3 requirements for patient dosimetry and DRLs and requested that the IAEA provide consolidated information and detailed advice on the radiation exposure monitoring of patients in medical imaging for optimized radiation protection [18]. The IAEA Technical Meetings held in
focused on the reasons for recurrent imaging and recommended further actions to strengthen the tracking of the exposure history of individual patients and the communication of this information to referring medical practitioners and radiological medical professionals in support of the justification and optimization process [19].

Monitoring of patient radiation exposure provides objective information to health care professionals and authorities who are responsible for ensuring the justified and optimized use of radiation in medicine. The benefits of monitoring patient doses have been documented in many publications, and such monitoring has proved to be a key tool for continuous improvement in the optimization of radiation protection of patients, the analysis of individual as well as population based exposures and the process of justification in medical imaging. For decades, this has been based on periodic patient dosimetry surveys and reviews performed at the level of a medical facility, group of facilities, State or region. Although in the past this process has been based on the manual collection of limited samples of analogue data, which is still the only option in some States, the rapid development of modern digital imaging systems and improved access to the exposure data in a digital format have facilitated patient exposure monitoring by utilizing electronic registries and automatic or semi-automatic digital systems for data collection and analysis. Despite their utility and potential, such digital patient exposure monitoring systems have been implemented only at a limited number of radiological facilities in the world, with notable heterogeneity in their implementation. With a lack of comprehensive international guidelines on this subject, a need has emerged for advice for a clear, focused strategy to support the initiatives of Member States, or health care institutions in Member States, to strengthen the process of patient exposure data collection and analysis. That includes advice on how patient exposure monitoring programmes, and especially digital exposure monitoring systems, need to be designed and used at local, national, regional or international levels towards the ultimate goal of improving radiation protection and patient care.

1.2. OBJECTIVE

This publication provides consolidated information and detailed advice on monitoring patient radiation exposure in medical imaging to help meet the requirements for medical exposure established in GSR Part 3 [16] and the recommendations provided in SSG-46 [17]. Topics discussed include metrics

1 Summaries of the IAEA Technical Meetings are available at https://www.iaea.org/resources/rpop/resources/recurrent-imaging
characterizing patient exposure, such as demographic, acquisition and processing parameters, as well as dosimetric and image quality data; mechanisms and processes for data recording, collection and analysis; and practical implementation considerations.

Patient radiation exposure monitoring in this publication refers to any systematic process of monitoring relevant patient exposure data, whether implemented manually or by automatic digital means. Although manual systems for data monitoring can still be used and can sometimes be the only available option in many places, the best benefits and highest effectiveness of patient radiation exposure monitoring can be achieved by the utilization of automatic digital systems. Most of the guidelines and principles presented in this publication are applicable regardless of whether the system is manual or digital, but an emphasis has been placed on the use of automatic digital systems. The purpose is also to encourage the future use and development of automatic digital systems to improve access to information about patient radiation exposure and thus contribute to improved implementation of the requirements for radiation protection of patients throughout the world. Whether manual or automatic, it is essential that patient radiation exposure monitoring is systematic.

The target audience of this publication is those involved in setting up and implementing radiation exposure monitoring programmes at the level of a medical facility, group of facilities, State or region. This includes medical physicists, medical radiation technologists (also called radiographers, radiological technologists or nuclear medicine technologists in some countries), radiological medical practitioners (radiologists, nuclear medicine specialists, or other professionals who are competent to perform independently or oversee diagnostic or image guided procedures), referring medical practitioners (referring physicians), qualified experts (e.g. in medical physics or radiation protection), information technology (IT) specialists in health care, researchers, manufacturers and suppliers of medical radiological equipment and software, regulatory bodies, health authorities and policy makers. This report may also be relevant for patients and consumer associations: embedding patient radiation exposure monitoring into national policies on quality of care can enhance the responsiveness of health systems to consumer expectations.

1.3. SCOPE

The publication covers medical radiological imaging procedures in diagnostic radiology, image guided interventional procedures and diagnostic nuclear medicine. It covers all image guided radiological procedures carried out in subspeciality services such as, but not limited to, cardiology, vascular surgery,
urology, orthopaedic surgery, obstetrics and gynaecology, emergency medicine, gastroenterology and radiation therapy.

The information provided in the report covers the process of monitoring patient radiation exposure, including the appropriate metrics, mechanisms and processes for data recording, collection and analysis; and practical implementation considerations. The publication outlines different analytical uses of exposure data to help users set the goal of their radiation exposure monitoring programme and properly design its components. The scope of the publication is limited to the process of making radiation exposure data available in a meaningful way that is framed for its intended purpose and user group. Guidance on specific actions for improving radiation protection and patient care through proper management and utilization of available data is specific to each imaging modality and is outside the scope of this publication.

Guidance provided here, describing good practices, represents expert opinion but does not constitute recommendations made on the basis of a consensus of Member States.

1.4. STRUCTURE

Following this introductory section, Section 2 outlines the goals and content of patient radiation exposure monitoring.

Section 3 describes the components of patient exposure data to be monitored, including image acquisition and processing parameters, exposure metrics and image quality metrics as well as the risk indices.

Section 4 outlines the patient radiation monitoring workflow, including recording, collecting and analysing patient exposure data.

Sections 5 and 6 provide detailed information on data recording and collection, with a focus on methods and techniques, classification and coding of procedures and available standards for digital exposure data.

Section 7 provides information on different analytical uses of patient radiation exposure monitoring for optimizing protection and practice consistency and for individual patient exposure analysis, including tracking of radiation exposure history of individual patients.

Section 8 focuses on the implementation considerations of the patient radiation exposure monitoring, including organizational structure, quality control, specification and functionalities of digital systems, training and communication, integration into other health care systems, priorities for implementation as well as obstacles and solutions.

The Appendix provides examples of metrics for the three levels of patient exposure data that are defined in Section 5.
2. PATIENT RADIATION EXPOSURE MONITORING GOALS AND STRUCTURE

2.1. GOALS OF PATIENT RADIATION EXPOSURE MONITORING IN MEDICAL IMAGING

Medical imaging is performed with the explicit goal of obtaining useful information to support decision making about the management of patient care. If that goal is compromised, the patient will be subject to clinical risk, which can be defined as the risk associated with lowered diagnostic confidence and the associated reduced likelihood of accurate interpretation, potentially leading to misdiagnosis. There is also another category of risk in imaging with ionizing radiation, namely radiation risk. These two risks are interrelated and have to be put in balance with respect to one another.

From a radiation protection perspective, management of the medical exposure of patients is based on the implementation of the radiation protection principles of justification and optimization [13–15]. The first step in this process is justification, which is carried out at the level of procedure as well as for the individual patient. As stated in para. 3.155 of GSR Part 3 [16] (footnote omitted):

“Medical exposures shall be justified by weighing the diagnostic or therapeutic benefits that they are expected to yield against the radiation detriment that they might cause, with account taken of the benefits and the risks of available alternative techniques that do not involve medical exposure.”

To justify medical exposure for an individual patient, para. 3.157 of GSR Part 3 [16] requires that the radiological medical practitioner and the referring medical practitioner take into account “the characteristics of the medical exposure; the characteristics of the individual patient, and relevant information from the patient’s previous radiological procedures”, among other elements, and para. 3.158 states that “Relevant national or international referral guidelines shall be taken into account for the justification of the medical exposure of an individual patient in a radiological procedure.”
Patient radiation exposure monitoring as described in this Safety Report aims to inform the process of justification at the level of generic justification of a given radiological procedure by providing information about associated radiation doses and risks, as well as at the level of the individual patient by providing necessary information about previous radiological procedures and associated exposure levels. This up-to-date information might be included in the referral guidelines for imaging and used to provide feedback to referring medical professionals and radiological medical practitioners in the justification of medical exposure for an individual patient.

Further to justification, Requirement 38 of GSR Part 3 [16] states that “Registrants and licensees and radiological medical practitioners shall ensure that protection and safety is optimized for each medical exposure” and defines the optimization of protection and safety for medical exposure of patients as “the management of the radiation dose to the patient commensurate with the medical purpose”. In addition, para. 1.16 of GSR Part 3 [16] states:

“[T]he application of the optimization principle to the medical exposure of patients, and to that of volunteers as part of a programme of biomedical research, requires a special approach. Too low a radiation dose could be as bad as too high a radiation dose, in that the consequence could be that…the images obtained are not of suitable diagnostic quality. It is of paramount importance that the medical exposure leads to the required outcome.”

In the context of medical imaging, optimization means maximizing the benefit to risk ratio for the patient, which could be interpreted as balancing image quality and dose so as to provide an assurance that the goal of the imaging procedure will be achieved. As stated in table 1 of SSG-46 [17], optimization of protection and safety in diagnostic and interventional medical exposure means “keeping the exposure of patients to the minimum necessary to achieve the required diagnostic or interventional objective”.

Optimization includes not only consideration of the risk associated with the application of the ionizing radiation used in the process, such as the radiation risk, but also the likelihood of not delivering the very purpose of imaging, such as delivering the desired benefit. Not realizing that purpose can be recognized as a clinical risk [20]. Comprehensive optimization of medical imaging combines the radiation and clinical risks as a unified total risk estimate within a process informed by the diagnostic or interventional objective (the clinical task). In dealing with both radiation risk and clinical risk, optimization is characterized in a patient centred manner. In this wider perspective, optimization leads to increased clinical effectiveness [20].
Requirement 38 of GSR Part 3 [16] requires different components to be in place for the optimization of the protection of patients in diagnostic radiological and image guided procedures, including the following:

— Appropriate and well-designed medical radiological equipment and associated software and, for nuclear medicine, appropriate radiopharmaceuticals;
— Suitable operational considerations, including appropriate techniques and parameters to deliver a medical exposure of the patient that is the minimum necessary to fulfil the clinical purpose of the radiological procedure, with account taken of relevant norms of acceptable image quality established by relevant professional bodies and of relevant DRLs;
— Calibrated radiation sources and dosimeters used for dosimetry of patients;
— Dosimetry of patients to determine typical doses for common procedures;
— DRLs;
— A comprehensive quality assurance programme.

DRLs and patient dosimetry are recognized as important tools for optimization. For setting DRLs, para. 3.148 of GSR Part 3 [16] states:

“The government shall ensure, as part of the responsibilities specified in para. 2.15, that as a result of consultation between the health authority, relevant professional bodies and the regulatory body, a set of diagnostic reference levels is established for medical exposures incurred in medical imaging, including image guided interventional procedures. In setting such diagnostic reference levels, account shall be taken of the need for adequate image quality, to enable the requirements of para. 3.169 to be fulfilled. Such diagnostic reference levels shall be based, as far as possible, on wide scale surveys or on published values that are appropriate for the local circumstances.”

For the radiological facilities, para. 3.169 of GSR Part 3 [16] requires that local assessments be made and reviews be conducted

“to determine whether the optimization of protection and safety for patients is adequate, or whether corrective action is required if, for a given radiological procedure: (i) Typical doses or activities exceed the relevant diagnostic reference level; or (ii) Typical doses or activities fall substantially below the relevant diagnostic reference level and the exposures do not provide useful diagnostic information or do not yield the expected medical benefit to the patient.”
Thus, the ultimate goal of patient radiation exposure monitoring is advancing towards this optimization at the individual patient and the operational levels. To serve this optimization goal, radiation exposure monitoring in medical imaging has to include not only dose metrics to take into account radiation risk, but also image quality metrics to quantify the clinical outcome.

Radiation exposure monitoring of patients also provides feedback to decision makers and international organizations to estimate trends in medical imaging doses and practice and their contribution to the collective doses at population level. The more extensive process of patient radiation exposure data collection might support the regular surveys organized by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), in cooperation with the World Health Organization (WHO), to estimate global exposure from medical exposure [1, 2, 21–24]. Availability of a standardized mechanism of collecting and reporting patient radiation exposure data would facilitate this analysis and reduce uncertainties in the estimation of population doses and their comparison between different countries and regions.

Radiation exposure monitoring of patients is also useful to inform epidemiological and other research studies on radiation effects and risks.

Patient radiation exposure monitoring as described in this report aims to support the implementation of the requirements of GSR Part 3 [16] that are related to patient dose reviews in all settings, including radiological facilities in States with limited access to modern radiological equipment. The term ‘patient radiation exposure monitoring’, however, aims to reflect the current trend in medical imaging, when access to a large volume of exposure data in a digital format is easily available. This allows for a transition from periodic reviews of patient doses, using isolated samples of standard size patients, to more regular or continuous monitoring and more comprehensive analysis of all of the available data to provide more benefit to patients.

2.2. ELEMENTS OF PATIENT RADIATION EXPOSURE MONITORING AND TERMINOLOGY

Patient radiation exposure monitoring includes components, mechanisms and operational processes related to recording, collecting and analysing patient radiation exposure data associated with clinical imaging operation. Here, monitoring refers to capturing and meaningfully evaluating exposure data and not the actions for quality improvement, an ultimate goal undertaken by managing patient exposure.
Patient radiation exposure monitoring involves recording, collecting and analysing patient exposure radiation data, as follows:

— Recording is the process of documenting patient exposure data, either manually or automatically.
— Collecting is the process of gathering patient radiation exposure data into a common system. The term can be used synonymously with recording and collecting together.
— Analysing patient exposure data is the process of acting upon patient radiation exposure data to provide summaries of statistical, comparative and trend information for use in optimizing radiation protection and clinical practice and to investigate and verify individual doses (incidental and cumulative values) when needed.

The term ‘tracking patient radiation exposure data’ in this publication is reserved for an analysis process of ascertaining and monitoring temporal trends in individual or collective stored data, including the evaluation of radiation exposure data for an individual patient over time.

The components of patient radiation exposure data are described in Section 3, and the patient radiation exposure monitoring workflow is detailed in Sections 4, 5, 6 and 7.

3. COMPONENTS OF PATIENT RADIATION EXPOSURE DATA

Patient radiation exposure data comprise a collection of metrics characterizing patient exposure in medical imaging, including image acquisition and processing parameters, dosimetric and image quality data and their associated demographic data (e.g. patient size and age).

The most relevant metrics pertaining to patient radiation exposure monitoring are presented in this section, focusing on the metrics that are informed by or reflective of the patient.

3.1. IMAGE ACQUISITION AND PROCESSING PARAMETERS

The process of the imaging examination consists of three components: image acquisition, image processing and image presentation. The three together
form the essentials of the quality and optimization chain that brings about the final diagnostic outcome. The image acquisition phase is the only step that directly affects patient exposure, whereas the latter two steps affect the exposure indirectly. Thus, the most basic elements of patient radiation exposure data are image acquisition and processing parameters that are specific to the imaging modality. These parameters govern the image acquisition and processing processes and thus directly influence patient exposure.

In most modern X-ray imaging systems, image acquisition is governed by key exposure parameters such as peak tube voltage (kVp), tube current (mA), exposure time (ms), tube current-time product (mAs) and filtration (inherent and added). In fluoroscopy, the pulse rate (p/s) for the fluoroscopy mode and frame rate (f/s) for the image acquisition mode are also important basic parameters. Two or more of these parameters are often automatically selected by the automatic exposure control (AEC) of the imaging system. Certain imaging modalities have additional factors that affect exposure. These include, for example, bowtie filters in computed tomography (CT), target choices in mammography or pulse width in angiography. Nuclear medicine imaging likewise is governed by the magnitude and type of the administered activity. Imaging systems also deploy processing parameters that influence the image output of the system, including those that govern image processing and reconstruction such as kernel size, edge enhancement factor and noise reduction magnitude [25, 26].

For monitoring patient exposure, understanding and monitoring image acquisition and processing data is necessary, but not enough. If all other parameters are unchanged, a longer exposure time or number of images/frames (in X-ray imaging) or a higher administered activity (in nuclear imaging) indicate a higher exposure to the patient. However, exposure parameters can vary among different procedures and patients, and there is no direct correlation between exposure time or administered activity and patient exposure. Thus, although an analysis drawn from image acquisition and processing parameters alone carries some value if better metrics are not available, it can lead to misrepresentative or false conclusions. In other words, the availability of comprehensive and valid exposure data is critical for performing comprehensive patient radiation exposure monitoring that leads to meaningful optimization processes.

3.2. RADIATION EXPOSURE METRICS

Exposure metrics are drawn from image acquisition parameters and patient attributes. At a foundational level, the monitoring of patient exposure is justified by its connection to the patient, as the importance of the whole process comes from the need to ascertain and mitigate the radiation risk to the patient. Ideally, patient
risk is what needs to be measured and managed. However, individual patient risk is often unknown or unknowable. Alternatively, a host of ‘surrogates’ are used that range along a spectrum from modality-specific quantities to those that are more patient orientated (Fig. 1). Modality-specific metrics tend to be easier to ascertain and ascribe to an imaging examination. However, they are relevant only to the extent that they can be related more directly to the patient exposure.

Below, we summarize the exposure metrics along the modality-specific to patient orientated spectrum.

3.2.1. Modality-specific metrics

In accordance with para. 1.46 of GSR Part 3 [16] and para. 3.199 of SSG-46 [17], the dosimetric quantities and units of the International Commission on Radiation Units and Measurements are to be used for diagnostic radiology and image guided interventional procedures. Detailed guidance on dosimetry in diagnostic radiology is given in Refs [27, 28]. The relevant quantities, their symbols and closely similar quantities are summarized in Table 1 [27–30].

3.2.2. Size-specific metrics

Some of the modality-specific metrics noted above can be adjusted to represent the patient exposure for the patient size that they may represent. The most notable metric of this kind is the size-specific dose estimate (SSDE). SSDE is a dose estimate for CT scans that considers corrections based on the size of the patient, using linear dimensions measured on or determined from the patient or

FIG. 1. The spectrum of patient exposure metrics, ranging from modality-specific (left) to patient orientated (right) surrogates, shown by relevance hierarchy in terms of how well they can be related to the risk of the individual patient. E values represent various methods of calculating the effective dose: E_k is calculated from modality-specific standard conversion factors for a generic reference person; E_o uses organ doses calculated for a generic reference person; and E_H uses organ doses calculated based on the anatomical definition of the actual patient.
Patient images [31, 32]. As the metric accounts for patient size, it makes the dose metrology more relevant to represent patient exposure.

3.2.3. Organ doses

Organ orientated exposure metrics include organ doses. Characterizing the exposure of an imaging procedure in terms of organ doses permits the assessment of radiation risk, accounting for the different radiosensitivity of different organs [13, 33]. It further accommodates the assessment of radiation injuries in interventional procedures (e.g. radiation injuries to skin or the lens of the eye) [34–38].

Organ doses can be estimated using patient-representative models of body and specific organs or tissue and the irradiation field, both of which tend to be patient dependent and variable across patients. This information is often not readily available, necessitating the use of simplistic human models and uniform irradiation fields. In such cases, the estimates are informed by generic attributes of the patient (e.g. size), but there exist significant uncertainties in reported organ dose estimates. The resultant uncertainties undermine the utility and value of an otherwise preferred patient exposure metric.

Recent advances have offered solutions to patient-specific organ dosimetry by matching a patient to an atlas of diverse, realistic human models (Fig. 2) [39–44]. The matched patient model representing the patient is then geometrically aligned with the specific irradiation output from the imaging system and inputted into a radiation transport simulator that emulates the imaging procedure [45, 46]. Likewise, machine learning methods are emerging that offer data-driven organ segmentation and characterization informed by the patient attributes [47]. The energy deposited in each organ is then tallied and normalized by the organ mass to estimate the organ dose and associated uncertainties in the estimates [48]. This method has been shown to give dose values with high accuracy, with errors in doses to sensitive organs below 10% [49].

It is recommended that reports of patient organ dose are accompanied by documented estimates of the uncertainty of these estimates [50, 51].

In a number of imaging procedures, there are certain organs or organ components that receive much higher doses. In other procedures, the radiation sensitivity of a particular organ or organs is higher than others. One example is mammography, where breast dose (specifically, the average glandular dose) is the key organ dose of relevance; compared to the breasts, other organs receive a lower dose [52]. Another example is fluoroscopy, where, compared to all other organs, the skin receives the highest dose, often at levels that can lead to deterministic radiation effects. Although these two examples are extreme, there are similar situations where an organ commands a higher degree of scrutiny because of
<table>
<thead>
<tr>
<th>Quantity [27, 28]</th>
<th>Recommended symbols</th>
<th>Unit used in practice</th>
<th>Other common symbols used in literature</th>
<th>Closely related quantity</th>
<th>Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident air kerma</td>
<td>$K_{a,i}$</td>
<td>mGy</td>
<td>IAKa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident air kerma rate</td>
<td>a_i</td>
<td>mGy/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance surface air kerma</td>
<td>$K_{a,e}$</td>
<td>mGy</td>
<td>ESAKa</td>
<td>Entrance surface dosea</td>
<td></td>
</tr>
<tr>
<td>Air kerma at the patient entrance reference point**</td>
<td>$K_{a,r}$</td>
<td>mGy</td>
<td>CAKa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air kerma area product</td>
<td>P_{KA}</td>
<td>mGy·cm2***</td>
<td>KAPa</td>
<td>Dose area producta</td>
<td>Fluoroscopy and fluoroscopy guided interventional procedures</td>
</tr>
<tr>
<td>Weighted CT air kerma index</td>
<td>C_w</td>
<td>mGy [30]</td>
<td>Weighted CTDIa (CTDI$_{w}$)a</td>
<td>CT</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>Recommended symbols</td>
<td>Unit used in practice</td>
<td>Other common symbols used in literature</td>
<td>Closely related quantity</td>
<td>Modality</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Volume CT air kerma index</td>
<td>C_{vol}</td>
<td>mGy [30]</td>
<td></td>
<td>Volume CTDI (CTDI$_{vol}$)*</td>
<td>CT</td>
</tr>
<tr>
<td>Air kerma length product</td>
<td>P_{kl}</td>
<td>mGy/cm [30]</td>
<td>DLP</td>
<td>Dose length product*</td>
<td>CT</td>
</tr>
<tr>
<td>Activity of a radiopharmaceutical</td>
<td>A</td>
<td>Bq</td>
<td></td>
<td></td>
<td>Nuclear medicine</td>
</tr>
<tr>
<td>Activity of a radiopharmaceutical administered per unit body mass</td>
<td>A/body mass</td>
<td>Bq/kg</td>
<td></td>
<td></td>
<td>Nuclear medicine</td>
</tr>
</tbody>
</table>

a CAK: cumulative reference air kerma; CTDI: CT dose index; ESAK: entrance surface air kerma; IAK: incident air kerma; KAP: air kerma area product.

Because ‘air kerma’ and ‘dose in air’ are numerically equal in the diagnostic radiology energy range.

**Other names, such as ‘cumulative dose’, ‘reference air kerma’ and ‘reference point air kerma’, have been used in the literature.*

***Further recommendations for the unit of ‘air kerma area product’ of X ray equipment for interventional procedures are provided in Ref. [29].
its radiosensitivity. Examples include eye dose in head CT or neuroradiology procedures, breast dose in chest CT of female patients and foetal dose in pregnant patients. In these situations, the dose to the organ (or organs) of highest interest can be recognized as the relevant dose value for optimization actions and can serve as a singular metric of dose for the desired monitoring purposes.

3.2.4. Effective dose and other risk estimates

Although organ dose is considered the most relevant representation of the radiation risk in many clinical situations, it represents a utilization challenge: a patient has multiple organs, each with its own organ dose. Ideally, a radiation
risk to the whole of the patient can be represented by a singular number and not a multiplicity of numbers. Singular numbers enable more effective communication with patients or referring physicians and offer a more straightforward strategy for comparing doses from medical procedures that expose different regions of the body, as well as for evaluating the efficacy of optimization of imaging examinations. Effective dose is used as such a metric [51, 53].

Effective dose is calculated as a weighted sum of equivalent doses, H_T, over all organs and tissues of the human body considered to be sensitive to the induction of stochastic effects, applying age- and sex-averaged tissue weighting factors w_T [13].

Effective dose represents the uniform whole body irradiation, which causes the same detriment as an actual non-uniform irradiation with different values for the equivalent doses to the various tissues and organs [28]. Effective dose is calculated for a reference person and not for an individual and was initially devised as a metric of radiation protection for radiation workers and the public, with simplifying assumptions that limit its applicability to patients [13]. However, its use for patient exposure in medical imaging is deemed appropriate with caution for application to individual risk [13, 51, 53].

Three different methods are generally used to estimate effective dose from medical imaging procedures. The most common method, denoted by E_k here (Fig. 1), is through the modality-specific generic conversion factor, as follows:

$$E_k = cF$$

where F is a modality-specific quantity, such as the entrance surface air kerma or kerma area product (for radiography and fluoroscopy), the dose length product (for CT) or the administered activity (for nuclear medicine) and c is a modality-specific generic conversion factor [54–65]. Such conversions are based on modelling of the patient using a model of a person of average size, adjusted to the body and organ masses of the reference adult [51]. Ignoring the heterogeneity of body habitus and irradiation field, the results are useful for comparison purposes but are less applicable to the patient exposure.

Effective dose, denoted here as E_0 (Fig. 1), can be estimated with closer representation of the patient exposure as a weighted sum of H_T and w_T, where H_T are computed using a simplistic human model and uniform irradiation fields and Monte Carlo toolset (e.g. using computer software packages PCXMC, CTExpo or ImpactDose) [66–68].

The most patient-relevant technique uses patient-specific organ doses (as described in Section 3.2.3) to compute a patient-specific effective dose, E_H.
The three methods do not result in identical estimates, with E_k values reported to be different from E_H for CT by as much as 75% [71–74].

A quantity related to the stochastic risk is the energy imparted, $\bar{\varepsilon}$, to the patient. It is a reflection of the total energy deposited in the body [28, 75–77]. When derived from volumetric measurements of individual patients [78], it eliminates the need to assess organ doses individually and still offers a patient-specific quantity. As stated in Ref. [28], “owing to the dependence of effective dose on the anthropomorphic model used for calculating organ doses, the energy imparted to the patient or the mean absorbed dose in the patient may serve as an alternative risk related quantity for optimization”. However, although energy imparted can be of value in ascertaining an overall dose to the patient body, it ignores variations in radiation sensitivity across organs.

Radiation risk is the driving force behind any dose estimation. As a first-order approximation, radiation risk as the probability of fatal cancer can be estimated from effective dose using the approximated overall fatal risk coefficient of 5% per sievert [13, 28, 79]. However, the method has limited applicability to individual patients, as it ignores differences in age, sex and health status between the population undergoing medical imaging procedure and the population for which the nominal coefficients were derived.

To overcome some of the limitations of effective dose, Brenner proposed a quantity termed ‘effective risk’, defined as a weighted sum of organ doses, with age-specific tissue weighting factors based on lifetime cancer incidence [80, 81]. ICRP warned, however, that “While this approach takes direct account of the available data on age specificity of the different cancer types, it may give a spurious sense of accuracy unless associated uncertainties are considered” [51].

An alternative risk estimate, termed ‘radiation risk index’, was proposed by Li et al. [82]. This risk assessment is based on estimates of mean absorbed doses to individual organs, taking into account the anatomical specifics of the patient, the irradiation condition of the examination, the size of the patient and other factors influencing the distribution of dose within the organs. Then, the radiation risk index is calculated as a sum of these organ doses specific to the patient, weighted with risk coefficients specific to organ, age and sex [13, 33]. This quantity, relying on a granular knowledge of the organ doses of the patient, is more reflective of the patient specifics of age, sex and size, and the heterogeneity of dose distribution when compared to the alternative strategy of converting effective dose to risk [83]. A similar approach is used by the software PCXMC to calculate “risk of radiation-induced cancer death” [67].

In reality, age and sex dependency are not the only contributors to individual risk for patients. This formalism may be extended to include other radiation risk-related factors, such as genetic disposition, non-oncological risk, neurological risk, cardiac risk and cataract risk [20].
It is also important to note that many factors, such as limitations in the epidemiological data and uncertainties in dose estimates, contribute to the uncertainty of the risk estimation. When reporting any risk metric derived from measurable dose quantities, the values need to be quoted only to an appropriate level of precision and with details of the underlying models and calculation methods, and the uncertainties in both dose and risk estimates have to be considered.

3.3. IMAGE QUALITY METRICS

The focus of this report is patient exposure as a primary risk factor to be managed in the practice of medical imaging. However, characterizing medical imaging in terms of radiation risk alone is short sighted, as the magnitude of the exposure, and thus the risk, changes the quality of the images and thus the anticipated benefit of the procedure itself. The practice of medical imaging, as in the practice of many other medical procedures, involves balancing the benefit of the procedure with its potential risk, or as noted earlier, balancing the clinical risk and radiation risk. Thus, the radiation risk can only be properly understood, and possibly mitigated, by taking into consideration the desired diagnostic information or quality of the images to provide the anticipated benefits. Characterizing imaging in terms of image quality provides the needed quantitative foundation to ensure an appropriate level of patient exposure is applied for the examination.

Characterizing image quality involves quantitative metrology. Just as in the case of patient exposure, the metrics are most relevant to the extent that they relate to the actual utility of the image towards the clinical outcome for the patient. As the clinical outcome for the patient is often difficult to quantify, a host of ‘surrogates’ are used that range along a spectrum from phantom based, modality-specific quantities to those that are more patient orientated (Fig. 3). Phantom based and modality-specific metrics tend to be easier to ascertain and ascribe to an imaging examination. However, they are relevant only to the extent that they can be related to the clinical quality (or its inverse, clinical risk) of the actual patient examination, as described earlier in Section 2.1.

In characterizing an imaging study in terms of the overall information content derived from the examination and image quality, however quantified, it is important to realize the multiplicity in quantities across multiview and multiseries studies. An imaging study that has multiple series or views has an associated exposure and image quality for each series or view. Although the exposure values can sometimes be added to compute the total exposure to the patient associated with the series (e.g. adding dose length products (DLPs) or an organ dose across a CT series to compute a total DLP or organ dose for the study), that is not the case
for image quality values (e.g. one cannot add or average the resolution or noise of multiple series to compute values associated with the entire study). Thus, image quality assessment and balancing of image quality and exposure values have to be done at the level of individual series. Such a balance at the level of a study, which may have multiple series or views, can be determined by analyses for a representative series or the data from multiple series combined using principle-informed or data-informed combinatorial mathematics.

3.3.1. Phantom based image quality

The most common metrics of physical image quality include phantom based resolution, contrast and noise (Table 2). Resolution reflects the sharpness of the spatial details in the image, contrast describes the relative magnitude of the signals within the image with respect to one another (e.g. an imaged lesion against its background) and noise describes the statistical fluctuations of the signals in the image not actually originating in the patient. These concepts are generic to all imaging modalities, including both 2-D and 3-D emission and transmission imaging technologies. The aforementioned metrics are also often combined into metrics that reflect their influence on image quality together, through metrics such as contrast to noise ratio (CNR) [25]. Such combined metrics are particularly important to modern imaging systems that deploy non-linear image processing, in which not only noise but also image resolution and contrast are influenced by changes in patient exposure.

Resolution, contrast and noise, as well as their derivatives of CNR and signal difference to noise ratio, are usually measured in phantoms. The closer the phantoms are to emulating the patients (e.g. emulating the size of the patient), the more representative are the results in relation to clinical quality. The phantoms are often designed differently for different imaging modalities, making the resulting metrics modality specific. Just as in the case of modality-specific patient exposure metrics, these metrics can be ascribed to an imaging

FIG. 3. The spectrum of image quality metrics, ranging from phantom based, modality-specific surrogates (left) to patient orientated surrogates (right), shown by relevance hierarchy in terms of how well the quality of the images relates to a definitive clinical outcome for the patient.
examination (such as anticipated CNR associated with a specific patient-imaging procedure). Even so, they do not fully describe the image quality in the patient images, raising the need for patient orientated metrics of quality.

TABLE 2. BASIC PHYSICAL IMAGE QUALITY CONCEPTS AND METRICS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Common symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Pixel value (PV)</td>
<td>The image signal intensity associated with an area of interest (e.g. a lesion)</td>
</tr>
<tr>
<td></td>
<td>Hounsfield unit (HU)</td>
<td>Linear rescaling of the linear attenuation coefficient measurement to a scale where the radiodensity of the water is 1 and the radiodensity of the air is −1000</td>
</tr>
<tr>
<td>Contrast</td>
<td>Absolute contrast</td>
<td>The difference in the image signal intensity between two areas of interest, for example a lesion and background tissue; also known as signal difference</td>
</tr>
<tr>
<td></td>
<td>Relative contrast</td>
<td>The differential contrast normalized to the background signal</td>
</tr>
<tr>
<td>Noise</td>
<td>Absolute noise</td>
<td>The stochastic mottle present in the image that gives it a grainy appearance</td>
</tr>
<tr>
<td></td>
<td>Relative noise</td>
<td>The mottle present in the image that gives it a grainy appearance, divided by the background signal</td>
</tr>
<tr>
<td>Noise texture</td>
<td>Noise power spectrum (NPS)</td>
<td>The spatial frequency distribution of noise power in the image</td>
</tr>
<tr>
<td>Contrast to noise ratio</td>
<td>CNR</td>
<td>The ratio of the contrast of a defined feature of interest to its background relative noise</td>
</tr>
<tr>
<td>Signal difference to noise ratio</td>
<td>SdNR</td>
<td>The ratio of the absolute contrast of a defined feature of interest and absolute noise</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>Modulation transfer function/target transfer function (MTF/TTF)</td>
<td>An index of sharpness of image, indicating how two objects can be differentiated from one another spatially; expressed in terms of spatial frequencies</td>
</tr>
</tbody>
</table>
With the aid of phantoms, the generic image quality metrics described above provide important but isolated signatures of singular aspects of image quality, with limited ability to reflect how these aspects might impact a particular diagnostic process. It is possible to incorporate the knowledge of the specific imaging features of the pathology of interest (clinical task) for which the image is captured into a task-specific metric of image quality. The ‘observer model’ combines the components of image quality, including clinical task, resolution, contrast and noise, as well as the characteristics of the human visual system, into a singular metric of quality, such as detectability index (known as d’) or estimability index (known as e’), depending on the task [84, 85]. These indices are analogous to the radiation risk index, reflecting the quality aspect of the imaging performance into a singular value.

Depending on how the constituent components are integrated, task-specific metrology uses different observer models [86] with different levels of applicability and relevance to different imaging applications. These models have proven invaluable in relating physical metrics to diagnostic accuracy (Fig. 4) as a way to assess the feasibility of different imaging systems or techniques [87].

FIG. 4. Correlation of CNR (a) and detectability index, d’ (b) with observer performance (d_{human}; the likelihood of detection of a subtle target as measured by human readers) across three CT systems (A, B, C) with their associated filtered back projection (FBP) and iterative reconstructions (IR). The data demonstrate stronger correlation of d’ with observer performance ($R^2 = 0.93$) compared to CNR ($R^2 = 0.47$) (courtesy of E. Samei, Duke Medical Center, USA).
3.3.2. Patient based image quality

The foundational metrics of image quality, resolution, contrast, noise and CNR, and their reflection in task based metrics such as detectability index and estimability index as noted above, are traditionally measured in phantoms. Phantom measurements are robust when corresponding to attributes in clinical images such as patient size. However, phantoms do not represent the variability present in patients’ habitus. Further, most modern imaging systems deploy adaptation technologies by which the imaging condition is changed in response to the specific attributes of the patient (e.g. patient size and habitus). An example is automatic tube current modulation (ATCM) in CT. However, such adaptations are not perfect, leading to variations across patient data that are not captured in phantom data. In addition, there are other sources of fluctuations and artefacts in clinical practice (e.g. temporal changes) not present in static phantom set-ups. As a result, the data obtained from phantoms do not necessarily fully predict image quality attributes in patients.

Image quality can be assessed using patient data. This can be done in two different ways: generic and task based methods. The generic method, like task-generic metrics from phantoms, such as contrast, does not pertain to a specific task. Often done through preference studies, a common method is for radiologists to measure or judge images in terms of their adequacy to provide the needed information for diagnosis, using simple quality criteria. This is the most common approach to assessing image quality and scoring images [55, 88–96]. However, preference based methods tend to be subjective and, while likely correlated with clinical outcome, a direct relationship cannot be certain.

Alternatively, patient images can be assessed in a task based fashion, with clinicians evaluating a set of images in terms of an imaging task, such as detecting lesions, assessing proper placement of an interventional apparatus or characterizing an abnormality. This approach is more objective but is subject to significant inter-case and inter-observer variability, which makes the number of cases needed to improve statistics large and thus renders the method impractical for optimization purposes.

Recent advances have demonstrated that it is also possible to measure image quality directly from individual patient images in either a generic or task based fashion, automatically and efficiently, without the need for observer reading of cases. That includes the assessment of preference aspects of image quality [97], as well as the foundational attributes of noise, resolution and contrast. Noise is measured by decomposing the image data to separate fluctuations that are anatomical in nature from those that are stochastic [98]. A demonstration of this is the measurement of resolution and contrast assessed by clinical CT images from characterizing specific geometrical interfaces and tissues in the body [99].
Contrast can likewise be measured by segmenting and characterizing the signal in target organs of interest [100]. The latter is particularly relevant in the contrast of imaging examinations that deploy an optimizing contrast-enhanced imaging medium, where the risk of the contrast medium has to be balanced against that of the derived benefit (enhanced image contrast).

This technique has also been extended to task based measurements. Noise is measured, as before, by decomposing the image data to separate fluctuations that are anatomical in nature from those that are stochastic [98]. Recent progress has also been made using in vivo indices of the detectability index, validated against diagnostic performance [101, 102].

Automatic patient based image quality measurements allow for informatics based on image quality analogous to those based on patient exposure; thus, the radiation risk of an imaging examination can be put into perspective with the associated diagnostic content, providing crucial guidance to judge and optimize image quality and patient exposure.

3.3.3. Clinical risk index

Image quality measurement is relevant because it aims to reflect the quality of the needed clinical information. Thus, underlying any image quality metrology is the implied inherent risk of suboptimal clinical image quality being recognized as a clinical risk. Clinical risk can be defined as “the risk associated with lowered diagnostic confidence in either the detection or quantification of the pathology of interest or affirmation of its absence and the associated reduced likelihood of accurate interpretation leading to misdiagnosis” [20]. In either case, risk is defined on the basis of the indication and the patient. The clinical risk can be defined as the reverse of the image quality for a specific task; for example, the confident detection of a renal stone or a small, non-obstructive embolus in the pulmonary vasculature. As in the case of the radiation risk index, this clinical risk index serves as the closest reflection of the actual clinical quality of an image for its intended clinical purpose. In the future, clinical risk may be extended beyond misdiagnosis to mortality; that is, years of life lost within the broader context of combinatorial risk from a multiplicity of sources, including the risk associated with the contrast medium, the risk of intervention and so on.

3.4. OVERALL PATIENT RISK

As described in Section 2.1, optimization in imaging can be framed as a balance between the two elements of risk in medical imaging: radiation risk and clinical risk.
When considering the patient at the centre of the radiation exposure monitoring activity, image quality and dose are not isolated considerations, but both need to be incorporated in the overall goal of the imaging procedure as described in Ref. [20]: “safely obtaining useful information relevant to a target indication of interest for accurate and precise management of patient care”. Thus, image quality and dose have to be balanced so as to provide an assurance that the goal of the imaging procedure will be achieved. This means consideration of not only the risk associated with the use of the ionizing radiation in the process, that is, the radiation risk, but also the clinical risk that is “the likelihood of not delivering the very purpose of imaging i.e. delivering the desired benefit” [20]. Figure 5 offers a schematic illustration of optimization. Assuming the radiation risk follows the linear-no-threshold model, increasing the dose will increase the radiation risk to the patient. As the dose increases, it is expected that the image quality and associated information content will improve, thus resulting in reduced clinical risk of suboptimal diagnosis. These two risk models follow reversing trends, such that the total risk to the patient exhibits a minimum ‘valley’ of lowest net risk, which provides a target for the objective of optimization of overall risk. Comprehensive optimization of medical imaging needs to combine the radiation and clinical risks as a unified total risk estimate (or index) within an indication-informed process. In dealing with both radiation risk and clinical risk, optimization is characterized in a patient centred manner.

FIG. 5. Conceptual illustration of overall patient risk, including radiation risk and clinical risk as a function of dose. Dashed lines represent the optimum target. Two examples of individual imaging procedures, each represented with three corresponding risk values, demonstrate different degrees of accuracy in meeting the optimization target.
The risks noted above are not the only ones that may be at play in the care of patients in clinical departments. Among other risks, a notable one is associated with imaging examinations enhanced by the contrast media used in many imaging procedures for contrast enhancement in vascular and perfusion studies (volume and concentration). Risks relating to the use of contrast media include the exposure of patients to multiple irradiation events, due to the multiplicity of imaging series that is inherent to contrast imaging and increased nephrotoxicity. Some patient radiation exposure monitoring systems even offer enhanced functionality to manage contrast media dose alongside radiation dose. Although the focus of this particular publication is radiation dose, it is prudent to take all such sources of risk into consideration when aiming to minimize the total patient risk.

4. PATIENT RADIATION EXPOSURE MONITORING WORKFLOW

Patient radiation exposure monitoring includes a number of steps, the complexity and scope of which will vary depending on the available tools and resources (Fig. 6). These steps are briefly described here and further detailed in Sections 5, 6 and 7. Throughout these steps, the application of systematic and coherent examination classification and coding systems (Section 6.3) is crucial for the consistent application and comparability of patient radiation exposure data.

![Fig. 6. Steps in the process of patient radiation exposure monitoring.](image)
4.1. RECORDING OF PATIENT RADIATION EXPOSURE DATA

As defined in Section 2.2, recording is a process of documenting patient exposure data manually or automatically.

Modern digital X-ray based imaging modalities automatically export radiation exposure details in a standard format (e.g. Digital Imaging and Communications in Medicine (DICOM) objects) [103]. The system can record details for each irradiation event, defined as discrete or continuous irradiation applied to a patient; for instance, a CT topogram and the associated helical scan are two separate events, as are two different presses of the fluoroscopy pedal in fluoroscopy equipment. Typically, one dose object, such as a DICOM Radiation Dose Structured Report (RDSR), is created at the end of each procedure performed on the modality. That object collects all irradiation events from the procedure and also adds summary values of radiation exposure data. The details need to include patient demographics, study information, imaging technique and geometry as well as values of typical dose metrics.

Some imaging systems output dose values in non-DICOM formats (e.g. displayed dose reports). Such dose image objects are part of the same study as the images and can be submitted to an image manager/archive in order to be permanently stored. Such objects can be integrated with automatic dose recording methods using optical character recognition systems that extract numerical values from the objects into a database.

Some imaging systems do not output dose information in either DICOM or non-DICOM formats. For such systems, data recording of exposure information could be performed manually.

Further information on recording patient radiation exposure data is provided in Section 5.

4.2. COLLECTING PATIENT RADIATION EXPOSURE DATA

Collecting patient radiation exposure data is a process of gathering patient exposure data into a common system. The term can be used synonymously with recording and collecting together.

The recorded data are collected according to different schemes and structures that normally reflect the purpose of the collection. For example, collections may include data for specific facilities, modalities, equipment, examination types and patients. Subsamples of data can be stored according to the objectives of the follow-up analysis. A significant component of collecting is data classification into multiple categories. The collection can take place both digitally and manually in real time or at specific time intervals, as needed.
Further information on collecting patient radiation exposure data is provided in Section 6.

4.3. ANALYSING AND REPORTING PATIENT RADIATION EXPOSURE DATA

Analysing patient exposure data is a process of acting upon patient radiation exposure data to provide summaries of statistical, comparative and trend information for use in optimizing radiation protection and clinical practice and to investigate and verify individual doses (incidental and cumulative values) when needed.

Collected data can be combined and processed to perform relevant dose analyses, which might include statistics, trends and tracking of both individual (e.g. organ dose, risk estimates) and collective stored data (e.g. typical dose values to compare to DRLs, collective dose to a population).

The results of these analyses can also be stored. Standard objects exist to store the results of detailed dose analyses performed for single individuals (i.e. DICOM Patient RDSR).

Although some of the steps can be manually fulfilled, the electronic recording, collecting and storing can automate and facilitate a purposeful analysis of patient radiation exposure data. In this case, these technological mechanisms have to follow a workflow in order to provide an efficient collection and distribution of exposure information. The Radiation Exposure Monitoring (REM) framework, as developed by Integrating the Healthcare Enterprise (IHE), provides a tool to allow patient radiation exposure monitoring using existing standard objects [104] (see Section 5.2.3).

Depending on the purpose of the analysis, the data may need to be reported to registries (local, national or international), providers, insurance companies, authorities or patients.

Further information on analysing patient radiation exposure data is provided in Section 7.
5. RECORDING PATIENT RADIATION EXPOSURE DATA

5.1. PATIENT RADIATION EXPOSURE DATA TO BE RECORDED

Information about the dose to which a patient is exposed in an imaging procedure is represented by different quantities, as denoted in Section 3. Patient data (e.g. height, weight) as well as procedure data available from the equipment (e.g. kVp, mA or mAs, filtration, geometry, etc.) are needed in order to permit more patient orientated monitoring with an accurate estimation of the individual dose for a patient. The more data are available, the more the estimation can be patient orientated.

The information available from the imaging equipment varies by manufacturer, model, year of production and installation as well as implementation. For this reason, there are different levels of availability, depending on the purpose of data collection, such as quality control, diagnostic reference level (DRL) or personalized dosimetry. Adapted from a national guideline [105], three different levels can be defined, as follows:

(1) First level, or minimum requirements: At this level, the data are relevant to characterizing the exposure and contain information that can be easily derived from the patient and examination records and from values of dose quantities that the equipment can provide (calculated or measured). This level of information is appropriate for resource-limited countries with a prevalence of manual data recording and collection.

(2) Second level, or standard requirements: At this level, the data contain more detailed information. In particular, data for the single irradiation events are included for every modality. The scope of this set of data is to refine the exposure conditions in order to allow for optimization of imaging protocols, or to estimate dose metrics specific to an individual patient. The level of accuracy in the calculations depends on the amount of information collected.

(3) Third level, or advanced requirements: At this level, the data are used to personalize and optimize the imaging procedures. This includes calculated personalized dosimetric data, such as organ doses, and further details related to the procedure, such as reconstruction and post-processing settings, organ doses or relevant image quality metrics (see Section 3.3).

These three different levels are applied to each type of imaging modality (general radiography, mammography, CT, interventional and fluoroscopy,
nuclear medicine, cone beam CT, dental), as well as to the information related to the patient. Examples are provided in the Appendix.

5.2. METHODS OF RECORDING PATIENT RADIATION EXPOSURE DATA

5.2.1. Automated versus manual data recording

In many countries, recording and archiving of radiation exposure parameters is a legal obligation. This was the case even before electronic tools like hospital information systems (HIS), radiology information systems (RIS), picture archiving and communication systems (PACS) or software tools for dose monitoring were available. Hence, for many years, paper forms tailored to the examination and dose parameters of each modality were used. This procedure is time consuming to complete, and the validity of the results depends on the accuracy of data entry and subsequent data transfer, which is sometimes affected by unreadable paper based text entries, missing dose entries, too few or too many entered digits, sequences of images or series not fitting the sequence of dose parameters, the use of wrong characters and delimiters such as the letter ‘o’ for the number ‘0’ or periods for commas and the use of wrong units such as mGy for cGy.

Although simple resources such as templates and spreadsheets will still be needed for data acquisition for some time into the foreseeable future, for the above reasons, electronic data recording and automated systems are to be preferred whenever available. The advent of RIS enabled the replacement of paper based entry with keyboard entry, with all advantages of storage and post-processing, but still involved all the listed errors. Some of these errors can occur even in computer keyboard entry, and error rates can be as high as 50% [106].

The advent of proprietary vendor interfaces, RIS and the DICOM Standard facilitated the electronic capturing of dose parameters with correct dose data and correct links between dose data and the exposed patient. In particular, DICOM and IHE standards now exist that are used in the recording and collection of patient exposure data [103, 104]. A brief summary of these standards is provided below. In the IHE structure, the patient REM system is referred to as the Radiation Dose Information Reporter System [107].

Exposure data recorded in the DICOM and IHE standards can be transmitted to the PACS, but access to this data is not straightforward. Digital patient radiation exposure monitoring systems are now available that facilitate the establishment of databases as repositories of dosimetric data [108–114]. Alternatively, dosimetric data can be transmitted to a separate, stand-alone dose
data archive intended to aid in radiation protection quality assurance and quality improvement [104].

5.2.2. DICOM Standard

DICOM\(^2\) has made multiple provisions for recording, as well as collecting and exchanging, radiation exposure information, as detailed below.

5.2.2.1. DICOM image headers

The exposure information in the image headers is kept together with the image data; it cannot be dissociated. Different data are stored depending on the modality and on the imaging system. Typically, the image header contains information about the acquisition techniques, acquisition geometry and estimated radiation exposure quantities related to the creation of the image data stored in a series of images.

The positive aspect of this solution is that the dose information is stored persistently; it can be archived in PACS. However, a number of limitations make it unsuitable for a complete, accurate and error-proof solution:

— There is no standard method to decouple the image itself from the exposure information. Therefore, to access and store the exposure information, it needs to be accompanied by the image data, resulting in vast increases in storage space and transmission time.
— When the images are not stored, no exposure data are stored. This may be the case when only fluoroscopy is performed and where the storage of the image data is optional. Further, if the images are deleted because they are not clinically relevant (e.g. patient movement, poor image quality), the exposure data will be deleted as well.
— When the images are duplicated (e.g. extra reconstructions, post-processing), the exposure data can be copied to the new images, thus leading to apparently more dose.
— The exposure information included with the image is only related to the irradiation event used directly to create the data in the accompanying image. For example, the information on the low dose preimage exposure in digital mammography used by the AEC process to determine the correct acquisition technique is not included in the header of the resulting mammographic image.

\(^2\) dicomstandard.org
— Missing complete exposure details. Even if the DICOM Standard evolves to add new exposure attributes, these will be optional. Therefore, private fields are common, and it requires a special relationship with the equipment vendor to obtain or interpret this private data.
— Large amounts of data because of the image data.
— For some modalities, such as X-ray projection angiography, the coded anatomy information is not mandatory and is thus rarely present; for example, the Body Part Examined and Anatomic Region Sequence fields are usually empty or absent in the image headers.

5.2.2.2. DICOM modality performed procedure step

A modality performed procedure step (MPPS) is a DICOM message to notify the status of the examination from the modality to the RIS and/or PACS. The MPPS message is designed for workflow management; it is not stored persistently with the patient data objects. The MPPS message collects the dose information of the whole procedure step independently from the storage of the image data. The information in the MPPS message includes a summary of the total dose and exposure time of the procedure step, the average values of the acquisition techniques and system geometry, the patient anatomy and some details for each exposure (including fluoroscopy), such as the kVp, current, exposure time and filters used [112, 115, 116].

Recording exposure data through the MPPS is advantageous to the image header approach because the exposure information is stored independently of the management of the image data, thus there is no missing or duplicated information. Yet a number of limitations still make it unsuitable for a complete, accurate and error-proof solution: an MPPS does not offer complete dose details, and the information is transient and designed for workflow, not for persistent archiving. RIS/PACS can read the MPPS information and store it in the database. However, there is no rule and no standard that indicates which information should be stored in the database. Moreover, the MPPS is communicated once and can be lost if not captured. Finally, the dose module of the MPPS was retired by DICOM in 2017, meaning that no future update of the content will be provided, and the object will eventually become obsolete.

5.2.2.3. DICOM RDSR

The RDSR for projection X-ray was added to the DICOM Standard in 2005 as a non-image information object definition to address the limitations of other methods. The RDSR was developed to create a standardized format to record all the information related to the exposure parameters used for each irradiation event...
undergone by the patient, independent of the image data acquired or stored [117, 118]. Since its initial inclusion in the Standard, specific templates have been added to include additional information needed to estimate patient dose with increasing accuracy in all modalities that use ionizing radiation, that is, projection X-ray (plain X-ray, computed radiography, digital radiology, angiography and fluoroscopy), CT, mammography and radiopharmaceutical administration [118, 119]. The development of the DICOM Standard is continuous, and the implementation of the RDSR into new systems by manufacturers is ongoing.

An enhanced RDSR was added to the Standard in 2021. This enhanced RDSR utilizes a generic framework for the description of radiation dose that does not involve the use of specific modality templates but retains the capability to store legacy dosimetric values (e.g. CT dose index (CTDI), dose area product) [118]. This allows reduced dependence on modality-specific conditions for populating fields and provides a method to use the enhanced RDSR for new modalities without requiring changes to DICOM to handle the nuances in their production and acquisition methods. The enhanced RDSR also includes two fundamental concepts that were missing from the modality-specific RDSR. These are:

1. **Decoupling of irradiation events and dose descriptions**, allowing dose-related characteristics to span multiple irradiation events, or breaking irradiation events into smaller segments to better explain the changing irradiation characteristics. By recording the information in this manner, characteristics that remain constant (e.g. focal spot size) can be encoded once for the entire RDSR, whereas characteristics that change within irradiation events (e.g. tube current) can have multiple values encoded.

2. **Improved geometric description** of the system that defines the spatial relationship of different system components (e.g. X-ray source, field size, filter size and locations) to allow modelling of the spatial distributions of dose.

The use of DICOM RDSR objects overcomes the weaknesses of an MPPS or image headers as dose monitoring methods. The structured report (SR) templates provide far more complete and hierarchical details, in a consistent format. Dose details are recorded for each irradiation event of an examination, with associated exposure-related information collected and combined together into summary dose values for the examination as a whole. Patient radiation exposure monitoring systems may reorganize the data at a higher or lower level of granularity.

3 The current version of the DICOM Standard is available at https://www.dicomstandard.org/current
The RDSR provides information on the parameters relevant to the X-ray exposure output by the imaging system only and does not provide information on patient exposure metrics related to the specifics of the patient (see Section 3.2).

5.2.2.4. DICOM Patient RDSR

The RDSR is a DICOM object used to convey exposure-related information and dose indices. However, as explained in Ref. [120]:

“The RDSR contains only information about the irradiation system or information the system can determine, i.e. radiation output, geometry, X-ray source, detector system, etc. Yet, it does not include sufficient information about the patient, which is required to adequately estimate the radiation dose to the patient. In addition, there are multiple methodologies and models that can be used to estimate patient dose and these methods are rapidly changing. Once an estimate of the radiation dose absorbed by a patient is performed, storing and transferring the method and the parameters used as well as the resulting dose estimate in a standard format will facilitate recording of such information.”

To this purpose, and in response to the requirements or recommendations by professional, public health and regulatory authorities for recording dosimetric information from diagnostic studies in the patient’s medical records, a new object was added to the DICOM Standard in 2017: the Patient Radiation Dose Structured Report (PRDSR) [118–120]. This new object contains the information concerning the recording of the estimated radiation organ doses to a patient, including the radiation source data, the calculation methods, the models and the parameters used in the estimation. This includes radiation dose from CT, projection X-ray, angiography/fluoroscopy and radiopharmaceutical administration (diagnostic and therapeutic). The PRDSR is meant to be independent of the images and the MPPS, and it could be routed to a patient radiation exposure monitoring system. This allows the flow and management of the dose data to be maintained separately and independently from the data flow and data management of images.

It is assumed that the best location for the PRDSR data is the patient radiation exposure monitoring system, or a stand-alone system or actor (in the IHE sense), which may or may not be combined with a RIS, a PACS or maybe a HIS.

5.2.2.5. DICOM Protocol Storage

The DICOM Protocol Storage (Fig. 7) has been introduced to provide a tool for the distribution of planned protocols (i.e. protocols defined at the equipment
level) and to record performed protocols (i.e. actual values used in a performed acquisition) [119, 121]. The details include patient preparation and positioning, equipment characteristics, acquisition technique, reconstruction technique and preliminary image processing such as filtering and enhancement.

The protocol object provides support for simple textual instructions relevant to the protocol, such as premedication and patient instructions. It also introduces a private tag dictionary to permit the description of unique scanner model characteristics and system-specific features and settings.

The primary applications of this object include the following:

— Managing protocols within a site for consistency in terms of repeatable technique, performance, quality and image characteristics and dose management;
— Recording protocol details for a performed study so the same or similar values can be used when performing follow-up or repeat studies, especially for oncology;
— Vendor troubleshooting image quality issues that may be due to poor protocol or technique;
— Distributing departmental, ‘best practice’ or reference protocols to modality systems;
— Making more detailed protocol information available to rendering or processing applications, which would allow them to select processing that corresponds to the acquisition protocol, select parameters appropriate to the acquisition characteristics and select the right series to process/display;
— Recording and distributing clinical trial protocols to participating sites.

DICOM Storage Protocol is available only for certain DICOM objects (CT and angiography) [119].

FIG. 7. DICOM Protocol Storage (reproduced with permission from DICOM Part 3, Figure AAAA.1.1-1. Protocol Storage Use Cases, © NEMA [119]).
5.2.3. IHE profile

The DICOM Standard is vital to provide a common syntax and semantics for information exchange. Essentially, DICOM provides ‘tools’ and ‘technologies’. However, the DICOM Standard alone is insufficient: it may be open to interpretation, and some information remains optional, preventing a common implementation that guarantees interoperability for all the use cases and applications. There is a need for specifications about how to apply the Standard to real-world scenarios.

IHE is an initiative by health care professionals and industry to improve the way computer systems in health care share information.\(^4\) IHE promotes the coordinated use of established standards, such as DICOM and Health Level Seven (HL7)\(^5\), to address specific clinical needs in support of optimal patient care. An IHE profile describes how to use existing standards to address a specific problem scenario and thus serves as an implementation guide for vendors. Systems developed in accordance with IHE communicate with one another better, are easier to implement and enable care providers to use information more effectively.

5.2.3.1. REM profile

The IHE profile that regulates the communication of the exposure data in X-ray imaging is the REM profile\(^6\) [104]. As defined in Ref. [122],

“The Radiation Exposure Monitoring Integration Profile specifies communications between systems generating reports of irradiation events (generally acquisition modalities and workstations) and systems which receive, store, or process those reports (generally local dose information management systems and/or national/regional dose registries). It defines how DICOM SR objects for CT and projection X-ray dose objects are created, stored, queried, retrieved, de-identified, and may be processed and displayed.”

The REM profile facilitates the collection and distribution of the estimated patient radiation exposure information resulting from imaging procedures, including submission to local or centralized dose registries. Examples of such registries are given in Sections 6.1 and 7.

\(^4\) https://www.ihe.net/
\(^5\) http://www.hl7.org/
\(^6\) https://wiki.ihe.net/index.php/Radiation_Exposure_Monitoring
The REM profile requires imaging modalities to export radiation exposure details in a standard format. Radiation dose monitoring systems can either query for these ‘Dose Objects’ periodically from an archive or receive them directly from the modalities. The actors involved in this profile and their roles are as follows (adapted from Ref. [107], see also Fig. 8 [122]):

— Acquisition Modality: Creates and stores RDSR.
— Image Manager/Image Archive: Accepts/Commits dose data and supports Query/Retrieve.
— Dose Information Consumer: Responsible for supplemental handling of irradiation events, generally on an individual basis display, analysis or further processing (e.g. display, analysis or further processing).
— Dose Information Reporter: Responsible for the aggregation, analysis and reporting related to irradiation events, which may include meeting facility obligations to de-identify and submit data to various dose registries.

FIG. 8. IHE REM profile (reproduced with permission from Ref. [122], Figure 22.1-1: REM — Actor Diagram).

The REM profile requires imaging modalities to export radiation exposure details in a standard format. Radiation dose monitoring systems can either query for these ‘Dose Objects’ periodically from an archive or receive them directly from the modalities. The actors involved in this profile and their roles are as follows (adapted from Ref. [107], see also Fig. 8 [122]):

— Acquisition Modality: Creates and stores RDSR.
— Image Manager/Image Archive: Accepts/Commits dose data and supports Query/Retrieve.
— Dose Information Consumer: Responsible for supplemental handling of irradiation events, generally on an individual basis display, analysis or further processing (e.g. display, analysis or further processing).
— Dose Information Reporter: Responsible for the aggregation, analysis and reporting related to irradiation events, which may include meeting facility obligations to de-identify and submit data to various dose registries.
5.2.3.2. Workflow

Typically, irradiation events occur on the X-ray based Acquisition Modality, which records them in Dose Objects that are part of the same study as the images and are stored to the Image Manager/Image Archive. In many organizations, a Dose Information Reporter will collect Dose Objects covering a particular period (e.g., today, this week or last month), analyse them, compare them to site policy and generate summary reports. A Dose Information Consumer will perform real-time dose mapping and real-time alerting. In addition to composing Dose Objects upon completion of a procedure step, the Acquisition Modality may also compose and send a Dose Object upon completion of an irradiation event (quasi-real time). This mechanism is also called ‘dose streaming’. Such objects could allow for applications such as dose mapping by a workstation during a procedure. The irradiation events will duplicate events reported in the Dose Object for the procedure step.

The IHE REM profile describes how reporting systems can submit radiation dose reports to centralized registries such as those of professional societies, national accreditation groups or national authorities. Compliant Dose Information Reporters are capable of de-identifying and submitting dose reports to a national dose register over secure FTP, making it relatively simple for groups to collect and process dose data from participating sites. Such data collection may also be undertaken for clinical trials to record and collect dose and image data. These utilities are currently not commonly used because national registries are not yet common. Further, the utility of capturing cumulative radiation exposure, which such registries may offer, has not been fully established. A harmonized nomenclature (naming of radiological examinations and procedures) is needed, both locally and nationally (see Section 6.3), for comparison purposes.

5.2.3.3. Implementation

The IHE REM profile provides effective shorthand for sites to use in purchase specifications. Sites with programmes to monitor patient radiation exposure have to review the IHE REM profile for applicability to their goals and consider requiring compliance with the profile in future purchases and upgrades, using language such as ‘The system shall support the IHE REM Profile as the Acquisition Modality actor’. Vendors can respond with their IHE Integration Statement.
The IHE REM profile addresses the efficient collection and distribution of dose information. It is, however, just a tool. A radiation exposure management programme that defines the policies and procedures for radiation safety and dose management remains, appropriately, the responsibility of the imaging facility. Site medical physicists and radiological medical professionals responsible for imaging procedures have to work with their dose reporting system vendor to discuss how to best analyse the data and format the reports so as to meet the needs of their dose management policy and plans, as well as to ensure the quality of data (see Section 8.3).

The profile removes data collection and management burdens, but it does not define such policies, reports or processing. It is up to the imaging facility to put the information to use.

5.2.3.4. Other IHE profiles

The IHE Radiation Exposure Monitoring for Nuclear Medicine profile\(^7\) addresses dose reporting for imaging procedures in nuclear medicine, including single photon emission computed tomography and positron emission tomography.

The Radiation Exposure Monitoring for Nuclear Medicine profile is based on the REM profile, with a few key differences. The first is the use of the DICOM Radiopharmaceutical Radiation Dose Structured Report instead of DICOM X ray RDSR. The system that creates Radiopharmaceutical Radiation Dose Structured Reports is a Radiopharmaceutical Activity Supplier, typically a system in the ‘hot lab’ that prepares the dose to be administered to a patient before the procedure. Like other DICOM objects, Radiopharmaceutical Radiation Dose Structured Report dose objects are created, stored, queried, retrieved, de-identified and may be processed or archived. The imaging modality such as single photon emission computed tomography or positron emission tomography is expected to retrieve the dose report, use the details in decay corrections and copy relevant details into the headers of generated images.

The IHE Management of Acquisition Protocols (MAP) profile\(^8\) supports the collection of scan protocols from imaging modalities, their periodic review and approval and their redistribution to imaging modalities. The transactions are based on the storage, query and retrieval of DICOM objects containing scan procedure protocols and protocol approvals. The MAP profile helps monitor imaging acquisition protocols in use, detect variants and achieve consistent use.

\(^7\) https://wiki.ihe.net/index.php/Radiation_Exposure_Monitoring_for_Nuclear_Medicine

of optimized protocol. Currently, the MAP profile includes DICOM Storage Protocols (planned and performed) for CT and angiography.

The recently added IHE Contrast Administration Management (CAM) profile\(^9\) records details for the administration of contrast agents for imaging and image guided procedures. It is intended to provide the necessary infrastructure for reporting and analysis, such as investigating adverse events or driving regular quality assurance processes. The profile standardizes the storage, query and retrieval of Imaging Agent Administration Structure Report instances, which are DICOM objects containing details of a planned or performed administration of imaging agents, such as radiopaque contrast, in the context of an imaging procedure. The transactions are intentionally analogous to the IHE REM profile.

6. COLLECTION OF PATIENT RADIATION EXPOSURE DATA

Once patient radiation exposure data are recorded, they need to be collected into databases and repositories for systematic analysis. The collection of the data may be done for the purpose of examining an individual or a population exposure.

In population based patient exposure data analysis, a key issue is the definition of the patient cohort. A patient cohort can be defined based on the characteristics of the patients, for example, paediatric patients of a specific age or weight group, or adults of a specific size range. It may also be based on the specificity of the examination, facility, location or other such specifications. For example, a cohort can represent all abdominal CT examinations or all portable chest X ray examinations at a particular facility or a particular working shift. The specification of the cohort may also be based on the combination of the attributes of both the patient and the examination. The precise specification of the cohort calls for classification of examinations and procedures (Sections 6.2 and 6.3).

The conclusions drawn from cohort based analysis will be specific to the chosen cohort. This makes a priori selection of a cohort a pre-eminent consideration in monitoring patient exposure data. As such, cohort based data collection needs to be informed by the questions of interest.

6.1. TECHNIQUES FOR COLLECTING PATIENT RADIATION EXPOSURE DATA

The collection of patient radiation exposure data occurs at different levels. At the first level, the recorded patient radiation exposure data are collected locally (e.g. inside a given hospital or radiology department). The data are then classified according to the desired purposes. At the second level, the classified data are collected for the purpose of regional, national or international analyses.

Local data collection can be done manually, but it is recommended to be automated by means of digital patient radiation exposure monitoring systems. As explained in Section 5.2.2, the dissemination of the DICOM Standard enables the use of different standard objects to store dosimetric data in the PACS, thus allowing for further data collection, analysis or processing. Exposure data recorded in DICOM Standards can be transmitted to the PACS. Currently, digital patient radiation exposure monitoring systems are available that facilitate the establishment of databases as repositories of dosimetric data [108–112]. Alternatively, dosimetric data can be transmitted to a separate, stand-alone dose data archive that is intended to aid in radiation protection quality assurance and quality improvement (as foreseen in the IHE REM profile).

At the second level of data collection, typical examples of national and international data collections are primarily intended to establish national DRLs (Section 7.1) or to make national or global estimates of the collective dose to a population (Section 7.4). For these purposes, the development of patient radiation exposure monitoring systems will allow the building of large dose registers with reliable data. For example, the UK now has a system whereby dosimetric data collected by medical physicists in hospitals throughout the UK are sent to Public Health England for collation and analysis [123]. The Australian Radiation Protection and Nuclear Safety Agency provides a web portal for reporting doses from facilities (collected either manually or electronically) and comparing them to the national DRLs.\(^1\)\(^\text{10}\) Similar web based dose reporting platforms are used in other countries [124–126]. The American College of Radiology’s (ACR) Dose Index Registry\(^1\)\(^\text{11}\) has used fully automated methods to collect data from CT examinations [127].

The patient radiation exposure monitoring systems will provide a helpful tool for optimizing imaging procedures, as well as for fulfilling legal requirements such as dose reporting to authorities, for the purposes of clinical audits or to meet

\(^1\)\(^\text{11}\) https://www.acr.org/Practice-Management-Quality-Informatics/Registries/Dose-Index-Registry
international or national requirements to identify unintended overexposures. As discussed in Section 5.2.3, IHE standard workflow ensures interoperability among modalities, PACS, dose monitoring systems and even national archives.

Despite the availability of the automatic patient radiation exposure monitoring systems, data collection for national or international purposes in most cases still relies on manual or semi-manual methods: the patient exposure data are typically inserted into specific templates or Excel files, which are then transmitted to the organization responsible for collection, either electronically or directly with web based collection templates. The templates provide a necessary way of sorting and organizing the large number of data points and provide an efficient starting point for data analysis and reporting.

6.2. DEFINITION OF THE PATIENT EXPOSURE DATA COHORT

Data collection and analysis involve an explicit definition of a category or cohort of patient exposure data. Such a definition permits the effective use of the data for patient dose determination and comparisons, setting and use of DRLs, setting and use of referral guidelines and decision support systems, and procedural optimization, along with other purposes outlined in Section 7.

Figure 9 offers an illustration of the classification approach.

The pool of the patient exposure data can be recognized as samples across a wide range of continuous and discrete operational and patient parameters. These fall into three categories:

(1) Procedure parameters: These include the modality (e.g. radiography, CT), the procedure (e.g. chest radiography, abdominal CT), the subprocedure (e.g. arterial or venous phase series, posteroanterior (PA) or lateral view), the indication targeted for the examination (e.g. ascertaining the presence and attributes of liver lesions) and the complexity of the procedure. The latter is particularly relevant to interventional radiology and cardiology to differentiate the level of difficulty in carrying out the procedures in terms of time and techniques (e.g. number of projections, number of arteries involved, number of stents). This complexity typically correlates with the total patient dose: higher complexity usually means higher dose [4, 128–131]. A coding is implied in the examination definition and execution. See more on procedure classification in the next section.

(2) Patient parameters: These include the patient type (e.g. adult, paediatric, inpatient, outpatient, emergency patients) and patient characteristics (e.g. gender, age, weight, body mass index, diameter, percentile categories based on any particular attribute).
Facility parameters: These include the specific imaging system used to acquire the images (make and model, software version), the room used to perform the examination, the timing of the examination (e.g. morning or evening shift, or all images in the first quarter of the year), the radiological facility in which the examination is performed, the medical radiation technologist performing the examination and the specific imaging protocol invoked in the data acquisition.

The patient exposure data can be classified into specific categories using the combination of any of the associated parameters. For example, one may identify all abdominal adult CT images within a one year period or narrow the categorization further down to a narrower range of time (e.g. one month) or patient weight (70–90 kg) or examination room. The definition of the category

\[\text{FIG. 9. A schematic illustration of the classification and cohorting of patient exposure data for a given modality. Each individual star data point represents a whole or a part of a patient examination. The overlapping circles represent classifications based on specific imaging systems, procedures and patient conditions.}\]

\[\text{(3) Facility parameters: These include the specific imaging system used to acquire the images (make and model, software version), the room used to perform the examination, the timing of the examination (e.g. morning or evening shift, or all images in the first quarter of the year), the radiological facility in which the examination is performed, the medical radiation technologist performing the examination and the specific imaging protocol invoked in the data acquisition.}\]

\[\text{The patient exposure data can be classified into specific categories using the combination of any of the associated parameters. For example, one may identify all abdominal adult CT images within a one year period or narrow the categorization further down to a narrower range of time (e.g. one month) or patient weight (70–90 kg) or examination room. The definition of the category}\]

\[\text{\[12\] GSR Part 3 [16] defines a medical radiation technologist as “a health professional, with specialist education and training in medical radiation technology, competent to perform radiological procedures, on delegation from the radiological medical practitioner, in one or more of the specialties of medical radiation technology.”}\]
has to be informed by the purpose of the subsequent analysis, the statistical power of the resultant comparison and the anticipated dependency of the extracted patient exposure data with respect to its governing parameters, again informed by the planned analysis.

Imaging examinations have a different frequency depending on the prominence and role of the examination and the population distribution. Therefore, cohort based patient radiation exposure monitoring is subject to variable statistical power. The cohorts need to be carefully defined to enable solid conclusions to be drawn. For example, if a cohort is defined across all patients regardless of modality or examination type, the resultant analysis will have very limited utility, considering the broad range of data present in that cohort. In contrast, drawing conclusions about an infrequently performed procedure might be impossible unless the data can be collected over a long period of time to provide for sufficient statistical power. This is a particular challenge in paediatric imaging, which is generally performed less frequently. For example, narrowing down the category to head CTs of 5-year-old paediatric patients within a one month period in a single examination room would likely provide a very small number of data points to offer any statistically significant comparisons.

To characterize a cohort, the sample size needs to be at least 20–30 procedures (patients), provided that the classification is sufficiently narrowly defined (e.g. one X-ray room, an agreed clinical indication, standard size patients). This minimum sample size provides a 20% confidence interval at a 95% level of confidence. A larger sample size will provide a higher degree of precision (a sample size of 100 procedures (patients) reduces the confidence interval to 10%). The larger the variability in the metric being examined, the larger the sample size needs to be. This is reflected in the latest recommendations for establishing DRLs [17, 132, 133].

A given patient examination can take a different identity depending on the cohort with which it is being associated. As such, each examination can be thought of as having different associated tags, any of which can be claimed in a cohort definition. For example, an examination can be tagged as a chest examination as well as a paediatric examination so that it can be included in multiple cohorts for associated analyses. Sometimes, different imaging protocols may be used for the same clinical indication or different indications may use similar protocols. This may be taken advantage of for the purpose of cohort definitions.

In terms of the anticipated dependency of the extracted exposure data with respect to its governing parameters, the patient size is of notable importance. The reason is the well-established relationship between patient size, exposure and resultant image quality. Attenuation of the X-ray beam depends on the amount of tissue the beam has to penetrate, thus leading to different levels of patient dose to obtain the same image quality. Therefore, comparisons need to take size
into consideration. Comparisons are meaningful when made within the same size categories. For example, adults usually vary in weight by a factor of 4 (40–160 kg body weight). Paediatric patients vary in size more dramatically, from premature babies (e.g. 300–400 g) to obese adolescents (>80 kg body weight), representing a factor of more than 200. To facilitate meaningful benchmarking and comparisons, several weight and age groupings have recently been recommended [132, 133] (Table 3).

In terms of categorization, the influence of size on exposure parameters needs to be taken into consideration. For example, CTDI is expected to change as a function of patient weight, but not as much as a function of patient height, whereas DLP is affected by both patient weight and height. Sub-examination categories have to be further considered. For example, in multiphase CT, the DLP of a CT examination is more influenced by the number of phases of the acquisitions than by the attributes of the patient. In two-view chest radiographs, the lateral view commands 2–10 times more exposure than the frontal view. The categorizations and trend analysis take these dependencies and sub-examination conditions into consideration.

TABLE 3. APPROXIMATE EQUIVALENCE OF WEIGHT AND AGE GROUPS FOR THE PURPOSE OF COMPARING WEIGHT BASED DRLs WITH AGE BASED DRLs (adapted from Ref. [133])

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight group</th>
<th>Age group based on weight-for-age charts</th>
<th>Most common age groups used for the DRLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonate</td>
<td><5 kg</td>
<td><1 month</td>
<td>0 years</td>
</tr>
<tr>
<td>Infant, toddler and early childhood</td>
<td>5 to <15 kg</td>
<td>1 month to <4 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Middle childhood</td>
<td>15 to <30 kg</td>
<td>4 to <10 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Early adolescence</td>
<td>30 to <50 kg</td>
<td>10 to <14 years</td>
<td>10 years</td>
</tr>
<tr>
<td>Late adolescence</td>
<td>50 to <80 kg</td>
<td>14 to <18 years</td>
<td>15 years</td>
</tr>
</tbody>
</table>

44
6.3. CLASSIFICATION OF MEDICAL RADIOLOGICAL PROCEDURES

6.3.1. General features of classification and coding systems for medical procedures

Patient exposure data collection and analysis is dependent on the effective use of a procedure classification system. The most detailed classification systems involve a mechanism for harmonized nomenclature for radiological examinations and procedures. Lack of a good classification framework can lead to inconsistencies in examination and protocol nomenclature, affecting dose data integrity. The nomenclature inconsistencies can be magnified when comparing radiation doses across institutions and nationally or internationally. Detailed specification is needed to allow meaningful comparison of truly similar examinations or procedures conducted for similar purposes and requiring similar techniques. Classification is also essential to allow for the optimization of procedures (Section 7.1). It is for these reasons that the patient radiation exposure monitoring needs to include a systematic data classification mechanism, ideally along with a validation process of the classification accuracy.

A large variety of classification systems have been introduced in various countries and internationally. There is little harmonization among these systems, in particular with regard to the most detailed classification through established nomenclature and coding systems. As an example, Fig. 10 presents significant variation in the number of examination codes reviewed in European countries [134, 135].

In addition to the variation between the classification and coding systems, the imaging procedures are often interpreted and labelled differently, not only among institutions, but also within a single institution. Even the basic definition of what constitutes one ‘examination’ is not always clear. One recommended approach could be to use the following definition, proposed by the European Commission (EC) [134]:

“An x-ray examination or interventional procedure is defined as one or a series of x-ray exposures of one anatomical region/organ/organ system, using a single imaging modality (i.e. radiography/fluoroscopy or CT), needed to answer a specific diagnostic problem or clinical question, during one visit to the radiology department, hospital or clinic.”

An ideal classification system will distinguish the following main attributes:

— Modality (e.g. CT, fluoroscopy);
There are a variety of classification and coding systems for medical procedures for different purposes (e.g. billing, referrals). The most detailed and systematic coding approaches, such as the RadLex Playbook in the United States[^13], are recommendable for the overall future development of RIS. Further, the development of indication based classification systems has to take due consideration of the international standard for reporting diseases and health conditions, established by WHO.[^14]

[^14]: https://www.who.int/standards/classifications/classification-of-diseases
Classification systems in broader categories are still needed for many practical purposes, such as for estimations of population dose (see Section 7.4). For the latter, a categorization of specific radiological examination systems was developed by the EC [134, 135] and used partially by UNSCEAR in its Global Survey on Medical Exposure\(^\text{15}\), which offers a relatively compact and manageable approach for large scale national or global patient exposure data management.

6.3.2.1. **RadLex Playbook and ACR Common**

The RadLex Playbook is a project of the Radiological Society of North America (RSNA) that aims to provide a standard set of nomenclature for examination protocols on the basis of the elements that define an imaging examination, such as modality and body part. RadLex Playbook codes have been harmonized with the radiology portion of the Logical Observation Identifiers Names and Codes (LOINC) standard codes\(^\text{16}\), leading to the LOINC-RSNA Radiology Playbook. The RadLex Playbook is a part of a larger consolidation of categorization effort by the ACR called ACR Common\(^\text{17}\) (including Systemized Nomenclature of Medicine (SNOMED)\(^\text{18}\), Current Procedural Terminology\(^\text{19}\) and International Classification of Diseases (ICD)\(^\text{20}\) classes). It is a set of standardized codes and names that can replace or complement legacy procedure codes and names in systems that track imaging procedures, including PACS, RIS, reporting applications, physician order entry systems and electronic medical records. The RadLex Playbook addresses imaging examinations as radiology ‘orderables’, which are studies a referring medical practitioner can request through an order entry system. Depending on institutional practice, orderables may be more general than the full description of the examination actually performed. For example, the orderable ‘CT abdomen/pelvis with contrast’ is more general than the examination actually performed, ‘CT abdomen/pelvis with contrast, liver protocol’.

Institutions are expected to map their protocol names to the RadLex Playbook, facilitating radiation dose comparisons across institutions. Implementing a new set of procedure names is likely to involve collaboration between site staff with knowledge of local needs and practices as well as vendors or consultants with knowledge of system capabilities. Despite representing a

\(^\text{15}\) https://www.survey.unscear.org/doku.php?id=start
\(^\text{16}\) https://loinc.org/collaboration/rsna/
\(^\text{17}\) https://www.acr.org/Practice-Management-Quality-Informatics/Informatics/Terminology
\(^\text{18}\) https://www.snomed.org/snomed-international/who-we-are
\(^\text{19}\) https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
\(^\text{20}\) https://www.who.int/standards/classifications/classification-of-diseases
big step forward, this solution is incomplete since it relies on the mapping being performed consistently across all institutions.

6.3.2.2. Classification system used in the European studies of population dose

Although they were not as comprehensive as a coding system related to population dose estimations, the European guidelines in Ref. [134] proposed a common approach for categorizing the examinations so that the frequencies may be compared between countries. Three optional methods to estimate population dose were proposed on the following basis:

— 225 specific examination types (based on clinical indications);
— 72 broader categories of examinations;
— TOP20: List of 20 examinations recognized to be most important for total population dose.

Only the first two methods give a direct assessment of the total population dose, whereas the last one (TOP20) can be used for a rough estimation because of the need to extrapolate to cover all types of examination. The examinations or categories are systemized according to the four modalities: plain radiography, radiography and fluoroscopy, CT and interventional procedures. In addition, the list of examinations or categories is sorted according to the regions of the body or organ system (Table 4). For more details of using the system for population dose estimation, see Section 7.4.

6.3.2.3. UNSCEAR classification system

UNSCEAR has regularly provided information on medical exposure since its first report in 1958 [21]. Since its 1988 report, UNSCEAR has been estimating global exposure rather than simply presenting country-specific data [1, 2, 22–24]. For its latest survey, UNSCEAR, in cooperation with WHO, prepared a survey questionnaire and distributed it to all Member States of the United Nations. The survey aimed to acquire data on medical exposure following a predefined classification of radiological examinations and nuclear medicine procedures.

For its present purpose of periodic reviews of the survey on global medical exposure to ionizing radiation, UNSCEAR uses four general categories of medical practice involving exposure to ionizing radiation: diagnostic radiology, image guided interventional radiology, nuclear medicine and radiation therapy. Doses from radiation therapy are not included in the global estimates of population doses, but are considered in trend analyses [2]. The first category is further classified into three subcategories: projection radiography (without
contrast media), radiography and fluoroscopy (mostly with contrast media) and CT. For each main category, 9–19 subgroups (total 62) have been defined for data reporting and collection, with ‘other (please specify)’ used as the last category in each main group. The subgroups are roughly similar to the 72 broader categories defined by the EC and presented in Table 4 [134].

Regardless of the classification used, it is always necessary in projection radiology to make clear whether dental procedures are included. Further, UNSCEAR recommends national or regional surveys of medical exposure to include, where possible, information on the age and sex distribution of the major types of examination. In particular, estimations of collective dose to paediatric patients and a framework for evaluating the uncertainties of the estimates are important.

<table>
<thead>
<tr>
<th>Imaging modality</th>
<th>Examinations or categories of examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain radiography</td>
<td>72 specific examinations — 27 categories of examinations</td>
</tr>
<tr>
<td>(from table 2 of Ref. [134])</td>
<td>Regions of body: head; neck; chest/thorax; abdomen; pelvis; limbs; trunk; head and trunk; teeth and gums; breast</td>
</tr>
<tr>
<td>Radiography and fluoroscopy</td>
<td>57 specific examinations — 17 categories of examinations</td>
</tr>
<tr>
<td>(from table 3 of Ref. [134])</td>
<td>Regions of body: gastrointestinal tract; biliary tract; urogenital tract; spinal cord; joints; angiography; lymphangiography</td>
</tr>
<tr>
<td>Computed tomography</td>
<td>52 specific examinations — 18 categories of examinations</td>
</tr>
<tr>
<td>(from table 4 of Ref. [134])</td>
<td>Regions of body: head; neck; chest; abdomen; pelvis; neck, chest and abdomen; chest and abdomen; abdomen and pelvis; chest; abdomen and pelvis; limbs</td>
</tr>
<tr>
<td>Interventional procedures</td>
<td>38 specific examinations — 10 categories of examinations</td>
</tr>
<tr>
<td>(from table 5 of Ref. [134])</td>
<td>Regions of body: head and neck; chest; abdomen; pelvis; limbs</td>
</tr>
</tbody>
</table>
7. ANALYSING PATIENT RADIATION EXPOSURE DATA

The patient exposure data, once cast into relevant metrics, are recorded and collected and then analysed with tangible benefits in mind. This publication details these analyses in terms of the four specific goals described in Section 2:

(1) Ensuring optimized radiation protection and consistent practice of medical imaging;
(2) Ensuring safe and precise imaging of individual patients;
(3) Supporting the process of justification and appropriateness;
(4) Providing information on collective dose to a population from different sources of medical exposure.

This section highlights specific analytical considerations, with the understanding that additional interrogations of the data can be sought in consideration of the goals and objectives of the user. These may include additional operational goals beyond the optimization of protection, such as workflow optimization, billing and image exchange; topics that are not the focus of this particular report.

7.1. OPTIMIZATION OF PROTECTION AND PRACTICE CONSISTENCY

Patient exposure data can be used to optimize radiation protection, ascertain variability and improve operational consistency across clinical operation. Among sources of variability are those across and within imaging systems, across time, across facilities and across operators. The examinations are considered collectively for a particular clinical indication (such as CT abdomen in relation to liver metastases), rather than simply broad categories on the basis of the anatomical region alone (such as CT abdomen) (Section 6.2). Factors that affect variability include acquisition parameters (e.g. kVp, mA, table height, magnitude of over or under scan, etc.), patient positioning, imaging system, patient attributes (e.g. patient size, indication and the level of difficulty). Any and all of these involved quantitative attributes can be audited through the patient radiation exposure monitoring to ascertain whether examination values (dose values or image quality) are within expected ranges. The results are used to reduce variability across the imaging operation, which is a hallmark of quality patient care.
The sections below detail some of the analyses for the optimization of protection and practice.

7.1.1. DRLs and typical values

The use of the DRL concept is a mechanism for the optimization of protection through the management of exposure values for groups of patients [16, 17]. The DRLs are established relative to the 75th percentile of data relevant to a chosen cohort collected in several facilities, locally, nationally or internationally (in a region) [132]. A ‘typical value’ is likewise defined in terms of dose (i.e. typical dose) or typical administered activity in nuclear medicine, as the median value of patient dose parameter distribution for that cohort in a facility. Comparing typical values with corresponding DRLs determines how a clinical imaging procedure is positioned in reference to a broader standard.

The terminology recommended by the ICRP and definitions are summarized in Table 5, adapted from Ref. [132].

It is essential that the typical values and DRLs apply to similar specifications of the cohort and that the data are recorded and collected in the framework of patient exposure data specifications using the patient dose metrics recommended for each imaging modality. Essential elements of the cohort specifications include the class (or code) of the procedure (the clinical description), preferably on the basis of clinical indications (‘clinical tasks’ is the term used by ICRP) and appropriate grouping of patients in accordance with age, size or weight, as noted in Section 6.2. The clinical indications need to correspond with the definitions of the national medical professional societies and health authorities. Examples of classification of procedures based on clinical indications for establishing DRLs and typical values for CT are given in Refs [136–140]. The European project EUCLID recently defined ten clinical indications for setting DRLs in CT and four for DRLs in interventional radiology [141].

For interventional procedures, it is convenient to specify the complexity of the procedures [4, 128–131] (see Section 6.2). Initially, three bands of complexity (low, medium and high complexity) could be used. If complexity is not evaluated and reported, it may be supposed that the collected data correspond to medium complexity.

In collecting patient radiation exposure data to establish or to use the DRLs, likewise in daily imaging practices, there has to be a system in place to judge whether image quality (or diagnostic information when many images are used) is adequate for the diagnosis according to the indication of the examination. This could be based on the image quality assessment of typical test cases by several radiologists or by automated image quality metrics as noted in Section 3.3.
7.1.1.1. Establishing DRLs

As shown in Table 5, ICRP defines three different types of DRL: national, local and regional.

National DRL for a given cohort is established by collecting and analysing patient radiation exposure data for a representative sample of imaging examinations from different health care facilities in the whole country. National DRL is determined from the third quartile of the distribution of median values obtained from different health care facilities [17, 132]. Figure 11 offers an example of how the distribution of median exposure values across institutions is used to establish the DRL.

TABLE 5. TYPICAL VALUES AND TYPES OF DRLs, METHODS OF DERIVATION AND AREAS OF APPLICATION
(adapted from Ref. [132])

<table>
<thead>
<tr>
<th>Term</th>
<th>Area and facilities surveyed</th>
<th>Method of derivation</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>Health care facility consisting of several X-ray rooms or a small number of facilities, or a single facility linked to a new technique</td>
<td>Median value of the distribution, as there are insufficient data to use the third quartile</td>
<td>Local use to identify X-ray units requiring further optimization</td>
</tr>
<tr>
<td>Local DRL</td>
<td>X-ray rooms within a few health care facilities (e.g. with at least 10–20 X-ray rooms) in a local area</td>
<td>Third quartile of median values for individual X-ray rooms</td>
<td>Local use to identify X-ray units requiring further optimization</td>
</tr>
<tr>
<td>National DRL</td>
<td>Representative selection of facilities covering an entire country</td>
<td>Third quartile of median values for individual X-ray rooms or of national values</td>
<td>Nationwide to identify X-ray facilities where optimization is needed</td>
</tr>
<tr>
<td>Regional DRL</td>
<td>Several countries within one continent</td>
<td>Median values of distributions of national values or 75th percentile of distribution for representative selection of health care facilities throughout the region</td>
<td>Countries within region without a relevant DRL or for which national DRL is higher than regional value</td>
</tr>
</tbody>
</table>

52
To establish a local DRL for a given cohort, patient radiation exposure data from a few imaging rooms in a few local health care facilities need to be collected and analysed. The local DRL is determined from the third quartile of the distribution of median values obtained in these imaging rooms in a few health care facilities. As stated in Ref. [132], “Local DRLs may be set for procedures for which no national DRL is available, or where there is a national value but local equipment or techniques have enabled a greater degree of optimisation to be achieved so that a value less than the corresponding national DRL can be implemented.”

Different health care facilities (e.g., public and private hospitals, outpatient centres, small clinics) and different levels of existing imaging technology have to be included in the surveys to collect patient radiation exposure data. Each of the health care facilities has to guarantee the quality of the exposure data, including appropriate correction or calibration factors (see Section 8.3) and the use of the agreed radiation quantities and units, whether the data are used locally or sent to the national organization in charge to set the national DRLs. Automated data collection is recommended whenever available (Sections 5.2.1 and 6.1).

For interventional procedures, ICRP recommends the use of the full set of available data from different health care facilities when available [132]. For paediatric patients, the use of a smaller number of minimum cases per cohort might be unavoidable, considering the difficulty of having enough patients of different weights and sizes; the recent EC guidelines [133] recommend a sample size of at least 10 patients per procedure type and per patient group for non-complex examinations such as radiography and CT, and at least 20 patients per procedure type and per patient group for complex procedures such as fluoroscopy and fluoroscopically guided procedures. The problem of small sample sizes may be addressed with the use of a DRL curve [142]. When automated systems are

![Distribution of median CTDI values across institutions for setting DRL for head CT.](image)

FIG 11. Distribution of median CTDI values across institutions for setting DRL for head CT.
available to collect dosimetric data, samples for both adult and paediatric patients could ideally be much larger than the above minimums.

In the course of time, updates of DRLs and regular comparisons of typical values with DRLs will provide a useful database to allow for versatile analysis and comparisons of trends in patient doses, as well as the impact of optimization programmes on patient dose levels. ICRP recommends intervals of no longer than 3–5 years for these updates, depending on changes in technology and post-processing. Automatic patient radiation exposure monitoring systems facilitate more frequent and regular updating of DRLs.

7.1.1.2. Comparing typical values with DRLs

Typical values are median values of the dose distribution for the given cohort, for instance from a single X-ray room or a small sample of X-ray rooms [132]. The typical values have to be determined periodically, at least once a year, and compared with relevant local or national DRLs. If such DRLs are not available, typical values can still be used for comparison with published data or between different facilities. An automated registry can greatly facilitate frequent comparisons, not only in terms of the typical values (medians) but the whole dose distribution, as shown in Fig. 12 [143].

FIG. 12. A box plot of the DLP of paediatric head CT procedures for four age groups in three hospitals (A, B, C), compared to the national DRL range (25–75th percentile) (courtesy of F. Zanca, Palindromo Consulting, Belgium).
The comparison of typical dose values with DRLs is made on the basis of the statistical significance of differences for like-sized patients. Whenever the DRLs are statistically exceeded on a consistent basis, appropriate investigations need to be conducted, without undue delay, to identify the reasons. If differences are deemed unjustified and corrections feasible and necessary, corrective actions have to be taken to improve the clinical practice. As with all such interventions to practice, the process needs to be documented and tracked.

For more information on DRL establishment and use, refer to Refs [17] and [132]. Practical examples are given in the IAEA e-learning module on DRLs21.

7.1.2. Protocol- and size-specific dose boundary range

As a mechanism to improve practice consistency in a particular X ray system or gamma camera, the full set of exposure data can be used to define meaningful operational exposure levels for a given acquisition protocol as a function of patient size. An example of this strategy for CT is demonstrated in Fig. 13. Dividing the patients into four size groups (in this case using the effective diameter), the minimum and maximum target levels for patient dose value can be established on the basis of 5th and 95th percentile data, the so-called protocol- and patient size-specific boundary range of an exposure quantity of interest [114]. These data can be used in the protocol definitions and guidelines for medical radiation technologists to improve examination consistency across an operation. Note that using dose boundary range, as in the case of any dose based guidance, the dose is optimized on the basis of existing dose ranges in the facility and not targeted image quality (which would be an ideal approach).

7.1.3. Consistency analyses

The analysis based on DRL or typical values described in Section 7.1.1 minimizes the likelihood of overexposure by benchmarking doses to singular values (i.e. 75th and 50th percentiles). However, it is possible that two similar imaging systems performing the same examination or procedure could produce the same 75th percentile dose values and thus be judged equivalent in terms of adherence to DRL, but obviously the operation offering a tighter distribution would be superior as it offers less variability of dose across individual patients. Such variability, or the tightness of the dose distribution, can be characterized in terms of a spread range based on the 25–75th percentile range of the data within a cohort. The narrower the spread range, the more superior the overall operation will be. The spread range can further be compared and benchmarked

21 https://www.iaea.org/resources/rpop/resources/online-training-in-radiation-protection#7
against corresponding data from national and reference data. In this way, the patient radiation exposure monitoring can be used to help improve consistency across systems.

There are many factors that lead to broadening the dose distribution. One example is the imaging system variability. An imaging operation would ideally offer consistent performance independent of the imaging system or conditions used. However, this is hard to achieve in facilities with different systems. Figure 14 provides an example of the stratification of data across fluoroscopy systems of different makes and models. The spread range of the data for a particular cohort is characterized and compared.

The above analysis can further be performed on stratified data based on patient size. In modern CT, different systems have different ATCM strategies to adjust the radiation exposure to patient size. Figure 15 illustrates how the ATCM algorithm behaves for the same CT protocol for three CT systems. In this case, the protocols deliver roughly the same CTDI$_{vol}$ for the median patient size (31 cm); however, the CTDI$_{vol}$ differs substantially for large patients because of the differences in the ATCM algorithms. Therefore, CTDI$_{vol}$ changes with the patient size in a system dependent manner. This dependency, characterized through the dose monitoring programme, can be used as a basis from which to adjust system based protocols via different ATCM settings for different patient sizes to achieve a higher level of consistency across systems and models.

The consistency assessment and optimization would ideally be applied not only to dose metrics but also other factors of relevance to imaging practice,
namely image quality. Figure 16 illustrates the application of assessment and application of spread range to image noise values as a function of patient size and scanner type. Such data can be used to reduce the variability of examinations across different makes and models of CT systems [144].
Consistency analyses might also take place as a function of time. Valuable information can be gained in clinical operation by analysing trends in the dose data over both short and long periods of time. Short term trends, such as differences in radiation dose as a function of time of day, reveal differences in how imaging examinations are administered between shifts. Long term dose trends can aid in evaluating the overall efforts of the facility to work towards optimizing patient exposure. The tracking statistics can focus on radiological procedures (irrespective of dose quantities) to ascertain changes in the frequency of different radiological examinations (Section 7.14). Further, this tracking can also be used to estimate values and trends in collective dose to a population using typical values of dose per examination.

The tracking analysis, when applied to dose quantities within cohorts, helps in establishing DRLs, typical values, spread ranges and boundary ranges over time, further facilitating inter- and intra-institution comparisons. Such data, which are generally anonymized, contribute to patient dose registries. Such registries facilitate comparing one’s own facility doses in any examination with doses at other facilities, thus promoting optimization.

One use of tracking analysis is in ascertaining changes in imaging protocols, as well as in evaluations for purchases of new equipment based on how much they may minimize radiation dose. Figure 17 shows the SSDE to a
32 cm patient, based on an exponential relationship between SSDE and patient size, for standard chest examinations on a commercial CT system over time. A protocol change was made in which the order of the posteroanterior and lateral localizer images was swapped in December. As this particular system uses the last-acquired localizer to determine the tube current modulation, there was some concern that this protocol change could alter the delivered radiation dose. These data illustrate that there was no negative impact on patient exposure as a result of the protocol change.

7.1.4. Tracking frequency of equipment utilization

An indirect yet valuable use of patient radiation exposure monitoring is to ascertain the most frequently performed examinations. Figure 18 demonstrates an example. Such analysis would have obvious value for operational oversight and planning beyond radiation dose, but it also provides crucial information to identify the protocols that are most frequently performed, as well as those delivering the highest patient exposure so that resources for protocol oversight and optimization can be directed towards the protocols with highest relevance for population and individual exposures. Analyses can also include patient load, system utilization and examination lengths.
7.1.5. Protocol discrepancy and optimization

The protocol applied in an imaging examination has to ideally match what was prescribed. Patient radiation exposure monitoring, apart from exposure as an outcome, provides a window into the applied protocol and permits an interrogation of whether the applied protocol matches the prescription. This is not to claim that the applied protocol always has to match that of the prescription. There are instances when an adaptation is necessary in order to accommodate a particular examination condition. For example, for a bariatric patient undergoing CT, a higher exposure is necessary. If the mA is set to the maximum value, the rotation time needs to be lengthened to provide the necessary exposure. However, such adaptations might not be applied correctly or consistently, or a justifiably modified protocol for an individual patient might accidentally be saved as the default protocol on the system. By comparing the doses delivered to patients against an expected value based on the documented protocol definition, such instances can be identified and corrected.

Figure 19 shows the dose relationship with patient size for the abdomen–pelvis protocol before and after initiating a protocol review on a CT scanner [114]. Investigation revealed that the primary cause of overexposures was a software error in which changes in patient orientation (i.e. the supine rather...
than prone position) caused the tube current modulation to be deactivated. After training the medical radiation technologists to be aware of this problem and providing dose boundary ranges (see Fig. 13) to verify that the correct CTDI was used prior to imaging the patient, the frequency and magnitude of overexposures were dramatically reduced (see Fig. 19(b).

Figure 20 illustrates a comparison across scanners demonstrating how protocol review processes enabled a more consistent patient exposure across the clinical operation using the spread range concept (Section 7.1.3).

7.2. INDIVIDUAL PATIENT EXPOSURE ANALYSIS

The prior section focused on protection and practice optimization across cohorts of patients. In contrast, individual patient exposure analysis focuses on radiation exposure and tracking of relevant metrics of patient examination to ensure safe and high fidelity imaging of individual patients.
7.2.1. Setting and using trigger and alert levels

At the individual level, the priority for a patient radiation exposure monitoring is to analyse the data in terms of dose alert level and trigger level values. Alert levels have been introduced to give a warning if an individual patient exposure value has exceeded a particular threshold level. Likewise, a trigger level denotes a level above which a patient exposure needs follow-up investigation [17, 145–150]. Alert levels and trigger levels are mostly based on the avoidance of tissue reactions (deterministic effects) to radiation (e.g. skin reaction), sometimes provided by national standards. Alert levels and trigger levels are of particular relevance to interventional procedures but have also been used across other modalities. The IAEA Safety in Radiological Procedures database uses a set of trigger levels for patient follow-up in fluoroscopy guided interventional procedures.22

In this analysis, the examination data of individual patients are evaluated in terms of their conformance with alert levels and trigger levels, and appropriate warnings and alerts are generated (e.g. via emails) for follow-up actions. The system may also make provisions to set and adjust alert levels and trigger levels per user preference.

22 See www.iaea.org/resources/rpop/resources/databases-and-learning-systems/safrad

FIG. 20. Pulmonary embolism protocol before (a) and after (b) protocol review. The shaded area represents the 25–75th percentiles of targeted dose levels (spread range) based on national data. The three columns in each figure represent three different scanner models (courtesy of E. Samei, Duke Medical Center, USA).
7.2.2. Outlier identification

Investigation of individual examinations is needed to identify outliers in the distribution of exposure parameters. The interest here lies solely in incidental values of modality-specific exposure metrics. Tracking the dose history of a patient (i.e. determining the cumulative dose to a patient) will be addressed in Section 7.2.5.

The analysis of alert and trigger levels provides assurance that the exposure values are well below the threshold for tissue reactions. Even at lower values, however, patient radiation exposure data can be used to identify individual examination outliers or mis-exposure cases, such as patient dose values that are exceptionally high (i.e. because any exposure has an associated stochastic risk) or low (i.e. because this might compromise image quality). Towards this purpose, an acceptable ‘inlier’ dose range can be defined on the basis of 5th and 95th percentile data (the boundary range defined in Section 7.1.2). The outlier will then be individual examinations where their associated quantity falls outside of the protocol- and patient size-specific inlier range. In terms of dose, those cases can be identified as either over- or underexposure. Such cases need to be investigated to ascertain and correct the root causes of their deviation so as to improve the consistency and quality of the imaging operation.

It is crucial to ensure that the boundary ranges are defined per protocol and per patient size (Fig. 21). A cohort that is too broadly defined (e.g. all abdominal CT examinations) does not offer sufficient granularity to ascertain whether a particular case is an outlier. The appropriateness of a dose level is a strong function of the anatomical region and the clinical indication.

In the outlier identification, the underexposure cases are as important as the overexposure ones. A dose that is too low to provide sufficient diagnostic information unnecessarily exposes a patient for the sake of questionable medical benefit. This further highlights that awareness about and characterization of image quality are essential to ascertain the appropriateness of a patient radiation exposure.

Quantifying and sorting the outliers in terms of their deviation from the expected value enables the most significant outliers to be investigated and acted upon first. The expected value is the typical value of a metric appropriate for the examination. In cases where the expected value is dependent on patient size, the typical level for that size will be used (e.g. the regression line in Fig. 21(b)). Otherwise, where there is no such dependency (e.g. fluoroscopic time), the typical value of that quantity, irrespective of the patient size, will serve as the expected value.
Some examinations, such as imaging of pregnant women, involve special attention to radiation exposure. If pregnancy is known prior to an exposure, the case has to be flagged for easier identification and further analysis. Following relevant regulations or guidelines [17, 147, 148, 151–153], a graded approach to estimating the uterus/foetus dose is to be undertaken. Exposures where the uterus is not in the field of view are normally not critical. In cases of direct uterus/foetus exposure and high dose procedures above 20–50 mSv, a medical physics consultation is recommended. In addition, in high dose procedures additional dosimetry at the level of the uterus has to be considered. The same measures as above need to be undertaken in cases of pregnancy identified after the examination.

For additional patient groups, such as paediatric patients (i.e. premature newborns, neonates, infants and children) and those with higher sensitivity to radiation, patient radiation exposure monitoring can be used to closely monitor their exposure levels and use that information for optimization purposes with closer consideration of patient size and age.

FIG. 21. CTDI$_{vol}$ per patient number (a) and patient size (b). The circles indicate cases where the CTDI$_{vol}$ was justified, given the patient size. The squares indicate cases where an inappropriate CTDI$_{vol}$ was used, given the patient size. FP: false positive; FN: false negative (positive: recognized as outlier; negative: not recognized as outlier) (reproduced with permission from Ref. [113]).
7.2.4. **Unintended and accidental exposures**

Unintended medical exposures (e.g., wrong patient, wrong body part, wrong view, wrong imaging protocol, duplicated examinations) are rare events and in most cases the result of human communication errors. Some of these errors can be revealed by patient radiation exposure monitoring programmes and facilitated by automatic monitoring systems. The types of unintended and accidental exposures that can be identified include duplicated examinations, examinations with excessively high or low exposure values, examinations with discrepancies in the number of series or views and examinations in which the recorded patient exposure data includes the wrong protocol.

All these unintended exposures (whether real events or near misses) have to be recorded or flagged, worked on by all involved professionals and reported within the institution and to authorities in accordance with national requirements; finally, corrective actions need to be implemented whenever needed [17, 147, 148]. Ideally, the patient radiation exposure monitoring system needs to have provisions to permit the timely and comprehensive reporting of all unintended events. Many hospitals or institutions have introduced incidence reporting systems to handle such events.

7.2.5. **Tracking patient exposure history**

Tracking involves the analysis of radiation exposure data for an individual patient over time. Tracking for individual patients can be applied to radiological procedures, listing various radiological examinations an individual patient has undergone, or to cumulate patient dose associated with the examinations [154, 155]. The Joint Position Statement\(^2\) by the IAEA with six other international and professional bodies encourages the use of patient exposure tracking and indicates its potential benefits.

Although exposure tracking can be applied in any settings, the process is highly facilitated by automatic patient radiation exposure monitoring systems implemented at the facility (e.g., hospital), multifacility, national or even international level. The IAEA, through its SmartCard project\(^3\), provided templates for exposure tracking and models for its proper utilization [156, 157]. Exposure tracking involves patient identifiers within and across facilities, either through individual patient identifiers or codes ascribed to de-identified patients. There are other aspects that need to be considered, such as data privacy, which are further discussed in Section 8.

\(^3\) https://www.iaea.org/resources/rpop/resources/smart-card
7.2.5.1. Tracking of radiological procedures

Tracking of the radiological procedures of individual patients is useful for individual patient protection, as it provides clinical information that can avoid the performance of redundant radiological examinations. Paragraph 3.15(e) of GSR Part 3 [16] requires consideration of previous examinations in the justification of an individual medical exposure. SSG-46 [17] further recommends that the results (images and reports) of previous examinations be made available, not only at a given radiology facility but also for consultation at different facilities, in order to assist in the justification process. Avoiding an unnecessary examination provides 100% dose reduction, even without consideration of dose from previous examinations.

A first step, which might applicable in countries with fewer resources, is to encourage patients to keep records of their examinations in a simple document, examples of which are provided by Image Gently25 and Image Wisely26. Such a document, accompanied by information about procedures and related risks, would create the awareness that is needed as a first step in the process [157]. Electronic health records that include information about radiological procedures are a better solution for exposure tracking.

7.2.5.2. Tracking of patient dose

There is no common consensus about tracking radiation dose across all radiological examinations of patients. However, the recently published Joint Position Statement of the IAEA with eight other organizations27 emphasized the need to include provision in the automatic patient radiation exposure monitoring system for tracking of the exposure history of individual patients in one or more of the following, more generic metrics: type of radiological procedure, estimated effective dose and patient-specific organ dose estimates. It encouraged researchers and the industry to refine standardized and reliable approaches for dose estimates while accounting for the uncertainties of these estimates.

Cumulative radiation dose is useful in the radiation protection of patients undergoing recurrent imaging procedures. This is due to the fact that radiation risk has a cumulative effect, and repeated exposures multiply the risk.

25 https://www.imagegently.org/Roles-What-can-I-do/Parent
For an imaging procedure with potential for tissue reactions, such as prolonged interventional procedures, knowledge of cumulative dose to the skin from previous procedures can be a factor when planning the optimum timing of the next procedure and its optimization, as well as for the patient’s follow-up for potential tissue reactions [112, 145, 146].

For an individual imaging procedure with potential for stochastic effects, each examination adds an incremental risk. Justification for that examination needs to be primarily based on a benefit–risk consideration for that particular examination. Even so, the patient’s prior radiation history and the knowledge of his or her cumulative exposure have to be taken into account but not override the net benefit of the examination under consideration. In that way, although no dose limit applies to patient exposure, knowledge of the cumulative dose would add to the process of individual justification depending on the particularity of the case. This can also play a role in the optimization of overall patient care.

As an example, one particular patient group that has to be noted is neonates. Premature neonates and neonates in intensive care units often receive tens to hundreds of radiographs [158]. There are also other groups of patients with long term illnesses and clinical conditions that involve recurrent imaging in acute or chronic settings [19, 159, 160]. When a series of imaging procedures can be reasonably foreseen for a patient, the most appropriate procedures for the patient and the clinical condition need to be chosen, weighing their frequency and cumulative benefits and risks. As far as reasonably practicable, clinical and radiation dose information from the patient’s previous imaging procedures needs to be made available to help strengthen the appropriate decision making process [161, 162].

Knowledge of the patient’s exposure history also plays a role in optimization. Some situations requiring recurrent imaging might entail lesser radiation exposure than other examinations of the same anatomical region but in other clinical contexts [96, 163]. Thus, in patient-centric care, the inclusion of cumulative dose in the appropriate metric as a standard part of a patient’s medical record will help provide a holistic reflection of the overall quality and safety of the patient’s care, while also encouraging the physician’s awareness of the patient’s radiation protection.

Modality-specific metrics (e.g. air kerma area product (KAP), CTDI, DLP) are not appropriate for dose cumulation. Cumulative radiation dose has to be stated in terms of patient orientated metrics of dose (e.g. organ dose, effective dose or other radiation risk estimate) (see Section 3.2). Estimated values from different procedures are added together. Further standardization is needed of the methods for these estimates. It is also important that modality-specific measurable dose metrics and relevant exposure data associated with the imaging procedure are always recorded, so that organ doses and effective dose can be calculated as required using the most recent methodology [53]. Special consideration needs to be given to the uncertainty in the estimates and their appropriate interpretation and use.
7.3. **SUPPORTING THE PROCESS OF JUSTIFICATION AND APPROPRIATENESS**

Paragraph 3.158 of GSR Part 3 [16] requires referral guidelines to be used for the justification of imaging procedures. Referral guidelines or appropriateness criteria include generic information on typical patient doses for standard patients and have been developed in many countries. The referring medical practitioner (referring physician) needs up-to-date information on the patient doses expected in imaging procedures in reference to referral guidelines. Information about radiation dose can help the referring medical practitioner to order the most appropriate examination. For this purpose, effective dose is an appropriate quantity to provide information on magnitudes of doses and associated risks from different procedures [53]. Patient radiation exposure monitoring systems can provide up-to-date information on typical effective dose values.

Clinical decision support (CDS) electronic tools have become available during the last decade and provide a meaningful way to improve the justification process [164]. CDS in imaging is a process designed to aid directly in clinical decision making, in which characteristics of individual patients (e.g. symptoms, results of physical examinations, suspected diagnosis, laboratory results) are used to suggest the most appropriate examination(s). CDS tools also offer an ideal way of providing training for referring physicians, and the systems can even be used to check and monitor learning through the consistency between the recommended selections and actual practices.

The maximum benefit of CDS and automatic patient radiation exposure monitoring systems would be achieved by integrating them with the overall health care electronic systems. There are, however, many legislative, logistical and technical aspects to be considered, as further discussed in Section 8.5. Such an integration would enable easy follow-up of the implementation of the justification in clinical practice and also enable the relevant information, such as typical patient doses, to be updated. The selectable types of examinations and procedures need to be specified as clearly and unambiguously as possible, within the framework of classification introduced in Section 6.3.

7.4. **POPULATION DOSE ESTIMATIONS**

The development of patient radiation exposure monitoring systems will greatly facilitate the estimation of collective population dose (most relevantly quantified in terms of effective dose), both at a country level and globally. Such estimations are important to allow for the follow-up of trends, make comparisons between examinations and between countries, identify the relative importance
of specified examinations and procedures to the overall population dose and consequently prioritize and focus efforts and resources in radiation protection.

An example of a typical pie chart on the relative contributions resulting from population dose estimations is shown in Fig. 22 [2].

![Pie chart showing relative contributions of five main groups of medical radiological examinations to the overall collective effective dose.]

FIG. 22. Relative contributions of the five main groups of medical radiological examinations to the overall collective effective dose (based on data from Ref. [2]).

When data are available, the total number of medical radiological examinations performed annually in the study regions (whole world, country, hospital district, etc.) can be computed as:

\[N = \sum_{i,j} N_{i,j} \quad (1) \]

where \(N_{i,j} \) is the annual number of examinations of type \(i \) carried out in region \(j \) and the summation includes all regions and types of examination. Similarly, the population dose of the regions from diagnostic radiology and diagnostic nuclear medicine, in person-sieverts, is given by:

\[S = \sum_{i,j} N_{i,j} E_{i,j} / 1000 \quad (2) \]
where $E_{i,j}$ is the typical effective dose (in millisieverts) for examination i in region j, and the per caput dose in the regions (for population P of the regions), in millisieverts, is given by:

$$E_{\text{per caput}} = \frac{S}{P} \times 1000$$ (3)

The annual numbers of examinations and procedures have to be ideally available through patient radiation exposure monitoring systems based on automatic data collection and linked to national registries. At the present time, these numbers are usually obtained from central statistics held by governmental bodies or insurance companies, or from questionnaire based data collection from a sample of health care facilities, scaled up to cover the whole country or region.

Typical effective doses for each type of examination or procedure, which are needed for the population dose estimation, can be obtained from any of the three methods detailed in Section 3.2.4 or from literature. The method used to calculate effective dose needs to be specified. Estimates of the typical effective dose for each type of examination in a given country or region are currently based mainly on E_k, often applied to the data collected from a sample of hospitals or clinics in this country or region.

The evaluation of collective effective dose to a population would ideally be implemented within the framework of classification introduced in Sections 6.2 and 6.3. However, very detailed categories might not always be practicable because of the huge amount of data needed and the problems of accurate data collection, in particular when making global estimates of population dose. Several categories can be combined into a limited number of main categories, such as those introduced by UNSCEAR and EC (see Section 6.3.2), in order to simplify the process and achieve higher statistical power for calculations and comparisons, thereby reducing the uncertainty. For example, the ‘Top 20’ method uses 20 procedures that have been shown to comprise approximately 50 to 70% of the total number of X ray procedures and 70 to 90% of the total population dose (Table 6) [134, 135]. The importance of various examinations will vary between countries and change over time, but such a list may be useful to follow trends and compare countries in a consistent manner. The Top 20 method provides an estimate of the overall population dose to within 60–90%, and this can be significantly improved by supplementing the analysis with 4–6 extra examinations [135].

An important example of the evaluation of collective effective dose to population is the global assessments carried out by UNSCEAR to provide regular information on medical exposure. Since its 1988 report, UNSCEAR has applied a health care level model (HCL I, II, III or IV) to estimate the annual number of
<table>
<thead>
<tr>
<th>Examination type or category</th>
<th>% of total frequency</th>
<th>% of total collective dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain film radiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest/thorax</td>
<td>12–29</td>
<td>0.7–5.2</td>
</tr>
<tr>
<td>Cervical spine</td>
<td>2.0–5.4</td>
<td>0.05–2.3</td>
</tr>
<tr>
<td>Thoracic spine</td>
<td>1.0–3.1</td>
<td>0.5–3.7</td>
</tr>
<tr>
<td>Lumbar spine (incl. lumbosacral junction)</td>
<td>2.8–9.6</td>
<td>2.0–17.0</td>
</tr>
<tr>
<td>Mammography</td>
<td>0.3–15</td>
<td>0.6–4.7</td>
</tr>
<tr>
<td>Abdomen</td>
<td>1.1–4.3</td>
<td>1.1–4.7</td>
</tr>
<tr>
<td>Pelvis and hip</td>
<td>6.3–10</td>
<td>2.8–9.4</td>
</tr>
<tr>
<td>Radiography/fluoroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium meal</td>
<td>0.3–0.9</td>
<td>0.8–5.9</td>
</tr>
<tr>
<td>Barium enema</td>
<td>0.1–2.0</td>
<td>0.5–13.0</td>
</tr>
<tr>
<td>Barium follow</td>
<td>0.05–0.3</td>
<td>0.2–1.6</td>
</tr>
<tr>
<td>Intravenous urography</td>
<td>0.3–2.0</td>
<td>1.2–8.7</td>
</tr>
<tr>
<td>Cardiac angiography</td>
<td>0.2–1.3</td>
<td>1.0–9.9</td>
</tr>
<tr>
<td>All angiography</td>
<td>1.1–2.4</td>
<td>6.4–16.0</td>
</tr>
<tr>
<td>Computed tomography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT head</td>
<td>1.8–5.4</td>
<td>3.0–7.9</td>
</tr>
<tr>
<td>CT neck</td>
<td>0.06–0.9</td>
<td>0.1–1.1</td>
</tr>
<tr>
<td>CT chest</td>
<td>0.5–1.5</td>
<td>6.1–12.0</td>
</tr>
</tbody>
</table>
TABLE 6. TOP 20 EXAMINATIONS IN EU COUNTRIES
(adapted from Ref. [135]) (cont.)

<table>
<thead>
<tr>
<th>Examination type or category</th>
<th>% of total frequency</th>
<th>% of total collective dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT spine</td>
<td>0.3–2.8</td>
<td>1.5–13.0</td>
</tr>
<tr>
<td>CT abdomen</td>
<td>0.01–3.0</td>
<td>1.9–26.0</td>
</tr>
<tr>
<td>CT pelvis</td>
<td>0.03–1.5</td>
<td>0.3–9.7</td>
</tr>
<tr>
<td>CT trunk</td>
<td>0.1–5.6</td>
<td>1.1–27.0</td>
</tr>
<tr>
<td>All CT</td>
<td>4.5–15.0</td>
<td>28.0–59.0</td>
</tr>
</tbody>
</table>

Interventional

| Percutaneous transluminal coronary angioplasty (PTCA) | 0.1–0.3 | 0.5–3.6 |

| **All interventional** | 0.2–1.3 | 3.5–14.0 |

| **Total 1–20** | 50–70 | 70–90 |

medical radiological examinations and nuclear medicine procedures performed using ionizing radiation, according to the number of physicians per population [1, 2, 21–24]. Extrapolation to derive a global estimate is performed by determining both the population weighted average frequencies for procedures and the population weighted average dose per procedure within each health care level and then applying these population weighted averages to the whole population within each health care level. The most recent UNSCEAR assessment used a continuous mathematical model, in the form of a power function of the physician density (all physicians per 1000 population) in each country, to estimate procedure frequencies instead of the previous method of determining average frequencies within health care levels [2]. As an alternative to the health care level model used previously, this report used the World Bank’s income classification for countries, which also comprises four levels: (1) high, (2) upper middle, (3) lower middle and (4) low. This approach allows the comparison of medical exposure with other health indicators, as WHO uses the same classification; however, it is still a global estimation with uncertainties depending on the data quality and the model used.
8. IMPLEMENTATION OF PATIENT RADIATION EXPOSURE MONITORING

The information in the following sections, except for Sections 8.2 and 8.5, is generally applicable to all patient radiation exposure monitoring systems, regardless of whether they are implemented manually or by automatic means. Sections 8.2 and 8.5 are particularly focused on the features that are essential for the implementation of automatic patient radiation exposure monitoring systems.

When implementing a patient radiation exposure monitoring system, it is important to strive to develop and maintain best practices. Countries with limited resources may need to first aim for partial solutions, with the long term objective of matching best practice.

Because of the variation among infrastructures and imaging resources in various countries, it is difficult to specify a generic list of minimum actions for patient radiation exposure monitoring. In the case of limited resources, the focus needs to be on developing patient radiation exposure monitoring systems for the needs of hospital professionals (physicians and medical physicists) and radiation protection or health authorities. In the first step, the most common examinations and procedures need to be included, which are also expected to yield the highest contribution to the population dose.

8.1. ORGANIZATIONAL STRUCTURE FOR PATIENT RADIATION EXPOSURE MONITORING

8.1.1. Health care facility structure

Patient radiation exposure monitoring within a health care facility requires a suitable organizational structure, including a dedicated committee. Ideally, this committee will combine expertise from several professional groups with complementary expertise [165]. This team needs to include the following, depending on the stage of implementation or use:

(a) A medical physicist to ensure that the process has a sound scientific basis, including validation of dosimetric values;
(b) A lead physician to ensure that the process is based on relevant clinical questions;
(c) A lead medical radiation technologist who executes the analytical assessments and ensures follow-up corrective or improvement actions in the clinical operation;
(d) An individual from the PACS/IT department to ensure robust IT integration and operation;
(e) A senior administrator with authority over all departments that use radiation sources for imaging;
(f) A physician from each department using radiation-generating imaging equipment to ensure the ownership and engagement of all relevant departments;
(g) Additional specialized staff allocated to undertake specific tasks and analyses as needed;
(h) A biomedical statistician considering the statistical aspects of the data analysis, to ensure soundness of the data processing steps.

It is very important that the expectations and the roles and responsibilities of each member be clearly defined and understood. The committee may initiate subcommittees for specific tasks (e.g. initial installation, oversight). The committee needs to be formalized within the institutional structure and report to the chief safety officer or operating officer of the clinical facility, or equivalent, to ensure adequate oversight and visibility.

8.1.2. Multifacility, national or international structure

The maximum benefit from multifacility and national patient radiation exposure monitoring systems would be achieved if these systems were integrated with the overall national information system for medical imaging (Section 8.5). Therefore, such systems have to be established through effective cooperation among the key actors in the field, such as the radiation protection authority, health ministry, health and welfare research and development institution and the national social insurance institution. The imaging equipment manufacturers and IT providers need to be involved as appropriate, in accordance with existing technology and national and local rules of procurement.

The basic specifications and the development of the integrated patient radiation exposure monitoring system need to be supported by an appropriate multiprofessional steering group, composed of the representatives of the key national organizations, health care units and IT experts. The role of the IT experts is crucial, as the development and implementation of the system will rely on demanding or challenging applications of modern IT. The problems of IT technology compatibility, and national regulations on information security and access control, are often the main obstacles in the way of developing an integrated wide scale system. The steering group will guide and follow up the technological development, in conformity with the national regulations, and will ensure that the needs of the various user groups are surveyed and met. This can
be achieved by organizing regular workshops, the topics of which may include imaging equipment and IT providers.

The accountability and financial impact of the national patient radiation exposure monitoring system can be examined and tested through national pilot projects. Such pilot testing of the system would be part of wider testing of national health care informatics, to ensure that suitable projects are efficiently financed or funded through successful participation in research calls for health care development. The national pilot projects could address data recording, transfer and storage, as well as data search, collection and analysis for selected radiological examinations, at first in limited operational environments but eventually at full national level. The limited or national pilots would establish prototype user interfaces for different user groups and test their wide scale applicability within the national patient radiation exposure monitoring system.

On an international scale, the multifacility and national approaches would provide an optimal basis for the international exchange of information and reporting to regional or global surveys (such as the UNSCEAR Global Survey on Medical Exposure discussed in Section 7.4).

8.2. SPECIFICATIONS AND FUNCTIONALITIES OF A PATIENT RADIATION EXPOSURE MONITORING SYSTEM

In the selection and implementation of a patient radiation exposure monitoring system, the user might wish to consider certain specifications. Key specifications pertaining to informatics, features and access are listed below.

8.2.1. Informatics

A viable patient radiation exposure monitoring system will interface with a number of other clinical imaging information systems, possibly including PACS, RIS, HIS, electronic medical records (EMR), CDS tools, voice recognition and dictation systems, critical results reporting systems and operational and quality dashboards. The guidance provided in Ref. [165] on the implementation of digital imaging in radiology needs to be considered. To ensure adequate interconnectivity, data security and data integrity, the informatics specifications shown in Table 7 apply to all patient radiation exposure monitoring systems.
<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalities</td>
<td>Modalities monitored (i.e. CT, X-ray radiography, X-ray fluoroscopy, angiography, mammography, nuclear medicine)</td>
</tr>
<tr>
<td>Data source</td>
<td>Source of data per modality (e.g. PACS, imaging systems, RIS/HIS, EMR)</td>
</tr>
<tr>
<td>Data collection mechanism</td>
<td>Method to collect data per modality (e.g. automatic, manual, query, autosend)</td>
</tr>
<tr>
<td>System integration</td>
<td>Communication provision with additional IT system (e.g. EMR, RIS/HIS, CDS, contrast administration system, dictation system) Note: For most effective use, the system needs to be integrated within the health care IT</td>
</tr>
<tr>
<td>Data repository location</td>
<td>Location to store data (e.g. local server, virtual server, off-site server, cloud, etc.)</td>
</tr>
<tr>
<td>Computational security</td>
<td>Provision for data encryption, access authentication (stand-alone or integrated within the IT integrated access system of the facility), firewall, etc.</td>
</tr>
<tr>
<td>Data communication</td>
<td>Communication systems supported (e.g. DICOM, HL7, IHE)</td>
</tr>
<tr>
<td>Data portability</td>
<td>Ownership of the data Note: The patient exposure information database has to remain the property of, and accessible to, the specified user groups (e.g. the health care institution after the termination of any software subscription or support agreement)</td>
</tr>
<tr>
<td>Privacy</td>
<td>Provision for securing data privacy Note: Patient protected health information transmitted to and stored in a patient radiation exposure monitoring system is subject to the requirements of the relevant laws and regulations</td>
</tr>
<tr>
<td>Vendor neutrality</td>
<td>Vendors supported Note: System needs to support vendors represented in the facility</td>
</tr>
<tr>
<td>Data backup and retention</td>
<td>Frequency and length of historical backup Note: Means for backup of the system data needs to be provided</td>
</tr>
</tbody>
</table>

Note: For most effective use, the system needs to be integrated within the health care IT.
8.2.2. Features

The features of a system define its primary utility. Table 8 lists key features to be considered in the implementation of the system. Additional information is provided in Refs [166, 167].

8.2.3. Access

Among the different user groups of an overall patient radiation exposure monitoring system are the following:

— Radiological medical professionals;
— Medical physicists in charge of patient exposure and quality data management;
— Medical radiation technologists with a specified role in data management;
— Referring medical professionals;
— Health care organizations ordering radiology services;
— Radiology departments or hospitals providing radiology services;
— IT expert services of the hospital (for maintenance and development);
— System, technology or equipment vendors (for maintenance and development);
— Radiation protection or health authorities;
— Research institutions;
— Patients and patient advocate associations.

Various user groups have specific needs and specific rights for extracting and analysing data from the patient radiation exposure monitoring system, and the access to the system has to be customized to the needs of different users. It is important for the information provided to be channelled with the appropriate
<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure identification</td>
<td>Provision for identifying procedures</td>
</tr>
<tr>
<td>Protocol mapping</td>
<td>Protocols mapping provisions (e.g. manual, automatic, classification system used, both at the study and series levels)</td>
</tr>
<tr>
<td>Transfer support</td>
<td>Provision for communication to off-site databases (e.g. registries, authorities), including type of data transfer (e.g. aggregate data) and applied anonymization and aggregation methods</td>
</tr>
<tr>
<td>Reporting</td>
<td>Type, content, format, frequency (for automated ones) and customization of the generated reports</td>
</tr>
<tr>
<td>Frequency query</td>
<td>Query for frequency of specific types of examination over specified time periods, facility, etc. and data export support and format (e.g. Excel, CSV)</td>
</tr>
<tr>
<td>Exposure tracking</td>
<td>Tracking functionality for procedures and cumulative dose</td>
</tr>
<tr>
<td>Exposure query</td>
<td>Dose query for an individual examination or collection of examinations per specific cohort definitions and data export support, content and format (e.g. PRDSR, Excel, images)</td>
</tr>
<tr>
<td>Exposure metrics</td>
<td>Exposure metrics supported and methods and phantoms to obtain them (e.g. organ dose, effective dose, etc.), including their estimated uncertainty</td>
</tr>
<tr>
<td>Quality metrics</td>
<td>Image quality metrics and methods to obtain them, including their estimated uncertainty</td>
</tr>
<tr>
<td>Patient size estimation</td>
<td>Method for estimation of patient size</td>
</tr>
<tr>
<td>Alert and trigger support</td>
<td>Availability of alerts and trigger function set-up per protocols, patient age ranges or patient size (height, weight, diameter), alert notification provision and method (e.g. email, text)</td>
</tr>
<tr>
<td>Outlier analysis</td>
<td>Method of identifying and ranking outliers (based on the magnitude of the deviation from the expectation based on examination type and patient size) and investigating them via image view</td>
</tr>
</tbody>
</table>
TABLE 8. FEATURE SPECIFICATIONS OF A PATIENT RADIATION EXPOSURE MONITORING SYSTEM (cont.)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flagged case processing</td>
<td>Provision to follow up and record actions pertaining to outlier, trigger and alert cases in the systems (e.g. a drop-down menu for common factors, including image quality, examination type complexity)</td>
</tr>
<tr>
<td>Paediatric support</td>
<td>Specific analytics for paediatric patients as multiple size or age based cohorts, or as scalable curve models</td>
</tr>
<tr>
<td>Repeat and reject analysis</td>
<td>Analyses of images that are not acceptable and need an additional exposure of the patient</td>
</tr>
<tr>
<td>Consistency analyses</td>
<td>Provisions for analysis per time period, scanner, shift, facility</td>
</tr>
<tr>
<td>Protocol consistency analyses</td>
<td>Provisions for analysis of deviation between prescribed and applied protocols for each examination</td>
</tr>
<tr>
<td>Foetal dose support</td>
<td>Estimation of dose to the embryo or foetus</td>
</tr>
<tr>
<td>Skin dose mapping</td>
<td>Skin dose mapping in X ray fluoroscopy and angiography (fixed or customizable, family of phantoms available), including reporting the uncertainty in the estimates</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>Types of data aggregations and statistical analyses used per data types (e.g. mean, median, quartiles, comparisons, multivariate analysis, sensitivity to factors and trend analysis, to assess the key contributing factors to inconsistencies)</td>
</tr>
<tr>
<td>Integrated quality control</td>
<td>Provision to incorporate physics test results into the patient radiation exposure monitoring system for compressive analysis and quality control</td>
</tr>
<tr>
<td>Quality control</td>
<td>Provisions for quality control of exposure data (Section 8.3)</td>
</tr>
</tbody>
</table>

context in order not to raise undue concerns, especially when access is given to patients or referring physicians. The use of any patient radiation exposure monitoring programme needs to be accompanied by appropriate training and the building of communication skills, as outlined in Section 8.4.

Table 9 details the access features of a patient radiation exposure monitoring system, and Table 10 identifies the types of access that need to be permitted for
most notable user types. Access levels for other user groups (listed above but not in Table 10) can be devised on the basis of the institutional needs and priorities. The access levels given to different professional groups and individuals need to be defined carefully, considering the local specifics, needs and legislation.

The features of Table 9 need to cover all modalities, equipment, examinations and procedures carried out within the radiological units of the health care facility or in the country, addressed in accordance with nationally accepted or locally agreed (in cases where no national standardization exists) classification of examinations and procedures.

The desired features of the user platforms (interfaces, workstations) providing the access types defined in Table 9 need to include analytical and statistical tools that allow for the preparation of summaries, trend analysis and the reporting of examination and procedure frequencies and patient doses (values of exposure metrics).

As an example, for medical physicists this needs to include tools for the following:

— Analysis of dose distributions for the establishment of typical values and local DRLs and comparisons with national DRLs (Section 7.1.1);
— Analysis of dose distributions for the setting of dose alert and trigger levels, boundary ranges, etc. (Section 7.2);
— Analysis of image quality information and other characteristics important for conclusions and development of optimization of practices (Section 3.3).

TABLE 9. ACCESS SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permission levels</td>
<td>Availability of multiple permission levels with varying privileges and interfaces per user</td>
</tr>
<tr>
<td>Access mechanism</td>
<td>User privilege and passwords through common institutional access</td>
</tr>
<tr>
<td>Audit trail</td>
<td>History tracked of user interactions</td>
</tr>
<tr>
<td>De-identified access</td>
<td>Provision to provide access to de-identified data to certain users</td>
</tr>
<tr>
<td>Feature</td>
<td>Medical physicist</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Examination classification system</td>
<td>Yes</td>
</tr>
<tr>
<td>Examination numbers</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient dose data</td>
<td>Yes</td>
</tr>
<tr>
<td>Supplementary data (all other information in the Appendix)</td>
<td>Yes</td>
</tr>
<tr>
<td>Protocol data</td>
<td>Yes</td>
</tr>
<tr>
<td>Diagnostic reference levels</td>
<td>Yes</td>
</tr>
<tr>
<td>Trigger and alert levels</td>
<td>Yes</td>
</tr>
<tr>
<td>Boundary ranges</td>
<td>Yes</td>
</tr>
<tr>
<td>Unintended and accidental exposures</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient exposure history</td>
<td>Yes</td>
</tr>
<tr>
<td>Referral guidelines and decision support</td>
<td>Yes</td>
</tr>
</tbody>
</table>
For radiation protection authorities and health authorities, the desired features of the user platform need to include analytic and statistical tools that make it possible to prepare summaries, trend analysis and the reporting of statistical data on examination frequencies, typical effective doses and collective effective dose to populations (population doses) in the country (Section 7.4).

Table 10 provides suggested features to be considered when defining the access level; people to whom access is given will be determined in consideration of the local legislation, needs and specifics.

8.2.4. Administration and support

In addition to the above features, there are key administrative and support considerations for a patient radiation exposure monitoring system. These are listed in Table 11.

8.3. QUALITY CONTROL FOR DATA INTEGRITY IN PATIENT RADIATION EXPOSURE MONITORING

Regardless of the method and metrology deployed to represent patient radiation exposure data, there is a strong need for data accuracy. Any monitoring would be effective only to the extent that data integrity is assured. A good patient radiation exposure monitoring programme would therefore have an explicit

<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed local resources</td>
<td>Needed steps and local resources at the facility (e.g. hardware, software, workforce, physical servers, virtual servers, cloud access)</td>
</tr>
<tr>
<td>Upgrades</td>
<td>Number of anticipated upgrades per year and steps for system upkeep, provision for version control when metrics calculations have been updated</td>
</tr>
<tr>
<td>Servicing</td>
<td>Service access to the system by the developers for upgrades and troubleshooting</td>
</tr>
<tr>
<td>Cost</td>
<td>Purchase options (service or one-time fee), annual service fee</td>
</tr>
</tbody>
</table>

For radiation protection authorities and health authorities, the desired features of the user platform need to include analytic and statistical tools that make it possible to prepare summaries, trend analysis and the reporting of statistical data on examination frequencies, typical effective doses and collective effective dose to populations (population doses) in the country (Section 7.4).

Table 10 provides suggested features to be considered when defining the access level; people to whom access is given will be determined in consideration of the local legislation, needs and specifics.

8.2.4. Administration and support

In addition to the above features, there are key administrative and support considerations for a patient radiation exposure monitoring system. These are listed in Table 11.

8.3. QUALITY CONTROL FOR DATA INTEGRITY IN PATIENT RADIATION EXPOSURE MONITORING

Regardless of the method and metrology deployed to represent patient radiation exposure data, there is a strong need for data accuracy. Any monitoring would be effective only to the extent that data integrity is assured. A good patient radiation exposure monitoring programme would therefore have an explicit
process for interrogation of the data, prior to any higher-order processing of the data, to ensure confidence in data accuracy and integrity.

The evaluation of the accuracy of the data needs to cover all the steps of patient exposure data monitoring. These include:

— Data production, the measurements and calculations to provide the values of patient radiation exposure and quality metrics;
— Data recording and collection, both manual and automatic systems;
— Data analysis, with particular attention to the uncertainties of the methods of analysis (e.g. inadequate sample sizes, inconsistent coding).

The basic testing of the integrity of the data, which are provided by the imaging equipment and software systems for patient radiation exposure monitoring, has to be implemented by the manufacturers and system providers before the product is delivered and during acceptance testing in the health care facility.

The quality control of the data production is achieved mainly by calibration and quality control tests of the imaging equipment. The quality control of the other steps, while also applicable to data production, includes audits and sensibility tests to ensure the correctness of single cases or parts of the workflow, as well as a comprehensive test run to verify the correctness of the overall operation (from data production to analysis).

8.3.1. Calibration and quality control

The accuracy of dosimetric instruments or dosimetric calculation systems (software) of different imaging equipment needs to be initially assured by the manufacturer in accordance with international codes and standards (e.g. IEC) and national legislation and verified at the time of acceptance testing of the equipment [16, 17]. Thereafter, the dosimetric instruments and calculation systems need to be regularly checked and calibrated as a part of the established quality assurance and quality control programmes for medical exposure, following recognized protocols such as those in Refs [28, 168]. This applies to dosimeters integrated into the medical radiological equipment or used externally, such as KAP meters in fluoroscopic systems, and to software of the medical radiological equipment itself that calculates, displays and reports dose metrics such as CTDI and DLP in CT, reference air kerma at the patient entrance reference point in image guided interventional procedures or mean glandular dose in mammography.

Ideally, the quality assurance programme should also include appropriate tests of image quality. Patient radiation exposure monitoring systems that make this provision need to include the quantities described in Section 3.3. Image
quality assessment is most relevant when applied to each series or view of an imaging study because image quality results and the corresponding exposure values are relevant only in the context of individual image series (as opposed to radiation dose quantities, which can be summed across multiple series). The values can be ascertained either through direct patient image measurements or measurements on patient-emulating phantoms imaged using protocols used for patients. The accuracy of image quality assessments has to be verified through medical physics evaluations and applicable guidelines.

Calibration requirements for medical radiological equipment and dosimetry equipment are established in para. 3.167 of GSR Part 3 [16]. Responsibility is assigned to the radiology facility’s medical physicist. Although the initial calibration of radiological equipment is primarily the responsibility of the manufacturer, with consultation and oversight by the medical physicist, the accuracy of the data is to be independently verified by the medical physicist. After the initial calibration, the intervals for periodic recalibrations may differ, depending on the complexity of the medical radiological equipment. This is to ensure that such instrumentation has a current calibration, typically conducted within the last two or three years, and that it is functioning correctly [17].

Recently the DICOM RDSR has been modified to include the calibration factors measured by medical physicists during acceptance and constancy quality control in order to track the accuracy of the dosimetric indicator over time and permit appropriate corrections when the local data are used to compare practices among different facilities or institutions, or to benchmark facilities’ typical values to the DRLs [169].

8.3.2. Integrity in data recording, collection and analysis

After the verification of the data produced by the equipment, it is necessary to verify the integrity of the data transmitted to the archives (e.g. to a PACS, RIS, patient radiation exposure monitoring system or dose registry) or recorded and collected manually. This is the responsibility of the medical physicists, who, in the case of automatic data recording and collection, work in concert with the IT specialists.

The integrity of data collection and transmission can be checked by appropriate tests. This could include sensibility tests, where the transmitted data (either the raw data or the data collected and sorted in appropriate ways) are compared with established reference data, such as earlier data from similar imaging procedures, typical values, or values computed or estimated by other means. This is to verify that the transmitted data are credible. The credibility tests typically address a single or limited part of the workflow. The quality assurance programme for data integrity also needs to include a specific test run to test the
overall workflow from data production to data analysis. This comprehensive test could be based, for example, on test imaging with appropriate phantoms.

Several uncertainties or shortcomings in the data collection and analysis procedures can have an impact on data integrity, which can jeopardize meaningful summaries and comparisons of the results, depending on the purposes of data collection and analysis. For example, problems occur if different classifications are used for one specific procedure (see Section 6.3). Non-unique separation of one procedure into different steps of exposure is another significant problem. For a chest radiography performed in two projections, RDSR will store the dose of both the PA and lateral images (the dose of the lateral view is higher by a factor of 2–4) in separate records. Also, the DICOM image headers are filled with the correct dose of each image. In certain types of data transfer, some vendors transfer only the sum dose of all images, or in the case of CT and fluoroscopy, the sum dose of all series. For correct data analysis, these differences in data storage and transfer need to be considered so the processing downstream can be explicitly directed to series level or study level analyses. Particular to image quality and image quality–dose balance, the data need to be structured such that image quality can be ascribed at series level.

DICOM RDSR needs a unique identifier for each irradiation event. The specification permits exposure data to be stored separately for each exposure or grouped together in any logical grouping, such as for a series or for an imaging procedure. A modality might even store individual exposures in real time so that other systems can follow along and then store another RDSR containing all the exposures for the procedure together in one object. The unique identifier ensures that each exposure can be counted or analysed while allowing duplicates to be identified and avoided.

Furthermore, non-unique application of the established concepts of analysis, such as the DRL, may hinder the comparability of the collected and analysed data. For example, some countries establish CT DRLs with one DLP as a sum of all series; others define DLPs for each single series. Such differences are particularly important considering the variable nature of population based data analysis. Even if a small percentage of data points is erroneous, that can undermine the utility of dose analyses, as the total data may be based on only a small number of suboptimal procedures. The quality control of data has to be set up such that data analyses can be performed with clarity on the study or series level processes.
All user groups of patient exposure monitoring systems, as described in Section 8.2.3, need to have adequate initial and periodic training relevant to their roles and responsibilities in patient exposure monitoring.

In addition to training on specific technical aspects of patient radiation exposure monitoring, the enhancement of communication skills needs to be considered among the learning objectives, since efficient and continuous communication among various stakeholders is needed on various topics related to patient radiation exposure monitoring. This includes both the methods and infrastructure of dose monitoring and the resulting dose information. When communicating any patient dose information, in particular to stakeholders outside the dedicated committee of the steering group (Section 8.1), it is paramount to put the dose in the context of the benefit gained from the imaging examination. Otherwise, the dose alone can be misleading. For example, if the dose from interventional cardiac imaging is compared to that of mammography, the former is higher. It could be concluded that the cardiac procedure needs to be assessed for dose reduction, but obviously the two examinations are very different in terms of the goals that they seek, and the standards of one do not apply to the other. Each needs to be considered on its own merit and conditions. Image quality metrics might be used to communicate the targeted values and the need for the consistency of image quality for each type of examination.

Professionals collecting and analysing dosimetric data to establish DRLs or to compare typical patient dose values (median values) with local or national DRLs, have to be familiar with the concept of DRLs, including the used dose quantities and units and the fundamentals of the clinical protocols involved. They have to also recognize the need to verify the consistency of the received data and to confirm the calibration of the dosimetric values introduced in the database.

Professionals investigating individual exposure events have to be familiar with the differences in the concepts of DRL, typical values and boundary levels for outlier analysis, and have to manage sound statistical means to identify outliers in the patient dose and quality distribution. They have to also be familiar with the features of the patient radiation exposure monitoring systems concerning tracking and reporting unintended exposures.

All professionals involved in medical imaging have to understand the principles and means by which the data from patient radiation exposure monitoring can be used to improve clinical operation, including image quality (Section 7.1). Medical physicists need to have the skills to analyse the data and trends by sound statistical methods, balance image quality and dose and provide necessary guidance and training on these concepts to other key professionals.
Radiological medical professionals and medical physicists need to understand the purposes, benefits and techniques of individual dose tracking and, in particular, how this can have an effect on the local optimization of image quality (Section 7.2).

Experts involved in population dose estimations (e.g. experts from national authorities, professional societies or research institutions, clinical consultants) need to be familiar with the concepts of population dose and the method for its determination, including the necessary allowances in sorting or categorizing the examinations (Sections 6 and 7.4). They need to also attain knowledge on which examinations contribute most to the overall population dose from medical imaging.

Referring medical practitioners and radiological medical professionals responsible for the justification of imaging procedures have to be trained on the principles of justification, referral guidelines and the use of CDSs. As explained in Section 7.3, the referral guidelines and CDS can themselves offer ideal means of providing targeted training on this topic area. The range of typical patient dose values for the most common clinical indications needs to be known. In some cases, factors to estimate organ and effective doses could also be used for educational purposes. This could allow the relative radiation risk among different imaging modalities to be compared. Uncertainties in estimation and limitations on the use of these factors and radiation quantities always need to be highlighted.

Paediatric patients need special consideration. Effective communication with patients and the parents of paediatric patients about the patient’s radiation exposure supports informed decision making, but the information content provided to patients needs to be properly explained and adapted [170].

8.5. INTEGRATION OF A DIGITAL PATIENT RADIATION EXPOSURE MONITORING SYSTEM WITH OTHER HEALTH CARE SYSTEMS

The need for more patient-centric, real time information in medical imaging has been increasing, imposing a resulting need for comprehensive digital information systems and speeding up their technical development. Integrated digital information systems have to be the target of development in order to gain maximal benefits from this improved flow of information, ensure its timely and cost effective distribution to all counterparts and allow for meaningful comparisons against benchmarks and among institutions, both nationally and internationally. Whenever it is practical to do so, automatic patient
radiation exposure monitoring systems therefore need to be integrated with the national information system of medical imaging, including national image archives, referral guidelines and CDS; ideally, such monitoring systems should be integrated with the overall health care information system covering all aspects of patient care.

The ongoing developments of artificial intelligence, machine learning and deep learning for medical applications are seen as an opportunity to further utilize multidimensional health care big data, including patient radiation exposure data, and offer relevant analysis and outcome predictions for improved effectiveness [171, 172]. Because of the many challenges of this wide scope, development towards the optimal national infrastructure typically needs appropriate phasing and milestones. Detailed guidelines on the technical solutions of such a development are outside the scope of this publication and would also be premature in the context of the present fast development of health care IT.

The implementation of an integrated patient radiation exposure monitoring system at a national level will provide an optimal tool to improve patient safety. It will provide an effective flow of information for the purposes of justifying examinations, avoiding unnecessary examinations, improving the consistency of image quality and optimizing radiation protection, imaging practices and risk communication for both general and patient-centric purposes. It will improve the maintenance of comprehensive health care statistics, further improving preparedness for appropriate clinical trials and research, including research for radiation protection and optimization purposes. It will improve opportunities to undertake national and international comparisons to ensure the quality of medical imaging in accordance with international recommendations and available knowledge of best practice.

The national implementation of patient radiation exposure monitoring can bring about marked improvements in efficiency for the relevant tasks of various multifacility or national stakeholders, such as health care or radiation protection authorities, national professional societies, or other specific organizations such as organizations for external clinical audit. Such tasks include collecting patient dose data (e.g. through national patient dose registries) and following up their trends for various patient and age groups for the purposes of estimation of typical values, setting national DRLs, assessing population doses, collecting and analysing abnormal events (unintended or accidental exposures), epidemiological research and reviews for radiation protection, clinical auditing and international comparisons and reporting for international purposes (such as the UNSCEAR Global Survey on Medical Exposure). Similar analyses can be applied to image quality factors.

Major beneficiaries also include the health care institutions themselves, as an integrated patient exposure monitoring system can greatly facilitate the
necessary reporting outside the institutions (e.g. to the authorities), thus leaving more time for actual patient care.

8.6. PRIORITIES FOR IMPLEMENTATION OF A PATIENT RADIATION EXPOSURE MONITORING SYSTEM

Patient radiation exposure data cover numerous operational entities, encompassing large cohorts of patients imaged across modalities. In initiating a patient radiation exposure monitoring programme, particularly from the start, strategies need to be developed to identify the priorities in terms of the modalities and subsets of data to be addressed first. The highest dose modalities are the highest priorities. These include CT and interventional imaging. These are followed by nuclear imaging, conventional fluoroscopy examinations, mammography, radiography and dental radiography. Others, including magnetic resonance imaging and ultrasound imaging, are next, with the focus on image quality. For each modality, the most sensitive population groups have to be the first subject of management. These include paediatric patients, with the highest priorities given to younger ages, followed by patients with enhanced sensitivity to radiation (e.g. due to Crohn’s disease), patients undergoing recurrent examinations, pregnant patients and screening populations. Finally, for a given modality and population, the highest priority has to be given to the examination type (or protocols) that deliver the highest dose, followed by those that are the most frequent.

8.7. OBSTACLES AND CHALLENGES IN IMPLEMENTING PATIENT RADIATION EXPOSURE MONITORING

Although most of the goals detailed in this report can be achieved in current health care systems, there are certain challenges that need special attention. Among these are financial challenges, including the lack of resources in low and middle income countries; regulatory challenges, including the diversity of regulatory requirements and expectations across countries; and logistical challenges, including the lack of implementation frameworks for the integration of diverse dose and image quality metrics into a comprehensive risk assessment and optimization system. We also note that cooperation with registries, though offering strong peer calibration, creates legal challenges in terms of data privacy and disclosure of institutional data. The processes and limits of data privacy, access and use need to be fully justified and facilitated. These remain key areas
that involve active development and ownership by all stakeholders in the medical radiation protection community.
APPENDIX

TABLE A.1. EXAMPLES OF METRICS FOR THE THREE LEVELS OF PATIENT RADIATION EXPOSURE DATA

<table>
<thead>
<tr>
<th>Patient and examination information</th>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Patient identification (name, hospital ID)</td>
<td>— Weight</td>
<td>— Height</td>
<td>— Height</td>
</tr>
<tr>
<td>— Procedure type (including indication)</td>
<td></td>
<td>— Body mass index</td>
<td>— Glucose level (for positron emission tomography)</td>
</tr>
<tr>
<td>— Equipment</td>
<td></td>
<td>— Body surface area (for nuclear medicine)</td>
<td></td>
</tr>
<tr>
<td>— Date</td>
<td></td>
<td>— Glucose level (for positron emission tomography)</td>
<td></td>
</tr>
<tr>
<td>— Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radiography

— Number and type (e.g. AP/PA/Lat) of radiographic projections (incl. rejected)	— kVp	— kVp	— Focal spot size
— KAP value	— mAs	— mAs	— Post-processing settings
— If KAP meter is not available:	— Source–detector distance	— Source–patient distance	— AEC (yes/no; chamber location)
• kVp	— ESAK	— ESAK	— Matrix size
• mAs	— Exposure time	— Exposure time	— Pixel size
• Source–detector distance	— Filtration	— Filtration	— Bit stored
• Tube output	— Field size	— Field size	— Organ dose
• ESAK (for standard patient)	— Grid	— Grid	— Image quality metrics
• User calibration factors	— Film-screen combination speed	— Exposure index	
		— Deviation index	
		(for CR/DR)	

91
<table>
<thead>
<tr>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography</td>
<td>— Number and type of views (e.g. CC/MLO, etc.) (incl. rejected)</td>
<td>— kVp</td>
</tr>
<tr>
<td></td>
<td>— Laterality</td>
<td>— mAs</td>
</tr>
<tr>
<td></td>
<td>— Breast thickness</td>
<td>— Exposure time</td>
</tr>
<tr>
<td></td>
<td>— Source–detector distance</td>
<td>— Entrance surface air kerma</td>
</tr>
<tr>
<td>Per projection:</td>
<td>— Average glandular dose (AGD)</td>
<td>— Anode</td>
</tr>
<tr>
<td></td>
<td>If AGD not available:</td>
<td>— Filter</td>
</tr>
<tr>
<td></td>
<td>• kVp</td>
<td>— Film-screen combination speed</td>
</tr>
<tr>
<td></td>
<td>• mAs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tube output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tube output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ESAK</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.1. EXAMPLES OF METRICS FOR THE THREE LEVELS OF PATIENT RADIATION EXPOSURE DATAa (cont.)

<table>
<thead>
<tr>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed tomography</td>
<td>Per series and tube:</td>
<td>— Reconstruction type and kernel</td>
</tr>
<tr>
<td>— Number and type of series (e.g. localizer, phase, etc.)</td>
<td>— Number and type of series (e.g. localizer, phase, etc.)</td>
<td>— Water equivalent diameter</td>
</tr>
<tr>
<td>— Total DLP</td>
<td>— Total DLP</td>
<td>— CT dose check</td>
</tr>
<tr>
<td>Per series and tube:</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— DLP alert value</td>
</tr>
<tr>
<td>— Target region</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— CTDIvol alert value</td>
</tr>
<tr>
<td>— Scan mode (axial, helical)</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Scanning length</td>
</tr>
<tr>
<td>— CTDIvol</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Length of reconstructable volume</td>
</tr>
<tr>
<td>— CTDI phantom</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Organ dose</td>
</tr>
<tr>
<td>— DLP</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>— If CTDIvol/DLP not available:</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• CTDIw</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• CTDI per mAs</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• kVp</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• mA</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• Rotation time</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• Pitch</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• Filter (bowtie)</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td>• User calibration factors</td>
<td>— Number of acquisitions and timing (perfusion)</td>
<td>— Image quality metrics</td>
</tr>
</tbody>
</table>

a Refer to Table A.1 for complete list of metrics.
TABLE A.1. EXAMPLES OF METRICS FOR THE THREE LEVELS OF PATIENT RADIATION EXPOSURE DATA

<table>
<thead>
<tr>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroscopy</td>
<td>Per irradiation event:</td>
<td>---</td>
</tr>
<tr>
<td>— Total number of series/images</td>
<td>— kVp</td>
<td>— Spatial and temporal processing</td>
</tr>
<tr>
<td>— Total fluoroscopy time</td>
<td>— mA or mAs</td>
<td>— Organ dose</td>
</tr>
<tr>
<td>— KAP (total, fluoro/cine)</td>
<td>— Frames per second or pulses per second</td>
<td>— Matrix size</td>
</tr>
<tr>
<td>— Cumulative reference air kerma (if available)</td>
<td>— Pulse width</td>
<td>— Pixel size</td>
</tr>
<tr>
<td>— User calibration factors</td>
<td>— Filtration (material and thickness)</td>
<td>— Bit stored</td>
</tr>
<tr>
<td></td>
<td>— Fluoroscopy time</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td></td>
<td>— Number of images</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.1. EXAMPLES OF METRICS FOR THE THREE LEVELS OF PATIENT RADIATION EXPOSURE DATAa (cont.)

<table>
<thead>
<tr>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventional radiology</td>
<td>Per irradiation event and tube:</td>
<td></td>
</tr>
<tr>
<td>— Total number of series/images</td>
<td>— Protocol</td>
<td>— Water equivalent thickness (per series)</td>
</tr>
<tr>
<td>— Total fluoroscopy time</td>
<td>— kVp</td>
<td>— Peak skin dose</td>
</tr>
<tr>
<td>— KAP (total, fluoro/cine)</td>
<td>— mA or mAs</td>
<td>— Skin dose map</td>
</tr>
<tr>
<td>— Cumulative reference air kerma (if available)</td>
<td>— Pulse width</td>
<td>— User calibration factor(s)</td>
</tr>
<tr>
<td>— User calibration factor(s)</td>
<td>— Frames per second or pulses per second</td>
<td>— Organ dose</td>
</tr>
<tr>
<td></td>
<td>— Filtration (material and thickness)</td>
<td>— Spatial and temporal processing</td>
</tr>
<tr>
<td></td>
<td>— Focal spot size</td>
<td>— Matrix size</td>
</tr>
<tr>
<td></td>
<td>— Number of images</td>
<td>— Pixel size</td>
</tr>
<tr>
<td></td>
<td>— Fluoroscopy time</td>
<td>— Bit stored</td>
</tr>
<tr>
<td></td>
<td>— KAP (total, fluoro/cine)</td>
<td>— Image quality metrics</td>
</tr>
<tr>
<td></td>
<td>— Cumulative reference air kerma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Primary and secondary gantry position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Source–detector distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Table height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Field of view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Shutter edges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Wedge filter</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.1. EXAMPLES OF METRICS FOR THE THREE LEVELS OF PATIENT RADIATION EXPOSURE DATA\(^a\) (cont.)

<table>
<thead>
<tr>
<th>Level I: Data relevant to exposure characterization; minimum needed to make sense of exposure</th>
<th>Level II: Data needed for additional refinements of the exposure condition and for optimization</th>
<th>Level III: Data for personalization and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear medicine</td>
<td>Radionuclide</td>
<td>Pre-administration measured activity</td>
</tr>
<tr>
<td></td>
<td>Radiopharmaceutical</td>
<td>Post-administration measured activity</td>
</tr>
<tr>
<td></td>
<td>Administered activity</td>
<td>Activity per weigh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organ dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculation method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extravenous injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matrix size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pixel size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit stored</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image quality metrics</td>
</tr>
</tbody>
</table>

\(^a\) See the List of Abbreviations at the end of this publication for definitions of the abbreviated terms in this table.
REFERENCES

[60] SHRIMPTON, P.C., JANSEN, J., HARRISON, J., Updated estimates of typical effective doses for common CT examinations in the UK following the 2011 national review, Br. J. Radiol. 89 (2016) 20150346.

GLOSSARY

Alert level. The threshold above which the patient dose index is considered too high, and a warning and investigation is needed. The concept is mostly relevant to tissue reactions (deterministic effects) from radiation exposure (e.g. skin reaction).

Analysing patient radiation exposure data. A process of acting upon patient radiation exposure data to provide summaries with statistical, comparative and trend information, to be used for optimizing radiation protection and clinical practice and to investigate and verify individual doses when needed.

Boundary range. The range representing the 5–95th percentile of quantitative data within a cohort. The concept can be applied to any dose or image quality quantity, which has to be specified, unless it is clear from the context.

Clinical decision support (CDS). An electronic tool to aid directly in clinical decision making, in which characteristics of individual patients, such as symptoms, results of physical examinations, suspected diagnosis, laboratory results and more, are used to suggest the most appropriate examination(s).

Clinical risk. The risk associated with lowered diagnostic confidence in either the detection or quantification of the pathology of interest or affirmation of its absence and the associated reduced likelihood of accurate interpretation leading to misdiagnosis. It can be defined as the reverse of the image quality for a specific imaging task.

Collecting patient radiation exposure data. A process of gathering patient radiation exposure data into a common system. The term can be used synonymously with recording and collecting together.
Data encryption. Mathematical algorithms that convert information that is readable into something that is unreadable to anyone except those who possess special knowledge (often in the form of what is referred to as a key or cypher). Encryption is used to ensure the protection of sensitive data, such as patient records and images. There are a wide range of standards of encryption with varying levels of security.

Diagnostic reference level (DRL). A level used in medical imaging to indicate whether, under routine conditions, the dose to the patient or the amount of radiopharmaceuticals administered in a specified radiological procedure for medical imaging is unusually high or unusually low for that procedure.

Digital Imaging and Communications in Medicine (DICOM) standard. A standard for the management of information (including images) in medical imaging. The DICOM standard is based on industry standards such as the TCP/IP network protocol.

Dose. A measure of the energy deposited by radiation in a target. There are different applications of this quantity in medical imaging, e.g. organ dose, glandular dose, effective dose or dose index. In the context of this report, the word dose, when used generically, refers to any such dose quantity.

Electronic medical record (EMR). Electronic version of the traditional medical chart. Its advantages are that patient information is available instantaneously at multiple locations. Sometimes called an electronic patient record.

Hospital information system. Hospital information systems are comprehensive, integrated software systems designed to manage the medical, administrative, financial and legal aspects of a hospital. HIS

systems would normally be a repository of patient demographics and often provide the patient data input for the RIS and PACS.

Integrating the Healthcare Enterprise (IHE). IHE is an initiative by health care professionals and industry to utilize standards (such as DICOM and HL7) to support the integration of different clinical information systems through the use of well-defined profiles based on clinical workflow, content and display.

Medical radiation technologist. A health professional, with specialist education and training in medical radiation technology, competent to perform radiological procedures, on delegation from the radiological medical practitioner, in one or more of the specialities of medical radiation technology. A wide variety of terms are used throughout the world for such health professionals, such as radiographer, radiological technologist or nuclear medicine technologist.

Modality. Generic term that describes an image acquisition system such as an X ray radiography or fluoroscopy system, CT scanner or gamma camera.

Modality Performed Procedure Step (MPPS). A DICOM message to notify the status of the examination from the modality to the RIS and/or PACS. The MPPS message collects dose information of the whole procedure step independently from the storage of the image data. No further updates will be provided in the dose module of the MPPS.

Patient radiation exposure data. A collection of metrics characterizing patient radiation exposure in medical imaging, including demographic, acquisition and processing parameters, dosimetric and image quality data.

Patient radiation exposure monitoring. Components, mechanisms and operational processes related to recording, collecting and analysing patient radiation exposure data associated with clinical imaging operation. Here, monitoring refers to capturing and meaningfully evaluating patient radiation

3 See footnote 1 on p. 110.
4 See footnote 2 on p. 110.
exposure data and not the actions for quality improvement, an ultimate goal undertaken by managing patient radiation exposure data.

Picture archiving and communications systems (PACS).\(^5\) Computer system for the storage, display and transmission of medical images. Often combined with a radiology information system (RIS) so that the system can display images as well as clinical information and final diagnoses.

Quality control.\(^5\) Part of quality management intended to verify that structures, systems and components correspond to predetermined requirements.

Radiation Exposure Monitoring (REM) profile.\(^6\) The REM profile specifies communications between imaging systems generating reports of exposure and systems that receive, store or process those reports, such as local dose information management systems and national or regional dose registries. It defines how DICOM dose objects are created, stored, queried, retrieved and deidentified, and how they may be processed, displayed and distributed.

Radiation risks.\(^5\) Detrimental health effects of exposure to radiation (including the likelihood of such effects occurring) and any other safety related risks that might arise as a direct consequence of exposure to radiation.

Radiological medical practitioner.\(^5\) A health professional with specialist education and training in the medical uses of radiation, who is competent to perform independently or to oversee radiological procedures in a given specialty. Health professionals who could take on the role of the radiological medical practitioner in medical imaging, depending on the laws and regulations in a State, include radiologists, nuclear medicine physicians, cardiologists, orthopaedic surgeons, dentists and other specialist physicians.

\(^5\) See footnote 2 on p. 110.

\(^6\) INTEGRATING THE HEALTHCARE ENTERPRISE, IHE Radiology (RAD) Technical Framework, Volume 1, 10 IHE RAD TF-1 Integration Profiles, Revision 19.0, IHE International, Oak Brook, IL (2020).
who perform image guided interventional procedures.

Radiology information system (RIS). A radiology information system (RIS) is software used to acquire, store, manipulate and distribute patient radiological data and imagery. The system generally consists of patient tracking and scheduling, results reporting and image tracking capabilities. A RIS often interfaces with a HIS for patient demographics and with a PACS for image data and is critical to efficient workflow in radiology.

Recording patient radiation exposure data. A process of documenting patient radiation exposure data manually or automatically.

Referring medical practitioner. A health professional who, in accordance with national requirements, may refer individuals to a radiological medical practitioner for medical exposure.

Size-specific dose estimate (SSDE). A patient dose estimate for computed tomography (CT) scans that considers corrections based on the size of the patient, using linear dimensions measured on or determined from the patient or on patient images. American Association of Physicists in Medicine (AAPM) Report 204 bases SSDE values on the CTDI (volume) reported on CT scanners, but future modifications may include SSDE correction factors based on attenuation data of the patient acquired during the projection scan(s) of the scanned patient.

Spread range. The range representing the 25–75th percentile of quantitative data within a cohort. The concept can be applied to any dosimetric or quality quantity, which has to be specified (e.g. spread range of CTDI) unless it is clear from the context.

7 See footnote 1 on p. 110.
8 See footnote 2 on p. 110.
Structured report. Part of the DICOM Standard. A standard and structured method to exchange data produced in the course of image acquisition, post-processing and reporting. Structured reports use DICOM data elements and DICOM network services such as storage, query/retrieve, etc.

Tracking patient radiation exposure data. An analysis process of ascertaining and monitoring temporal trends in individual or collective stored data. An example is the analysis of radiation exposure data for an individual patient over time, noted here as tracking of patient exposure history.

Trigger level. The threshold above which the patient dose is considered too high and follow-up action is needed. The concept is mostly relevant to tissue reactions (deterministic effects) of radiation (e.g. skin reaction).

Typical value. The value representing the 50th percentile (median) of quantitative data within a cohort. The concept can be applied to any dose or image quality quantity, which has to be specified (e.g. typical value of CTDI) unless it is clear from the context.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>automatic exposure control</td>
</tr>
<tr>
<td>AP</td>
<td>antero-posterior (projection)</td>
</tr>
<tr>
<td>ATCM</td>
<td>automatic tube current modulation</td>
</tr>
<tr>
<td>CC</td>
<td>craniocaudal (projection)</td>
</tr>
<tr>
<td>CDS</td>
<td>clinical decision support</td>
</tr>
<tr>
<td>CNR</td>
<td>contrast to noise ratio</td>
</tr>
<tr>
<td>CR</td>
<td>computed radiography</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CTDI</td>
<td>computed tomography dose index</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communication in Medicine</td>
</tr>
<tr>
<td>DLP</td>
<td>dose length product</td>
</tr>
<tr>
<td>DR</td>
<td>digital radiology</td>
</tr>
<tr>
<td>DRL</td>
<td>diagnostic reference level</td>
</tr>
<tr>
<td>EMR</td>
<td>electronic medical record</td>
</tr>
<tr>
<td>ESACK</td>
<td>entrance surface air kerma</td>
</tr>
<tr>
<td>HIS</td>
<td>hospital information system</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level Seven</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiological Protection</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IHE</td>
<td>Integrating the Healthcare Enterprise</td>
</tr>
<tr>
<td>IT</td>
<td>information technology</td>
</tr>
<tr>
<td>KAP</td>
<td>air kerma area product</td>
</tr>
<tr>
<td>kVp</td>
<td>peak kilovoltage</td>
</tr>
<tr>
<td>Lat</td>
<td>lateral (projection)</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>mAs</td>
<td>milliampere-seconds</td>
</tr>
<tr>
<td>MLO</td>
<td>mediolateral (projection)</td>
</tr>
<tr>
<td>MPPS</td>
<td>modality performed procedure step</td>
</tr>
<tr>
<td>PA</td>
<td>posteroanterior (projection)</td>
</tr>
<tr>
<td>PACS</td>
<td>picture archiving and communication system</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PRDSR</td>
<td>Patient Radiation Dose Structured Report</td>
</tr>
<tr>
<td>RDSR</td>
<td>Radiation Dose Structured Report</td>
</tr>
<tr>
<td>REM</td>
<td>Radiation Exposure Monitoring</td>
</tr>
<tr>
<td>RIS</td>
<td>radiology information system</td>
</tr>
<tr>
<td>RRDSR</td>
<td>Radiopharmaceutical Radiation Dose Structured Report</td>
</tr>
<tr>
<td>SdNR</td>
<td>signal difference to noise ratio</td>
</tr>
<tr>
<td>SPECT</td>
<td>single photon emission computed tomography</td>
</tr>
</tbody>
</table>
SSDE size-specific dose estimate
UNSCER United Nations Scientific Committee on the Effects of Atomic Radiation
CONTRIBUTORS TO DRAFTING AND REVIEW

Järvinen, H. Radiation and Nuclear Safety Authority, Finland
Karoussou, A. Ministry of Health, Luxembourg
Kortesniemi, M. University of Helsinki and Helsinki University Hospital, Finland
Loose, R. Hospital Nuremberg-North, Germany
O’Donnell, K. Integrating the Healthcare Enterprise, United States of America
Peck, D. Michigan Technological University, United States of America
Perez, M. World Health Organization
Rehani, M. Massachusetts General Hospital, United States of America
Samei, E. Duke University Medical Center, United States of America
Shannoun, F. United Nations Scientific Committee on the Effects of Atomic Radiation
Trianni, A. European Federation of Medical Physics
Tsapaki, V. International Atomic Energy Agency
Vano, E. Complutense University of Madrid, Spain
Vassileva, J. International Atomic Energy Agency
Zanca, F. Palindromo Consulting, Belgium

Consultants Meetings

Technical Meeting
Vienna, Austria: 30 May–3 June 2016
ORDERING LOCALLY

IAEA priced publications may be purchased from the sources listed below or from major local booksellers. Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield
15250 NBN Way, Blue Ridge Summit, PA 17214, USA
Telephone: +1 800 462 6420 • Fax: +1 800 338 4550
Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group
Gray's Inn House
127 Clerkenwell Road
London EC1R 5DB
United Kingdom

Trade orders and enquiries:
Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640
Email: eurospan@turpin-distribution.com

Individual orders:
www.eurospanbookstore.com/iaea

For further information:
Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609
Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:

Marketing and Sales Unit
International Atomic Energy Agency
Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529
Email: sales.publications@iaea.org • Web site: www.iaea.org/publications
ORDERING LOCALLY

IAEA priced publications may be purchased from the sources listed below or from major local booksellers.
Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield
15250 NBN Way, Blue Ridge Summit, PA 17214, USA
Telephone: +1 800 462 6420 • Fax: +1 800 338 4550
Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group
Gray’s Inn House
127 Clerkenwell Road
London EC1R 5DB
United Kingdom

Trade orders and enquiries:
Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640
Email: eurospan@turpin-distribution.com

Individual orders:
www.eurospanbookstore.com/iaea

For further information:
Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609
Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:

Marketing and Sales Unit
International Atomic Energy Agency
Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529
Email: sales.publications@iaea.org • Web site: www.iaea.org/publications
Written to assist the implementation in medical imaging practice of the requirements of the IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, this publication provides consolidated information and detailed advice for setting and implementing patient radiation exposure monitoring programmes at the local or national level. In medical imaging using ionizing radiation, including X-ray diagnostic radiology, diagnostic nuclear medicine and image guided interventional procedures, radiation protection of patients is achieved by selecting the most appropriate imaging procedure for the individual needs of the patient and by keeping exposure to the minimum necessary to achieve the diagnostic and interventional objective. Monitoring of radiation exposure of patients provides critical information for health care professionals and authorities who are responsible for ensuring justified and optimized use of radiation in medicine. This Safety Report provides guidance on recording, collecting and analysing relevant patient exposure data by using manual or automatic means. An aim of the publication is to encourage the future use and development of automatic digital systems to improve access to information about patient radiation exposure and thus contribute to improved implementation of the requirements for radiation protection of patients throughout the world.