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FOREWORD

More than two decades after the advent of positron emission 
tomography–computed tomography (PET–CT), a new era of revived interest 
in conventional nuclear medicine imaging is being witnessed. So-called 
‘hybrid imaging’ refers not only to PET–CT (or PET combined with magnetic 
resonance imaging (MRI)), but also to the combination of single photon emission 
computed tomography (SPECT) with CT. SPECT–CT shares with PET–CT the 
possibility of accurate anatomical localization of areas of increased uptake, as 
well as — more importantly — the benefits and advantages deriving from the 
ability to directly translate molecular or metabolic information into an immediate 
clinical impact on the widest possible range of diseases. Indeed, SPECT–CT has 
demonstrated significant improvements for patient management in a variety of 
clinical indications, including both oncologic and non-oncologic diseases. Of 
course, this changing scenario has also raised new issues and continuing debate 
on the optimal modalities of managing the wealth of clinical information that can 
be retrieved by hybrid imaging. 

In 2008, the IAEA published a technical document on the clinical 
advantages of SPECT–CT toward improved staging, prognosis and treatment 
monitoring for a wide variety of conditions, at a time when the technique was just 
coming out of its infancy. Since then, tremendous advances in technology have 
taken place; furthermore, the amount of clinical evidence that has accumulated 
worldwide is impressive. An up-to-date review of the current uses of SPECT–CT 
has therefore been undertaken in this publication, addressing its application 
both as a problem-solving approach (for which it was often initially used after 
its introduction into clinical practice) and as, above all, a systematic clinical 
practice that is fully integrated into the routine diagnostic approach to a series of 
disease conditions.

In this review, the complex technological and radiochemistry issues 
involved in the application of SPECT–CT imaging, such as gamma camera 
hardware, image acquisition protocols (including specific cardiac aspects and 
whole body SPECT–CT), quantitation and dosimetry, radiation exposure, 
novel single photon emitting radiopharmaceuticals, artefacts and pitfalls were 
deliberately not addressed. This matter is worthy of a separate initiative, which 
will be undertaken in the near future.

The IAEA wishes to thank the contributors to the drafting and review of 
this book for contributing their knowledge, time and effort. The IAEA officers 
responsible for this publication were F. Giammarile and D. Paez of the Division 
of Human Health.
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1. INTRODUCTION

1.1. BACKGROUND

Nuclear medicine techniques create images of functional processes by 
using radioactive tracers and photon detectors. Tomographic imaging with 
radionuclides began in the 1960s and pre-dates computed tomography (CT). 
Single photon emission computed tomography (SPECT) is a mainstay in nuclear 
medicine and has been used in routine diagnostic applications and research since 
the 1980s. In 1996, the first model of a combined SPECT–CT design, which 
comprised a clinical SPECT gamma camera in tandem with a clinical single slice 
CT, was produced. Since then, SPECT–CT has advanced rapidly, and several 
commercial systems are available today employing various designs of CT and 
dual head SPECT configurations. There are numerous advantages of an integrated, 
functional and morphological imaging device, including the following:

(a) A single examination can provide comprehensive functional and anatomical 
information on the state of a disease; 

(b) Patients can be scheduled for only one instead of two or multiple 
examinations; 

(c) Experts in radiology and nuclear medicine can review the complementary 
image sets together and integrate their interpretation into a single report.

Similarly to positron emission tomography (PET)–CT, the ability of 
SPECT–CT to provide, in a single image session, detailed anatomical and 
functional or metabolic information — a synergistic effect greater than the 
sum of the information from the two individual techniques — has established 
SPECT–CT as an indispensable imaging procedure for an increasing number 
of pathologies. In addition, it has a significant advantage over PET–CT, namely 
the use of a radiotracer widely available in all nuclear medicine departments: 
99m-technetium (99mTc). As a result, an increasing number of SPECT–CT 
systems are being installed by Member States, thus making it essential that 
capacities are built and strengthened in SPECT–CT for many nuclear medicine 
and imaging departments, particularly in countries that are just embarking on this 
imaging modality.
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1.2. SCOPE

Hybrid imaging, including SPECT–CT, has experienced significant 
developments and improvements that have had positive impacts in recent 
years, and it now has an important place in several procedural guidelines. The 
technology has matured and more data are available to appraise its clinical role.

This publication was thus developed to emphasize classical indications 
in SPECT–CT imaging and highlight new fields in which SPECT–CT is being 
adopted while providing relevant information with regard to patient management. 

1.3. OBJECTIVE

This publication is intended to support nuclear medicine physicians, 
radiologists and clinical practitioners in their clinical decision making process 
when allocating resources dedicated to the health care system. This is a critical 
issue that is especially important for the development of nuclear medicine in 
developing countries. 

Medical imaging is an integral part of patient management; the objective of 
this publication is to provide a list of the most common indications of SPECT–CT 
in clinical practice. The IAEA hopes that this publication will be of help for 
medical professionals and staff working with SPECT–CT for personal learning, 
training, and teaching purposes. Guidance provided here, describing good 
practices, represents expert opinion but does not constitute recommendations 
made on the basis of a consensus of Member States.

1.4. STRUCTURE

The structure of this publication is adapted to the applications of SPECT–CT 
in nine different clinical scenarios, namely neurology; endocrinology; cardiology; 
orthopaedics; oncology; respiratory, infectious and gastrointestinal diseases; and 
paediatrics. A final chapter describes the clinical impact of incidental findings 
observed in the CT component of the scan.

2



2. GENERAL PRINCIPLES

There are several tokens by which one can identify the events or discoveries 
that have revolutionized the practice of medicine throughout history. No 
consensus exists on what to consider the most important of ‘modern’ medicine’s 
achievements, some of which have induced dramatic paradigm shifts in patient 
management [2.1]. Candidates vary widely [2.2] and include tools specifically 
related to therapy (e.g. vaccines, the hypodermic needle, antibiotics and antiviral 
drugs, germ theory and antisepsis, anaesthesia, haemodialysis, prosthetic 
implants, cardiac pacemakers, organ transplantation and the cardiac defibrillator) 
and diagnostic methods (e.g. the stethoscope, the thermometer, X rays and 
medical imaging in general, and the electrocardiogram), as well as procedures 
that aim to have a more general impact on medical science (e.g. controlled 
clinical trials and artificial intelligence) [2.3].

For investigators and clinicians working in the field — and increasingly 
for the whole medical community — nuclear medicine represents a crucial 
turning point because it provides an interface or bridge between physiology 
and clinical medicine. This intrinsic feature of both diagnostic and therapeutic 
nuclear medicine has led to the coining of the term ‘molecular imaging’ or, 
more appropriately, ‘molecular targeting’. Molecular targeting “may be defined 
as the specific concentration of a diagnostic tracer or therapeutic agent by 
virtue of its interaction with a molecular species that is distinctly present or 
absent in a disease state” [2.4]. Although intrinsic to nuclear medicine since its 
earliest inception, this feature has been heightened by the development of PET 
imaging (and especially hybrid PET–CT, or, more recently, PET combined 
with magnetic resonance imaging (MRI)), which has revolutionized diagnostic 
nuclear medicine and revived its long standing position as a crucial approach to 
theranostics [2.5–2.15].

The excitement and expectation that the advent of PET–CT raised in the 
nuclear medicine community and in the diagnostic imaging community at large 
led to speculation in 2008 that, the availability of a complete armamentarium of 
PET radiopharmaceuticals would eventually replace virtually all single photon 
agents [2.16]. This would therefore result in the impending and irreversible 
obsolescence of single photon planar and tomographic imaging, so-called 
‘conventional’ nuclear medicine imaging. Such a dismal forecast for conventional 
nuclear medicine imaging is actually proving not to be true, especially after 
the development and clinical availability of hybrid SPECT–CT scanners 
SPECT–CT [2.17]. In fact, this form of hybrid imaging has revived interest in 
single photon imaging, since SPECT–CT shares with PET–CT the benefits and 
advantages deriving from the ability to directly translate molecular or metabolic 
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information into an immediate clinical impact on the widest possible range of 
diseases. Thus, nowadays, hybrid imaging constitutes a more general approach 
by which the nuclear medicine specialist makes a fundamental contribution to 
improved health care by tailoring clinical interventions to the individual patient’s 
needs according to the best principles of personalized medicine. Of course, 
this changing scenario has also raised new issues and continuing debate on the 
optimal management of the wealth of clinical information that can be retrieved by 
hybrid imaging, based on incidental, unanticipated findings in the CT component 
of the study [2.18].

The continuing evolution of technology and knowledge in the field of 
nuclear medicine takes advantage of the cooperation between SPECT and 
PET [2.19]. The speed of development is reflected in trends in the sales of 
new equipment for nuclear medicine, where installations of hybrid SPECT–CT 
gamma cameras have exhibited a steep surge both worldwide [2.20] and on a 
country level [2.21]. On a global level, a market size of $1.41 billion was 
estimated for SPECT and SPECT–CT scanners in 2018, with a forecast of growth 
to approximately $1.934 billion in 2025 at a compound annual growth rate of 
approximately 4.64% between 2019 and 2025 [2.22]. Within the United States of 
America alone, SPECT and SPECT–CT equipment constitutes the major share 
(approximately 55–60%) of the market size in nuclear medicine, with a clear 
forecast for growth for the next five years at least.

Technetium-99m (Tc-99m) is used in about 85% of nuclear medicine 
diagnostic procedures worldwide with over 30 million patients examined on a yearly 
basis [2.22]. The overall good performance of SPECT–CT stems from its established 
clinical advantages in terms of improved staging, prognosis and treatment 
monitoring for a wide variety of both oncologic and non-oncologic diseases. The 
clinical evidence regarding such advantages as reported in the literature published 
up to 2008–2009 was initially reviewed SPECT–CT in Mariani et al. [2.23] when 
SPECT–CT was just coming out of its infancy. This comprehensive review was 
updated 10 years later in Israel et al. [2.24], when it was deemed appropriate 
to re-evaluate the uses of SPECT–CT not just as a case based problem-solving 
technique (as applied early in the introduction of SPECT–CT into clinical practice), 
but rather as a systematic clinical practice fully integrated into the routine diagnostic 
approach to a series of disease conditions, with due consideration of the tremendous 
advances in technology that had taken place in the meantime.

Some important considerations have emerged from this optimistic 
scenario, however, fuelling debate as to the optimal way to take full advantage 
of the diagnostic value of hybrid imaging in terms of not only the functional or 
metabolic information deriving from the radionuclide component of the scan, but 
also the predominantly anatomical information deriving from the CT (or MRI, in 
the case of hybrid PET–MRI) component of the study. These issues relate to the 
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optimization of the diagnostic pathways using those imaging modalities that are 
most frequently associated with a certain radiation burden that must be minimized 
as much as possible. Three main avenues for improvement branch out from this 
issue as they relate to (a) the appropriateness of any imaging procedure involving 
exposure of the patient to ionizing radiation, (b) adequate education/training of 
the imaging specialist for the best benefit to patients and (c) the radiation dose 
deriving from the CT component in addition to the radiation dose intrinsically 
associated with the radionuclide component of the hybrid test.

2.1. APPROPRIATENESS OF IMAGING PROCEDURES BASED ON 
THE USE OF IONIZING RADIATION

As it is a diagnostic procedure that involves exposing patients to ionizing 
radiation, the preliminary step for referring patients to SPECT–CT (as well as 
for a PET–CT study) must take into account the appropriate clinical indications 
for the diagnostic investigation according to Radiation Protection and Safety of 
Radiation Sources: International Basic Safety Standards, IAEA Safety Standards 
Series No. GSR Part 3 [2.25]. 

2.2. EDUCATION/TRAINING OF THE IMAGING SPECIALIST

Education and training are currently issues causing the liveliest debate 
and controversy within the imaging community with reference to hybrid 
imaging [2.26]. There are at least two facets to this topic. The first is how to 
interpret and report the incidental discovery in the ‘radiological’ portion of the 
hybrid scans (SPECT–CT, PET–CT or PET–MRI) of unexpected lesions outside 
the primary area of interest for the radionuclide investigation. The issues involved 
include both the competence and expertise of the nuclear medicine specialist 
to read and interpret radiological findings, and the binding legal value of such 
medical reports. The second is how to derive maximum benefit in terms of 
sensitivity and specificity from the concomitant radiological studies (CT or MRI) 
when interpreting the radionuclide based images (SPECT or PET). These issues 
have raised debate concerning the optimal education and training of imaging 
specialists [2.27–2.29]. In recent years various scenarios have been proposed, 
and considerable heterogeneity is currently found worldwide concerning the core 
curriculum for imaging specialists. In some countries, the disciplines of nuclear 
medicine and radiology are completely independent specialities (the majority of 
cases, especially in Europe), whereas in others, a single speciality encompasses 
both types of competence (which is mainly the case in the USA) [2.30–2.34]. The 
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prevailing trend appears now to favour the highest possible interaction between 
the two disciplines (whether as a single postgraduate speciality or two separate 
specialities), with the goal of the maximum benefit to patients [2.35–2.38]. In 
this regard, the IAEA has recently issued a detailed Training Curriculum for 
Nuclear Medicine Physicians (IAEA-TECDOC-1883), endorsed by the European 
Association of Nuclear Medicine, the European Union of Medical Specialists, the 
World Federation of Nuclear Medicine and Biology, the African Association of 
Nuclear Medicine, the Arab Society of Nuclear Medicine, the Asia and Oceania 
Federation of Nuclear Medicine and Biology, the Asian Regional Cooperative 
Council for Nuclear Medicine and the Latin American Association of Societies of 
Nuclear Medicine and Biology [2.39].

2.3. RADIATION DOSIMETRY FOR HYBRID SPECT–CT IMAGING

The added diagnostic value of SPECT–CT over planar scintigraphy and 
stand-alone SPECT, as increasingly evident in the routine clinical applications 
of SPECT–CT, must be counterbalanced with the additional burden of ionizing 
radiation associated with the CT component of the scan. In particular, during 
hybrid imaging with either PET–CT or SPECT–CT, the total effective dose 
delivered to patients is the sum of the internal radiation associated with 
administration of the specific radiopharmaceutical and the radiation associated 
with the use of an external X ray source for the CT portion of the investigation.

The radiation burden due to the CT component depends heavily on the 
acquisition parameters used, which include the X ray tube potential (kVp), 
the X ray current (mAs), the pitch and the beam width. A study in which an 
anthropomorphic phantom was utilized to measure CT dose index volume 
to various organs compared with calculated values [2.40] revealed several 
discrepancies between calculated and measured values for different regions or 
organs, the measured values being in general greater than the a priori calculated 
values. Such discrepancies range from ‘minor’ to ‘non-negligible’ differences. 
Furthermore, there was an approximate fortyfold increase in radiation doses 
when increasing the X ray tube parameters from 90 kVp and 25 mAs to 
140 kVp and 300 mAs.

According to an extensive review published by Ferrari et al. [2.41], the 
percentage increase in effective dose per field of view due to the addition of 
the CT study to the standard SPECT acquisition varies according to the type of 
radionuclide investigation, as follows:

(a) 10–23% for 67Ga-citrate SPECT–CT;
(b) 18.8–65.1% for 99mTc-sestamibi parathyroid SPECT–CT;
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(c) 30.6–58.3% for 111In-octreotide SPECT–CT;
(d) 60.3–102.4% for 99mTc-methylene diphosphonate (99mTc-MDP) bone 

SPECT–CT.

These data, listed in detail in Table 2.1, show that the lowest percentage 
increases in values are observed for radionuclide investigations involving an 
intrinsically higher radiation dosimetry.

An important variable in radiation dosimetry associated with the use of an 
external X ray source is related to the fact that during hybrid SPECT–CT, the 
CT portion of the study is generally limited to a single field of view (the region 
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TABLE 2.1. EFFECTIVE DOSES DELIVERED TO PATIENTS DURING 
SOME COMMON SPECT–CT EXAMINATIONS   
(as derived from published literature and summarized by Ferrari et al. [2.41])

Study type Author
Effective dose from 

radiopharmaceuticals 
(mSv)

Effective dose 
from CT 

component 
(mSv)

Increase 
due to CT 

(%)

Ga-67-citrate Larkin [2.42] 37 8.5 23.0

Montes [2.43] 26.5a 2.6a 9.8a

Montes [2.43] 18.9b 2.6b 13.7b

Tc-99m-sestamibic Larkin [2.42] 8.3 5.4 65.1

Montes [2.43] 6.4 1.6 25.0

Sharma [2.44] 6.4 1.2 18.8

In-111-octreotide Larkin [2.42] 12 7.0 58.3

Montes [2.43] 8.5 2.6 30.6

Tc-99m-MDP Larkin [2.42] 6.3 3.8 60.3

Sharma [2.44] 4.1 4.2 102

a Lymphoma.
b Infection.
c Parathyroid disease.



of interest), whereas during PET–CT imaging the CT covers the whole body. 
Therefore, the total radiation burden due to the CT portion is generally much 
lower for SPECT–CT than for a PET–CT scan.

In current generation SPECT–CT scanners, the modern CT component 
is equipped with current modulation technology, which optimizes the radiation 
exposure according to the body habitus of each individual patient being 
examined. Nuclear medicine centres are recommended to adopt such optimization 
technology whenever acquiring a SPECT–CT study in order to keep the radiation 
burden to patients as low as possible, both for the radionuclide component per 
se and for the CT component, according to the ‘as low as reasonably achievable’ 
(ALARA) principle. Recommendations have been issued to deliver more 
comparable international radiation doses for administered activity and CT doses 
across centres employing PET–CT and SPECT–CT imaging [2.45].
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3. CLINICAL APPLICATIONS

3.1. SPECT–CT IN NEUROLOGY

SPECT imaging of the brain is a well-established tool in the diagnostic 
workup of dementia, epilepsy, parkinsonism and some other cerebral diseases. 
In contrast to other indications, the addition of CT to SPECT has not led to a 
breakthrough in brain imaging. One of the major reasons for this is that CT is 
not the imaging procedure of choice for the brain; MRI is superior to CT in 
resolving cerebral structures. Therefore, only a small number of publications 
have investigated the diagnostic gain of acquiring SPECT and CT images in one 
examination [3.1–3.12]. 

Technetium-99m-tetrofosmin can be used to differentiate between radiation 
necrosis and recurrence of gliomas. This radiopharmaceutical does not accumulate 
in normal brain tissue but concentrates in the skull and the choroid plexus. Filippi 
et al. showed that in 13 of 30 cases SPECT–CTpathological uptake by glioma 
recurrence could only be reliably differentiated from physiological uptake with 
fused SPECT–CT datasets [3.1]. Three years later, the authors confirmed their 
initial findings in a group of 40 patients [3.2]. 

Due to the neurodegenerative process occurring in diseases of the basal 
ganglia, striatal tracer uptake will heterogeneously decrease in this structure, 
with its posterior parts being involved earlier than its anterior ones. This 
renders the definition of striatal regions of interest, ideally covering the whole 
structure, on stand-alone 123IN‑ω‑fluoropropyl‑2β‑carbomethoxy‑3β‑(4‑iodophe
nyl)nortropane (123I-FP-CIT) SPECT images difficult. Hsu et al. demonstrated 
that CT-guided region of interest definition of the basal ganglia in SPECT–CT 
datasets might be highly reproducible and that the semiquantitative data derived 
from these regions of interest correlate well with MRI-guided data [3.6].

When voxelwise comparison to age-matched healthy controls is desired 
to obtain a more accurate diagnosis of brain diseases, the use of anatomical 
information from CT to obtain a more robust spatial normalization of 
SPECT data can be helpful. SPECT–CT has therefore been integrated into 
commercially available software tools, such as NeuroGam, allowing for 
three dimensional (3-D) evaluation of regional cerebral blood flow as used by 
Lou et al. in Moyamoya disease [3.11]. However, a review of the literature yields 
only one publication that has demonstrated a benefit of CT integration into such 
an analysis tool: Yokoyama et al. employed statistical parametric mapping with 
anatomical standardization that uses the exponentiated Lie algebra algorithm in 
123I-FP-CIT-SPECT–CT scans to differentiate between Parkinson’s disease and 
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non-parkinsonian disorders [3.9]. Their CT-guided method showed the greatest 
power of discrimination between the studied patient groups.

Some evidence shows that SPECT–CT offers a more accurate attenuation 
correction of SPECT images than the conventionally used Chang approach [3.4]. 
Kato et al. [3.7] and Farid et al. [3.3, 3.5] demonstrated, in small patient groups, 
a gain in diagnostic accuracy when using CT based attenuation correction 
compared with Chang’s method. However, a systematic analysis of how this 
tool performs in larger groups of patients is still outstanding. Furthermore, for 
123I-FP-CIT SPECT, the diagnostic accuracy for the differentiation between 
Parkinson’s disease and essential tremor was shown not to be dependent on the 
attenuation correction method employed, even if preliminary correlation analyses 
suggested that striatal binding potential estimates derived from CT based 
attenuation correction were a superior biomarker of nigrostriatal integrity [3.10]. 

The potential value of SPECT–CT to quantify regional tissue radioactivity 
concentration constitutes an interesting option for brain imaging. Welz et al. 
reported that global cerebral uptake of 99mTc-hexamethylpropylenoxime as 
expressed in absolute units correlated significantly with the minimal-state 
examination score in 65 patients with cognitive impairment [3.8]. However, 
in 123I-FP-CIT-SPECT, determining the standardized uptake values (SUVs) 
of striatal binding of the tracer did not provide a higher diagnostic accuracy 
than calculating ratios of uptake to differentiate between neurodegenerative 
diseases [3.12].

3.2. SPECT–CT IN ENDOCRINOLOGY

3.2.1. Parathyroid disease

Functional imaging has a major impact on the workup of patients with 
hyperparathyroidism (HPT). Initially, planar and SPECT 99mTc-sestamibi 
(Tc-MIBI) were used for the diagnosis of parathyroid adenoma (PTA), at 
times in combination with thyroid scintigraphy using radiotracers such as 
99mTc-pertechnetate or 123I. The dual-phase Tc-MIBI scintigraphy protocol is 
based on the increased presence of mitochondria in PTA cells with subsequent 
higher radiotracer uptake, as well as the reduced expression of P-glycoprotein 
leading to slower washout from PTAs than from thyroid tissues (Table 3.1). 

SPECT–CT has improved the detectability rate for the diagnosis 
and accuracy of localization of PTAs in comparison with planar and 
SPECT stand-alone imaging, even in combination with ultrasound. The 
reported detectability rate of SPECT–CT for PTAs ranges between 90 and 
96% [3.13–3.15]. SPECT–CT is particularly helpful in cases with small PTAs, 
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below 10 mm in diameter [3.14, 3.16] or weighing less than 210 mg [3.17]. 
There is a good correlation between Tc-MIBI SPECT–CT findings and serum 
parathyroid hormone and calcium levels [3.18, 3.19]. Recently, a new technique 
of quantitative SPECT–CT has measured maximum standardized Tc-MIBI 
uptake values and has calculated tracer washout rates in PTAs and thyroid tissue. 
The early tracer uptake was found to be higher and the washout of Tc-MIBI 
was slower in PTAs than in the normal thyroid, supporting the two hypotheses 
proposed as explanations for the success of Tc-MIBI for parathyroid imaging: 
increased mitochondrial binding and reduced P-glycoprotein expression. 
Quantitative SPECT–CT is suggested as a powerful tool for improving the 
diagnostic accuracy in equivocal parathyroid lesions [3.20].

In recent decades there have been significant advances in the treatment of 
PTAs, in particular, the introduction of minimally invasive surgery. The use of this 
surgical approach underscores the need for the precise anatomical and functional 
topographic information that can be provided by SPECT–CT. The main current 
clinical indication for parathyroid imaging is accurate pre-operative localization 
of PTAs. SPECT–CT has been shown to improve localization of PTAs in 8–39% 
of patients [3.21, 3.22]. Studies including large numbers of patients, although 
mainly retrospective, provide evidence on the high performance indices of 
Tc-MIBI SPECT–CT for localization of PTAs, with sensitivity of 83–97%, 
specificity of 89–96%, positive predictive value (PPV) of 94–97% and negative 
predictive value (NPV) of 85% [3.15, 3.17, 3.23–3.26]. In particular, SPECT–CT 
is highly valuable for correctly localizing ectopic PTAs, as well as in patients 
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TABLE 3.1. SUMMARY OF LITERATURE TOPICS RELATED TO 
SPECT–CT IN PATIENTS WITH HYPERPARATHYROIDISM

SPECT–CT indications No. papers
(2008–2019)

Localization of PTA (pre-operative) 7

Diagnosis of PTA 6

Diagnosis and localization 4

Comparison with other imaging tests   
(ultrasound, 4-D CT, F-18-choline PET–CT) 7

Diagnosis and localization in secondary HPT 5

Cost effective studies 2



with distorted anatomy following prior neck surgery that had previously failed to 
identify the adenoma [3.22]. 

The ability of SPECT–CT to localize a PTA was found to be superior to 
that of both stand-alone SPECT and ultrasound [3.13, 3.16, 3.17, 3.23, 3.25]. 
Sensitivity, specificity and accuracy for pre-surgical PTA localization were 
highest using a combined protocol of Tc-MIBI SPECT–CT and ultrasound (87%, 
71% and 85%, respectively) and lowest for stand-alone ultrasound [3.27, 3.28]. 
The addition of contrast-enhanced CT significantly increased the sensitivity, 
from 81% to 90% for localization mainly of small PTAs, with no significant 
change in specificity [3.29]. Four dimensional (4-D) CT provides additional 
information in a small number of patients, mainly those with non-MIBI-avid 
adenomas, as well as in cases with a suspicion of ectopic lesions [3.30–3.32]. The 
combination of Tc-MIBI SPECT–CT with both ultrasound and 4-D CT resulted 
in the highest sensitivity for precise PTA localization, in particular to a specific 
quadrant [3.31, 3.33, 3.34] 

PET–CT using 18F-fluorocholine (FCH) has also been used for the 
detection of PTAs in patients with primary HPT and compared with SPECT–CT 
performed with 99mTc-labelled radiotracers. Pre-operative FCH–PET–CT had 
a high sensitivity and PPV for lesion localization in cases with negative or 
inconclusive Tc-MIBI SPECT–CT and ultrasound, mainly in patients with small 
PTAs [3.35, 3.36] 

Reporting SPECT–CT makes it possible to apply anatomy based 
nomenclature, also known as Perrier classification, that is routinely used by 
surgeons and is associated with better interspeciality communication [3.37]. 
Following the use of Tc-MIBI SPECT–CT, there was a reported decrease in time 
of surgery of up to 50% [3.14, 3.24, 3.25]. Positive SPECT–CT is a good criterion 
to define the eligibility of patients for surgical removal of PTAs [3.38] and is also 
helpful in planning the surgical procedure, particularly in patients with associated 
thyroid pathology such as multinodular goitre [3.24].

A cost effectiveness analysis performed in Canada assessed differences in 
sensitivity between SPECT and SPECT–CT and indicated that costs related to 
hybrid imaging in patients with known or suspected PTAs were 30% higher when 
compared with stand-alone SPECT [3.39]. However, another study performed 
in Italy suggested that while performing SPECT–CT in patients with PTA led 
to a 4% increase in direct costs, the mean savings related to further patient 
management, including surgery, were of approximately €98.7 per patient [3.26]. 

Secondary HPT is a complication occurring in patients with end-stage 
renal disease on dialysis, frequently associated with hyperplasia and multigland 
parathyroid disease. In severe cases that are resistant to medical treatment, 
patients are referred to parathyroidectomy, with variable rates of success. 
Pre-operative Tc-MIBI SPECT–CT imaging has improved the results of surgery 
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in this clinical setting as well [3.40]. SPECT–CT has been shown to detect more 
PTAs, mainly smaller lesions, as well as more ectopic PTAs than stand-alone 
SPECT [3.41–3.43], with a reported sensitivity of around 75% [3.42, 3.44].

While Tc-MIBI SPECT–CT constitutes at present an important part of 
the pre-operative workup of patients with HPT, it should be mentioned that 
varying imaging protocols are used in different centres. These protocols include 
options such as single tracer dual-phase studies, subtraction imaging following 
the injection of a thyroid imaging tracer (99mTc pertechnetate or 123I), timing the 
SPECT–CT so that it is used either during the early or late phase of imaging, or 
using it twice [3.15, 3.18, 3.26, 3.45].

3.2.2. Benign thyroid disease

Since their introduction, nuclear medicine techniques have always been 
involved in both the diagnosis and treatment of benign thyroid diseases. Thyroid 
uptake and scans are used in differential diagnosis in patients presenting with 
abnormal thyroid hormone serum levels. In the case of biological signs of 
hyperthyroidism, elevated radiotracer uptake suggests toxic nodular goitre 
or Graves’ disease, whereas very low thyroid uptake is related to thyroiditis. 
Conversely, in the case of hypothyroidism, scintigraphy may be used to identify 
thyroid agenesis or ectopia.

SPECT–CT is not commonly used to image benign thyroid diseases. 
A review of the literature evidenced a total of 12 articles about SPECT–CT 
and benign thyroid diseases, with six of them addressing the search for ectopic 
thyroid tissue. While the total number of patients described was limited (less 
than 30), scintigraphy with SPECT–CT is suggested as a reliable method for the 
diagnosis of ectopic thyroid tissue [3.46]. Quantitative SPECT–CT was also used 
to evaluate Graves’ disease in four studies [3.47–3.50].

3.3. SPECT–CT IN CARDIOLOGY

Cardiovascular diseases are the leading cause of death worldwide, and 
coronary artery disease (CAD) is the number one cause of cardiovascular 
morbidity and mortality. Current European and US guidelines for the assessment 
of stable CAD recommend that, depending on the pre-test probability, patients 
with low probability should have cardiac computed tomography angiography 
(CCTA), which has a high NPV, while patients with high probability should 
be referred to invasive coronary angiography. The intermediate risk group, 
comprising most patients, needs further non-invasive tests. Defining the 
haemodynamic significance and quantifying ischaemia in addition to assessing 

15



the degree of stenosis are of great importance, thus the role of non-invasive 
functional testing in the management of patients with intermediate risk for CAD. 

Myocardial perfusion imaging (MPI) with SPECT using tracers, such 
as 99mTc labelled sestamibi, tetrofosmin and thallium-201 (201Tl) chloride, has 
been validated for diagnosis, risk stratification and prognosis of patients with 
known or suspected CAD [3.51]. MPI assesses the physiological significance of 
angiographically borderline stenosis and the presence of viable, but dysfunctional, 
hypoperfused myocardium. SPECT is limited by photon attenuation (i.e. the 
interaction and absorption of gamma rays with tissues resulting in decreased 
photon detection). In addition, the need for collimation causes reduced spatial 
resolution and lower efficiency of photon detection. All this leads to a reduced 
specificity of MPI-SPECT. 

The diagnostic accuracy of MPI can be further affected by respiratory and 
cardiac motion causing approximately 15–20 mm displacement of the heart and 
leading to the appearance of false, artefactual defects. Furthermore, men are prone 
to artefacts involving the inferior wall, due to attenuation by subdiaphragmatic 
structures, as can also be the case in obese women. Anterior wall artefacts are 
more frequent in women due to shifting breast tissue, but can also be seen in men 
with large chest circumferences. 

The development of attenuation correction algorithms utilizing CT, as well 
as iterative techniques for image reconstruction, have resulted in improved image 
quality, with evidence pointing towards higher diagnostic accuracy [3.52]. The 
performance indices of SPECT with and without attenuation correction had a 
sensitivity of 89% and 87% and a specificity of 81% vs 73%, respectively [3.53]. 
Artefacts causing soft tissue attenuation and thus leading to false positive results 
are corrected with the help of the CT component of the SPECT–CT study. The 
diagnostic performance of gated and CT-attenuation correction (CT-AC) MPI 
studies was compared and referenced to coronary angiography for diagnosis 
of CAD. Gated MPI performed better than non–attenuation correction studies, 
mainly in overweight male patients and specifically in the territory of the 
right coronary artery. When compared with CT-AC, gated studies had a higher 
specificity but similar sensitivity. These results indicate that both attenuation 
correction examinations and gated MPI can improve the performance indices of 
MPI for diagnosis of CAD [3.54].

In the routine imaging protocol, the rest SPECT study is followed by a 
low dose CT (2.5 mA, 140 keV) acquisition performed only over the area of 
the heart and further used for attenuation correction of the scintigraphic data. 
SPECT–CT for attenuation correction has been shown to increase diagnostic 
confidence in the interpretation of stress-only MPI studies, thus leading to a 
reduction in patient exposure to radiation following the implementation of this 
imaging protocol [3.55]. Additional solutions to reduce patient radiation exposure 
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related to MPI-SPECT–CT have been proposed. Studies comparing filtered back 
projection processing at full dose and ordered-subset expectation maximization 
iterative reconstruction at a quarter dose were associated with similar diagnostic 
performance for detection of cardiac perfusion defects. Based on these results, 
lower radiotracer doses can be recommended in future cardiac SPECT–CT 
imaging protocols [3.56]. Furthermore, attenuation correction obtained from 
ultra-low dose CT components using 70 kVp and 80 kVp tube voltage provides 
similar MPI study image quality and clinical results to attenuation maps 
obtained with standard CT, while at the same time reducing patient radiation 
exposure [3.57]. 

CT-AC can be combined with CT examinations intended to take calcium 
score measurements without significantly increasing the radiation exposure of 
the patients. Calcium scanning performed on SPECT–CT devices is therefore 
becoming a routine part of MPI with paramount diagnostic and prognostic 
value [3.58, 3.59]. The presence and progression of coronary artery calcification 
(CAC) is an indicator of coronary atherosclerosis and predicts the risk for 
CAD, irrespective of the presence or absence of other cardiovascular risk 
factors [3.60–3.63]. Calcifications are identified as areas of hyperattenuation of 
at least 1 mm² measuring more than 130 Hounsfield units (HU). The CAC score 
is obtained using highly reproducible semiautomatic computer methods based 
on the product of the calcified plaque area multiplied by the coefficient of its 
density, with the peak HU categorized as 1 for 131–199 HU, 2 for 200–299 HU, 
3 for 300–399 HU and 4 for over 400 HU. Visually, coronary calcifications 
can be defined as minimal (1–10), mild (11–99), moderate (100–399) or severe 
(above 400). While CAC measurements have downsides, in particular cost and 
downstream testing following incidental findings, this parameter canimprove the 
diagnostic and prognostic value of MPI. The combination of CAC measurements 
with MPI findings is of value, especially in cases with a potentially high rate of 
false positive results. In addition, in view of current efforts to reduce radiation 
exposure, in stress-first protocols, the availability of the CAC score helps in 
selecting those patients who will also require a rest SPECT acquisition. 

CCTA has a high diagnostic accuracy for assessment of the presence 
of stenosis in native coronary arteries, with a sensitivity of 85–99% and an 
NPV of 83–99% [3.64–3.66]. This reaches even higher values with the use of 
modern dual source technology, up to a sensitivity of 93–100% and NPV of 
94–100% [3.67–3.69]. Although CCTA has a high NPV, image quality is lower 
in a substantial number of patients because of extensive calcifications or motion 
artefacts. In a study aiming to test an algorithm for sequential non-invasive 
CCTA and SPECT, half of the patients still required MPI following initial 
CCTA [3.70]. Hybrid SPECT–CT systems equipped with components that 
allow sufficient resolution to perform CCTA are available. Current literature 
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data have demonstrated an improvement in sensitivity and PPV, as well as better 
localization of coronary stenosis in comparison with either invasive coronary 
angiography or the analysis of both image sets when done separately. One 
study reported a sensitivity of 96%, specificity of 95%, PPV of 77% and NPV 
of 99% for detecting haemodynamically significant stenosis [3.71], followed by 
additional studies with similar values [3.72, 3.73]. Hybrid SPECT/CCTA led to 
the same patient management when compared with the gold standard of invasive 
coronary angiography [3.74]. 

When MPI is combined with a CT scan for AC, CAC or CCTA, the patient 
is exposed to additional radiation. This varies from 0.5 mSv to 1.0 mSv for 
CT-AC. Absorbed doses from the CT component for performing CAC and CCTA 
depend on the imaging system and protocol used. For CAC measurements, these 
are estimated to be below 1 mSv. The absorbed dose for CCTA is estimated at 
2–5 mSv using commonly available single source 64-slice CT scanners with a 
prospectively electrocardiogram triggered step-and-shoot acquisition protocol. 
The latest generation dual source or 256- and 320-slice single source CT scanners 
enable even lower absorbed doses of less than 1 mSv [3.75, 3.76]. 

Following the use of diagnostic CT components as part of the cardiac 
SPECT–CT study, detection of clinically significant incidental findings such as 
pulmonary arterial dilatation has been reported. These findings can provide an 
explanation for the patient’s symptomatology, unrelated to CAD [3.77].

New tests have been recently introduced in nuclear cardiology, addressing 
a number of clinical indications other than CAD. Technetium-99m-labelled 
3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) scintigraphy can provide 
a reliable diagnosis of transthyretin related cardiac amyloidosis (ATTR). While 
visual assessment of 99mTc-DPD uptake in comparison with the intensity 
of tracer activity in the skeleton is used as a rule, a quantitative approach 
can potentially provide a more precise tool for diagnosis, risk stratification 
and therapy evaluation. Myocardial 99mTc-DPD SUVmax and SUVpeak were 
measured using SPECT–CT of the thorax and showed a good correlation with 
the visual assessment score. Quantitative SPECT–CT also allowed a good 
separation of cardiac 99mTc-DPD uptake values between normal subjects and 
patients with ATTR amyloidosis [3.77, 3.78]. A promising new indication, still 
evaluated mainly in research projects, is the use of cardiac SPECT–CT with 
123I-metaiodobenzylguanidine (123I-mIBG) to identify ganglionated plexi prior 
to ablation in patients with paroxysmal atrial fibrillation [3.79] An additional 
novel approach uses SPECT–CT with 123I-mIBG to assess and quantify right 
ventricular sympathetic dysfunction in patients diagnosed with arrhythmogenic 
cardiomyopathy [3.80] (Table 3.2).
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3.4. SPECT–CT IN PNEUMOLOGY

3.4.1. Pulmonary embolism

3.4.1.1. Acute pulmonary embolism

Lung perfusion (Q) or combined ventilation and perfusion (V/Q) 
scintigraphy is a popular scan in the workup of patients with suspected acute 
pulmonary embolism [3.81–3.84]. However, on conventional planar imaging 
(2-D) there is overlapping of information originating at different depth levels 
within the lungs. Distinguishing between anatomical segments is challenging 
and it is therefore difficult to determine the extent of embolic involvement, 
even if oblique views are used to better define the lung lobes or segments with 
V/Q abnormalities [3.85, 3.86]. Furthermore, in the traditional Prospective 
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TABLE 3.2. SUMMARY OF CARDIAC SPECT–CT LITERATURE

SPECT–CT indications No. papers 
(2008–2019)

Diagnosis of CAD 3

Value of attenuation correction 5

CT parameters for cardiac SPECT–CT
 Calcium score
 CCTA

9
3
6

Quantitation 
 Cardiac I-123-mIBG uptake
 Cardiac amyloidosis assessment

5
3
2

Novel technology assessment
 CZT devices
 New collimation
 Respiratory motion correction

6
4
1
1

Radiation exposure reduction 4

Incidental CT findings 1

CAD — coronary artery disease; CCTA — cardiac computed tomography angiography; 
CZT — cadmium-zinc-telluride.



Investigation of Pulmonary Embolism Diagnosis (PIOPED) approach, planar 
V/Q scans are reported with a probabilistic approach with a relatively high rate of 
indeterminate cases [3.87–3.89], which may not be helpful for decision making 
in the emergency setting of acute pulmonary embolism [3.90, 3.91].

Following the development and wide availability of multidetector 
CT technology, also in the emergency setting, contrast CT pulmonary 
angiography (CTPA) has started to gradually replace planar V/Q scans as the 
modality of choice for diagnosis of pulmonary embolism worldwide. Literature 
data have shown that CTPA has a high sensitivity associated with sufficient 
specificity for pulmonary embolism [3.92]. In addition to its overall satisfactory 
diagnostic performance, the ability to also use CTPA in emergency settings 
explains a declining trend that was observed between the years 2000 and 2008 in 
the use of pulmonary scintigraphy as the first-line diagnostic test in patients with 
clinical suspicion of acute pulmonary embolism [3.93]. Many nuclear medicine 
centres are not equipped to perform pulmonary scintigraphy ‘after hours’ on a 7 
days a week, 24 hours a day basis.

However, CTPA suffers from some limitations, including technical 
artefacts (motion artefacts, image noise due to body habitus, etc.), contrast 
allergy, contraindication in patients with poor renal function and radiation dose 
(of particular concern in younger women) [3.94, 3.95]. Furthermore, concern is 
rising about possible overdiagnosis and overtreatment of pulmonary embolism, 
with the associated risk of adverse side effects, in patients in whom CTPA detects 
subsegmental pulmonary embolism that in several instances is not clinically 
relevant [3.96–3.99].

V/Q SPECT is reported to be useful particularly because 3-D imaging 
overcomes problems of segmental overlaps and shinethrough effects while 
accurately defining the location and size of perfusion defects [3.100]. These 
features have considerably enhanced the diagnostic accuracy of the V/Q scan, 
most likely because of the favourable results that can be obtained by radionuclide 
tomographic imaging in the intrathoracic space, a body region characterized by 
a relative paucity of anatomical structures (excluding the mediastinum). SPECT 
has higher sensitivity, specificity and interobserved agreement than planar 
scintigraphy [3.101, 3.102]. A preclinical study in an animal model of acute 
pulmonary embolism in a pig showed that V/Q SPECT has higher sensitivity 
and specificity (100% and 96%, respectively) than planar imaging (85% and 
78%, respectively) [3.103]. Nonetheless, V/Q SPECT still has lower specificity 
than CTPA [3.104–3.106]. The advantages of employing V/Q SPECT rather than 
planar scintigraphy and/or CTPA for the diagnosis of acute pulmonary embolism 
have been confirmed by a number of investigators [3.101, 3.107, 3.108]. 

For application in benign pulmonary disorders, the CT component of a 
SPECT–CT scan is typically ‘low dose’ as it serves for attenuation correction and 
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for anatomical localization purposes [3.109, 3.110]. Nonetheless, even a CT scan 
that would be considered technically ‘non-diagnostic’ according to radiological 
standards increases the specificity of the V/Q scan, since it can satisfactorily 
characterize lung comorbidities and can thus clarify the source of abnormalities 
seen on the radionuclide component of the study [3.106–3.108], providing 
alternative diagnoses justifying the signs or symptoms that had raised the clinical 
suspicion of acute pulmonary embolism.

Clinical interest in lung scintigraphy (including SPECT–CT), despite the 
competition of CTPA, is demonstrated also by the data shown in Fig. 3.1, which 
plots the number of yearly downloads through PubMed of articles dealing with 
the use of V/Q scintigraphy for diagnosing pulmonary embolism. In this regard, 
it must be noted that, after the peak reached in 1999, an obvious decline can be 
observed — most likely associated with the growing use of CTPA in the clinical 
emergency setting. Nonetheless, this declining trend has subsequently plateaued 
and even risen moderately since 2015, when virtually all publications on V/Q 
scintigraphy concerned the use of either V/Q SPECT–CT or (even more often) 
stand-alone V/Q SPECT. The overall excellent diagnostic performance of V/Q 
SPECT or V/Q SPECT–CT also justifies their use in the emergency setting of 
suspected acute pulmonary embolism, as recommended by guidelines issued 
by the European Association of Nuclear Medicine in 2009 [3.105, 3.106] and 
updated in 2019 [3.111]. 

A systematic review and meta-analysis published in 2016 concluded that the 
diagnostic performance of V/Q SPECT–CT is superior in most clinical settings 
to that of CTPA, planar scintigraphy and stand-alone V/Q SPECT [3.112]. 
In particular, the pooled sensitivity of V/Q SPECT–CT for diagnosing acute 
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FIG. 3.1. Plot of the number of yearly downloads versus time in the period 1965–2020 for 
articles describing V/Q scintigraphy in patients with pulmonary embolism.



pulmonary embolism was 97.6%, with a 95.9% specificity, 93% PPV, 98.6% NPV 
and 96.5% overall diagnostic accuracy. Shortly afterwards, a cost effectiveness 
modelling study based on prior literature quantified the potential economic value 
of V/Q SPECT–CT versus CTPA, planar V/Q scintigraphy and V/Q scintigraphy 
with stand-alone SPECT. The authors concluded that SPECT–CT confers 
superior economic value versus the other imaging modalities, thanks primarily 
to improved sensitivity and specificity as well as to lower rates of non-diagnostic 
scans [3.113]. Recent data further confirm the clinical advantages of V/Q 
SPECT–CT in patients with suspected acute pulmonary embolism [3.114–3.118].

3.4.1.2. Chronic pulmonary embolism

Chronic thromboembolic disease is the most frequent cause of pulmonary 
hypertension, a clinical condition that, if undetected and untreated, can severely 
impair the quality of life of patients and is burdened with a high rate of 
complications, not rarely leading to premature death [3.119]. The diagnosis of 
this condition remains challenging, primarily because of the lack of early clinical 
signs and because of the overlap with signs and symptoms suggesting other 
cardiopulmonary conditions [3.120]. In this scenario, the use of CTPA alone 
is not optimal for patient management, both because lung scintigraphy is more 
accurate for detecting segmental or subsegmental perfusion defects [3.121–3.123] 
and because follow-up of the condition during treatment is based on repeat 
evaluations during treatment — a procedure that would direct unnecessarily high 
radiation doses to the patient if performed with repeat CTPA. A recent study 
based on the use of state of the art contemporary CT scanners has reported that, 
although reduced with respect to earlier generation CT scanners, the radiation 
dose to the breast during CTPA is still over five times higher than that delivered 
during a V/Q SPECT scan, with a total effective dose that is approximately 20% 
higher for CTPA than for V/Q scans [3.124].

The most recent studies published on the use of V/Q SPECT–CT in 
patients with pulmonary hypertension caused by chronic thromboembolic 
disease [3.125–3.128] showed the overall superiority of the hybrid imaging 
procedure versus CTPA. It is to be noted that, even when the main focus of the 
study is optimization of various CT based techniques, the V/Q SPECT–CT scan 
is considered the ‘gold standard’.
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3.4.2. Non‑embolic diseases

Perfusion only or V/Q scans are often used in several non–pulmonary 
embolism applications [3.107] in order to:

(a) Optimize radiotherapy fields in lung cancer patients so as to minimize 
radiation damage to normal pulmonary parenchyma;

(b) Provide pre-operative quantification of lung function (adult and paediatric 
patients);

(c) Assess inhomogeneity of ventilation in patients with emphysema;
(d) Assess regional changes in asthma;
(e) Estimate regional lung function, with particular attention to interstitial 

pulmonary disease.

External beam radiation therapy is reported to improve survival in lung 
cancer. However, the normal lung is highly sensitive to radiation, and radiotherapy 
often leads to radiation pneumonitis and fibrosis. The dose administered to 
the tumour in order to spare the surrounding normal parenchyma therefore 
needs to be limited [3.129–3.132]. There is a relative decrease in lung function 
post-radiotherapy, often dose dependent, reported to peak around 12–18 months 
after treatment [3.133, 3.134]. A baseline perfusion and/or ventilation scan 
is useful in identifying areas of either preserved or reduced function. The 
ventilation scan can also be used to plan therapy [3.135]. Experience with the use 
of SPECT–CT for radiotherapy planning in patients with lung cancer builds upon 
the vast evidence gathered with the use of perfusion and/or ventilation stand-alone 
SPECT in this scenario. Bucknell et al. published in 2018 a systematic review 
and meta-analysis of the role of functional lung imaging with perfusion and/or 
ventilation/perfusion scintigraphy for radiation therapy planning in patients with 
lung cancer [3.136]. The authors analysed a total of 114 publications in which 
methods of identifying functional lung volumes included CT, MRI, SPECT 
and PET to assess ventilation and/or perfusion. They concluded that, despite 
significant heterogeneity in approaches and reporting, functional lung imaging 
with any of the above methods (including, especially, perfusion and/or ventilation 
SPECT) has the potential of optimizing radiation therapy planning and delivery. 
Among more recent studies on the use of SPECT–CT in diagnosing lung cancer, 
Lee et al. reported that anatomical and functional data derived from perfusion 
SPECT–CT were useful to explain differences in outcome (i.e. to discriminate 
between patients with and without radiation pneumonitis, respectively, 
especially when combined with a PET–CT scan using 18F fluorodeoxyglucose 
(FDG)) PET–CT[3.137]. Thomas et al. employed serial perfusion SPECT–CT 
to characterize the dose-perfusion response in two groups of patients submitted 

23



to radiation therapy and treated with and without a functional lung avoidance 
technique, respectively. This study suggested that in selected patients radiotherapy 
planning based on the functional lung avoidance approach promotes increased 
post-radiotherapy perfusion to low dose regions [3.138]. In a somewhat different 
clinical scenario, Liss et al. used attenuation-corrected SPECT–CT to quantify 
changes in lung perfusion following radiation therapy of the breast/chest wall 
in patients with breast cancer. Perfusion SPECT–CT demonstrated that radiation 
therapy decreased lung perfusion with a clear dose–effect relationship [3.139].

In patients undergoing lung reduction surgery, perfusion imaging can be 
used to assess function and to estimate the potential impact of surgery on residual 
pulmonary function. Although planar V/Q scans have traditionally been used to 
assess the contribution of each region, this approach is not optimal, both because 
of overlapping of pulmonary lobes and segments, and because of the fact that 
the anatomy might differ between patients. Recently, perfusion and/or ventilation 
SPECT–CT were used to assess regional pulmonary function with a 3-D mode 
approach that helps in identifying and delineating the lung segments more 
accurately [3.140–3.146]. All such studies confirm the accuracy of SPECT–CT 
imaging for delineating the functional anatomy of the lungs, on a segmental and 
subsegmental basis, as a predictor of residual pulmonary function after lung 
reduction surgery. 

Finally, in the case of miscellaneous pulmonary conditions, SPECT–CT 
often serves as the reference gold standard to validate other imaging 
techniques [3.147–3.150].

3.5. SPECT–CT IN ORTHOPAEDICS

3.5.1. Benign bone diseases

The musculoskeletal system is affected by various benign and malignant 
conditions. In general, patients present with intermittent or chronic pain. 
Conventional radiological imaging modalities such as ultrasound, MRI and CT 
are used in the assessment of pain in symptomatic patients. MRI provides useful 
information related to soft tissues, CT provides excellent anatomical details of 
the skeleton and ultrasound is useful to assess superficial structures and small 
effusions. However, these techniques are often prone to artefacts (e.g. magnetic 
susceptibility artefacts in MRI or beam-hardening artefacts in CT) [3.151, 3.152]. 
There are several hardware and software based artefact reduction solutions 
available that improve image quality [3.152]. 

Bone SPECT–CT with 99mTc-MDP is reported as useful in the assessment 
of musculoskeletal pathology both in pre- and post-operative scenarios. Current 
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evidence favours its use in chronic settings and in cases when cross-sectional 
imaging techniques are indeterminate [3.151–3.154]. Bone SPECT–CT 
provides valuable information, such as localization and characterization of bone 
abnormalities, and in most cases identifies the potential pain generators. The 
addition of arthrography to SPECT–CT of wrist, ankle and knee joints has been 
shown to provide useful supplementary information for the detection of lesions 
in cartilage, ligaments, the triangular fibrocartilage complex, the meniscus or 
loose bodies [3.155]. Quantitative bone SPECT–CT is evolving, and several 
reports have suggested that it is a promising objective tool in the assessment of 
arthropathies [3.156]. 

The common indications for bone SPECT–CT include evaluation of 
symptomatic joints in the pre-operative scenario, as well as localization, 
characterization and assessment of post-operative complications. Bone SPECT–CT 
plays a complementary role, in most cases with equivocal MRI findings.

3.5.1.1. Bone SPECT–CT of the spine

Lower back pain is common and increases in frequency and severity 
with age. The treatment of back pain often depends on clinical presentation. 
Imaging of patients with lower back pain in pre- and post-operative scenarios 
includes both conventional radiological and scintigraphic techniques. The 
understanding of the tracer uptake pattern of physiological and post-operative 
remodelling is always challenging, in part because of complex pathophysiology. 
In patients with lower back pain, bone SPECT–CT is useful in the localization 
and characterization of degenerative disease such as facet joint arthropathy 
or disc degeneration. In patients with chronic lower back pain, SPECT–CT is 
useful (a) for accurate localization of metabolically active facet joints, (b) to 
localize alternate metabolically active sites in the spine [3.157–3.159], (c) as a 
supporting tool in the clinical workup/diagnosis and (d) to guide therapy [3.160]. 
In general, imaging plays an important role in the assessment of patients after 
spine surgery. Post-operative imaging helps in the assessment of (a) position 
of implants, (b) status of implants, (c) bone fusion progression/integration, 
(d) adequacy of implant, (e) new sites of disease, (f) disease progression and 
(g) complications [3.161]. 

The current evidence regarding the use of bone SPECT–CT in the 
assessment of post-operative back pain is limited but evolving [3.152]. Bone 
SPECT–CT is useful in the assessment of complications related to spine 
surgery, such as hardware failure, pseudoarthrosis (non-union), adjacent 
segment degeneration (e.g. facet joint or endplate degeneration), instability, 
spondylolisthesis or infection [3.162–3.164]. Recurrent pain after lumbar spine 
surgery is due to multiple causes. Identifying the pain generator on imaging 
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studies is challenging. Furthermore, not all structural and functional changes 
can be translated into clinical symptoms or pathology. In a retrospective 
study of patients with recurrent back pain following lumbar arthrodesis, bone 
SPECT–CT is reported to be sensitive and specific for the confirmation or 
exclusion of screw loosening [3.165]. In patients with pelvic girdle pain, bone 
SPECT–CT has shown altered metabolic activity around the sacroiliac joint 
in patients with sacroiliac joint dysfunction, and a diagnosis of sacroiliac joint 
incompetence was made with a sensitivity, specificity, PPV and NPV of 95%, 
99%, 99% and 94%, respectively [3.166]. The presence of non-specific tracer 
uptake in pseudoarthrosis is challenging. It is often seen secondary to healing 
or remodelling. The increased tracer uptake at the site of intervention might 
persist for 3–6 months post-surgery [3.167]. Based on serial bone scans, Gates 
et al. have reported a steady decrease in tracer activity at around three months 
after surgery [3.168]. Further reports suggest that the highest tracer uptake is 
often seen up to one month after surgery, and that it generally plateaus around 
two months. However, the tracer uptake might persist for several years after 
an intervention [3.169]. In the post-operative scenario, persistent tracer uptake 
beyond one year favours the diagnosis of pseudoarthrosis. Lucency with 
increased metabolic activity on bone SPECT–CT scans suggests loosening. Bone 
SPECT–CT is reported to have a sensitivity of 90% and specificity of 100% in 
detecting screw loosening [3.170]. Lastly, it is important to check SPECT and 
CT image co-registration to avoid misdiagnosis of the site of altered metabolic 
activity (facet joints vs uptake in the screws) [3.152]. Bone SPECT–CT is useful 
in both pre-operative and post-operative back pain and should be used routinely 
as an adjunct to conventional imaging techniques, especially in symptomatic 
patients with indeterminate findings on cross-sectional imaging.

3.5.1.2. Bone SPECT–CT in wrist and hand

Accurate diagnosis of the cause of wrist and hand pain is challenging 
because of the complex regional anatomy. The advantages of using bone 
SPECT–CT include localizing altered or abnormal sites of metabolic activity and 
detecting post-traumatic bone remodelling and occult fractures [3.171]. Bone 
SPECT–CT is reported to be useful in the detection of occult fractures compared 
with CT alone [3.172]. Bone SPECT–CT has also been shown to be of value 
in the visualization of the scapholunate and lunotriquetral ligaments, triangular 
fibrocartilage complex and articular cartilages when SPECT–CT is combined 
with CT arthrography [3.173]. Bone SPECT–CT provided higher lesion detection 
rates compared with X ray and planar scintigraphy [3.174]. In addition, the 
specificity of SPECT–CT was found to be relatively higher than MRI in patients 
with non-specific pain of the hand and wrist [3.175].
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3.5.1.3. Bone SPECT–CT in hip and knee

Patients often experience pain in the hip or knee after the respective joint 
replacement. Detecting the source of pain in post-operative joints is always 
challenging. In general, X ray is the first and most common method used 
to assess complications. The conventional two- or three-phase bone scan is 
requested to confirm or refute septic or aseptic loosening in these patients. If 
there is a suspicion of infection on a two- or three-phase bone scan, assessment is 
often supplemented with a radiolabelled white blood cell scan and 99mTc-sulphur 
colloid bone marrow scans for confirmation. It is not always easy to interpret the 
scans in binary fashion, and the non-specific tracer activity on a bone scan (planar 
or SPECT) is a limitation. The CT component of SPECT–CT can be helpful in 
localizing the potential pain generators (e.g. osteolysis, fracture, calcification, 
ossifications or joint effusion). The different patterns of tracer uptake on bone 
SPECT–CT in both symptomatic and asymptomatic patients with total hip 
arthroplasty were evaluated by Schweizer et al., who reported the presence of 
increased tracer uptake that significantly correlates with symptoms [3.176]. 

Bone SPECT–CT is also used in the evaluation of bone viability and 
compared with MRI findings. MRI and bone SPECT–CT have been shown to be 
complementary and allow reliable differentiation between viable and non-viable 
bone tissue [3.177]. Barthassat et al. evaluated patients with painful total hip 
arthroplasty using a novel SPECT–CT localization scheme and a semiquantitative 
3-D volumetric quantification method for the assessment of bone tracer uptake. 
The localization scheme had a high inter- and intra-observer reliability [3.178]. 
In patients with knee pain following knee replacement, bone SPECT–CT was 
found to be useful for evaluating patello-femoral disorders [3.179]. Bone 
SPECT–CT was used to evaluate patients with symptomatic and asymptomatic 
knees after bilateral total knee arthroplasty (TKA) and it identified typical tracer 
uptake patterns in both groups, which was helpful in accurately assessing their 
symptoms in order to provide optimal management [3.180]. In symptomatic 
patients after anterior cruciate ligament reconstruction, bone SPECT–CT 
provided additional information related to bone remodelling, graft incorporation 
or insufficiency [3.181, 3.182]. In patients with contraindications to MRI, bone 
SPECT–CT arthrography could be a promising alternative technique to assess 
internal derangement of joints [3.183]. 

In patients with pain, swelling or stiffness after TKA, bone SPECT–CT 
changed the clinical diagnosis and final treatment in 65% of cases [3.184]. In a 
recent study, blood pool SPECT is reported to outperform the planar assessment 
of painful knee replacement. Distinct uptake patterns have been reported to be 
used as a biomarker in the assessment of prosthesis survival and biomechanical 
functioning. Blood pool SPECT has improved the prognostic value of late phase 
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SPECT–CT for the assessment of the medial tibial region [3.185]. Overall, 
bone SPECT–CT is useful and increases the diagnostic accuracy in assessing 
aseptic and septic loosening of hip and knee prostheses when compared with 
conventional three-phase bone scans and SPECT [3.186–3.188]. In addition, 
bone SPECT–CT is also useful in the follow-up of patients after realignment 
procedures, osteotomies, de-loader devices or insoles, as it reflects the specific 
loading pattern of the knee with regard to its alignment [3.189]. In the assessment 
of bone viability, SPECT–CT has been found to be reliable in differentiating 
viable and non-viable bone tissue with a sensitivity and specificity of 90% and 
94%, respectively [3.190].

Overall, bone SPECT–CT is reported to be a cost-saving test when 
compared with CT or metal artefact reduction sequence magnetic resonance 
imaging (MARS-MRI) in patients with recurrent and persistent knee pain after 
TKA. Out of 1000 TKA patients, diagnostic bone SPECT–CT was expected to 
lead to three year cost savings of up to $1 867 695 versus CT (or $622.6 per 
patient per year) and $1 723 435 versus MARS-MRI (or $574.5 per patient per 
year) [3.191]. Therefore, bone SPECT–CT should be used in the assessment of 
patients with knee pain after TKA.

3.5.1.4. Bone SPECT–CT in foot and ankle

Accurate assessment of foot and ankle pain is often challenging because 
of the complex anatomy of small bone and joint structures. In general, clinical 
evaluation and radiological imaging are limited in localizing the pain generators. 
Patients present with pain one year after foot surgery in approximately 20% 
(at rest) and 40% (during walking) of cases [3.192]. Plain X ray and CT are 
routinely used but are insufficient to assess persistent pain after foot and 
ankle surgery. In the post-operative scenario, MRI provides insufficient image 
quality secondary to metallic artefacts. Nathan et al. have reported a change in 
management of nearly 75% of cases following the use of SPECT–CT to assess 
pain [3.193]. Bone SPECT–CT is useful for the localization and characterization 
of abnormal increased metabolic activity in patients with foot and ankle pain 
in both pre- and post-operative scenarios, including cases such as fractures, 
infection, non-union, accessory sesamoids and tarsal coalition [3.194]. Ha 
et al. compared the diagnostic role of SPECT–CT and MRI in patients with 
ankle and foot pain to assess lesion types, and found SPECT–CT and MRI to 
provide comparable diagnostic accuracy for symptomatic lesions. These two 
modalities can be used as complementary imaging methods to further improve 
the specificity [3.195]. Bone SPECT–CT was found to be useful in localizing and 
characterizing impingement syndromes and soft tissue pathology in patients with 
ankle or foot pain [3.196]. Singh et al. reported modification of the treatment 
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plan in most patients when bone SPECT–CT was used to assess foot and ankle 
pain [3.197]. Bone SPECT–CT is reported to be useful in assessing the varus and 
valgus maligned hind foot [3.198].

3.5.1.5. Bone SPECT–CT in shoulders and elbow

Bone SPECT–CT might be useful in the assessment of mechanical 
complications following shoulder surgery, such as glenoiditis after 
hemiarthroplasty, glenoidal loosening after total shoulder arthroplasty and 
scapular notching after reverse shoulder arthroplasty. However, the evidence 
for the role of SPECT–CT in post-operative shoulder is limited and is 
evolving [3.154, 3.199, 3.200].

The advantages of bone SPECT–CT include accurate localization of the 
altered metabolic activity, characterization of hypermetabolic foci, improved 
sensitivity and specificity, accurate diagnosis, localization of alternate pain 
generators, decrease in the number of equivocal results and higher reporting 
confidence. The limitations include additional radiation, lack of standardized 
acquisition protocols, limited structured imaging pathway and lack of 
structured training.

In summary, bone SPECT–CT is useful in the assessment of painful 
conditions related to benign bone diseases in both pre- and post-operative 
scenarios. However, it is important to get good clinical details. Close 
collaboration with referring physicians is vital in setting up a diagnostic pathway. 
Understanding and recognizing normal variants and documenting relevant 
abnormal findings can improve patient outcomes and boost the confidence of 
referring clinicians to use bone SPECT–CT in their clinical practice.

3.5.2. Malignant bone disease

Bone metastases occur frequently in breast, prostate, lung and renal 
carcinomas, and they reduce survival rates significantly (for reviews, see 
Refs [3.201, 3.202]). Their occurrence depends on some risk factors and, in 
particular, on tumour stage. Although less than 2.6% of patients affected by low 
stage breast cancer harbour bone metastases, those with higher stages have a risk 
between 16.8% and 40.5% [3.201, 3.202]. Roughly 16% of men suffering from 
prostate cancer with prostate specific antigen serum levels higher than 10 ng/ml 
or a Gleason score greater than or equal to 8 carry osseous deposits [3.201, 3.202]. 
Bone pain is considered a risk factor for skeletal metastases in cancer patients. 

Bone scintigraphy is suboptimal in detecting purely lytic metastases, such 
as in renal cancer or lymphoma. Typical indications for bone scintigraphy are 
breast and prostate cancer, as well as primary bone tumours such as Ewing 
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sarcoma or osteosarcoma. In bronchial carcinoma, PET with 18F-FDG has 
replaced bone scintigraphy in most countries at present. The development of 
radiopharmaceuticals binding to the prostate specific membrane antigen (PSMA) 
might replace bone scintigraphy in this entity, as PSMA-SPECT–CT has been 
reported to have a higher accuracy in staging prostate cancer [3.203]. 

Most studies investigating the accuracy of bone scintigraphy lack a gold 
standard. Its sensitivity ranges between 85% and 96%, higher in prostate than in 
breast cancer (for reviews, see Refs [3.202, 3.204, 3.205]). A recent meta-analysis 
compared literature sensitivity and specificity values for planar bone scintigraphy, 
bone SPECT, FDG-PET and MRI in detecting vertebral bone metastases [3.206]. 
In this analysis, the pooled per-patient sensitivity and specificity of SPECT were 
90.3% and 86%, respectively. Its sensitivity was not markedly different from that 
of FDG-PET and MRI, but was significantly higher than that of CT and planar 
bone scintigraphy. The per-patient specificity of SPECT was significantly higher 
than that of FDG-PET, but significantly lower than that of planar bone scan, CT 
and MRI, which did not differ significantly. 

The spatial resolution of planar and/or SPECT cameras is limited, between 
7 mm and 15 mm, and reduces the sensitivity of bone scintigraphy (for a 
review, see Ref. [3.207]). Very small osseous metastases may, therefore, escape 
detection by bone scintigraphy. However, it is not only the size that counts, but 
also the signal-to-noise ratio. In the case of very high uptake occurring (e.g. in 
osteoblastic metastases of prostate cancer), deposits smaller than 1 cm in diameter 
may be visualized by bone scintigraphy, whereas metastases with low metabolic 
activity, such as predominantly osteolytic metastases of breast cancer, may elude 
detection, even when larger than 1 cm. Lytic processes are, on the other hand, 
well visualized on the CT images of SPECT–CT, thus increasing the sensitivity 
of this hybrid imaging method in comparison with stand-alone scintigraphy. 
However, thorough research investigating this issue is absent to date.

Bone marrow infiltration is the first step in osseous involvement. When 
the neoplastic cells infiltrating bone marrow also invade the osseous tissue, 
bone metabolism increases. Only then may they be diagnosed by skeletal 
scintigraphy. CT visualizes osseous metastases only when considerable amounts 
of osseous tissue have been destroyed. MRI and scintigraphy using tumour 
specific radiotracers focus on visualizing the neoplastic lesions specifically and 
are thus, at least in theory, more sensitive than bone scintigraphy and CT [3.203, 
3.206, 3.208]. 

Bone scintigraphy has a rather low specificity to detect bone metastases 
(for a review, see [3.209]), as a variety of benign conditions are accompanied 
by hypermetabolism. In particular, in older patients, degenerative diseases of 
the skeleton such as spinal osteochondrosis and facet joint osteoarthritis are 
quite frequent. Contrary to metastases, hypermetabolic foci due to degenerative 
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processes are joint related and also have a typical morphology on CT. This 
explains why bone scintigraphy for staging malignant disease gains considerably 
by the addition of CT. Further benign differential diagnoses of a hypermetabolic 
focus are vertebral fractures or benign bone tumours, which, in their majority, 
can also be readily diagnosed on CT images. 

Since the advent of SPECT–CT, some evidence has been published on its 
utility for staging. A PubMed search (2008–2019) using the keywords ‘SPECT–CT 
bone metastases’ yielded 413 hits. Many hits corresponded to publications using 
planar bone scan and stand-alone SPECT, reviews and case reports or studies 
performed with tracers other than radiolabelled polyphosphonates. For this 
review, 39 original articles actually reporting on the value of skeletal SPECT–CT 
in cancer patients were selected.

At least 17 papers analysed how many of the unclear lesions seen on 
stand-alone planar/SPECT imaging could be elucidated by SPECT–CT [3.208, 
3.210–3.226]. The studies have some methodological heterogeneities. Despite 
this, the results obtained are remarkably consistent. SPECT–CT allows for 
a definitive diagnosis of 66.7% to 100% of lesions deemed equivocal on 
conventional nuclear medical imaging. Weighted by the number of equivocal 
lesions, the average rate of precise characterization was enabled in 87.6% of the 
total 1183 lesions studied. Utsunomiya et al. also reported a higher diagnostic 
confidence for fused SPECT–CT image datasets than for side by side viewing of 
images from SPECT and CT [3.227]. 

Furthermore, these and several additional publications provide data on 
the sensitivity and specificity of stand-alone nuclear medicine procedures and 
compare them to those of SPECT–CT and some other imaging modalities [3.208, 
3.213, 3.215, 3. 219, 3.223, 3.224, 3.226, 3.228–3.233]. With the exception of the 
findings in Fonager et al. [3.230], the diagnostic accuracy of SPECT–CT is higher 
than that achieved by stand-alone nuclear medicine imaging. As expected, and 
already discussed above, the performance of SPECT–CT was inferior to that of 
whole body MRI in the one study that compared them [3.208]. Interestingly, the 
two studies comparing SPECT–CT with 18F-fluoride-PET–CT had contradictory 
results [3.208, 3.230].

A new perspective for skeletal scintigraphy is whole body SPECT–CT 
substituting for planar whole body imaging. At least four publications compared 
the diagnostic yield of whole body or two bed position SPECT–CT to that of 
whole body scintigraphy accompanied by single position SPECT–CT. Guezennec 
et al. found only a limited incremental diagnostic value of double bed SPECT–CT 
over single bed SPECT–CT [3.221]. Whole body SPECT outperformed whole 
body scintigraphy in a publication by Abikhzer et al. [3.234]. Weissinger et al. 
reported that their SPECT–CT-only protocol involving three bed positions did 
not prolong acquisition time significantly compared with the standard approach 
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and was able to detect more lesions than planar acquisition in a group of 50 
patients with high risk prostate cancer [3.235]. In 212 consecutive patients with 
a history of cancer, whole body SPECT–CT had a significantly higher sensitivity 
than targeted SPECT–CT and whole body planar bone scintigraphy, but similar 
specificity [3.236]. On the whole, it thus seems sensible to substitute in the future 
skeletal whole body planar scans by a SPECT or SPECT–CT based approach, in 
particular, when fast acquisition protocols become available [3.237]. 

A further perspective is quantitative SPECT–CT (i.e. the ability of this 
technology to quantify tissue radioactivity concentration in absolute units). Its 
technical performance and its value for staging malignant disease using skeletal 
scintigraphy was reviewed in 2017 [3.237]. Using a research protocol [3.238], 
Cachovan et al. measured the radioactivity concentration in spongious bone of 
the vertebral bodies of women referred to bone scintigraphy and found an average 
value of 48.15 kBq/mL [3.239]. They reported a significant correlation between 
skeletal SUVs with the X ray densities of the vertebral bodies. This establishes 
an association between the osseous uptake of the polyphosphonates and the 
amount of metabolically active bone tissue. Flourine-18-fluoride-PET–CT 
was shown to have SUVs in normal bony tissues similar to those reported by 
skeletal SPECT–CT, with a significant correlation [3.240]. This illustrates that 
quantitative skeletal SPECT yields information on bone metabolism similarly to 
18F-fluoride PET. 

As yet, normal ranges for skeletal uptake on bone SPECT–CT have not 
been established in the literature. In addition, discussion on standardization 
of the procedures involved is needed to establish threshold SUVs for clinical 
use. Nevertheless, some papers have used SUV values of bone SPECT–CT to 
distinguish benign from malignant skeletal lesions. In a multicentre study, the 
clinical performance of quantitative SPECT–CT to characterize hypermetabolic 
foci has been investigated [3.241]. Patient data from 72 subjects from three 
US and two German institutions were pooled and analysed by ten physicians 
independently. The gold standard was a final consensus read. For non-joint lesions 
greater than 6 mm in size, the diagnostic accuracy was high when using SUV 
thresholds of 9.28 or 9.68, depending on the type of reconstruction. Kuji et al. 
showed in 170 patients with prostate cancer that maximal SUVs measured 
in metastases, 40.9 ± 33.46, were significantly higher than those measured in 
degenerative lesions (16.73 ± 6.74 [3.242]). Malignant foci could be distinguished 
from benign lesions with high diagnostic accuracy. In 264 bone metastases 
of prostate cancer, Tabotta et al. reported SUVs of 34.6 ± 24.6, significantly 
higher than those measured in benign osteoarthritic lesions amounting to 
14.2 ± 3.8 [3.243]. Using a SUVmax threshold of 19.5, these authors found a 
sensitivity and specificity of 87% and 92%, respectively, to differentiate benign 
from malignant foci. Also, in prostate cancer, Rohani et al. reported an SUVmax 
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of 20 as the discrimination threshold to achieve a sensitivity and specificity of 
73.8% and 85.4% to differentiate degenerative from neoplastic foci [3.244]. It 
should, nevertheless, be noted that the evidence summarized above pertains to 
osseous metastases of prostate cancer only. It cannot readily be extrapolated to 
other tumours such as breast cancer, because those metastatic deposits might not 
engender uptake values of the same magnitude as prostate neoplasms.

Quantitative SPECT–CT has also been used to determine total tumour 
load with the intention of creating a variable facilitating monitoring skeletal 
involvement under therapy. Umeda et al. used an SUV threshold of 7 to segment 
metastatically involved bone [3.245]. Fiz et al. developed an analogous approach 
and showed that the calculated segmentation based tumour load correlated with 
radiological and laboratory indices reflecting tumour expansion [3.246]. The 
behaviour of bone metastases is difficult to assess longitudinally by medical 
imaging for the following reasons. The size of osteolytic lesions is difficult 
to measure on CT or MRI as their borders are usually ill defined. Using these 
modalities, it is also not possible to reliably diagnose the viability of blastic foci, 
since sclerosis is also a sign of bone healing. Bone scintigraphy is, in principle, 
suited to provide information on at least the regression of malignant skeletal foci, 
but changes in activity are difficult to assess by visual interpretation only. Beck 
et al. showed in a small group of subjects that errors in assessing the activity of 
metastases occurred in every third patient when visual evaluation was compared 
with quantitative SPECT–CT as the reference standard [3.241]. When monitoring 
osseous metastases with bone scintigraphy, the so-called flare phenomenon 
also has to be considered. This represents a transient increase in uptake due to 
healing of a metastasis, which could be misinterpreted as disease progression or 
non-response to therapy [3.247]. No paper has as yet correlated SUV changes 
determined by quantitative SPECT–CT with clinical response to therapy or 
patient survival. However, a prospective study using 18F-fluoride-PET–CT for this 
purpose in metastatic prostate cancer disclosed a highly significant correlation of 
PET response with progression free survival [3.248]. This suggests that skeletal 
SPECT–CT also bears considerable potential in this regard.

3.6. SPECT–CT IN INFLAMMATION

Infectious diseases are a major health care issue. While diagnosis of 
an infectious process is based on clinical and laboratory data, localization 
of disease foci can be difficult. Over the years various infection-seeking 
radiotracers, including many single photon emitting radioisotopes, have been 
developed. SPECT tracers applied in patients with known or suspected infectious 
processes include, first and foremost, autologous leukocytes (WBCs) labelled 
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with either 99mTc- or 111In-oxine [3.249], and, to a lesser extent, radiolabelled 
antibiotics [3.250], antibodies [3.251, 3.252] and 99mTc-ubiquicidin [3.253]. 
Gallium-67-citrate is still being used in some countries [3.254–3.257]. Over the 
last decades SPECT–CT has been applied in imaging of infection, combining 
functional studies with structural CT images. This enables both diagnosis 
of infectious processes, even in the early phases of the disease, as well as 
their precise localization. While scintigraphy is characterized by an inherent 
high sensitivity and NPV, further enhanced by SPECT, fused images improve 
the specificity, PPV and diagnostic accuracy. Although there has been a trend 
over the last decade in the direction of shifting hybrid imaging procedures for 
assessment of infection towards FDG-PET–CT [3.258], SPECT–CT is still a 
valid alternative. 

Diagnosis of clinically suspected musculoskeletal infections and precise 
localization of known disease processes are optimized by the addition of 
anatomical landmarks. This is of value in cases when osseous involvement has 
to be proven or excluded in the presence of an adjacent soft tissue infection. The 
addition of CT can clarify the presence, localization and extent of the disease 
process in an area of complex anatomy, as well as in sites showing structural 
alterations following fractures, surgery or implants of medical devices. 
Initial studies with mixed patient populations have assessed the contribution 
of SPECT–CT with 111In- or 99mTc-labelled WBCs or 67Ga-citrate and have 
demonstrated an incremental value for hybrid imaging with higher performance 
indices than stand-alone procedures in up to one third of cases [3.251, 3.254, 
3.259–3.261]. Technetium-99m-UBI 29-41 was also used in a mixed series 
of patients with musculoskeletal pathologies with a sensitivity, specificity, 
PPV, NPV and accuracy of 99%, 94%, 93%, 99% and 95%, respectively, for 
diagnosis of infection [3.253]. Subsequent studies have evaluated the role of 
SPECT–CT in particularly challenging clinical subgroups of patients with 
musculoskeletal pathologies. 

Osteomyelitis has to be considered in any diabetic patient with a chronic, 
non-healing wound, occurring mainly in the feet. Labelled WBCs will identify 
the presence of infectious foci but lack the ability to diagnose osteomyelitis. 
SPECT–CT has made a significant impact in this patient group by confirming 
or excluding bone involvement in the presence of a known infectious process 
in adjacent soft tissues in over half of patients with diabetic foot [3.262–3.264], 
increasing mainly the specificity and PPV [3.265, 3.266]. Various imaging 
protocols, occasionally combining labelled WBC and bone SPECT–CT 
techniques [3.263, 3.264], and attempts to improve the prognostic value by 
quantification [3.266] have been advocated. Labelled WBC-SPECT–CT has 
been compared with and found to be superior to FDG-PET–CT [3.262], while 
similar to MRI [3.267], in assessing the diabetic foot. SPECT–CT has also been 
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used to monitor response to treatment, with high sensitivity and NPV but lower 
specificity and PPV for predicting the response of the infectious process at the 
end of antibiotic therapy [3.268, 3.269]. 

Diagnosis of spondylodiscitis is difficult and is often delayed or missed. 
Nuclear medicine procedures are used as an adjunct to MRI in this clinical setting. 
When available, FDG imaging is used successfully. Gallium-67-citrate remains 
the main SPECT tracer in spite of its known limitations. In combination with 
bone scintigraphy, 67Ga SPECT–CT improves diagnostic accuracy in suspected 
spondylodiscitis, similar to MRI [3.256] but inferior to FDG-PET–CT [3.255]. 
Indium-111-biotin SPECT–CT was also found to be of value for localizing foci 
of spinal infection and for tailoring the therapeutic approach [3.250]. 

Differentiating aseptic loosening of a prosthetic joint from 
infection is important in order to define the correct treatment strategy. 
Technetium-WBC-SPECT–CT provided accurate anatomical localization of 
all infected knee and hip prosthetic joints and had high performance indices, 
with sensitivity, specificity, NPV and PPV of 100%, 90%, 100% and 88%, 
respectively. While the diagnostic accuracy of SPECT–CT using Tc-WBC 
reached up to 93%, it was somewhat lower using Tc-labelled antigranulocyte 
antibodies [3.252, 3.270, 3.271].

Diagnosis of osteomyelitis of the jaw [3.272] or skull [3.273] is more 
accurate with the use of SPECT–CT. Foci of infection could be localized 
to a specific bone in the base of the skull in half of the patients [3.273] and 
osteomyelitis could be diagnosed in cases with malignant otitis externa [3.274]. 
Dual isotope Tc-MDP bone and In-WBC-SPECT–CT were associated with a 
high diagnostic confidence to define the presence and depth of infected pelvic 
pressure sores [3.275]. 

Assessment of soft tissue infections is an additional important field where 
the use of radiotracers and hybrid imaging, specifically SPECT–CT, make 
a significant clinical impact. Soft tissue infections can have a challenging, 
non-specific clinical presentation, thus requiring extensive imaging, laboratory 
and invasive diagnostic procedures. As for musculoskeletal infections, the main 
single photon emitting tracers used for the assessment of soft tissue infections 
are WBCs labelled with either 99mTc or 111In, and, to a lesser extent at present, 
67Ga [3.254]. SPECT–CT improves the diagnostic certainty by excluding the 
presence of clinically significant findings as the cause for equivocal foci of uptake 
detected on scintigraphy. For example, sites of WBC accumulation near major 
vessels or bowel loops can be differentiated from infectious foci in patients with 
suspected vascular graft, cardiac or abdominal infections, and abdominal 67Ga 
activity can be easily identified as physiological bowel uptake, thus shortening 
time to diagnosis.
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Vascular graft infection, although a relatively rare complication 
following stent implantation, is associated with significant morbidity. While 
CT angiography confirms the presence of vascular graft infection, scintigraphy 
using labelled WBCs plays a role in equivocal cases, in the early phases of the 
infection and in low grade processes. While scintigraphy can confirm or exclude 
the presence of infection, SPECT–CT will demonstrate whether a vascular graft 
is indeed involved or if the infectious process is limited to adjacent surrounding 
tissues, in particular in areas with crowded, complex anatomy and/or in the 
presence of post-surgical distortions [3.254, 3.276–3.278]. SPECT–CT reduced 
the number of false positive findings in 37% of patients and had a sensitivity and 
specificity of 100% as compared with 85% and 63%, respectively, for stand-alone 
SPECT [3.278]. Fluorodeoxyglucose-PET–CT and Tc-WBC-SPECT–CT were 
compared in patients on haemodialysis with suspected arteriovenous graft 
infection, a pathological entity that requires early treatment in order to avoid 
later removal of the infected stent. Early on, at approximately 10 weeks after 
graft implantation, the presence of abnormal FDG uptake foci had the highest 
diagnostic accuracy. At 20–30 weeks post-graft insertion, FDG and Tc-WBC 
imaging performed similarly, while later, at 40–50 weeks after surgery, the 
foci of Tc-WBC accumulation had a slightly higher diagnostic value than FDG 
abnormalities [3.279].

Scintigraphy is used in the assessment of patients with suspected infectious 
endocarditis and equivocal echocardiography. Hybrid imaging (SPECT–CT with 
Tc-WBC and FDG-PET–CT) allows for an accurate diagnosis and localization of 
cardiac and potential extracardiac sites of disease. These modalities are currently 
being performed routinely as part of the diagnostic workup [3.280, 3.281]. 
Technetium-WBC-SPECT–CT had high performance indices for diagnosis of 
infectious endocarditis, with a sensitivity of 90%, NPV of 94% and specificity 
and PPV of 100% [3.282]. It had, however, lower clinical utility scores for 
detecting extracardiac complications than FDG-PET–CT [3.281].

While the incidence of infections involving cardiac implantable electronic 
devices (CIEDs) is relatively low, they are also associated with significant 
morbidity and mortality. Technetium-WBC-SPECT–CT plays an incremental 
role in confirming or excluding the presence of disease in patients with suspected 
or known CIED infection, and furthermore in assessing its extent [3.282, 3.283]. 
WBC-SPECT–CT had a high sensitivity and NPV for diagnosis of CIED and 
determined whether the disease process was limited to either the pocket or leads, 
or if it involved both components [3.282]. SPECT–CT detected additional sites of 
previously unsuspected extracardiac foci of infection in up to 23% of patients and 
provided relevant information for tailoring the further therapeutic strategy [3.282, 
3.283]. A study comparing PET–CT with labelled WBC-SPECT–CT in patients 
with suspected CIED infection demonstrated higher sensitivity and NPV but 
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lower specificity and PPV for FDG imaging [3.284]. In an additional study, 
both FDG-PET–CT and WBC-SPECT–CT showed high performance indices in 
patients with a final diagnosis of left ventricular assist devices. However, because 
of its higher sensitivity and easy logistics, FDG-PET–CT has been suggested as 
the first-line nuclear medicine procedure in this clinical scenario [3.285].

Additional radiotracers have been evaluated for the assessment of 
cardiovascular infections. Gallium-67 SPECT–CT has been used for the 
diagnosis of percutaneous driveline infection in patients with left ventricular 
assist devices. Increased tracer uptake was associated with higher one year 
event rates, including surgical interventions and hospital readmissions [3.286]. 
The performance of labelled granulocyte imaging was investigated in patients 
with suspected endocarditis. Technetium-99m-besilesomab-SPECT–CT had a 
sensitivity of 86–100% and a specificity of 100%, being of particular value in 
difficult cases with prosthetic valves or cardiac devices, as well as in patients with 
inconclusive echocardiography results, by identifying and localizing abnormal 
tracer uptake to a certain valve, prosthesis or device cable [3.287].

Following multiple case reports, a few series of studies have assessed the 
role of SPECT–CT in additional infectious processes. Gallium-67 SPECT–CT 
has been used to evaluate patients with fever of unknown origin, providing 
clinically significant information in over 40% of cases [3.254]. It had a 
sensitivity of 79% but was associated with a relatively high false negative rate, 
probably due to technical limitations related to the physical characteristics of this 
radiotracer [3.288]. In an additional study, 67Ga SPECT–CT was contributory in 
80% of patients with end-stage renal failure and in one third of patients after 
renal transplant, not only by diagnosing and localizing the infectious process, but 
also by correctly characterizing sites of physiological tracer activity [3.289].

These data from the literature, although still limited, demonstrate that 
SPECT–CT is an extremely important, clinically relevant tool for the early 
diagnosis and precise localization of infectious processes and can play an 
important role in patient management and changing outcomes (Table 3.3). 

3.7. SPECT–CT IN ONCOLOGY

3.7.1. Thyroid cancer

The guidelines issued in 2015 by the American Thyroid Association [3.290] 
have revived the debate about the optimal modalities for managing differentiated 
thyroid cancer, in particular with respect to the selection of patients to whom 
to offer radioiodine ablation of post-surgical thyroid remnants according 
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to their risk stratification level based on clinical and histopathological 
information [3.291–3.294].

Although addressing this issue is outside the scope of this work, it must be 
emphasized that the information that whole body scintigraphy with radioiodine 
provides, particularly if performed at the completion of the ablation procedure 
(usually 3–7 days after administration of 131I-iodide), can indeed change the risk 
stratification level of patients as compared with that obtained using the clinical 
information available before ablation. This will thus directly influence the patient 
management strategy [3.291–3.295]. It is therefore increasingly recognized 
that SPECT–CT imaging provides crucial information and has an incremental 
diagnostic value over planar whole body scintigraphy (WBS) [3.296].

As with other types of scintigraphy with single photon emitting 
agents [3.297], the lack of anatomical landmarks and ill-defined body contour 
on planar WBS, and even more so on stand-alone SPECT, makes precise 
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TABLE 3.3. SUMMARY OF SPECT–CT IN MUSCULOSKELETAL, SOFT 
TISSUE AND VISCERAL INFECTIONS

SPECT–CT indications No. papers 
(2008–2019)

Musculoskeletal infections 25

Mixed case population 6

Diabetic foot 9

Spondylodiscitis 3

Skull osteomyelitis 3

Infected joint prosthesis 2

Joint infection 1

Pelvic pressure sore 1

Soft tissue infections 16

Mixed case population 1

Vascular graft infection     5

Infective endocarditis     3

Cardiac devices 5

Fever of unknown origin 1

Renal transplant 1



identification of the location and aetiology of abnormal radioiodine uptake 
difficult. Therefore, there remains a substantial fraction of studies in which 
planar imaging alone yields difficult to interpret findings — the so-called 
‘cryptic’ foci of radioiodine uptake [3.298]. SPECT–CT clarifies most of these 
equivocal cases, as it makes it possible to more precisely characterize ‘abnormal’ 
foci of uptake, considering that there are several possible causes of false positive 
radioiodine uptake, including benign processes, physiological variants, artefacts, 
contamination and non-thyroidal malignant lesions [3.299].

The added value of SPECT–CT for the management of patients 
with differentiated thyroid cancer after surgery has been explored through 
different approaches: (a) in the diagnostic pre-ablation setting, (b) during 
scintigraphy performed after administration of radioiodine for ablation of 
post-surgical remnants, (c) in the diagnostic setting to verify the success of 
ablation and (d) during scintigraphy performed after radioiodine therapy for 
recurrent/metastatic disease.

Besides occasional case reports, seven studies have been published 
on the added value of SPECT–CT imaging over planar WBS after 
administration of a diagnostic 131I-iodide activity prior to the ablative dose of 
radioiodine [3.300–3.306], four of which come from the Ann Arbor group 
(Michigan, USA). The results of these studies consistently demonstrate the 
high incremental value of SPECT–CT over planar WBS, with the detection of 
unexpected neck lymph node metastases in approximately 30–44% of patients 
and distant metastases in approximately 4–10% of patients. These findings led 
to changes in intended management in 30–60% of patients, mostly consisting of 
the administration of radioiodine doses for ablation that were greater than those 
planned after risk stratification based on clinical or surgical data.

As expected, most studies (the majority of them including quite large 
patient groups) on the incremental value of SPECT–CT imaging over planar 
WBS have focused on the post-ablation scan, which is generally acquired 
3–7 days after administration of radioiodine. A few of these studies focused 
on specific, limited issues of the post-ablation scan (i.e. on radiation dosimetry 
estimates [3.307–3.309] and on the identification of remnants of the thyroglossal 
duct as a cause of radioiodine uptake in the neck [3.310–3.311]). Mínguez et al., 
in particular, reported that the radiation burden to the thyroid remnants 
based on whole-volume estimates were 12–15% higher than those based on 
maximum-voxel estimates, both derived from SPECT–CT imaging [3.307]. The 
same group of investigators subsequently confirmed and validated the superior 
accuracy of SPECT–CT for radiation dosimetry purposes in patients treated with 
different activity levels of 131I-iodide, depending on risk stratification [3.309]. 
Similarly, Hong et al. demonstrated a significantly higher accuracy of 
radiodosimetric estimates (retention rates and effective half-times in post-surgical 
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remnants) based on SPECT–CT versus those based on planar WBS [3.308]. On 
the other hand, Kairemo et al. used SPECT–CT data as the reference standard for 
validation of radiodosimetric estimates derived by external counting with a probe 
detector [3.312].

Thyroglossal duct remnants were observed in almost 50% of patients and 
SPECT–CT contributed to unequivocal interpretation in most cases, thus avoiding 
additional procedures to clarify doubtful images on planar WBS [3.310–3.311].

Similarly, in post-ablation scans, SPECT–CT has demonstrated incremental 
value(s) over planar WBS [3.313–3.329]. On average, SPECT–CT correctly 
characterized >90% of all cryptic/equivocal sites of radioiodine uptake observed 
on planar WBS, while it detected unexpected sites of either neck lymph 
node or distant metastases in almost one out of four patients (with a range of 
approximately 9% to 40% of cases). These findings led to changing the TNM 
stage in an average of 10% of patients (excluding the high 59% value reported 
by Zilioli et al. [3.326] in a selected subgroup of patients with equivocal 
findings on planar WBS). SPECT–CT also led to a change in the risk category 
in approximately 35% of patients and a change in intended management in 
approximately 15% of patients. It is interesting to note, for risk stratification, that 
SPECT–CT was more accurate than either unstimulated or thyroid-stimulating 
hormone stimulated serum thyroglobulin for detecting either local recurrence or 
distant metastatic disease, and for predicting long term disease relapse.

When evaluating patients for possible recurrence of differentiated thyroid 
cancer after primary treatment with surgery and radioiodine ablation of thyroid 
remnants, 123I-iodide rather than 131I-iodide can be used in order to minimize 
the risk of the so-called ‘stunning’ effect on subsequent administration of the 
ablative dose. In order to verify the success of ablation 6 months after treatment, 
Barwick et al. [3.330] assessed the added value of SPECT–CT over planar WBS 
and stand-alone SPECT in 79 patients after administration of 350–400 MBq 
123I-iodide. They found that SPECT–CT was significantly more specific than 
either planar WBS and WBS plus stand-alone SPECT (P = 0.016), a definite 42% 
incremental value of SPECT–CT being observed in 36 out of 85 scans (Fig. 3.2).

There is only one study reporting specifically on the incremental value 
of SPECT–CT in patients treated with radioiodine therapy because of recurrent 
or metastatic disease after primary treatment of differentiated thyroid cancer 
(i.e. surgery and ablation of post-surgical remnants). Chen et al. [3.331] evaluated 
66 patients with equivocal findings on the planar WBS acquired after therapeutic 
level radioiodine was administered because of advanced or metastatic disease. 
They found that SPECT–CT imaging provided conclusive information in 73.9% 
of such patients, clarifying approximately 84% of the cryptic or equivocal foci 
of uptake. Furthermore, the SPECT–CT findings led to a change in management 
strategy for 47.1% of the patients.
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Several of the studies published on the incremental value of SPECT–CT 
imaging over planar WBS actually include mixed populations (i.e. patients on 
whom the scan was performed after administering radioiodine for ablation of 
post-surgical remnants and patients treated with radioiodine therapy because of 
recurrent or metastatic disease after primary treatment of differentiated thyroid 
cancer). At least three reports are worthy of separate mention. Out of an overall 
population of 3367 patients, Shen et al. [3.332] selected 71 patients with a 
positive post-ablation scintigraphy but with negative serum thyroglobulin and 
no interfering anti-thyroglobulin autoantibodies. Of the 71 patients, SPECT–CT 
detected unexpected neck lymph node metastases in 59 patients (83.1%), lung 
metastases in 11 patients (15.5%) and bone metastases in 2 patients (2.8%). 
A study by Ruhlman et al. [3.333] focused on a comparison between pre-treatment 
124I-iodide PET–CT and SPECT–CT acquired post-ablation (n = 106) or 
post-therapy (n = 31). Agreement between the two modalities was found in 97% 
of the lesions, leading the authors to conclude that pre-treatment 124I-PET–CT is 
equally as effective as post-therapy 131I-SPECT–CT in patients with differentiated 
thyroid cancer. Finally, Oh et al. [3.334] compared the diagnostic performances 
of pre-treatment 18F-FDG-PET–CT with those of planar WBS and SPECT–CT 
acquired post-ablation (n = 101) or post-therapy (n = 39). They found that, on 
a lesion based analysis, post-ablation SPECT–CT performed better than either 
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FIG. 3.2. Receiver operating characteristic curves of whole body gamma camera (WBGC) 
imaging (black) compared with WBGC+SPECT imaging (blue) and WBGC+SPECT–CT 
imaging (red) (patients with non‑radioiodine‑avid disease excluded). AUC denotes the area 
under the curve (adapted from Ref. [3.330]).



planar WBS or 18F-FDG-PET–CT (P<0.001), while post-therapy SPECT–CT 
performed better than planar WBS but worse than 18F-FDG-PET–CT (P = 0.013).

Overall, SPECT–CT had a definite diagnostic impact in an average of 
57% of patients with well differentiated thyroid cancer, correctly characterizing 
approximately 84% of the cryptic or equivocal sites of radioiodine uptake 
observed on planar WBS [3.335–3.344]. It detected unexpected sites of either 
neck lymph node or distant metastases in more than one out of four patients, 
leading to up- or down-staging of the disease in over 20% of patients and to a 
change in intended management in approximately 25% of patients.

3.7.2. Neuroendocrine neoplasms

Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumours 
that originate from neuroendocrine cells located in many different organs, most 
frequently in the gastrointestinal tract and the lungs. Less common locations 
include the thymus and other organs with endocrine function, such as the adrenal 
medulla, pituitary, parathyroid and thyroid. 

NENs are a diagnostic and therapeutic challenge, as their clinical 
presentation is non-specific. Imaging plays a fundamental role in diagnosis, 
staging, treatment selection and follow-up. Current diagnostic modalities include 
morphological (CT, MRI, ultrasound) and molecular imaging techniques. 

The majority of gastroenteropancreatic neuroendocrine tumours 
(GEP-NETs) express somatostatin receptors that can be used as targets for 
radionuclide imaging and therapy. Scintigraphy with radiolabelled somatostatin 
analogues (SSAs), first with 123I followed by 111In and 99mTc labelling, has been 
effectively used for the workup of somatostatin receptor-positive NEN patients 
with detection rates between 50% and 100% in different studies [3.345–3.347]. 
More recently, PET with 68Ga-labelled SSAs has been proposed. Conversely, in 
adrenal tumours (i.e. pheochromocytoma and neuroblastoma), catecholamine 
metabolism is usually imaged with 123I-mIBG, 18F-dihydroxyphenylalanine 
(DOPA) and, more rarely, 11C-5-hydroxytryptophan (HTP) [3.348–3.350]. 
It is important to note that 18F-FDG-PET–CT has a prognostic role in 
NENs [3.351, 3.352].

The role of SPECT–CT in NENs is of particular importance, not only on a 
clinical basis, if we consider the existence of available PET radiopharmaceuticals, 
but also in dosimetry during theranostic procedures [3.353, 3.354]. 

In comparison with planar imaging, a review of the literature evidence, 
both in GEP-NETs [3.355–3.366] and adrenal tumours [3.360, 3.367], showed 
that SPECT–CT improved lesion localization and increased inter-reader 
agreement in more than two thirds of cases, and changed lesion classification, 
with subsequent up- or down-staging of the disease, in approximately one third 
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of patients, thus resulting in better patient management. Moreover, in comparison 
with stand-alone SPECT, the detection rate dramatically increased on a patient 
and lesion basis [3.368]. Finally, Nakamoto et al. showed the possibility of a 
precise quantification with SPECT–CT in adrenal tumours [3.369].

Similar results were found when comparing SPECT–CT and conventional 
imaging (including CT and/or MRI), both in GEP-NETs [3.370–3.374] 
and adrenal tumours [3.375–3.377]. More recently, Senica et al. proposed 
a glucagon-like peptide-1 (GLP-1) receptor agonist labelled with 99mTc for 
pre-operative localization of an occult insulinoma, which surpasses conventional 
imaging methods [3.378].

Finally, SPECT–CT has been compared with PET–CT: 

 — In GEP-NETs, 111In and/or 99mTc labelled octreotide has been compared 
with 68Ga-labelled SSAs [3.379–3.385]; 

 — In adrenal tumours, 123I-mIBG has been compared with 18F-DOPA 
[3.386, 3.387] or 68Ga-labelled SSAs [3.388, 3.389]. 

In all cases, the correlation was significantly in favour of PET–CT. 
However, the impact of PET–CT in radionuclide therapy management, the very 
definition of the Krenning score, is still a matter of debate [3.385].

3.7.3. Sentinel lymph node

The term ‘sentinel lymph node’ (SLN) indicates the first lymph node 
encountered by lymphatic vessels draining the primary tumour or the first lymph 
node upon which a lymph vessel originating in the tumour drains directly. This 
definition does not always correspond to the lymph node nearest to the tumour, 
as the route of the lymphatic vessels is often tortuous and unpredictable. There 
may be different lymphatic pathways draining certain tumour sites, leading 
to different SLNs; each of them should therefore be investigated for the 
presence of metastasis. Lymphoscintigraphy following interstitial radiocolloid 
injection is critical to precisely visualize sequential lymphatic drainage of 
the radiopharmaceutical. The presence or absence of SLN metastasis has a 
significant impact on further planning the therapeutic strategy. In patients with 
early cancer, if the SLN does not contain metastasis, the surgical approach should 
aim at removing the primary tumour and avoiding unnecessary regional node 
dissection. The likelihood that other nodes contain metastasis is extremely low, 
thus making extensive dissection unnecessary. Patients whose SLN contains 
metastasis usually require dissection of regional lymph nodes.
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In the last few years, radio-guided surgical applications have rapidly 
expanded to perform SLN biopsy, in particular in patients with breast cancer and 
cutaneous melanoma.

Recent data obtained with SPECT–CT emphasize the importance of this 
hybrid imaging technique for accurate lymph node mapping, thus enabling the 
implementation of a more personalized surgical approach.

3.7.3.1. Breast carcinoma

Breast cancer is the most frequent cancer diagnosed in women worldwide. 
Accurate lymph node staging is essential for both prognosis (of early stage 
disease) and treatment (for regional control of disease) in patients with 
breast cancer. 

SLN mapping and biopsy have become routine techniques in breast 
cancer management, contributing to the development of less invasive surgical 
procedures. The use of SPECT–CT-aided nodal mapping is correlated with 
a higher detection rate of SLNs due to a better anatomical localization and 
identification of SLNs not seen on planar scintigraphy [3.390–3.405].

3.7.3.2. Melanoma

Melanoma is one of the most aggressive and therapy resistant cancers. 
Its incidence is currently increasing worldwide. Diagnosis of metastatic lymph 
node involvement is of the utmost importance for prognosis in patients with 
intermediate thickness melanoma. Other prognostic factors include tumour 
thickness, presence of ulceration and mitotic rate. Radio-guided surgery has 
a prominent role in the treatment of melanoma, because the SLN approach is, 
nowadays, a choice procedure for regional lymphatic staging of these patients.

No imaging modality is accurate enough to detect lymph node metastases, 
but SLN biopsy is a highly reliable method for screening and for identifying 
metastatic and micrometastatic disease in regional lymphatic nodes.

SPECT–CT imaging increases the SLN identification rate and overcomes 
some of the limitations of planar imaging [3.398, 3.400, 3.406–3.419].

3.7.3.3. Head and neck squamous cell carcinoma

SLN biopsy is increasingly being used in early stage oral cancer, as 
well as in head and neck squamous cell cancer, in order to exclude occult 
lymph node metastases, a condition that  has a definitive impact on treatment 
planning [3.420–3.426]. However, optimal patient management remains 
controversial, varying from watchful waiting to SLN biopsy or elective neck 
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dissection. SLN biopsy is generally associated with less morbidity and superior 
functional outcome, since up to 80% of T1 and T2 head and neck squamous cell 
carcinomas and clinically negative necks are overtreated with routine elective neck 
dissection [3.427]. SLN biopsy is fraught with a somewhat limited sensitivity, 
especially when performing planar lymphoscintigraphy only. In a recent study 
on oral squamous cell carcinoma, the addition of SPECT–CT to planar/dynamic 
scintigraphy revealed additional SLNs in 22% of patients and thus significantly 
increased the diagnostic accuracy [3.428]. The combination of dynamic scan 
with SPECT–CT demonstrated the best results [3.429]. Furthermore, SPECT–CT 
revealed additional anatomical information in 3% of patients and the overall 
detection rate of the combined approach was 98% [3.428]. When compared with 
the gold standard of intraoperative gamma ray detection probe, a high diagnostic 
accuracy (90.8%) was observed in another retrospective study [3.430]. 

3.7.3.4. Cancers of the reproductive tract

The nodal metastatic status constitutes the most important factor for therapy 
and prognosis in cervical cancer. Because of the fact that the presence of lymph 
node metastases significantly decreases survival rates, the introduction of radical 
lymphadenectomy was advocated. Since lymphatic drainage from the uterus is 
ramified and complex, accurate pre-surgical SLN detection is highly desirable 
in order to prevent systematic lymphadenectomy, which is commonly associated 
with higher morbidity. 

Scintigraphic mapping and biopsy of SLNs is increasingly being 
performed in cervical cancer, whereas it remains a matter of clinical 
investigation in endometrial cancer, which is associated with a low prevalence 
of lymph node metastases. The rationale of improved SLN detection by means 
of SPECT–CT is based on its higher spatial resolution and the availability of 
additional morphological information that also enables the detection of nodes 
located adjacent to the injection area. 

In cervical [3.431–3.433] as well as in vulvar [3.434, 3.435] cancer, 
several studies revealed the superiority of SPECT–CT for SLN detection and 
better anatomical correlation compared with planar lymphoscintigraphy, thus 
improving intraoperative detection rates and facilitating intraoperative SLN 
biopsy — factors that all together confirmed the higher oncologic safety of 
the SLN concept. 

In endometrial cancer, the SLN procedure is not used in clinical routine 
and the detection rate was shown to be lower when compared with breast cancer 
and melanoma. In addition, the detection rate can be hampered by the injection 
technique used [3.436–3.437]. Nevertheless, preliminary evidence revealed 
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that SPECT–CT localization of SLNs was anatomically accurate in 91% of 
cases [3.438] and thus feasible and reliable for patients with endometrial cancer.

Recently, one prospective study also demonstrated the additional value of 
SPECT–CT compared with planar imaging in penile cancer, because of a higher 
detection rate and a lower number of false positive findings versus planar SLN 
imaging [3.439].

3.7.4. Prostate cancer

PET radioligands binding to PSMA have brought a revolution to the 
diagnostic workup of patients with prostate cancer [3.440]. In parallel, PSMA 
binding radiopharmaceuticals labelled with 99mTc and thus suitable for 
SPECT imaging have been developed. They have been preclinically validated 
and their normal distribution in humans has been studied [3.441–3.445]. 
PSMA radioligands avidly concentrate in prostate cancer tissue, as well as 
physiologically in sympathetic ganglia, salivary and lacrimal glands, parts of the 
bowels and — to a somewhat lesser extent — in the liver. Many, but not all, of 
these ligands are excreted via the kidneys, and therefore, considerable uptake of 
these tracers in the urinary tract is usually found. Uptake in the rest of the body is 
more or less negligible, so that PET or SPECT images of their distribution within 
the body provide little anatomical information. Therefore, SPECT–CT and not 
stand-alone conventional nuclear medical scintigraphy is the standard for SPECT 
imaging of PSMA expression.

Analogously to PET–CT, one possible application of SPECT–CT imaging of 
PSMA expression is for pre-operative staging of patients with prostate carcinoma. 
Goffin et al. reported on a phase 2 clinical trial using 99mTc-MIP-1404-SPECT–CT 
in 105 patients with a high risk of pelvic lymph node involvement scheduled for 
radical prostatectomy and nodal dissection [3.446]. They were able to detect 94% 
of the primary tumours and 50% of involved lymph nodes with a specificity of 
87%. They did not analyse their scans for distant spread. In a retrospective analysis 
of 93 newly diagnosed patients, Schmidkonz et al. found prostate uptake above 
background, indicative of malignancy in 97% of cases [3.447]. They detected 
48 lymph node and 29 bone metastases in 16 and 9 patients, respectively. In both 
studies, tumour uptake significantly correlated with Gleason score. Therefore, 
one might hypothesize that PSMA-SPECT–CT can be useful to determine 
dedifferentiation of low grade tumours under active surveillance. The results of 
a phase 3 trial of this issue have at the time of writing not yet been published, so 
it might be too early to speculate on the utility of 99mTc-MIP-1404-SPECT–CT 
in this pretherapeutic setting. Whether pretherapeutic PSMA-SPECT–CT can 
significantly improve care for patients with higher grade prostate carcinomas 
is also still unclear. Demonstrating lymph node metastases at this early stage 
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could, in principle, prompt their surgical excision or irradiation, thus potentially 
leading to higher rates of cure. This issue was addressed by Su et al., who 
showed that pre-operative SPECT–CT led to the removal of more lymph node 
metastases than conventional imaging with, for example, MRI, and claimed that 
this delayed disease progression [3.448]. Detecting distant metastases at first 
staging might bear the consequence of systemic treatment. However, this has 
not as yet been systematically studied. The results published so far undoubtedly 
encourage further prospective clinical trials aiming to evaluate the potential 
clinical impact of primary staging with PSMA-SPECT–CT and its effect on the 
survival of patients.

Sometime after first ablative therapy of the primary cancer, patients may 
present again with a measurable or rising serum level of the prostate specific 
antigen (PSA), representing biochemical recurrence. Localizing recurrent or 
persisting tumour tissue in these patients has major clinical consequences. Local 
or lymph node recurrence might be best met by surgery or radiation treatment. 
In the case of distant spread (e.g. to the skeleton), systemic therapy such as 
antiandrogenic treatment has to be instituted or given in a modified regimen, and 
this often affects quality of life. An initial study of 60 subjects with biochemical 
recurrence reported detection rates of 91.4% and 40% at PSA levels above and 
below a threshold of 2 ng/ml, respectively [3.449]. In 78% of 50 patients affected 
by the same condition, SPECT–CT allowed the localization of the recurrence in 
a study by Su et al. [3.450]. Schmidkonz et al. detected tracer-positive lesions 
indicative of tumour tissue in 77% of 225 patients with biochemical recurrence. 
These authors found local recurrences in 25% of the patients, lymph node 
metastases in 25%, bone metastases in 27% and metastases to other organs in 
7%, respectively. Detection rate correlated significantly with the PSA level, being 
90% at PSA levels ≥2 ng/ml and 54% below that threshold. SPECT–CT findings 
were reported to lead to changes in treatment in 74% of the patients [3.451]. 
Liu et al., using 99mTc-HYNIC-PSMA, another tracer, reported a detection 
rate of 72.6% in their group of 208 subjects with biochemical relapse [3.452]. 
Furthermore, they confirmed the relationship between PSA level and detection 
rate and also demonstrated a similar correlation between detection rate and 
PSA doubling time. Detecting and localizing tumour recurrence in patients with 
low or very low PSA levels below 1 ng/ml, or even 0.5 ng/ml, has a significant 
clinical impact for planning curative radiotherapy. In a study by Schmidkonz et 
al. involving 25 patients with PSA levels between 0.5 ng/ml and 1 ng/ml and 25 
subjects with PSA levels between 0.2 ng/ml and 0.5 ng/ml, detection rates were 
56% and 44%, respectively [3.453]. 

The above-cited evidence is remarkably consistent in view of the 
heterogeneity prevailing in study design, as well as in the selection of patients, 
tracer and imaging hardware. As reported above, the detection rates reported for 
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PSA levels higher than 1 ng/ml or 2 ng/ml range between 77% and 91.4%, and 
those for lower PSA levels range between 44% and 54%. In principle, these figures 
advocate the clinical use of SPECT–CT imaging of PSMA expression in patients 
with biochemical recurrence of prostate cancer. PSMA-PET–CT, however, would 
be expected to outperform SPECT–CT for this purpose due to its better spatial 
resolution. This assumption has been confirmed by Lawal et al. [3.454], but not 
by Garcia-Perez et al. [3.455], both comparing 99mTc-HYNIC-PSMA-SPECT–CT 
with 68Ga-PSMA-11-PET–CT. Nevertheless, already available evidence indicates 
that PSMA-SPECT–CT is superior to skeletal SPECT–CT for staging [3.456] 
and may thus have the potential to substitute for this method in the near future.

The better spatial resolution of PET–CT compared with SPECT–CT would 
be no shortcoming of the latter technology for monitoring disease activity in 
systemically treated patients, as these usually suffer from large-volume disease. 
In a first study of this issue, Schmidkonz et al. could indeed demonstrate a high 
rate of concordance between PSA response and changes in SUV values in a 
group of 28 patients [3.457]. In another publication of this group, a much better 
reproducibility of quantitative evaluation compared with visual assessment of 
therapy-induced changes in uptake was found [3.458], underlining the potential 
of quantitative SPECT–CT.

PET tracers of PSMA expression are labelled by either 68Ga or 18F, 
with short half-lives of approximately 1 h or 2 h, respectively. Using these 
radiopharmaceuticals for radio-guided surgery is, thus, difficult. This is also 
true in view of the high energy of the annihilation radiation inherent to positron 
emission, which for this purpose is unfavourable. Some evidence indicates that 
99mTc-labelled PSMA tracers might be well suited to radio-guided lymph node 
dissection, and to robot-assisted surgical procedures [3.445, 3.459].

Within the past few years, 177Lu-labelled radiopharmaceuticals have been 
introduced for PSMA based treatment of prostate cancer. Evidence shows that 
the tissue concentration of this radioisotope can be determined using SPECT–CT, 
capitalizing on the photons that this beta-emitter also releases. This paves the 
way to using quantitative SPECT–CT for the dosimetry of 177Lu-based therapies, 
as initial research already demonstrates [3.460–3.462].

3.7.5. Breast cancer

Breast cancer is the most common non-skin cancer and the second leading 
cause of cancer mortality in women. Although PET–CT is becoming increasingly 
important in the management of patients with breast cancer, SPECT–CT may 
play an important role in a context of PET shortage. A review of the literature 
from 2008 to 2019 turned up a total of 31 articles about SPECT–CT and breast 
cancer, of which only three were still relevant, since the majority of the clinical 
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data are related to the development of new radiopharmaceuticals, mainly 
for research purposes, that are not available worldwide. The indications of 
MIBI SPECT–CT were essentially related to quantification aspects in therapy 
evaluation [3.463–3.465]. Due to the lack of clinical data, the usefulness of this 
indication on an evidence basis could not be demonstrated.

3.7.6. Liver transarterial radioembolization

The liver represents a frequent site for both primary cancer and 
metastatic disease. Primary liver cancers (i.e. hepatocellular carcinoma or 
cholangiocarcinoma) are becoming some of the most frequent cancers worldwide, 
with rapidly fatal liver failure in a large majority of patients. Curative therapy 
consists of surgery (i.e. resection or liver transplantation), but it is only possible 
to perform this in 10–20% of patients. Alternatively, a variety of palliative 
treatments, such as liver-directed therapies (cytoreduction via surgery) or in 
situ ablative techniques (chemo-embolization, radiofrequency ablation, tyrosine 
kinase inhibitors), may influence the natural history of the disease progression 
and improve clinical outcomes.

Colorectal cancer is the second most lethal cancer in Europe and liver 
metastases are prevalent either at diagnosis or during follow-up. These patients 
are usually treated by a sequence of surgery, chemotherapy and immunotherapy. 

Transarterial radioembolization is a therapeutic approach that involves 
the injection of micrometre-sized embolic particles, known as microspheres, 
loaded with a radioisotope, namely 90Y, by the use of percutaneous intra-arterial 
techniques. The rationale for this selective internal radiotherapy modality 
arises from the dual blood supply of the liver through the hepatic artery and 
the portal vein. Normal liver parenchyma draws more than 80% of blood from 
the portal vein. Tumours bigger than 2 cm in diameter draw more than 80% of 
their blood supply from the arterial rather than the portal hepatic circulation. 
Highly selective tumour uptake can thus be achieved by delivery of radioactive 
compounds into the hepatic artery, which represents the arterial supply to liver 
tumours almost exclusively. The therapeutic efficacy of the method derives 
essentially from the delivered radiation, as opposed to the ischaemia associated 
with chemoembolization or pure embolization. The radiobiological effect results 
from beta irradiation, which favours destruction of tumour cells surrounding 
microvessels containing a high radioactive ligand concentration.

The advantages of the use of these intra-arterial radioactive compounds 
include the ability to deliver high doses of radiation to small target volumes, the 
relatively low toxicity profile, the possibility to treat the whole liver, including 
microscopic disease, and the feasibility of combination with other therapy 
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modalities. The disadvantages are mainly due to the possibility of inadvertent 
delivery or shunting.

Typically, a pre-therapy angiographic evaluation combined with an 
intra-arterial 99mTc-labelled macroaggregated albumin (MAA) scan is mandatory 
to map the tumour feeding vessels, to quantify potential liver–lung shunting and 
to avoid the inadvertent deposition of microspheres in organs other than the liver 
(i.e. to exclude blood reflux to the bowel, stomach or pancreas).

Prior to administration of 99mTc-MAA, prophylactic coil embolization 
of the gastroduodenal artery is recommended to avoid extrahepatic deposition 
of the microspheres. SPECT–CT allows direct correlation of anatomical 
and functional information in patients with unresectable liver disease. 
SPECT–CT is recommended to assess intrahepatic distribution as well as 
extrahepatic gastrointestinal uptake in these patients. Pre-therapeutic SPECT–CT 
is an important component of treatment planning, including catheter positioning 
and dose definition. After 90Y-microsphere administration, bremsstrahlung 
SPECT–CT scan or 90Y PET should follow transarterial radioembolization to 
verify the distribution of the administered tracer. Post-therapy imaging enables 
better localization and definition of intrahepatic and possible extrahepatic sphere 
distribution, and to a certain degree allows post-treatment dosimetry. 

A review of the literature evidenced a total of 74 articles about 
SPECT–CT and transarterial radioembolization, the majority of which were 
focused on dosimetric evaluation of the treatment [3.466–3.481].

3.8. GASTROENTEROLOGY

3.8.1. Gastrointestinal bleeding

Gastrointestinal (GI) bleeding, originating above or below the first jejunal 
loop and thus defined as upper or lower haemorrhage, can be due to a variety 
of benign or malignant causes. Diagnosis is made by contrast angiography or 
endoscopy. A positive test indicates the presence of an active process and will 
further guide local therapy. Technetium-99m labelled red blood cell (Tc-RBC) 
scintigraphy is a highly sensitive, non-invasive imaging modality that can detect 
intermittent bleeding on serial studies performed up to 24 h after injection of 
the radiotracer. An early positive scan indicates the presence of active bleeding 
and identifies patients who should be referred to immediate treatment, provided 
that the site of the bleeding is precisely localized [3.482]. A few publications 
report on the potential value of Tc-RBC SPECT–CT to identify the site of GI 
bleeding. SPECT–CT provided exact anatomical localization in most of a group 
of 27 patients, with GI bleeding changing the result reports of planar scintigraphy 
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in over one third of the cases while being misleading in a single case [3.483]. 
In a group of 56 patients who had pre-operative Tc-RBC scans, SPECT–CT 
detected the presence of lower GI bleeding in an additional two patients, as 
compared with 50 positive cases confirmed by planar studies, corresponding to a 
statistically non-significant increase in sensitivity from 89% to 93%, respectively. 
However, more importantly, the correct site of bleeding was identified by planar 
imaging in 31 patients, as compared with 48 by SPECT–CT, corresponding to a 
statistically significant increase (p<0.05) in the positional accuracy from 74% to 
92% [3.484]. A recent retrospective study in 20 patients compared SPECT–CT 
to planar scintigraphy and SPECT to accurately detect and to localize the sites of 
the GI bleeding. SPECT–CT added to planar studies showed a 100% sensitivity, 
specificity accuracy for diagnosis, as well as a 100% ability to localize the site of 
the GI bleeding [3.485].

The timing of SPECT–CT in studies performed with Tc-RBC for 
assessment of GI bleeding is debated. It is not clear whether SPECT–CT should 
be acquired routinely at 60–90 min after tracer administration, or following 
the initial detection of bleeding on planar images. There is also concern that 
the duration of SPECT–CT and motion of patients during the study may affect 
correct identification of the bleeding site because of bowel movements or 
potential artefacts [3.486, 3.487]. 

Gastrointestinal bleeding is common in children as well, with Meckel 
diverticulum being the most frequent cause of lower GI haemorrhage in 
previously healthy infants. Bleeding is due to the acid secretion of ectopic 
gastric mucosa present in up to 50% of the diverticula. These are located, 
as a rule, on the ileum, approximately 50–80 cm from the ileocaecal valve. 
Technetium-99m-pertechnetate scintigraphy is the imaging procedure that 
can detect the presence of gastric mucosa in Meckel’s diverticulum with a 
sensitivity of 85%, specificity of 95% and accuracy of 90% [3.488]. The role 
of SPECT–CT to improve the diagnostic accuracy of scintigraphy for Meckel’s 
diverticulum requires further assessment. A few case reports and small case series 
have indicated that hybrid imaging has the potential to improve the capability 
to correctly diagnose Meckel’s diverticulum, to differentiate it from uptake in 
artefacts, as well as for localization of uncommon sites of ectopic gastric mucosa. 
Since SPECT–CT fusion adds a small amount of radiation, it is recommended to 
tailor the CT dose to the patient’s size and age [3.487, 3.489].

3.8.2. Spleen

Nuclear medicine procedures may have a particular importance in the 
differential diagnosis of splenosis. Theoretically, planar scintigraphy with 
99mTc-labelled colloids may benefit from the support of SPECT–CT, for the 
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precise identification and localization of ectopic splenic nodules. However, 
the review of the literature evidenced a total of five articles about SPECT–CT 
and splenosis, of which only two could be retained. Due to the lack of clinical 
data, the usefulness of this indication on an evidence basis could not be 
demonstrated [3.490, 3.491].

3.9. PAEDIATRICS

While children are not small adults, with respect to SPECT–CT and the 
indications described in the previous sections, one could similarly use this hybrid 
imaging modality in paediatric patients when clinically justified and applicable. 
The scientific literature, however, does not have an abundance of pure paediatric 
science to validate as compared with adults. In the more than 100 papers found on 
PubMed from 2008 to 2019 that include ‘SPECT–CT and child’, pure paediatric 
studies are few, and more studies that mention an inclusive paediatric age range 
and case reports are found. The earliest scientific paediatric paper explored the 
prospective use of SPECT–CT for children and found added value for renal, bone 
and oncology studies, allowing for the determination of the site of biopsy in 6 out 
of 15 cases [3.492]. 

Nevertheless, there are clear areas where SPECT–CT has been shown to be 
effective in the paediatric patient for specific disease entities, mainly in the areas 
of oncology and orthopaedics. More random but novel use of SPECT–CT is 
increasing for benign endocrinology conditions, GI indications and miscellaneous 
cases where SPECT–CT can improve the diagnostic conspicuity and certainty.

With the increasing use of hybrid imaging tools in the paediatric population 
to include SPECT–CT, PET–CT and now PET–MRI, one must consider the ‘cost’ 
of doing these studies relative to the administered dose, the increased radiation 
exposure by the addition of CT and, in many instances, the increased requirement 
for sedation and/or general anaesthesia. The principle of as low as reasonably 
achievable (ALARA) for paediatric CT should be applied to adult studies as well.

3.9.1. Neuroblastoma

Radioiodinated mIBG imaging in paediatric neural crest tumours is the 
standard of care where the requirement for semiquantitative evaluation of Curie 
or SIOPEN score is needed at diagnosis and for response assessment. Although 
this semiquantitative assessment of disease and then response to treatment is 
made on planar imaging, the use of SPECT has been recommended [3.493]. The 
use of SPECT–CT is increasing but has limited validation. A total of five original 
papers, of which three have only paediatric subjects, address the added value of 
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SPECT–CT [3.377, 3.494–3.498]. The common conclusion of these papers is that 
SPECT–CT is superior to planar imaging or SPECT alone for lesion detectability, 
as well as for correct categorization of suspected abnormalities seen on planar 
imaging as physiological foci of uptake. Two papers compared 123I-mIBG 
SPECT–CT to PET imaging with either 18F-FDG or 18F-DOPA [3.497, 3.498]. 
The prospective study [3.499] showed better detection of primary tumour, bone, 
bone marrow and soft tissue metastases with 18F-DOPA compared with mIBG 
SPECT–CT at diagnosis and after chemotherapy. The comparison of 18F-FDG 
with 123I-mIBG SPECT–CT was similar for lesion detection. Current response 
assessments for paediatric treatment group clinical trials still use mIBG imaging 
for evaluation of response.

3.9.2. Lymphoscintigraphy

The value of lymphoscintigraphy with SPECT–CT compared with PET–CT 
has been evaluated in a prospective study of paediatric and adolescent sarcoma 
patients for detection of lymph node metastases at staging. Seven out of 28 patients 
had lymph node metastases detected on SPECT–CT lymphoscintigraphy, 
including three patients who had negative 18F-FDG-PET studies [3.500]. In one 
additional paper, SPECT–CT lymphoscintigraphy helped determine the cause of 
lymphatic stasis in post-congenital cardiac surgery patients due to leak, reflux 
and obstruction [3.501].

3.9.3. Thyroid

Two paediatric based studies have confirmed the value of SPECT–CT for 
localization of neck disease after thyroidectomy in children with differentiated 
thyroid cancer. In the study by Kim et al. [3.502], all detected lesions were correctly 
localized by SPECT–CT. Liu et al. [3.503] correctly localized 20 metastatic 
lesions by SPECT–CT and determined that the correlation with stimulated 
thyroglobulin was significantly higher in patients with metastatic disease.

3.9.4. Musculoskeletal

As with adult indications, SPECT–CT in paediatric patients is often used 
to evaluate a cause of pain. Five combined adult and paediatric papers reviewed 
the use of SPECT–CT for evaluation of specific bone diagnoses. Two of the 
papers looked at newer techniques of quantitation, with one paper describing 
SUV measurement on SPECT–CT for evaluation of growth plate disturbances 
and the second paper evaluating focal activity in accessory navicular bone that 
might require surgical intervention [3.504, 3.505]. In a combined adult and 
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paediatric study of 200 patients assessing pathology of the spine and sacrum 
with SPECT–CT, a cause of pain that impacted management was found in 
80% of cases [3.506]. Although MRI is now the study of choice for assessment 
of acute osteomyelitis in children, SPECT–CT was helpful in the diagnosis of 
osteomyelitis of the jaw in both adult and paediatric patients when compared 
with orthopantomogram and CT [3.272, 3.506, 3.507]. Also, SPECT–CT had 
100% accuracy, sensitivity and specificity for diagnosis of osteoid osteoma 
compared with planar bone scan and CT in 31 patients [3.508].

3.9.5. Radiation dose consideration

All SPECT–CT studies increase the dose to the patient with the addition of 
CT over the scintigraphic study alone. However, the CT component of the exam 
is rarely performed with diagnostic intent, thus the CT dose used for attenuation 
correction and lesion localization is generally low.

Obviously, considerations to adhere to the ALARA principle are particularly 
important in the paediatric population. Two studies have looked at possible 
dosimetric implications of SPECT–CT. In a combined adult and paediatric study 
by Sharma et al. [3.509], 33% of the 357 patients were less than 25 years of age. For 
the CT parameters of SPECT–CT, 80 kVp was used for children less than 5 years 
of age and 110 kVp was used between ages 5 and 18. In addition, each exam was 
tailored to determine the need for CT after SPECT was performed. If indicated, 
the CT component was subsequently limited to an area of concern and not likely 
the entire SPECT acquisition. This tailored approach is a common technique 
known to those who routinely perform dedicated paediatric scintigraphic studies. 
Adherence to appropriate administered dose is also important, and should be 
weight based in paediatric examinations [3.510]. Hou et al. [3.511] referred to 
the practice of performing dosimetry studies when performing SPECT–CT for a 
specific radiotracer, and found that dosimetry values were 30% higher compared 
with adult dosimetry studies. With more targeted therapies being performed, 
many more centres are making such dosimetry calculations; however, these can 
be challenging to do in paediatric patients.
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4. INCIDENTAL FINDINGS ON CT

As a consequence of the increase in the use of hybrid imaging, the authors 
came across several significant incidental and unexpected radiological findings 
while reviewing these studies. An incidental finding can be defined as an 
unsuspected finding that is not related to the clinical indication for performing 
the diagnostic test [4.1]. The reporting clinician should be aware of the incidental 
findings seen in the CT component of the study. They should be categorized 
appropriately and communicated to the referring clinicians. In general, incidental 
findings are categorized as major, moderate and minor. Major incidental 
findings must be investigated further, and the clinical team should be informed 
accordingly. Moderate incidental findings may often require further investigation. 
Minor incidental findings rarely require further investigation and are less 
likely, or unlikely, to have an adverse outcome. The management of incidental 
findings is extensively reported in papers published by the United Kingdom’s 
Royal College of Radiologists and the American College of Radiology, among 
others [4.1–4.14]. Yap et al. reviewed 2447 SPECT–CT studies and reported the 
overall prevalence of potentially significant incidental and unexpected findings 
to be 8.7% [4.12] (Table 4.1).
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TABLE 4.1. INCIDENTAL FINDINGS ON CT  
(adapted from Refs [4.1–4.14])

Minor Moderate Major

Head and neck region

Parathyroid adenoma Thyroid incidentalomas Brain massesa

Orbital mass
Cervical masses, including 
parotid masses and ear, nose 
and throat masses

Chest region

Calcified pleural plaques
Left-sided inferior vena 
cava
Calcified pulmonary 
nodule

Emphysema
Bronchiectasis
Cardiomegaly
Pericardial effusion
Pleural effusion
Pulmonary parenchymal 
opacity 

Breast nodule 
Pneumothorax
Pulmonary embolisma

Solid pulmonary mass

Abdomen

Gallstones in gallbladder 
Hepatic cysts
Diverticulosis
Renal calculus
Renal cysts 
Appendicolith 
Fatty liver 
Renal atrophy
Umbilical hernia
Hiatus hernia 

Gallstone in common bile duct 
Pancreatic cystic lesion 
Hepato-splenomegaly 
Abdominal wall hernia 
Absent kidney 
Adrenal mass 
Bowel inflammation
Irregular nodular margin liver
Air in the biliary tree
Adrenal adenoma
Adrenal mass with benign 
appearance
Hydronephrosis

Solid liver mass
Solid renal mass 
Gall bladder mass 
Bilateral small kidneys
Gastric mass
Colon or small bowel mass 
Oesophageal mass
Solid pancreatic mass 
Indeterminate liver, splenic 
and pancreatic lesions 
Ascites 
Indeterminate retroperitoneal 
masses
Complex renal cyst
Atypical adrenal mass

Pelvic region

91



TABLE 4.1. INCIDENTAL FINDINGS ON CT  
(adapted from Refs [4.1–4.14]) (cont.)

Minor Moderate Major

Lipoma 
Bladder diverticulum 
Simple ovarian cyst
Uterine fibroids
Bladder stone
Uterine calcifications
Bartholin’s cysts 

Uterine enlargement
Pelvic kidney
Ureteric calculus
Scrotal hydrocoele
Prostate enlargement

Undescended testis 
Ovarian cyst >5 cm 
Uterine mass 
Ovarian solid or mixed mass
Bladder mass

Vascular system

Left-sided vena cava
Retroaortic left renal vein 

Pulmonary artery dilatation
Signs of portal venous 
hypertension
Atherosclerosis
Coronary artery calcification

Deep vein thrombosisa

Aortic aneurysm >5 cm 
Aortic dissectiona

Vascular stenosisa

Musculoskeletal system

Muscle atrophy 
Bone infarct
Degenerative spine 
changes

n.a.b Vertebral body destruction
Lytic bone lesions
Indeterminate sclerotic bone 
lesion

Reticuloendothelial system

n.a.b Splenomegaly Cervical, thoracic and 
abdominal lymph node >1 cm

a Particularly evident in contrast-enhanced CT.
b n.a.: not applicable.
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ABBREVIATIONS

CAC coronary artery calcification
CAD coronary artery disease
CCTA cardiac computed tomography angiography
CIED cardiac implantable electronic device
CT computed tomography
CTPA computed tomography pulmonary angiography
DOPA dihydroxyphenylalanine
FDG fluorodeoxyglucose
GEP-NET gastroenteropancreatic neuroendocrine tumour
GI gastrointestinal 
HPT hyperparathyroidism 
HU Hounsfield unit
MDP methylene diphosphonate
mIBG  metaiodobenzylguanidine 
MPI myocardial perfusion imaging
NEN  neuroendocrine neoplasm 
NPV negative predictive value
PET positron emission tomography
PPV positive predictive value
PSA prostate-specific antigen
PSMA prostate-specific membrane antigen
PTA  parathyroid adenoma 
Q lung perfusion scintigraphy
SLN sentinel lymph node
SPECT single-photon emission computed tomography
SSA  somatostatin analogue
SUV  standardized uptake value
TKA  total knee arthroplasty 
V/Q  ventilation and perfusion scintigraphy
WBS whole body scintigraphy

95





CONTRIBUTORS TO DRAFTING AND REVIEW

Angel Quenguan, P.  International Atomic Energy Agency

Biassoni, L.  Great Ormond Street Hospital for Children, United 
Kingdom

Brink, A. Red Cross War Memorial Children's Hospital/
University of Cape Town, South Africa

Bucheli Pabon, J.C.  International Atomic Energy Agency

De Palma, D.  Circolo Hospital, ASST-Settelaghi, Italy

Dondi, M.  International Atomic Energy Agency

El-Haj, N.  International Atomic Energy Agency

Estrada Lobato, E.  International Atomic Energy Agency

Giammarile, F.  International Atomic Energy Agency

Gnanasegaran, G.  Royal Free Hospital, United Kingdom

Israel, O.  Rappaport Faculty of Medicine, Israel

Knoll, P.  International Atomic Energy Agency

Kuwert, T.  Friedrich-Alexander University Erlangen–Nürnberg, 
Germany

Lafougère, C.  University of Tübingen, Germany

Mariani, G.  University of Pisa, Italy

Massalha, S.  University of Ottawa Heart Institute, Canada

Nadel, H.R.  Lucile Packard Children’s Hospital, Stanford 
University, United States of America

Orellana, P.  International Atomic Energy Agency

Paez, D.  International Atomic Energy Agency

Pellet, O.  International Atomic Energy Agency

97



@ No. 26

ORDERING LOCALLY
IAEA priced publications may be purchased from the sources listed below or from major local booksellers. 

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at 
the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield
15250 NBN Way, Blue Ridge Summit, PA 17214, USA
Telephone: +1 800 462 6420 • Fax: +1 800 338 4550
Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group
Gray’s Inn House
127 Clerkenwell Road
London EC1R 5DB
United Kingdom

Trade orders and enquiries:
Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640
Email: eurospan@turpin-distribution.com

Individual orders:
www.eurospanbookstore.com/iaea

For further information:
Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609
Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:
Marketing and Sales Unit
International Atomic Energy Agency
Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529
Email: sales.publications@iaea.org • Web site: www.iaea.org/publications



@ No. 26

ORDERING LOCALLY
IAEA priced publications may be purchased from the sources listed below or from major local booksellers. 

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at 
the end of this list.

NORTH AMERICA

Bernan / Rowman & Littlefield
15250 NBN Way, Blue Ridge Summit, PA 17214, USA
Telephone: +1 800 462 6420 • Fax: +1 800 338 4550
Email: orders@rowman.com • Web site: www.rowman.com/bernan

REST OF WORLD

Please contact your preferred local supplier, or our lead distributor:

Eurospan Group
Gray’s Inn House
127 Clerkenwell Road
London EC1R 5DB
United Kingdom

Trade orders and enquiries:
Telephone: +44 (0)176 760 4972 • Fax: +44 (0)176 760 1640
Email: eurospan@turpin-distribution.com

Individual orders:
www.eurospanbookstore.com/iaea

For further information:
Telephone: +44 (0)207 240 0856 • Fax: +44 (0)207 379 0609
Email: info@eurospangroup.com • Web site: www.eurospangroup.com

Orders for both priced and unpriced publications may be addressed directly to:
Marketing and Sales Unit
International Atomic Energy Agency
Vienna International Centre, PO Box 100, 1400 Vienna, Austria
Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 26007 22529
Email: sales.publications@iaea.org • Web site: www.iaea.org/publications



22
-0

06
63

E-
T





IAEA HUMAN HEALTH SERIES

INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA

ISBN 978–92–0–111522–5
ISSN 2075–3772

Single photon emission computed tomography (SPECT) has 
been used in routine diagnostic applications and in research 
since the 1980s. In the following decades, as the clinical 
application of hybrid imaging has grown, SPECT–computed 
tomography (SPECT–CT) has demonstrated improved patient 
management and become fully integrated in the routine 
diagnostic approach to a variety of clinical indications, 
including both oncologic and non-oncologic diseases. This 
IAEA Human Health Series publication presents a review of the 
published data from recent applications of SPECT–CT across 
nine different clinical scenarios, including oncology, neurology, 
orthopaedics, endocrinology and cardiology, to demonstrate 
the variety of hybrid imaging in nuclear medicine and support 
decision making when allocating resources in the healthcare 
system. It provides a relevant source of information for nuclear 
medicine physicians, radiologists and clinical practitioners.

C
linical A

p
p

lications of S
P

E
C

T–C
T 

IAEA HUM
AN HEALTH SERIES NO. 41


	Blank Page



