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FOREWORD 
 
Radiation-induced grafting is a powerful technique for the preparation of novel materials 
based on easily available and low cost synthetic and natural polymers. The materials to be 
developed by radiation-induced grafting include special adsorbents and membranes for use in 
environmental and industrial applications. Grafting is used in situations where the 
requirements for bulk properties and surface properties cannot be readily met using a single 
polymeric material. Radiation provides a highly advantageous means of grafting. A large 
concentration of free radicals is produced in the irradiated material without the use of 
chemical initiators, and these radicals undergo reaction with a monomer of choice to produce 
macromolecular chains that are covalently bound to the irradiated specimen. Different 
geometries, including films, powders and macroscopic objects, have had surface grafted 
layers attached in this way. The current trend in research and development studies shows that, 
at present, radiation grafting on polymers is developing in three main directions: polymeric 
adsorbents, polymeric membranes and track etched membranes. 
 
The recommendation for further research and development in this field was intensively 
discussed at the 7th International Symposium on Ionizing Radiation and Polymers (IRaP 
2006), held from 23 to 28 September 2006, in Antalya, Turkey, and by the consultants 
meeting on radiation-induced grafting of polymers held from 29 September to 3 October 2006 
in the same venue. 
 
The coordinated research project (CRP) on Development of Novel Adsorbents and 
Membranes by Radiation-induced Grafting for Selective Separation Purposes has been 
launched with the objective of using gamma rays, electron beams and swift heavy ions for 
grafting of various monomers onto natural and synthetic polymers for the development of 
novel adsorbents and membranes for environmental and industrial applications. 
 
The first Research Coordination Meeting (RCM) of the CRP was held in Vienna, from 19 to 
23 November 2007. The meeting summarized the current status of investigations in this field 
and discussed the ways to meet the CRP goals. The second RCM, held in Aargau, 
Switzerland, from 15 to 19 June 2009, reported on the progress achieved since the first 
meeting, critically evaluated the results obtained by different groups and formulated the work 
programme and networking activities until the end of project. The final meeting was held in 
Budapest, Hungary, from 6 to 10 December 2010, and summarized the project results, with 
conclusions and recommendations for the future. 
 
The IAEA wishes to thank all the participants in the CRP for their valuable contributions and 
E. Takacs for technical editing of this publication. The IAEA officers responsible for this 
publication were M.H. de Oliveira Sampa and S. Sabharwal of the Division of Physical and 
Chemical Sciences. 
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SUMMARY 

 
1. INTRODUCTION 
 
Radiation-induced grafting is a powerful technique for the preparation of novel materials based on 
easily available and low cost synthetic and natural polymers. The materials to be developed by 
radiation-induced grafting include special adsorbents and membranes for use in environmental and 
industrial applications.  
 
Grafting can impart surface properties highly different for those of bulk properties and radiation 
provides a highly advantageous means of initiation of polymerization reaction in the process. A large 
concentration of free radicals are produced in the irradiated material without the use of chemical 
initiators and these radicals initiate the polymerization reaction with a monomer of choice to produce 
macromolecular chains that are covalently bound to the irradiated trunk material. Different geometries, 
including films, powders and fibres have had surface grafted layers attached in this way. 
 
Research on grafted materials to meet a variety of other surface property requirements remains active. 
Examples in recent years include radiation grafting of styrene onto crosslinked polytetrafluoroethylene 
(PTFE) and subsequent sulfonation for fuel cell application, surface modification of nanoparticles for 
radiation curable acrylate clear coatings. Adsorbents having specific functional groups have been 
prepared and used for the removal of valuable metal ions from seawater and hazardous organic 
pollutants from wastewater.  

The current trend in research and development studies show that at present radiation grafting on 
polymers is developing in three main directions: polymeric adsorbents, polymeric membranes, and 
track etched membranes: 
 
Polymeric adsorbents 
 

• The graft polymerization has been industrially applied especially in Japan for the production 
of high performance adsorbents for metal ions and undesired gases in the last 10 years despite 
their relatively high cost; 

• In order to reduce the manufacturing cost of radiation-grafted polymeric adsorbents, more 
efficient grafting techniques need to be developed. The R&D works carried out in Japan 
Atomic Energy Agency, JAEA, have shown that with the use of emulsion systems in grafting, 
the irradiation doses can be highly reduced; 

• The economic aspects of using radiation-grafted polymeric sorbents can be further enhanced 
by using high surface area and cheaper substrates such as fibres and polymers of natural 
origin; 

• With the proper selection of ligands and controlling the functionality of grafted chains higher 
selectivity and more efficient adsorption properties can be imparted onto adsorbent materials;  

• The availability of low-energy, low cost electron accelerators especially for surface grafting 
have been considered to improve the economics of the overall process of grafting. 

 
Polymeric membranes 
 

• The fuel cells offer advantages in terms of high power densities and water as the by-product 
which makes them an environmentally friendly alternative for energy production. The 
membranes to be used in fuel cell applications should possess high stability, durability under 
the extreme conditions of relatively high temperature and oxidative atmospheres. The 
modified fluorinated polymers meet these requirements at the expense of their high chemical 
inertness. The functionalization of these materials for fuel cell applications are best achieved 
by using radiation-induced grafting; 
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• Radiation-grafted membranes serve as low cost alternative to commercially available 
perfluorinated membranes (Nafion®, Aciplex™, Flemion®, etc.) for low temperature fuel 
cells to be used in stationary and mobile devices i.e. automotive industry; 

• The performance in terms of current-voltage properties of fuel cells containing 
poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) based radiation-grafted membranes 
was found to be comparable to Nafion® 112, and the durability of several thousand hours has 
been reported which shows high promise for automotive applications. 

 
Track etched membranes 
 

• Swift heavy ions allow the creation of nanopore membranes and nanostructured templates for 
nanotechnology. Radiation-induced grafting onto such devices increases their applications for 
medical purposes especially in ultra and nanofiltration fields.  

 
2. CRP OVERALL OBJECTIVE  
 
The overall objective of this Coordinated Research Project (CRP) was to use gamma rays, electron 
beams and swift heavy ions for grafting of various monomers onto natural and synthetic polymers for 
the development of novel adsorbents and membranes for environmental and industrial applications. 
 
2.1. Specific research objectives 
 

• Adsorbents suitable for the collection and recovery of significant metal ions; 
• Development of adsorbents for removal of undesired anions from aqueous systems; 
• Development of low cost membranes with improved durability and performance 

characteristics for potential applications in fuel cell fabrication; 
• Development of methods for the preparation of membranes with 1-50 nm pore sizes and 

functionalization of inner pore surfaces; 
• Development of new adsorbents with enhanced heavy metal ion uptake capacities; 
• New fabrication methods of radiation-grafted specialty adsorbents for environmental and 

industrial applications; 
• Production of radiation-grafted membranes with smaller pore sizes selective for proteins, 

polysaccharides and metal ions. 
 
2.2. Salient aspects of the CRP 
 
The CRP participants used radiation processing technology for grafting of various monomers onto 
natural and synthetic polymers for the development of novel adsorbents and membranes for 
environmental and industrial applications, and the work done during this CRP was envisaged to yield 
the following results: 

 
Environmental applications 
 

• Removal of heavy metal ions and hazardous toxic ions from aqueous media, using low-cost, 
reusable, highly selective advanced adsorbents developed through radiation technology; 

• Understanding the mechanisms of grafting processes towards the optimization of desirable 
properties; 

• Establishing guidelines for grafting processes.  
 
Industrial and medical applications 
 

• Development of low cost, durable and high performance membranes for fuel cell membranes 
and battery separators; 

• Development of separators for biopolymers and cell sheets for health care applications; 
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• Understanding the mechanisms of grafting processes towards the optimization of desirable 
properties; 

• Establishment of guidelines for grafting processes. 
 
3. ACHIEVEMENTS  
 
3.1. Argentina 
 
The objective was to obtain membranes using heavy ions of low and high energy with new properties 
that facilitate its use in diverse areas like: fuel cells, materials that respond selectively to the ambient 
conditions, membranes for removal of metals from wastewaters and drug entrapment in polymer 
matrices of biomedical interest for use in medical treatment or industrial processes. The development 
during this CRP involved two fields: a) Grafting on submicroscopic wall track and b) New membranes 
obtained by grafted implanted PVDF foils. Concerning the grafting on submicroscopic wall track, 
polymer surface modifications were obtained by the application of radiation treatments and other 
physico-chemical methods: swift heavy ions etching and grafting procedures. The present work is part 
of a systematic study that involves different polymeric substrates and monomers with the purpose to 
induce grafting on etched tracks. The residual active sites produced by heavy ion beams, remaining 
after the etching process, were used to start the grafting process. In order to produce tracks on foils of 
poly (vinylidene fuoride) (PVDF), samples were irradiated with 208Pb of 25.62 MeV/n or with 115 
MeV Cl ions. Moreover, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. 
Irradiated samples were etched and grafted with N-isopropylacrylamide (NIPAAm) monomers or with 
acrylic acid (AA) monomers, respectively. Experimental curves of grafting yield as a function of 
fluency and the etching time were measured. Also, the grafting yield as a function of the grafting and 
etching time was obtained. The replica method allowed the observation of the shape of the grafted 
tracks using transmission electron microscopy (TEM). In addition, NIPAAm grafted foils were 
analysed using Fourier transform infrared spectroscopy (FTIR). The permeation of solutions, with 
different pH, through PP grafted foils was measured. This opens the possibility to control the passage 
of medical substances through membranes. For the fuel cell experiments, samples of PVDF grafted by 
ion track procedure, were initially characterized by SEM and FTIR and any special morphology was 
observed for PVDF not treated; its surface presented smooth and its cross-section was homogeneous; 
styrene grafting on PVDF showed little round cavities on surface but this morphology was not 
observed on the bulk of material. The ATR-FTIR spectra of grafted samples showed the characteristic 
absorption bands for styrene in 1060 cm-1 and 760 cm-1, and this can be attributed to successful styrene 
grafting procedure on PVDF. The supplied samples had different irradiation treatment in each side of 
films, but no difference was observed in styrene grafting in quality and quantity terms. The sulfonation 
procedure (methodology previously described for perfluorated polymers) was applied on grafted 
PVDF. The success of sulfonation was measured by mass gain after this reaction. It was observed that 
percent water uptake in little styrene grafting PVDF was poor compared to Nafion®, but this 
parameter increases at higher styrene grafting specimens. The ion exchange capacities are higher than 
Nafion®, in lower or higher styrene grafted samples. In the development of new membranes obtained 
by grafted implanted PVDF foils, this part of the work describes a new method to produce a thin layer 
of polyacrylic-acid (membranes) that grows on the surface of PVDF foils implanted by an Ar beam 
with energies between 30–150 keV. Different combinations of monomers in water solutions were used 
such as: acrylic acid (AAc); acrylic acid-glycidyl methacrylate (AAC-GMA); acrylic acid − styrene 
(AAc-S), acrylic acid − N-isopropyl acrylamide (AAc-NIPAAm) and acrylic acid − N-isopropyl 
acrylamide − glycidyl methacrylate (AAc-NIPAAm-GMA). Then the grafting induced on the 
implanted surface of PVDF, was analysed. The experimental results show that for particular optimized 
values of ion fluence and energy, AAc concentration, sulfuric acid and PVDF form (alpha or beta) a 
large percentage of grafting was obtained. Furthermore at certain point of the grafting process the 
development of the PolyAAc-Xmonomer produce a detachment from the irradiated substrate and 
continue its grafting outside the irradiated substrate. A membrane can be produced by this method that 
is an increased replica of the original implanted surface. Finally, PVDF films implanted by an Ar beam 
with energies about 100 keV and for 1013 cm-2 of fluence were grafted using different AAc solutions 
for the following purpose: absorption of different ions, biocompatibility, and immobilization of 
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compounds of biological interest such as immobilization of enzymes (urease) or hormone (insulin) and 
the study of their activity. 
 
3.2. Brazil  
 
Brazil has been working on radiation grafting for many years. On the scope of this CRP, the Brazilian 
project promoted the application of radiation grafting of polymers for fuel cells membranes, for 
medical or food polymer packaging studies and for mathematical modelling or simulation of the 
diffusion aspects involved on chemical species migration. The DMAEMA grafting of PVC was 
performed by classical gamma irradiation and an innovative process by EB. The degree of grafting 
was determined in both cases and these results were discussed. Migration process from these grafted 
PVC samples into biological simulating media, DEHP (a PVC plasticizer) was quantified by classical 
gas chromatography and UV spectrophotometry. It was verified that PVC plasticizer migrates at lower 
concentration when grafted samples are used. The numerical method to simulate diffusion process 
evolved is simple and fast; it can use different diffusion coefficients for each different layer of 
medium: polymer, solution or grafting, and it’s possible to add partition coefficient between each 
interface of different materials. The use of this numerical method as a modified Cottrell equation 
solution will permit to fit the voltammetry assay results and to determine the diffusion coefficient and 
to model the behaviour of the grafted membrane during the ionic conduction. The diffusion numerical 
procedure was applied to fit the water uptake results in Fe+++ absorbed by PP-g GMA, in collaboration 
with Egypt. Details of the experimental conditions had been included on the mathematical model. The 
investigation of fluorinated and perfluorinated polymeric films styrene grafted by EB showed 
promising results when the mutual irradiation was performed under warming and vacuum conditions. 
In this case, PVDF films achieved about 15% of styrene grafting that allowed high percent of water 
uptake when this copolymer film is sulfonated. Also, the mechanical properties and IEC characteristics 
of these film samples were evaluated and these values were close to that presented by Nafion® films. 
These results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast 
alternative to produce ionomers that can compete with commercial Nafion® films. Finally, it was 
fruitful the Argentina collaboration work, where their ion tracked PVDF films were sulfonated in our 
laboratory and we could evaluate some parameters like percent of water uptake, ion-exchange capacity 
(IEC) and tensile strength maximum as a mechanical property. Some sulfonated styrene grafted PVDF 
films showed an intense water uptake even in sulfonated films with low degrees of grafting; this 
advantage was achieved due to the improvement in the amount of reactive surface done by the 
micrometric-nanometric pores obtained by ion tracking nuclear process, and were covered by styrene 
and sulfonated subsequently. Some properties of these films were compared to Nafion® films and ion 
tracked PVDF films were observed to be a new ionomer material and it can be used in process that 
require a great uptake of water. The electrochemical I-V behaviour of ion tracked films was analysed 
by polarization curves, and charge transfer region was observed in higher potentials, close to those of 
Nafion®.  
 
3.3. Egypt 
 
The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer 
containing epoxy ring, onto polypropylene fibres. The ring opening of the epoxy ring in GMA by 
different amino groups was studied to introduce various chelating agents. The characterization and 
some selected properties of the prepared grafted fibres were studied and accordingly the possibility of 
its practical use for water treatment from iron and manganese metals was investigated. On the other 
hand, the synthesis of highly selected polymers prepared from poly(vinyl alcohol) (PVA), 2-
acrylamido-2-methyl propane sulfonic acid (AMPS) and grafted with acrylic acid (AAc) or acrylamide 
(AAm) monomers using gamma rays as initiator was studied. In this work, the cationic/anionic 
membranes were also prepared by radiation-induced grafting of styrene/methacrylic acid (Sty/MAA) 
binary monomers onto low density polyethylene (LDPE) films. To impart reactive cationic/anionic 
characters in the grafted membranes, sulfonation and alkaline treatments for styrene and carboxylic 
acid groups, respectively, were carried out. Characteristics and some properties of the prepared grafted 
polymers were investigated. Also, the possibility of their applications in the selective removal of some 
heavy metals was studied. The prepared grafted materials had a great ability to recover the metal ions 
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such as: Ni2+, Co2+, Cu2+, Cd2+, Mg2+, Zn2+, Mn2+, and Cr+3 from their solutions. It was found that 
AMPS content in the graft copolymers is the main effective parameter for the selectivity of the 
copolymer towards metal ions. The higher the AMPS content the higher the selectivity towards Co and 
Ni ions. Also, in case of LDPE-g-P(Sty/MAA), the sulfonation and alkaline treatments are the most 
effective parameter for metal absorption and swelling behaviour of the prepared membranes. The graft 
composition, irradiation dose, and pH also have a great influence on the membrane characteristics and 
applicability in wastewater treatments from heavy and toxic metals. Results revealed that the prepared 
grafted materials with different functionalized groups are promising as ion selective membranes and 
could be used for wastewater treatment.  
 
3.4. France 
 
Track etched functionalized nanoporous β-PVDF membrane electrodes, or functionalized membrane 
electrodes (FME), are thin-layer cells made from track etched, poly(acrylic acid) (PAA) functionalized 
nanoporous β-poly(vinylidene fluoride) (β-PVDF) membranes with thin Au films sputtered on each 
side as electrodes. The Au film is thin enough that the pores of the membranes are not completely 
covered. The PAA functionalization is specifically localised in the walls of the nanoporous β-PVDF 
membrane by radio grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as 
Pb2+, from aqueous solutions thus concentrating the ions into the membrane. After a calibrated time 
the FME is transferred to an electrochemical cell for analysis. A negative potential is applied to the Au 
film of the FME for a set time to reduce the adsorbed ions onto the Au film working electrode. The 
other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic 
stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations 
in the original solution based on calibration. The calibration curve of charge versus log concentration 
has a Temkin isotherm form. The FME membranes are 9 μm thick and have 40 nm diameter pores 
with a density of 1010 pores/cm2. This high pore density provides a large capacity for ion adsorption. 
Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface 
modified electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is 
performed at open circuit. The zero current intercept of the calibration for Pb2+ is 0.13 ppb (μg/L) and 
based on 3S/N from blank measurements a detection limit of 0.050 ppb is obtained. Voltammetry (CV) 
and chronoapmerometry (CA) were used to characterize the system. 
 
3.5. Hungary 
 
Based on EPR (electron paramagnetic resonance) measurements it was found that in cellulose samples 
radicals formed during irradiation were stable and the crystalline content did not change significantly 
due to grafting. Therefore, grafting is supposed to occur mainly on the surface of the crystalline 
region. The radiation induced degradation of cotton-cellulose starts at very low doses (5−10 kGy) 
resulting in a decrease in DP (degree of polymerization). However, the degradation does not result in a 
significant change in the mechanical properties. Optimum conditions for obtaining highest grafting 
yield with low degradation depend on the monomer structure both for pre-irradiation grafting and for 
simultaneous grafting. In the case of pre-irradiation grafting for acrylamide, acrylic acid, N,N-
methylene bis-acrylamide, and hydroxypropyl methacrylate the highest grafting yield was obtained at: 
irradiation with 20 kGy absorbed dose, grafting in solution with 2 mol dm-3 monomer concentration, at 
40°C, 60 minutes. For glycidyl methacrylate (GMA) the optimum conditions were: 40 kGy absorbed 
dose, grafting in solution with 1.5 mol dm-3 monomer concentration, at 50°C, 60 minutes. In the case 
of simultaneous grafting for acrylamide, acrylic acid, N,N-methylene bis-acrylamide, and 
hydroxypropyl methacrylate the highest grafting yield was obtained at: irradiation with 20 kGy 
absorbed dose, monomer solution with 2 mol dm-3 concentration, room temperature. For glycidyl 
methacrylate (GMA) the optimum conditions were: 5 kGy absorbed dose, monomer solution with 0.38 
mol dm-3 concentration, room temperature. The swelling in water of cotton-cellulose can be increased 
by grafting with acrylamide, acrylic acid and N,N-methylene bis-acrylamide, it can be decreased by 
grafting with hydroxypropyl methacrylate and glycidyl methacrylate (GMA). The first three 
monomers can be applied for adsorption of heavy metal ions. GMA grafted cellulose functionalized 
with cyclodextrine can be applied for the adsorption of phenol and its derivatives. The adsorption 
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properties tested using UV/VIS spectroscopy proved to be better for samples grafted with GMA using 
simultaneous grafting (SG) due to their more hydrophobic nature than the samples grafted using pre-
irradiation grafting (PIG). The functionalization by cyclodextrine (CD) resulted in a further increase in 
adsorption capacity. Using the mutual grafting method at higher doses the samples were covered by a 
thick layer while in the case of the pre-irradiation method the samples disintegrated possibly due to 
phenomena of over-grafting. The difference in the appearance of over-grafting between mutual and 
pre-irradiation grafting is due to the difference in the reaction mechanism. During irradiation radicals 
are produced not only on the outer surface of the cellulose but also inside. In the pre-irradiation 
technique applied in this work peroxide groups are incorporated both inside and outside. In the heated 
aqueous solution where the polymerization was carried out, initiation occurs both outside and inside as 
the monomer could diffuse inside the fibres swollen in aqueous medium. The growing chains inside 
the fibres cause disintegration. In the case of mutual grafting cellulose radicals initiate the grafting. 
The grafting starts at surface of the cellulose fibres and the long grafted chains form a dense film on 
the surface of the fibres forming a barrier layer hindering the diffusion of further monomer molecules 
inside the fibre.  
 
3.6. India 
 
In the framework of the CRP radiation grafting of different monomers onto various backbone 
polymers, depending on their proposed applications were investigated. Grafting of acrylonitrile onto 
thermally bonded non-woven porous polypropylene fibre sheet using electron beam (EB) was carried 
out by pre-irradiation grafting technique. Grafting extent of ~125% using technical grade chemicals 
was achieved under optimized experimental conditions. The grafted nitrile groups were amidoximated 
and studied for uranium uptake from sea water and heavy metal ions such as Co2+, Ni2+, Mn2+, and 
Cd2+ from simulated samples. Adsorption and elution of adsorbed ions in suitable eluents were studied. 
The grafting process was upgraded to pilot scale to obtain sheets of 1×1 m2 for further applications of 
grafted sheets. Mutual radiation grafting technique was used for grafting of vinylbenzyltrimethyl 
ammonium chloride, [2-(methacryloyloxy)ethyl]trimethylammonium chloride, and [2-
(acryloyloxyethyl)]trimethylammonium chloride on to cotton cellulose substrate. The grafted matrices 
showed significantly higher water uptake and retention properties. The grafted matrices were 
evaluated for their antibacterial properties against Escherichia coli, Pseudomonas flourescens, 
Staphylococcus aureus and Bacillus cereus. The antibacterial efficacies of the grafted products 
samples were found to be a function of extent of grafting and the type of bacteria tested against. 
PVBT-g-cotton was studied for its protein adsorption behaviour in continuous column process using 
Bovine serum albumin (BSA) as a model protein. Mutual radiation grafting technique was used to 
graft acrylic acid on micrometre thick micro-porous polypropylene membrane. Contact angle 
measurement studies of the grafted and radiation treated polypropylene showed that initial grafting as 
well as radiation treatment of polypropylene in aqueous medium and in presence of Mohr’s salt 
enhances its affinity towards the grafting solution. The enhancement in the polar component of surface 
energy of treated polypropylene membrane is the primary cause of grafting enhancement. The 
membranes grafted to an extent of ~20 % were found to perform comparably with the battery 
separator presently being used by battery industry. Acrylic acid was covalently linked to Teflon® scrap 
by mutual radiation grafting technique. The grafting extent decreased with increasing dose rate and 
thickness of the substrate. The SEM studies indicate significant difference in bulk and interface due to 
change in thickness of the Teflon® backbone.  
 
3.7. Japan 
 
Fibrous adsorbent for removal of toxic metal ions have been synthesized by radiation-induced graft 
polymerization. In this study, to reduce the dose, that was an important factor to decrease the cost, it 
was adopted the emulsion grafting technique instead of general organic solvent system for making 
metal adsorbent. Especially, emulsion system which disperses monomer micelles in water with 
assistance of surfactant was found to accelerate the graft polymerization. In the emulsion grafting, 
smaller micelles could improve the grafting yield, because the smaller micelles could cover a large 
surface area of trunk polymer. The micelle diameter of emulsion was controlled by monomer and 
surfactant concentration. Glycidyl methacrylate (GMA) micelle diameter was 0.08 µm at 5% GMA 
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with 0.5% Tween 20 (surfactant). In this emulsion condition, degree of grafting reached 100% within 
only one hour, when the graft polymerization was carried out at a dose of only 10 kGy and reaction 
temperature of 40°C. By using this emulsion system, the fibrous graft adsorbent for ultra-pure water 
production was commercialized. From the point of reduction of environmental burden, natural 
polymer-based metal adsorbents were synthesized by this system onto the nonwoven cotton fabric and 
the nonwoven polylactic acid (PLA) fabric as trunk polymers, and their subsequent amination. The 
cotton-based metal adsorbent could be degraded by microorganism in compost during 120 days. The 
cotton part of graft adsorbent was firstly decomposed within 30 days, and subsequently the 
degradation of graft chains occurred after 60 days. The PLA-based metal adsorbent, which has poor 
resistant to chemical compounds such as alkali, was synthesized by the control of both grafting yield 
and PLA hydrolysis. The order of metal ion selectivity of the PLA-based metal adsorbent with 
iminodiacetic acid was Cu2+ > Pb2+ > Ni2+ > Zn2+ > Cd2+ > Co2+ > Ca2+ > Mg2+. 
 
3.8. Malaysia 
 
In the framework of the CRP concerning development of less-water dependant membranes for high 
temperature proton exchange membrane fuel cell, two types of proton exchange membranes for fuel 
cell application for operation below and above 100°C were developed using radiation induced grafting 
(RIG) methods. The first membrane containing sulfonic acid moiety was developed using RIG of 
sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoriede) (PVDF) 
films in a single-step reaction for the first time using synergetic effect of acid addition to grafting 
mixture under var  grafting conditions. The reaction parameters were optimized and grafting 
levels suitable for fuel cell application were obtained. The fuel cell related properties of the obtained 
membranes were evaluated and the performance was tested in situ in a single H2/O2 fuel cell, under 
dynamic conditions, and in comparison with a similar sulfonated polystyrene PVDF membrane 
obtained by two step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The 
newly obtained were found to have better (specifically less water uptake) properties than 
conventionally prepared grafted membranes. Moreover, the newly prepared membrane having 53% 
grafting percentage (G%) showed an improved fuel cell performance marked by a 30% increase in the 
stability compared to conventionally prepared one at the same G% at temperature of 60°C. This 
coupled with a cost reduction mainly as a result of elimination of sulfonation reaction. The 
performance of these membranes can be further improved toward high temperature operation by 
impregnation of inorganic filler such as zirconium phosphate or zirconium oxide. Also, crosslinking 
during the grafting reaction would help to improve stability. This could result in low cost membranes 
suitable for use in low temperature fuel cells. In the second part, acid-base composite membrane for 
fuel cell operating temperature above 100°C was studied. EB irradiated poly(ethylene-co-
tetrafluoroethylene) (ETFE) films were first grafted with N-vinylpyridine (NVP). The effects of the 
reaction parameters such as monomer concentration, irradiation dose, reaction time, film thickness, 
temperature and film storage time on the degree of grafting were established to obtain grafting levels 
suitable for fuel cell. The membranes were subsequently doped with phosphoric acid under controlled 
condition with. The proton conductivity of the obtained phosphoric acid doped membranes was 
investigated under no free water conditions in correlation with the variation in G% and temperature 
(30−130°C). The thermal stability, thermal properties, and crystalline structure of the membranes were 
found to maintain sufficient level after grafting and acid doping. The performance of 34 and 49% 
grafted and doped membranes was tested in a single fuel cell at a temperature of 130°C under dynamic 
conditions with a respective power density of 146 and 127 mW/cm² obtained. The polarization and 
power density characteristics together with the initial stability of the membrane showed a promising 
electrolyte candidate for fuel cell operation above 100°C. The performance of these membrane need to 
be further investigated under various conditions including concentration of doping acid and 
temperature of doping followed by stability test, all of the which are currently undergoing.  
 
3.9. Poland 
 
The reported investigations carried out in the frame of this CPR were focused on the preparation of 
sorbents of heavy metal ions via modification of polymer surface by radiation-induced grafting of 
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selected functional groups. The final product can be potentially exploited for the preconcentration and 
removal of cations including lanthanides from very dilute solutions as well as for the decontamination 
and treatment of radioactive wastewater. In the first stage of the studies the efforts were concentrated 
on the elucidation of the most important factors influencing radiation-induced grafting, particularly (i) 
the effect of radical population generated in polymeric matrix on degree of grafting, (ii) parameters 
determining grafting processes and their procedures, (iii) correlation between layer structure formed 
via copolymerization and content of monomers in the initial solution. Characterization of the sorbents 
at each step of their production was carried out using gravimetric method, EPR spectroscopy, ATR-
FTIR, thermal and contact angle measurements. Sorption properties of the prepared materials were 
determined using constructed at the Institute of Nuclear Chemistry and Technology LG-1 gamma 
radiometer applied for the measurements of solutions radioactivity before and after sorption. Sorption 
capacity of the absorber prepared by radiation grafting was evaluated using 152Eu3+ as a model marker 
monitoring depletion of the radioisotope from the aqueous solution. The coordination chemistry of 
trivalent lanthanides does not differ neither along the series nor from the actinide series, therefore, the 
data can be extrapolated for both groups of elements. The studies carried out by electron spin 
resonance spectroscopy (EPR) and gas chromatography (GC) confirmed that population of radiation-
induced radicals increases in the following order polystyrene<polypropylene<polyethylene. The same 
relationship was found for efficiency of radiation grafting. It was concluded that under comparable 
conditions the content of radicals in polymeric matrices significantly determines degree of grafting. In 
the second stage of investigations it was found that application of the simultaneous method of grafting 
introduces to the grafted layers crosslinking or/and branching as well as degradation of functional 
groups. All these phenomena reduce access of metal ions to the studied sorbent therefore sorption 
capacity of the polyamide functionalized via pre-irradiation (indirect) method by acrylamide is higher 
than that determined for the sorbent prepared by simultaneous method of grafting. When two 
monomers, acrylic acid (AAc) and acryl amide (AAm), contribute in the formation of grafted layer, 
their input into copolymerization was not proportional to their concentrations in the feed solution. It 
was found that grafting of the monomers shows synergetic effect as the yield of copolymerization 
exceeds degree of grafting achieved for individual components. The macromolecules constructed from 
two types of monomers, namely AAc and AAm, affect matrix crystallinity, particularly when AAm is 
used. Only external layers of the grafted homopolymers (PAAc and PAAm) and copolymers 
(P(AAc+AAm)) contribute in sorption of radioactive europium ions. Depletion of the radionuclide is 
above 95% for all prepared adsorbents. Radiation-induced grafting of the selected functional groups 
forming complexes with chosen metal ions seems to be promising way for working out novel sorbents 
of potential application in separation techniques. The results might contribute in the development and 
implementation of radiation technologies for the production of adsorbents of metal ions, e.g. trivalent 
cations of lanthanides.  
 
3.10. Republic of Korea 
 
Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in 
order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the 
monomer concentration and grafting time. The morphological change of the modified separator was 
investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced 
due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity 
of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for 
the grafted polyethylene separator with 127 wt% DOG. The prepared separators were characterized by 
using charge/discharge cycling test, AC impedance, and thermal stability analyses. Thermal shrinkage 
of the PE-g-PMMA separators decreased with an increasing degree of grafting up to 70% above which 
it was saturated. The PE-g-PMMA separators showed better oxidation stability on the anode up to 5 V 
and a better cycle life performance than the original PE separator. Also, micro-porous poly(methyl 
methacrylate)-grafted polyethylene separators (PE-g-PMMA) were prepared by a radiation-induced 
graft polymerization of methyl methacrylate onto a conventional PE separator followed by a phase 
inversion. After the phase inversion, the micro-pores were generated in the grafted PMMA layer. The 
prepared micro-porous PE-g-PMMA separators showed an improved electrolyte uptake and ionic 
conductivity due to their improved affinity with a liquid electrolyte and the presence of pores in the 
grafted PMMA layer. The PE-g-PMMA separators exhibited a lower thermal shrinkage compared to 
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the original PE separator. The PE-g-PMMA separators showed better oxidation stability up to 5.0 V 
when compared to the original PE separator (4.5 V). A novel polymer electrolyte membrane, 
poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP-g-
PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride 
(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the 
benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation 
were carried out via the formation of thiouronium salt with thiourea, base-catalysed hydrolysis for the 
formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was 
confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study performed with 
Fenton’s reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70°C revealed that FEP-g-PVBSA 
has a higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). 
An EDX analysis was also used to observe the cross-sectional distribution behaviours of the 
hydrophilic sulfonic acid groups and hydrophobic fluorine groups. The characteristics of an ion-
exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton conductivity 
as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes 
with different degrees of grafting (36% to 102%) were measured to be in the range of 0.8 meq/g to 
1.62 meq/g, and 10% to 30%, respectively. The proton conductivity was higher than that of a Nafion® 
212 membrane (6.1E-02 S/cm), when the degree of grafting reached 60%. The methanol permeability 
and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the Nafion® 212 
membrane, and even the degree of grafting reached 102%. 
 
3.11. Switzerland 
 
The Electrochemistry Laboratory of Paul Scherrer Institut looks back of nearly two decades of 
development of solid polymer electrolytes for fuel cell applications by the radiation grafting technique. 
Imbedded in this major activity, the Insitut contributed over the past three years parts of this 
development to the IAEA-CRP, in particular the development of α-methylstyrene-methacrylonitrile 
(AMS/MAN) grafted membranes based on FEP- and ETFE-commodity films, exhibiting better life 
time stability under fuel cell operating conditions as the formerly exploited styrene grafted 
membranes. Fundamental investigations concerned the radiation stability of the two base polymers, 
FEP-and ETFE-films, typically 25 μm thick, to minimize radiation damage, in particular to the 
mechanical properties of the films. Further, the grafting kinetics for the two component monomer 
solution (AMS and MAN) was investigated and optimized with respect to some fuel cell relevant 
properties, e.g. specific conductivity, graft component degradation, etc. The kinetics was followed by 
post synthesis analysis of the grafted films by confocal Raman spectroscopy. Further, thermal 
characterization, e.g. DSC, TGA, and small angle neutron (SANS) and X rays (SAXS) scattering have 
been utilized to learn more about the morphology of pristine and grafted films, as well as the 
sulfonated membranes, the latter in dry and swollen state. Reconstruction of the polymer morphology 
in dependence of water content could be achieved by applying a core-shell model available in 
literature. Extensive testing of these membranes in fuel cells under conditions of relevance to mobile 
applications revealed that the concept of substituting the α–hydrogen atom in the styrene monomer to 
AMS results in the expected stability improvements. Crosslinking further adds to stability, as 
experienced for styrene/DVB as graft component. However, the grafting of the AMS/MAN component 
as well as the crosslinking of this graft component has to be further optimized. Further, outside of the 
contribution to CRP, ideas have been developed to scale-up the laboratory preparation of these 
membranes in terms of increased membrane area and number of membranes prepared in one batch. 
 
3.12. Syrian Arab Republic 
 

The effective treatment of heavy metals in the environment has become one of the major issues of 
public interest due to their toxicity. The treatment of aqueous waste, including soluble heavy metals, 
needs concentration of the metallic solution into small volume, followed by recovery or secure 
disposal. Polymer membranes (PP and PE) had been grafted with basic and acidic functional groups 
using gamma radiation. Two binary mixtures had been used for the grafting reactions: acrylic acid/N-
vinyl pyrrolidone, and acrylic acid/N-vinyl imidazole. The influence of different reaction parameters 
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on the grafting yield had been investigated as type of solvent and solvent composition, comonomer 
concentration and composition, addition of inhibitors, and the irradiation dose. Water uptake with 
respect to the grafting yield had also been evaluated. The ability of PP films, grafted with acrylic 
acid/vinyl pyrrolidone, to uptake heavy metal ions such as Hg2+, Pb2+, Cd2+, Co2+, Ni2+ and Cu2+ was 
elaborated. The uptake of the metal ions increases with increasing the grafting yield. Furthermore, the 
Pb2+ uptake was much higher than the uptake of the Hg2+ and Cd2+ ions that the membranes may be 
considered for the separation of Pb2+ ions from Hg2+ or Cd2+ ions. The ability of PE films, grafted with 
acrylic acid/N-vinyl imidazole to uptake heavy metal ions such as Pb2+, Cd2+, Co2+ and Ni2+ was 
elaborated. An increase in the uptake of the metal ions was observed as the grafting yield increases. 
Because of their basic/acidic character the prepared membranes may be considered for removing of 
the studied ions from wastewater. Further work is in progress to elaborate this use of the prepared 
membranes in separation processes.  

 
3.13. Thailand 
 
Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation induced 
graft copolymerization of methyl acrylate (MA) onto two natural polymers, cassava starch and 
cellulose fibre. The optimum conditions for grafting were studied in terms of % grafting. Conversion 
of the ester groups present in grafted copolymer into hydroxamic acid was carried out by treatment 
with hydroxylamine (HA) in alkaline solution. The adsorbent was characterized by FTIR, TGA, and 
DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups 
provides the ability to form polycomplexes with metal ions. The ability to adsorb various metals was 
investigated in order to evaluate the possibility of its use in metal adsorption. It was found that 
adsorbent containing hydroxamic acid groups can adsorb various metal ions. Each metal has a specific 
pH at which it shows maximum percentage adsorption. The adsorbent exhibited a remarkable % 
adsorption for Cd2+, Al3+, UO2

2+, V5+ and Pb2+ at pH 3, 4, 5, 4, and 3, respectively. The selectivity of 
metal adsorbent toward the metal ions used is in the following order: Cd2+ > Pb2+ > Al3+ > UO2

2+ > 
V5+.  
 
3.14. Turkey 
 
The research and development activities carried out under the scope of this CRP have been directed at 
the synthesis of specialty adsorbents for environmental applications particularly for the removal of 
hazardous anions and cations from aqueous systems. The target pollutants chosen were arsenate, 
chromate and phosphate anions. Nonwoven fabrics based on polyethylene (PE) and coated 
polypropylene (PP) were used for radiation grafting of glycidylmethacrylate (GMA) and 
dimethylaminoethyl methacrylate (DMAEMA) and 4-vinyl pyridine (4VP) via accelerated electrons. 
The experimental parameters such as dose rate, absorbed dose, monomer concentration and 
temperature, were optimized for every grafting process. The grafted polymers were characterized 
spectroscopically by FTIR, XPS, and by thermal analysis. The uptake of various forms of chromium 
as well as arsenate and phosphate ions was systematically investigated by using PE/PP nonwoven 
fabrics grafted with 150% of the respective polymer. Two different approaches were followed for 
functionalizing of grafted polymers. In the case of GMA grafts the epoxy rings were opened by 
attaching 1,2,4-triazol, dipyridyl amine and picolylamine groups which were later complexed with 
copper ions. Cu(II) ions were held very firmly by the corresponding amine groups leading to the 
formation of so-called polymer-ligand exchangers. The polymer ligand exchangers thus obtained were 
shown to be very efficient in removing various forms of hexavalent chromium anions as well as 
arsenate from mixtures of other anions. The removal efficiency was determined to be 108 mg 
chromium per gram of adsorbent which is far superior to the other adsorbents reported in the literature. 
DMAEMA grafted nonwoven fabrics were first quaternized by using dimethyl sulphate which was 
later treated with HCl to replace sulphate counter ions with chloride. The polycationic structure thus 
obtained was used to remove phosphate anions in the presence of other anions. The selectivity towards 
phosphate was found to be very good in low concentration ranges of anions. Quaternized DMAEMA 
grafted fabrics were also used for the removal of chromate and found to be very effective by showing 
an uptake capacity of 125 mg chromium per gram of adsorbent. When the uptake was measured 
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against the amount of grafted DMAEMA only, it was observed that for every two DMAEMA group 
one chromate was removed. Most of the anion uptake studies were carried out in batch form while in 
some cases continuous adsorption was studied and breakthrough curves were constructed.  
 
3.15. United States of America 
 
Various irradiation techniques have been used to graft vinyl and acrylic monomers to polymer 
(including biopolymer) substrates by simultaneous and pre-irradiation methods. Pulse radiolysis is a 
method for study of the graft polymerization kinetics; electron paramagnetic resonance (EPR) 
spectroscopy can be used to determine the chemical structure of the radiolytically produced free 
radicals and their decay mechanisms. The pulse radiolysis experiments involve the application of a 
pulse of electrons to a sample to produce ionized species, followed by the observation of their time-
resolved absorption characteristics. This type of measurement enables the determination of the rate 
coefficients associated with various reactions taking place, with the main focus on the role of 
intermediate species. The report will involve the following two ionizing radiation grafting projects: a) 
Advances in the electron beam grafting of isopropylacrylamide to a poly(ethylene-terephthalate) 
membrane for cell sheet detachment, and b) Ionizing radiation-induced grafting methods for the 
synthesis of polymer electrolyte membrane fuel cells. 
 
4. CONCLUSIONS 
 
The work done under the CRP has contributed to the following developments: preparation of radiation 
grafted adsorbents for environmental application, radiation grafted surfaces for biomedical 
applications, and radiation grafted membranes for fuel cells and battery applications.  
 
4.1. Adsorbents 
 

• Synthetic polymers such as PE, non-woven polypropylene (NWPP) have been grafted with a 
variety of monomers and applied for the removal of toxic compounds, e.g. heavy metal ions 
from water and wastewater (Egypt, Japan, India, Poland, and Syrian Arab Republic); 

• Functionalized adsorbents containing amine and carboxylic acid groups have been developed 
by radiation grafting and high adsorption capacity was achieved. Some of these adsorbents 
could be used several times after regeneration for removal of valuable metals. Such 
grafted/modified materials showed a potential for the removal of lanthanides and actinides 
such as 152Eu3+ and 99mTc, and separation of zirconium from uranium in low level nuclear 
waste (Egypt, Poland, and Turkey). 

• Natural polymers such as cellulose, starch, polylactic acid have been grafted with various 
monomers for adsorption of toxic compounds from polluted waters (Egypt, Hungary, Japan, 
and Thailand). 

 
4.2. Ion track membranes 
 

• Radiation grafting on ion track membranes has been proven to be a good technique to 
immobilize chelating groups for detection sub-ppb level heavy metal ions in treated 
wastewaters. Based on this technique novel low cost sensor  has been designed. The final 
small device is a disposable sensor, which is now in the stage of technological transfer to 
industry (France and Turkey). 

• Grafted submicroscopic track membranes with selective permeability obtained using the 
residual active sites after the etching procedure can be used to control the pore as a function of 
pH (Argentina). 
 

4.3. Battery separators 
 

• Grafting of polymethylmethacrylate (PMMA) onto the PE separator has been shown to 
improve the separator performance of lithium battery related to thermal stability, electrolyte 
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uptake and ionic conductivity. The process of production PP based radiation grafted battery 
separator is being upgraded to satisfaction of industry (India and the Republic of Korea). 

 
4.4. Biomedical applications 
 

• A uniform grafting of N-isopropylacrylamide onto poly(ethyleneterephthalate) membrane 
dishes was achieved using the pre-irradiation method and under anaerobic conditions with 
relatively low dose of 25 kGy. Cell sheets of 1 × 106 human prostate epithelium cells were 
successfully detached from these grafted membrane dishes without any damage and within 
very short period of time of 20 minutes at 25°C (the USA). 

• Antibacterial bandages and membranes for separation of protein have been developed in 
laboratory scale by grafting on cellulose. 2-(acryloyloxyethyl)]trimethylammonium chloride 
grafted cotton (AETC-g-cotton) has shown bactericidal properties against gram positive 
bacteria. The MAETC grafted product was tested for skin grafting studies on rats and found to 
be better than steam sterilized cotton (India). 

• The grafting of heparin-DMAEMA on PVC for non-thrombogenic applications has been 
investigated, and the migration of plasticizer di-2-ethyl hexyl phthalate (DEHP) has been 
evaluated experimentally. The grafted samples showed reduced migration (Brazil). 

• Incorporation of specific chain transfer agents called RAFT agents brings a control over the 
molecular mass and distribution of grafted chains not obtained with conventional free radical 
grafting technique. This has been shown for controlled radiation induced grafting of styrene 
with molecular mass range of 2000–50 000 with a dispersity of 1.1–1.2 on both natural and 
synthetic polymeric substrates. The precise control of grafted chain length and narrow 
molecular mass distributions is very important for tissue engineering applications as well as 
development of sensors (Turkey). 

 
4.5. Fuel cell applications 
 

• Progress has been achieved with respect to fuel cell applications of radiation grafted 
membranes at different levels. Basic understanding of the grafting process has been improved 
for various combinations of base polymers and monomers also with respect to simplifying 
later scale-up processes. The importance of the stability of the grafted component under fuel 
cell conditions has been recognized and addressed. However, a full understanding is still 
missing. Radiation grafted membranes have the potential to substitute more expensive 
membrane materials as solid polymer electrolyte in future fuel cell applications. Simultaneous 
electron beam irradiation of FEP and styrene  followed by post-irradiation heat treatment 
has been demonstrated to be a successful technique for production of a polymer electrolyte 
membrane of substrate thicknesses of 25–125 µm. Higher grafting density with oligomer sized 
grafts was achieved using pulsed electron irradiation with high dose per pulse and higher pulse 
repetition rate (Brazil, Switzerland, Republic of Korea, Malaysia, and the USA). 

• Membrane with improved properties containing sulfonic acid moiety was obtained by electron 
beam (EB) induced grafting of sodium styrene sulfonate (SSS) onto poly(vinylidene fluoride) 
(PVDF) films using a shorter (single-step) method for fuel cell operation below 100 °C. Less 
water dependent acid-base composite membrane for fuel cell operating above 100 °C was also 
obtained by grafting of N-vinylpyridine onto ETFE followed by doping with phosphoric acid. 
The performance of the membranes needs to be further improved (Malaysia). 

• VDF films with submicroscopic ion tracks were prepared, grafted, and sulfonated for fuel 
cells application. More assays are on-going to obtain a final product (Argentina, Brazil). 
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SURFACE MODIFICATIONS OF POLYMERS INDUCED BY HEAVY IONS GRAFTING 
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National Atomic Energy Commission 
Ezeiza Atomic Centre, Ezeiza,  
ARGENTINA 
 
Abstract 
 
Polymer surfaces are modified by the application of swift heavy ions etching and grafting procedures. The residual active 
sites produced by heavy ion beams, remaining after the etching process, were used to start the grafting process. In order to 
produce tracks on foils of poly(vinylidene fluoride) (PVDF) they were irradiated with 208Pb of 25.62 MeV/n or with 115 MeV 
Cl ions. Moreover, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, they were etched and 
grafted with N-isopropylacrylamide (NIPAAm) monomers or with acrylic acid (AAc) monomers, respectively. The replica 
method allowed the observation of the shape of the grafted tracks using transmission electron microscopy (TEM). In addition 
NIPAAm grafted foils were analyzed using Fourier transform infrared spectroscopy (FTIR). The sulfonation procedure 
(methodology previously described for perfluorated polymers) was applied on grafted PVDF. A new method is described to 
produce a thin layer of poly-acrylic-acid (membranes) that grows on the surface of PVDF foils implanted by an Ar+ beam 
with energies between 30–150 keV. Different combinations of monomers in water solutions were used such as: acrylic acid 
(AAc); acrylic acid-glycidyl methacrylate (AAc-GMA); acrylic acid-styrene (AAc-S); acrylic acid-N-isopropyl acrylamide 
(AAc-NIPAAm) and acrylic acid-N-isopropyl acrylamide − glycidyl methacrylate (AAc-NIPAAm-GMA). The experimental 
results show that for particular values of: ion fluence and energy, AAc concentration, sulphuric acid and PVDF polymorphous 
(alpha or beta) a huge percentage of grafting was obtained. At certain point of the grafting process the development of the 
PolyAAc-Xmonomer produce a detachment from the irradiated substrate and continue its grafting outside it. This method 
produces a membrane that is an increased replica of the original implanted surface. Finally, PVDF films implanted by an Ar+ 
beam with energies about 100 keV and a fluence of 1013 cm-2 were grafted using different A c solutions for different 
purposes: improvement of their biocompatibility, absorption of different ions and immobilization of compounds of biological 
interest (enzymes, hormones). 
 
1. OBJECTIVE OF THE RESEARCH 
 
The major objective of research was to obtain membranes with new properties using heavy ions of low 
and high energy that facilitate its use in diverse areas as: fuel cells, materials that respond selectively 
to the ambient conditions, membranes that facilitate the removal of metals from wastewaters and drug 
entrapment in polymer matrices of biomedical interest for use in medical treatment or industrial 
processes. 
 
2. INTRODUCTION 
 
2.1. Grafting on submicroscopic wall track 
 
The radiation graft polymerization is one of the methods for obtaining the so called intelligent 
materials [1, 2]. A graft copolymer may be obtained when an active site in a polymer A, initiates the 
polymerization of the monomer B [3]. There are two methods to prepare graft copolymers: in the 
simultaneous irradiation or mutual method the active sites formed during irradiation are in contact 
with reactive monomer, initiating the polymerization and chains grafted to the polymer substrate. In 
the other method, the polymer A is at first irradiated in the presence of air which leads to formation of 
either hydroperoxides or diperoxides on the trunk polymer. They are stable and can be decomposed at 
high temperatures. In a second step, the irradiated polymer is immersed in the monomer solution to 
initiate the grafting reaction. When an ion with atomic number Z and energy per nucleon E/n falls on a 
polymer film it produces a damage zone around the incident axis. In this way, the charged particle 
creates a cylindrical region that is easily attacked by a suitable reagent. The etching solution creates 
holes along and around the particle path [4]. Solid state nuclear track detectors (SSNTD) have found 
widespread applications [5]. The nuclear track technology allows in wide margins the independent 
choice of pore diameter, shape, inclination and membrane porosity forming the nuclear track 
membranes (NTM). An intelligent material is a material with specific characteristics that responds to 
environmental conditions. NTM can be combined with a polymer that responds to environmental 
conditions. The active sites remaining after the etching procedure were used to graft N-

A
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isopropylacrylamide (NIPAAm) and AAc on the track without using any supplementary irradiation 
source such as gamma or electron beams. 
 
2.2. New membranes obtained by grafted implanted PVDF foils 
 
Heavy ions of low energy, which have ranges of approximately a few hundred nanometres in 
polymers, are able to induce changes near the surface of the material. Therefore, the process of 
grafting using heavy ion beams which can modify the physical and chemical properties of a surface 
layer and leaving the bulk properties not modified in the irradiated samples, is a method to obtain new 
materials. This could open the possibility to merge the chemical and physical properties of the 
substrate with the characteristics of the grafted monomer in order to produce new advanced materials 
[6]. The present study describes a new method to produce a thin layer of monomer combinations 
(membranes) that grow on the surface of PVDF foils implanted by an Ar+ beam with different energies 
and different combinations of monomers in water solutions. A novel effect is described. 

 

2.3. Fuel cell 

For the fuel cell experiments, films irradiated with different ions from TANDAR and GANIL 
accelerators or a 252Cf source were used. To obtain submicroscopic pores with different diameters, 
different etching times were used. The etching conditions were: 6N KOH + 0,1N KMnO4 at 81°C. 
Finally, the films were irradiated with 30 kGy of gamma rays and grafted with styrene. In all the cases 
the grafting time was 22 hours at 61°C using 100% styrene solution. The fuel cell experiments were 
carried out by Mr J. Manzoli and his group (Brazil) and they are described in this report. 

 
3. MATERIALS AND METHODS 
 
3.1. Membranes and films preparation 
 
3.1.1. PVDF-NIPAAm 
 
The irradiated materials were β and α poly(vinylidene fluoride) (PVDF) foils from Solvay (Belgium) 
of 9 or 25 µm thickness. The foils were extracted prior irradiation in boiling toluene for 24 h. The 
monomer NIPAAm (Sigma Aldrich Ltd.) was used as received for the grafting process. The 
experimental set-up consisted stacks of foils placed perpendicular to the ion direction. For the 
irradiation in vacuum, heavy ion beams of 35Cl (115 MeV) provided by the Tandar accelerator (Buenos 
Aires, Argentina), were used. To irradiate PVDF foils of 7.4 cm2 in air, beams of 208Pb (25.62 MeV/n) 
provided by the GANIL laboratory (Caen, France), were used. Due to the ions high energy, the 
electronic stopping power could be considered as constant throughout the foil. Some of the foils were 
irradiated with fission fragments (PVDF-Cf foils) using a 252Cf source. An important parameter in 
order to analyze the etching experiment is to measure the bulk velocity of the process (Vb). To this 
end, foils previously irradiated with fission fragments (PVDF-Cf) were immersed in each etching 
experiment and, after an etching time of 24 h, a bulk velocity of 3 μm/day was measured. In order to 
produce pores, the irradiated foils with Cl and Pb ions were chemically etched using an aqueous 
solution of 6N KOH + 0,1N KMnO4 at 81°C during an etching time not greater than 40 min. To stop 
etching process  the films were quickly washed in distilled water and the remaining water at the 
surface was absorbed with filter paper. Then the foils were quickly immersed in the monomer solution 
to start the grafting process. Two grafting solutions were used: 10 wt% NIPAAm aqueous solution 
(solution 1) and 11 wt% NIPAAm + 20 wt% methanol + 0.1 wt% Mohr salt aqueous solution (solution 
2). The grafting reaction was carried out by placing ampoules with the foils, deoxygenated previously 
by means of bubbling nitrogen, in a water bath at 62°C. The last step of the process which consisted in 
the extraction of the homopolymer was performed in the following way: grafted foils were first 
washed during 24h with distilled water at 62°C and then 24h with distilled water at room temperature. 
No extensive homopolymer formation was observed. Neither grafting nor homopolymer formation 
were observed in blank experiments with non-irradiated foils.  

,
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Finally, the foils were dried until they reached a constant weight at room temperature. The grafting 
yield is defined as Y(%) = (mf -mi)/mi. For solution 1, mi and mf are the weights of the dried samples 
before etching and after grafting, respectively. In previous experiments low values of the grafting yield 
measurements after the etching, were found. The weights after the etching and before the grafting were 
not measured in order to begin the grafting process as soon as possible. On the other hand, for solution 
2, mi and mf are the weights of the dried samples (after etching) before and after grafting, respectively. 
Infrared transmission measurements were carried out at a resolution of 4 cm-1 using a Nicolet Impact 
410 spectrometer, equipped with a DTGS detector. To analyze the shape of the nuclear tracks, 
transmission electron microphotographs of the PVDF pores were obtained using the two-step replica 
technique for non-dissolved materials [7]. A polycarbonate chloroform solution (PC) was used on the 
etched PVDF foils and after drying the solution, the PC replica was obtained. As a second step, the 
technique which performs a Pt/C (platinum/carbon) replica of the previous PC replica was applied. 
The Pt/C replicas were observed using a Philips 300 electron microscope. 
 
3.1.2. PP-AAc 
 
The material used was a biaxially oriented coextruded 20 μm PP film (RADICIFILM, S.P.A., Italy). 
The acrylic acid (Merck Ltd.) for the grafting process was used as received. The experimental set-up 
consisted of different stacks of foils of 7.4 cm2 irradiated perpendicularly to the ion beam direction. 
Beams of 208Pb (25.62 MeV/n) provided by the GANIL laboratory (Caen, France) were used. To 
produce tracks the irradiated foils were chemically etched using 8 M H2SO4 + K2Cr2O7 (saturated) 
aqueous solution at 50°C and at different times. After this process, the foils were carefully washed in 
distilled water for 1 h, dried with a filter paper, and finally weighed before the grafting procedure 
starts. The etched foils were placed in closed tubes containing the aqueous grafting solution that 
consists of 79 vol% AAc, 0.4 M H2SO4 and 0.1 wt% Mohr salt (to prevent homo polymerization). 
After deoxygenating the tubes with bubbling nitrogen, they were placed in a 62°C water bath to carry 
out the grafting reaction. After a certain period of time and to stop the grafting process, the PP samples 
were taken out from the monomer solution and washed for 1 h in distilled water at 62°C and then for 3 
days in distilled water at room temperature.  
 
Finally, the samples were dried in an oven at 70°C up to a constant weight. In blank experiments with 
no-irradiated sheets, neither grafting nor homo polymer formation were observed. The grafting yield Y 
was calculated by Y (%) = 100 (wf - wi)/wi, where wi and wf are the foil weights before and after 
grafting, respectively. The conductivity (C) was measured using a conductometer Altronix CT-1 model 
(0–200 lS scale). For the calibration of the permeation measurement, a Film Millipore (NYSE: MIL, 
http://ir.millipore.com) with 5 μm pore diameters and a pore density of 6 x 105 tracks/cm2 and 10 μm 
thickness was used. NaCl solutions with different values of pH were produced. The final concentration 
of salt was chosen to obtain approximately the same conductivity for all of them. A drop of a solution 
of a given pH was put onto the membrane of PP that also separated it from the compartment with pure 
water (downstream compartment) where the conductivity was measured. The measured conductivity 
(C) follows the expression C = C∞(1 – e-t.k). Each determination, as a function of time, consists in 
measuring the ratio, CR = C/C∞ (1) and from the fitting the value obtained was τ = 1/k (2). For each 
combination of membrane and solution, the experiment was repeated six times and a mean value τ was 
obtained. The fraction of the sample area that is covered with pores is Fπr2, where F is the ion fluence 
and r is the effective radius of the pore. In the following, τ is assumed inversely proportional to this 
fraction and then result in τ/τ0 = F0 π ro

2/ F π r2 (3). To measure τ, first it’s necessary to determine the 
constant τ0 and for this purpose it was used a Millipore film of 10 μm of thickness with known pore 
diameters of 5 μm (r0 = 2.5 μm) and a density of F0 = 6 × 105 pores/cm2. Then, τ was measured using 
(3) with the previous value of τ0. 
 
3.2. Implanted PVDF foils 
 
Argon ion beams between 30–125 keV, provided by a VARIAN 200 kV ion implanter (Tandar 
Laboratory) were used to irradiate polymer films with fluencies between 0.1 × 1013 and 50 × 1013 cm-2. 
The targets were films of β and α-PVDF with different thicknesses. Synthesis quality styrene, glycidyl 

17



methacry
Ltd.) we
experime
carried o
(solution
acid (sol
 
For the b
and then
Membra
polymer 
Eagle m
sacrifice
 
In order 
surgical 
0.5 mg i
minutes.
wet poly
days, aft
In order 
(urease) 
Argon b
25 µm w
and 20 v
was inco
out with
50 mM, 
 
3.2.1. Ur
 
The enzy
from 5 m
after an 
which th
absorban
The amo
substitut
proceedi
producti
to memb
 
3.2.2. En
 
The enzy
from 5 m
urea UV
action of

 

ylate, N-isop
ere used as 
ent was per
out using tw
n 1); and b) 
lution 2). 

biocompatib
n introduced
anes were w
r to be impla
medium. The
ed 45 days po

to determin
implant of p
intra muscul
. The animal
ymer was us
ter which aut
to study the
or hormone

eams of 100
were used. T
vol.% distilla
orporated int
hout the enzy

pH 7.4 phos

rease enzyma

ymatic activ
mL solution o

hour of incu
he produced 
nce is determ
ount of rema
tion of the f
ing to the 
on of ammo

brane interfer

nzymatic acti

ymatic activ
mL a solutio

V was used 
f the glutama

propyl acryla
received. A

rformed. Gra
wo grafting s

77 vol.% AA

bility experim
d in a soluti
ashed in dis
anted was w
e laboratory 
ost implant. 

e the biocom
poly-AAc we
lar anesthesi
ls were main
sed for each
topsy was ca
e immobiliza
es (insulin) 
 keV with flu

The grafting s
ated water, b
to the solutio
yme. The me
sphate buffer

atic activity d

vity of the ur
of 300 mg% 
ubation of th
ammonia rea

mined at 540 
aining urea is
film with im
colorimetric

onia from the
rence. 

ivity determi

vity of the ur
on 320 mg% 
(Fig.1.), in w
ate dehydrog

F

amide monom
All foils wer
afting time w
solutions: a)
Ac + 0.2 M 

ments, films 
ion of AAc
stilled water 

washed with 
animals we

mpatibility of
ere carried ou
a was admin
ntained with 
 implant. Th

arried out and
ation of comp
and the stud
uencies from
solution was
bubbled 15 m
on during the
embranes wit
r. 

determinatio

rease was de
of urea in ph
he films at 3
acts with phe
nm. 
s considered 

mmobilized e
determinati

e remaining u

ination (Meth

rease was de
urea after a

which produ
genase with p

FIG. 1. Schem

mers, vinyl s
re stored at 
was 3 hours
) 79 vol.% A
H2SO4 + 0.1

of PVDF w
c 79 vol.% +

for several 
saline soluti
ere managed

f the obtaine
ut in male m
nistered to th

balanced di
he clinical s
d the patholo

mpounds of b
dy of their 

m 5 × 1012 cm
s acrylic acid
minutes with
e grafting pr
ith the immo

on (Method 1

etermined af
hosphate buf
37°C. The in
enol in alkal

d as a percen
enzyme. The
tion, previou
urea, withou

hod 2) 

etermined af
a hour incuba
uced ammon
parallel oxida

me of enzymati

ulfonic acid,
–20°C temp

s in all case
AAc + 0.2 M
1 wt% Mohr

ere irradiate
+ 0.2 M H2

days at roo
ion and with
d according

ed material, i
mice BALB/c
he animal al
iet and water
tate of the a

ogical and hy
iological inte
activity, β-P

m-2 to 1.4 × 1
d 79 vol.%, 0
h N2. Urease
rocedure, wh
obilized enzy

1) 

fter measurin
ffer solution 
ndophenol c
ine media pr

tage regardin
 amount of 
us incubatio
ut the contrib

fter measurin
ation of it fi
nia is incorp
ation of NAD

ic activity of t

, and AAc m
perature in a
es. Absorptio
M H2SO4, +
r salt + 5.4 v

d with Ar 50
2SO4 + 0.1 
m temperatu

h antibiotics 
to the norm

intra peritone
c 8 weeks old
lowing work
r ad libitum.
animals was 
ystopathologi
erest, immob

PVDF films 
1013 cm-2. Fil
0.1 wt% Mo
e enzyme (so
hile the contr
yme were ma

ng the amou
(pH 7.4, 50 

colorimetric 
roducing a co

ng a control 
ammonia pr

on with urea
bution of the

ng the amou
lms at 37°C

porated to th
DH to NAD+

he urease. 

monomer (fro
air until the
on experien

+ 0.1 wt% M
vol.% vinyl 

0 keV with 
wt% Mohr 

ure and/or 6
and then wi

rms of the N

eal and subc
d and 25 g o
king conditio
. 200 micro 
evaluated d

ical study co
bilization of 
were irradia

lm thickness 
ohr salt, 0.2 M
olution, Wien
rol films wer
aintained at 

unt of remain
mM, 0.9 wt%
method was
olored produ

with free en
roduced is c
ase, to estim

e free ammon

unt of remain
C. The metho
he α-ketoglu
+ : 

om Merck 
e grafting 
nces were 
Mohr salt 
sulphuric 

1013 cm-2 
salt [8]. 

2ºC. The 
ith MEM 
NIH and 

cutaneous 
of weight. 
ons of 20 
grams of 

during 45 
ompleted. 

enzymes 
ated with 
of 4.5 or 

M H2SO4 
ner Lab.) 
re carried 
2−8°C in 

ning urea 
% NaCl), 
s used, in 
uct whose 

nzyme, in 
calculated 
mate the 
nium due 

ning urea 
od kinetic 
utarate by 

 

18



The incr
determin
way of e
from the
regardin
 
3.2.3. Ins
 
The insu
Penfill A
origin p
Experim
complian
was carr
2.5 mg. 
puncture
using te
fractions
properly
disintegr
 
4. EXPE
 
4.1. PVD
 
Figure 2
thicknes
 

Figure 3
grafted f
sample s
NH are b
at ca. 16
presence
spectra w
are stron
decrease
values w
addition
PNIPAA
with 101

spectra o
grafting.
with gam
was incl
cm-1 rela
characte

rease of NAD
ned from the 
eliminating i
e difference b
ng the concen

sulin hormon

ulin hormon
Actrapid (Hu
produced in 

mental animal
nce with the
ried out using

To take a b
ed in a vein 
est strips an
s folia (all im
y anesthetize
rator using a 

ERIMENTAL

DF-NIPAAm

2 shows a m
s, etched dur

 shows sever
foils (labels 5
spectra (label
bonded), (ii) 
650 cm-1 an
e of PNIPAA
were taken w
ngly correlate
e in their inte
were estimate
, Fig. 3 show

Am, are not o
11 cm-2 Pb b
of irradiated 
. The infrared
mma rays an
luded for com
ated with PN
ristic PNIPA

D+ concentrat
NAD+ at 34

interferences
between both

ntration of in

ne activity de

ne activity w
uman insulin

Saccharom
ls: Mice BA
e national La
g intramuscu
blood sampl
in the back

d ACCU-CH
mplants were
ed (see Fig.2

potter. The a

L 

m 

microphotogra
ring 30 min. 

ral FTIR spe
5–7). The ch
l 1–4) such a
 the Fermi re

nd (iv) amide
Am is clearly 
with different
ed with the g
ensities is cle
ed by compa
ws that this lo
observed for
eam for etch
non etched 

d spectra obt
nd finally gr
mparison pu

NIPAAm are 
AAm peaks a

tion is propo
40nm, at 60 s
s, in such wa
h times. The
itial urea in e

etermination

was determin
n injection so

myces cerevi
ALB/c male a
aws Relating
ular ketamine
le to assess 
of the tail. 

HEK ACTIV
e foils of 1.0 
2.) while m
approximate 

aph of a 9 μ

FIG. 2. Micr

ectra measure
haracteristic a
as: (i) NH am
esonance enh
e II at 1548
identified by

t ions and fl
grafting yield
early observe
aring labels 5
ow intensitie
non-grafted

hed and graf
foils (label 

tained using 
afted with 3

urposes (15%
clearly obse
re not presen

ortional to ur
seconds and 
ay that the a
e amount of 
each solution

n 

ned using th
olution). Co
siae recomb
and female a
g to the Con
e in single do

blood gluco
Determinati

VE instrume
× 0.8 cm) w

milled disinte
 weight of dr

μm track len

rophotograph

red for non et
absorption b

mide stretchin
hanced overt
8 cm-1. As it
y the absorp
luencies with
ds and not w
ed for etched
5−7 spectra 
es peaks, nam
d foils. The i
fted foils (F
5) and irrad
a 3 μm pore

3% aqueous 
% grafting yie
erved. From 
nt in spectra 

rea concentra
120 seconds

absorbance c
remaining u
n. 

he following
omposition b
binanate, 1 
aged 10 week
nduct of anim
ose of 5 mg 
ose levels in
ion of blood
ent. Inoculat

were implante
egrated films
ry polymer w

ngth from a 

h of a sample.

tched grafted
bands of PNI
ng vibration 
tone of the am
t can be obs
tion bands at

h the purpose
with the irrad
d foils (label
with label 4

mely 1548 an
infrared spec
ig. 2, labels 

diated etched
e diameter PV
solution use
eld). In this 
the last obse
of non-grafte

ation in the sa
s of having b
corresponding
urea is consid

procedure: 
iosynthetic h
IU correspo

ks of averag
mal experim
and in some 
n animals im

d glucose in 
tion of poly
ed surgically
s were made
was 50 mg. 

208Pb irradia

d foils (label
PAAm can b
at 3300 cm-

mide II at 30
served in Fi
t 1650 cm-1 a
e of showing
diation param
ls 5–7) and t
spectra as a

nd 1650 cm-1

ctra obtained
1–3) is com
foils (label 

VDF foil (lab
ed in a previ
case the pea

ervation we c
ed foils. 

ample. Abso
begun the rea
g to the NA
dered as a pe

insulin usag
human insul
onds to 0.0

ge weight of 
mentation). A
e cases doubl
mplanted, m
mice was p

ymer, in the
y on the back
e with a me

ated sample 

ls 1–4) and f
be identified 
1 (broad peak
078 cm-1, (iii
ig. 4 (label 
and 1548 cm
g that their in
meters. Furth
the low graft
approximatel
1 which are t

d from irradia
mpared to th

6), both wit
bel 4), post i
ious experim
aks at 1548 a
can conclude

orbance is 
action, by 

AD+ result 
ercentage 

ge: H.M. 
lin (DNA 
035 mg). 
25 g. (In 

Anesthesia 
le dose of 

mice were 
erformed 

e case of 
k animals 
echanical 

of 9 μm 

 

for etched 
from the 

k because 
i) amide I 
1–4), the 

m-1. These 
ntensities 

hermore a 
ting yield 
ly 3%. In 
typical of 
ated foils 

he control 
thout any 
irradiated 

ment [12], 
and 1650 
e that the 

19



FIG. 3. In
inset sho
aqueous s
 

FIG. 4. 
irradiated
figure. Ba
 

FIG. 5. G
thickness 
Mohr sal

nfrared spectr
ows the etchin
solution. 

Comparison 
d with 1011 c
ar indicates th

Grafting yield
 foils, for 101

lt aqueous solu

ra of PNIPAAm
ng and graftin

of infrared sp
cm-2 208Pb ion
he scale. 10 w

d Y as a funct
0 cm-2 fluence
ution. 

m grafted foils
ng conditions

pectra for 9 
ns. For irradi
t% NIPAAm a

ion of the che
e and 22 h of 

ls of 9 μm thic
s. The bar in 

μm thicknes
iation, etching
aqueous soluti

emical etching
grafting time.

ckness, using s
the figure in

s foils, using
g and grafting
ion. 

g time for 208P
. 11 wt% NIPA

solution 1 for 
ndicates the s

g solution 1 f
g specificatio

 
Pb ions using
AAm + 20 wt

 
22 h grafting

scale. 10 wt%

 
for 22 h graf

ons see the in

g solution 2 a
t% methanol +

g time. The 
% NIPAAm 

afting time 
nset in the 

and 25 μm 
+ 0.1 wt% 

20



It is kno
decrease
interfere
the graft
function
 
4.2. PP-A
 
The etch
promote 
to decre
condition
permeati
etching t
10 h or 
different
same fin
 
A drop o
with pur
consists 
was τ = 
Millipor
of F0 = 6
the evol
membran
For 10 a
and 63%
greater d
 

FIG. 6
and graft
 

own that chem
e of grafting 
ence effect be
ting yields a

n of the etchin

AAc 

hing remove
 the monom

ease due to 
ns such as f
ion experime
time and gra
12 h etchin

t values of pH
nal conductiv

of a solution 
re water (do
of measurin
1/k (2) and τ

re film of 10 
6 105 pores/c
lution of th
nes. The init

and 12 h etch
% of porosity
diameter than

6. Effective por
ting conditions

mical etching
yield. The di
etween cylin
s a function 
ng time, redu

es the active
er diffusion 

the active 
fluence, etch
ents. The ado
afting times t
g times and 
H were prod

vity for all of

of a given p
ownstream c
ng CR = C/C∞

τ/τ0 = F0 π ro

μm of thick
cm2. Then, τ

he effective 
tial pore diam
hing time 800
y). As can b
n high graftin

re diameter ob
s. 

g produces p
iameters of t

ndrical holes 
of the etchi

ucing the act

 sites of the
inside the fo
sites remov

ing and graf
opted approa
that assure a
3, 5 and 15

duced. Final s
f them. 

pH was put o
ompartment)

∞ (1), using C
2/ F π r2 (3). 

kness with kn
τ was measu

diameter ca
meter before
0 Å and 900 
be observed 
ng yield. 

btained using 

pores and gra
theses pores 
produced by

ing time (Fig
tive sites for 

e latent track
oils, but the e
val [10]. Pr
fting time in
ach was to s
a measurable
5 min graftin
salt concentr

onto the mem
), where con
C = C∞(1 –
To measure 

nown pore d
ured using (3
alculated us
e grafting wa

Å pore diam
(Fig. 6) for 

relations [1–3

adually remo
increase with
y the etching
g. 5). The di
grafting and

ks producing
etching conti
revious expe

n order to ob
elect the sma
 grafting yie
ng times we
ration was ch

mbrane of PP,
nductivity w
e-t.k) and fro
τ, first was d

diameters of 
3) with the p
sing (3) as 
as calculated
meter values 

low graftin

3] for 1010 cm

oves the activ
h the etching

g process exp
ameter of th
the grafting 

g pores in th
inues and the
eriments pro

btain an adeq
allest possib

eld. Therefor
ere selected. 
hosen to obta

, separated fr
was measured
om experime
determined t
5 μm (r0 = 2
revious valu
a function 

d from weigh
were obtaine
g yield, the 

m-2  fluence. The

ve sites resu
g time. The i
plains the de
he pore incre
g yield values

he films. Fir
he grafting yi
ovided the 
quate graftin

ble fluence, m
re, 1010 cm-2

NaCl soluti
ain approxim

from the com
d. The deter

ent the value 
the constant τ
2.5 μm) and 
ue of τ0. Fig.

of pH for 
ht loss measu
ed, respectiv
effective po

 
e inset shows 

ulting in a 
dea of an 

ecrease of 
eases as a 
s [9]. 

rst, pores 
ield starts 
optimum 

ng for the 
maximum 
2 fluence, 
ions with 

mately the 

mpartment 
rmination 
obtained 

τ0 using a 
a density 
 6 shows 
different 

urements. 
vely (50% 
ores have 

etching  

21



4.3. New
 
These ex
that grow
1013 cm-

PVDF m
absorptio
interest, 
fuel cell.
  
Figure 7
+ 0.1 wt
for 1013 
was deta

FIG. 7. G
observed 
 
Figure 8
grafting 
be obser
the Figu
grafting 
 

 
FIG. 8. M
the inferi

w membrane

xperiences d
ws on the su
-2 of fluence

membranes w
on of differ
immobilizat

. 

7 shows the g
t% Mohr sal
cm-2 fluence

ached from th

Grafting yield 
d maximum in 

8 shows a ph
conditions u

rved and the 
ure 9 can be
times.  

Membranes of 
or part of the f

es obtained 

describe a ne
urface of PVD
e, PP membr
with porous p
rent ions, th
tion of enzym

grafting yield
lt in aqueous
e. In these co
he original su

as a function 
the grafting y

hotography f
used for Figu
 superior pa
e observed t

f poly(acrylic-a
figure the sub

by grafted P

ew method to
DF films im
ranes with p
post grafted 
heir biocom
mes or horm

d as a functio
s solution an
nditions, and
ubstrate cont

of fluence for 
ield is obtaine

from the sub
ure 7. To the 
rt of the figu
the different

acid) that gro
bstratum is ob

PVDF and P

o produce a 
mplanted by a

porous post 
with styren

mpatibility, im
mones (insuli

on of the flue
nd for 22 hou
d during the 
tinuing the g

r 100 keV Ar+

ed about 1013

bstratum obt
side of poly

ure shows th
t stages of t

ws on the surf
bserved. 

PP foils 

thin layer o
an Ar beam w
grafted with
e. These me
mmobilizatio
n) and their

ence for 79 v
urs of graftin
grafting reac

grafting react

ions and for 7
cm-2. 

tained for 50
y acrylic acid
he correspon
the new me

face of PVDF

f poly(acryli
with energie
h hydroxyeth
embranes we
on of comp
activity, and

vol% AAc + 
ng time. A m
ction, the gra
ion separated

 
79 vol% AAc w

0 keV of ene
d film, the ori
ding grafting
mbranes obt

 

F films implant

ic-acid) (me
es of 100 keV
hyl methacry
ere used to s
pounds of b
d their behav

 0.2 M sulph
maximum is 
afted poly acr
d from it. 

water solution

ergy ions an
riginal substr
g film replic

btained with 

ted by an Ar b

mbranes) 
V and for 
ylate and 
study: the 
biological 
viour in a 

huric acid 
observed 
rylic acid 

ns. The 

nd for the 
ratum can 
ca, and in 

different 

beam. In 

22



4.4. Deta
 
Figure 1
monome
irradiate
concentr
total mo
irradiate
solution 
in water 
NIPAAM
 

 

 

achment eff

10 shows the
ers was 78.25
d substrate. 
ration and Fi
onomer conc
d substrate. F
was 69 vol%
solution. As

M-co-GMA) 

FIG. 9. 

fect for mon

e maximum 
5% in water

Fig. 11 sh
ig. 12 shows
entration wa
Figure 13 sh

% AAc + 9.8
s the GMA p
film detach 

FIG. 10.

FIG. 11. G

Different stag

omer combi

grafting yiel
r solution. Un
hows that gr
s the grafting
as 78 vol% i
hows the graf
8% NIPAAm
percentage in
from the sub

. Grafting yiel

rafting yield a

ges of the new

ination 

ld as a funct
ntil 2.5% GM
rafting yield
g yield as a 
in water solu
fting yield as

m + X% GMA
ncrease, the g
bstrate.  

ld as a functio

as a function o

w membranes o

tion of GMA
MA monome

d has a max
function of 

ution and th
s a function 
A + 0.2 M su
grafting yiel

on of the GMA

of the styrene p

 

obtained.  

A concentrati
er grafted fil
ximum as a 
the NIPAAm
e grafted film
of GMA per

ulphuric acid 
d increase an

 
A percent. 

 

percentage. 

ion. The sum
lm detached 

a function o
m concentra
lm detached 
rcentage. The
d + 0.1 wt% M
nd the poly (

m of both 
from the 
f styrene 
tion. The 
from the 

e grafting 
Mohr salt 
(AAc-co-

23



 

 
4.5. App

 
4.5.1. Th
 
Figures 
Zn2+, Co
solution 
ions with
obtaining
with viny
 

plications 

he absorption

14 to 19 sho
o2+, Mn2+, C
introduces -

h a liquid. T
g positive re
yl sulfonic a

FIG. 12. Graf

FIG. 13. G

n of different

ow absorption
Cu2+, and Cr3

-SO3 groups 
They were ca

sults in all ca
acid are signi

FIG. 14. Abso

afting yield as 

Grafting yield 

t ions 

n percentage
3+ concentrat
in the memb

arried out ass
ases. The dif
ficant for Zn

orption percen

 
a function of 

as a function 

e using solut
ation. The ad
brane that g
says for the c
fferences am
n2+, Co2+ and

ntage as a fun

the NIPAAm c

of the GMA p

ion 1 and so
ddition of vi
ive to the sa
cations Cu2+

mong the capa
d Cu2+ regard

nction of Ni2+ c

 

concentration.

 
percentage. 

lution 2 as a
inyl sulfonic
ame one the 
, Cr3+, Ni2+, 
acity to adsor
ding membran

 
concentration

. 

a function of
c acid to the
capacity to e
Mn2+, Zn2+ a
rb ions in me
nes with acry

n. 

f the Ni2+, 
e grafting 
exchange 
and Co2+, 
embranes 
ylic acid. 

24



 
 

 
 

F

F

F

FIG. 15. Abso

FIG. 16. Abso

FIG. 17. Abso

orption percen

orption percen

orption percen

ntage as a fun

ntage as a fun

ntage as a fun

ction of Zn2+ 

ction of Co2+

ction of Cr3+ 

 
concentration

 
concentration

 

concentration

n. 

n. 

n. 

25



 
4.5.2. Ex
 
The stru
different
frame fo
purpose 
in cultur
material 
signs tha
 
It was d
dissolved
of the su
support 
foresaw 
cavity) a
microph
abdomin
proteins 
incorpor
observed
incorpor
material 

 

F

F

xperiences of

uctures of po
t types of ani
or artificial o
of treating t

re and next, 
protects it a

at stimulate t

developed a g
d in water to
ubstrate [8].
in processes
to the chiru

and the prev
hotograph of 
nal cavity w

of the med
rate colourin
d. In Figure
ration of pro
with the bio

FIG. 18. Abso

FIG. 19. Abso

f implants in

olymers, carr
imals and hu

organs develo
the serious bu
sowed in th

against morta
the normal ce

grafting tech
o take place b
. It is sough
s of tissue re
urgical act. F
vious polyme

the polymer
where the co
dia (album),
g. Reaction 
es 24 and 
oteins of the
ological tissu

orption percen

orption percen

 animals 

ried out with
uman cell cul
opment. The
urns and the
e structure o
al infections
ellular growt

hnique that a
because in th
ht to investig
epair. Figure
Figure 21 sh
er to be sub
ric membran
olored fibres

control exp
of rejection 
25 neoangi

e media are 
e, muscle, kn

ntage as a fun

ntage as a func

h fibres of th
ltures, and th
ese structures
e ulcers taken
of the polym
s and loss of
th in the area

allows polym
he grafting pr
gate the pos

e 20 shows t
hows the skin
bcutaneous (o
ne (1200 X)
s are observ
periment wi
is not apprec
ogenesis, kn
observed. F

nitted connec

ction of Cu2+

ction of Mn2+

he textile ind
herefore, they
s can be used
n place by th

mer. If it is ap
f fluids libera
a of the woun

meric membr
rocess they i
ssibility to u
the anaesthet
n separation
or abdomina
. Figure 23
ved as cons
ith the origi
ciated in wh
nitted conne
Figure 26 sh
ctive is obser

 
concentration

 

concentration

dustry, have b
y have becom
d to create a
he diabetes. A
pplied in the
ating factors
nd.  

ranes of acry
ncorporates 

use this new
tized animal 

for subcuta
al) implanted
corresponds 
equence of 
nal films sh

hich case an e
ective and 
hows the bio
rved integrat

n. 

n. 

been used to
me in kind of
artificial skin
Alive cells a
e patient's wo
s of chemica

ylic acid tha
to the memb

w material as
l and subject
aneous (or ab
d. Figure 22

to an impla
having inco

hows that th
encystment w
colored pol
ocompatibili
ted to the ma

o develop 
f a matrix 
n with the 
are grown 
ound, the 
l growth, 

at are not 
brane part 
s cellular 
tion form 
bdominal 
shows a 

ant in the 
orporated 
hey don't 
would be 
lymer by 
ty of the 
aterial. 

26



 

 

FIG. 21. Ski

FIG. 22. Mi

FIG. 20.

in separation f

icrophotograp

 Anaesthetize

for polymer su

ph of the polym

d animal. 

ubcutaneous i

meric membra

 

implantation. 

 

ane (1200 X). 

 

27



FIG. 24. In

FIG. 25. In

FIG. 23. Imp

ntraperitonea

ntraperitonea

plant in the ab

al implantation

al implantation

bdominal cavit

n (45 days pos

n (45 days pos

 
ty. 

 
st-implant). 

 
st-implant). 

28



4.5.3
 

To evalu
urea, dif
without 
ammoniu
of urea 
absence 
determin
without 
film, inc
in phosp
colorime
2). Ureas
 
In order 
urease w
7, 14, 21
 

 

3. Immobiliza
 

uate the effec
fferent assay
the urease 

um cation w
in phosphate
of the film

ned. A perce
membrane. I

cubating at 3
phate buffer
etric determin
se activity of

to study the
were left in b
1, and 28 day

TABL

Thick
(µm

4.

4.

4.

25

25

25

ation of urea

ct of the film
ys were carr
incorporatio

was determine
e buffer solu

m. Later on
entage of free
In the urea b
7°C during o

r solution pH
ned. No sign
f 0.45 UI rep

e effect on s
buffer phosph
ys. 

LE 1. PERCE

kness 
m) 

Flu
(c

5 1.4 

5 1.2 

5 1.2 

5 5.0 

5 1.0 

5 1.0 

FIG. 26. Bioc

ase in membr

m of poly ac
ried out usin
n. In the am
ed by the film
ution pH 7.4

n, ammonia 
e ammonia i
blank sample
one hour in p
H 7.4. (Tab
nificant decre
presents 100%

storage stabi
hate solution

ENTAGE OF

uence 
cm-2) 

%

M

× 1013 

× 1013 

× 1013 

× 1012 

× 1013 

× 1013 

compatibility o

ranes obtaine

crylic acid (P
ng a membr
mmonia blan
m, incubatin
4 in presenc

remaining 
is obtained i
e, the capacit
presence and

ble 1). Later
ease was obs
% relative ac

ility of immo
n pH 7.4 50 m

F UREA FOR

% decrease in
(%) 

Method 1/Met

14/26

23 /29

21 /9 

13 /9 

32 /37

47 /41

 

of membranes

ed grafting P

PAA) in the 
rane obtaine
nk sample,
g at 37°C du
e of free en
on the resu
in presence o
ty of retentio
d absence of 
r on, the rem
served in the 
ctivity. 

obilized urea
mM at 2−8°C

R DIFFEREN

n urea 

thod 2 

Pe

s. 

PVDF implan

determinatio
ed under the
the capacity

uring 10 minu
zyme, comp

ulting solutio
of the film, r
on of urea w
the film in 5
maining ure
solutions aft

ase, free ure
C, and activi

NT MEMBR

ercentage of u
in the grafti

solution 
(mg%) 

2.0 

4.5 

1.1 

4.5 

2.3 

3.4 

 

nted with Ar+

on of ammon
e same meth
y of retentio
nutes in 5 mL
paring to a c
on was col
regarding th

was determine
5 mL of urea
ea concentra
fter incubatio

ease and imm
ity was deter

RANES 

urease 
ing 

n 

+ ions 

nium and 
hodology, 
on of the 
L solution 
control in 
lorimetric 
he control 
ed by the 
a solution 
ation was 
on. (Table 

mobilized 
rmined at 

29



 
 
 
 
 
 
 
 

  
 

Figure 2
immobil
storage 
condition

FIG. 27. P
mM) vers

In order 
free and
Remaini
to a solu
AAc-g-P
activity 
enzyme 
electrost
 
In order 
urease w
colorime
temperat
showing
 

 

27 shows th
lized enzyme
stability is g
ns, the activi

Percentage of
sus the immob

to study the
d immobilize
ing urea was
ution in whic
PVDF memb
obtained wi
was pH 5.

tatic repulsio

to study the
were incubate
etrically. Ac
tures than im

g less depend

he percentag
e in the mem
greater for i
ity of immob

f activity main
bilized enzyme

e effect of pH
ed enzyme w
s measured a
ch 100% ure
branes show
ith the optim
.0, is close 

on between en

e effect of in
ed at differe
ccording to 
mmobilized e
dence on tem

Urease co
(m

0

0

ge of activit
mbrane. It w
mmobilized 

bilized urease

ntained in time
e in the foil. 

H of the med
was determin
after 1 hour i
ea was hydro

wed a broade
mum pH for

to AAc pK
nzyme and m

ncubation tem
ent temperatu

Fig. 29. fr
enzyme. How
perature. 

oncentration
mg%) 
2.3 

1.2 

0.55 

0.28 

ty retained 
was observed 

enzyme reg
e decreases s

e for the free e

dium on the a
ned in differe
incubation at
olyzed to am
er range of 
r free enzym
Ka and the 
membrane. 

mperature on
ures for an h
free enzyme
wever, ureas

n 

during the t
that althoug

garding free 
slower than f

enzyme (in ph

activity of im
ent buffer so
t 37°C on bu

mmonia at pH
functionality

me (Fig. 28
COOH gro

n the activity
hour, and ur
e showed b
e attached to

Urea d
(

time for fre
gh the initial 

urease. Und
free enzyme.

 
osphate buffe

mmobilized u
olutions at v
uffer solution
H = 7.5. Imm
y at differen
). Optimum 
ups do not 

y of urease, f
ea concentra
etter activit

o membranes

decrease (*) 
mg-1) 
1.6 

1.9 

1.3 

1.4 

ee enzyme r
l value is sm
der the sam
. 

er solution pH

urease, the a
values of pH
n, and was c
mobilized en
nt pH, thou

m pH of imm
charge, mi

free and imm
ation was de
ty percentag
s was still fu

 

regarding 
maller, the 

e storage 

H 7.4, 50 

activity of 
H 2.5–8.5. 
compared 
nzyme on 
gh lower 

mobilized 
inimizing 

mobilized 
etermined 
ge at all 
unctional, 

TABLE 2. UREASE CONCENTRATION IN THE GRAFTING SOLUTION FOR THICKNESS  
OF 25 µm AND FLUENCE 1013 cm-2 
 
 
 
 
 
 
 
 

  
 

 (*)Calculated as: catalyzed urea hydrolysis × initial urea concentration-1 × weight of film-1 

Urease concentration 
(mg%) 

Urea decrease (*) 
(mg-1) 

2.3 1.6 

1.2 1.9 

0.55 1.3 

0.28 1.4 
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TABLE 3. BLOOD GLUCOSE LEVELS AT DIFFERENT TIMES FOR SUBCUTANEOUS 
INJECTION AND INTRAPERITONEAL INOCULATION OF COMPLETE MEMBRANE AND 
MILLED MEMBRANE. INITIAL VALUE WAS 140 mg% IN 6 CONTROL MICE 

Time 
(Hours) 

Post subcutaneous 
injection 

-complete membrane- 
(mg%) 

Post intraperitoneal 
inoculation 

-milled- 
(mg%) 

Post subcutaneous 
inoculation 

-milled- 
(mg%) 

0 145 163 147 

0.5  110  

4  91 132 

24  100 97 

40  99  

48 101 100  

96   127 

120 117 120 128 

 

4. CONCLUSIONS 
 
New films of poly acrylic acids using the pre-irradiation grafting method were obtained and a new 
effect was observed. The best conditions for the detachment effect obtained were: 1013 cm-2 fluence, 
100 keV Ar ions and 25 μm PVDF films. This effect is probably due to the stress suffered by the 
substratum when the grafting proceeds, causing the detachment of the grafted film taken with part of 
the substratum. These membranes were used for studies on absorption of different ions, the 
biocompatibility, and immobilization of compounds of biological interest: enzymes (urease) and the 
study of their activity. 

Immobilized urease showed a better behaviour on pH and temperature dependence, as well as greater 
storage stability with less critical loss of activity in time. Although in some cases, the activity obtained 
was not the optimal; the advantages of immobilized enzyme outweigh this, allowing the reusing of 
enzyme, retention at the reaction site, and potential application in biosensors. Anatomy pathological 
and histological studies indicate the biocompatibility of the implanted material. During the 45 days 
post implant manifestations of clinical pathologies were not observed. 
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Abstract 

The ionizing irradiation (electron beam and gamma irradiation) induced grafting to fluorinated and chlorinated polymeric 
films were studied. Styrene grafting onto fluorinated and perfluorinated polymers and their ulterior sulfonation constitute a 
process to produce ionomers for many applications. The modification of polyvinylchloride with 
dimethylaminethylmethacrylate-heparin grafting attempt for the fact that grafting can be applied in packaging industry as an 
alternative for decreasing of plasticizer or another chemical species migration, in many cases nocivus contaminant for human 
health, and, in the specific study of this project, to obtain a less thrombogenic polymer surface to be used in medical 
applications. The results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast alternative to 
produce ionomers that can compete in market. The numerical method to simulate diffusion process evolved is simple and fast 
and applied to fit experimental results. 

1. OBJECTIVE OF THE RESEARCH 

The objective was to utilize the radiation grafting technique to modify the chlorinated, fluorinated and 
technological polymer films by gamma and electron beam irradiation grafting. The focus was on 
developing an ion exchange membrane for fuel cell application and quantification of the influence of 
radiation grafting on the migration behaviour of plasticizer from packaging into material, for food or 
medical applications. Suitable analytical methods were developed to evaluate and achieve information 
about the surface, chemical and physical characteristics of these materials, and model developed to 
simulate the diffusion characteristics of the target materials. 
 
2. INTRODUCTION 
 
On the scope of this CRP, the Brazilian promote the study of application of radiation grafting of 
polymers for fuel cell membranes, for medical or food polymer packaging technology and for 
mathematical modelling or simulation of the diffusional aspects involved on chemical species 
migration. 

Grafting is a powerful surfacing modification process to produce new polymeric materials with an 
intimate molecular interaction, not present in simple processes like adhesion, traditional blending and 
co-polymerization. Grafting process by ionizing radiation has been more attractive lately due to the 
fast free radicals production without chemical intermediates, as initiators. The evaluated properties are 
related to the application of the modified polymer materials as ion exchange membrane for fuel cells 
and as food/medical packaging with reduced plasticizer diffusion. A first set of materials studied were 
polytetrafluoroethylene (PTFE), polyvinyl difluoride (PVDF) and polypropylene (PP) films grafted by 
irradiation with styrene and finally sulfonated. These will be applied as a PEM (proton exchange 
membrane, also called polymer electrolyte membrane) into a hydrogen fuel cell. 

The radiation induced grafting of polymers became important lately because it can be used to produce 
material that can be alternative for Nafion® substitution in PEM fuel cells. Nafion® membrane acts as 
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an electrolyte that allows cations conduction only. Also, the low chemical reactivity and the high 
mechanical and thermal resistances are important attributes for its utilization as catalyst support. 
Disadvantages like long-time preparation, methanol permeation and high cost are limiting factors to 
use Nafion® membranes in fuel cells. Nafion® membrane composites obtained as of heteropolyacids 
[1] and acid silicon oxides [2] improved some characteristics like high water retention and high 
conductivity in operation temperatures up to 100 °C, but it does not solved high costs problem yet. 

Fluoropolymers and polypropylene have been grafted with aromatic monomers like styrene and 
divinylbenzene [3, 4]. These polymer matrices have high melting temperatures that are advantage for 
their utilization in fuel cells. However, they have high crystallinity degrees and this characteristic is 
not appropriate for modification using ionizing irradiation. Many studies proposed a previous polymer 
crosslinking to improve irradiation and mechanical resistances [5, 6]. When styrene is the grafted 
monomer at high degrees of grafting the degradation causes deterioration of the mechanical properties 
and it can be related to the high polystyrene crystallinity [7]. 

In this work, fluorinated polymer and PP films were grafted with styrene monomer by electron beam 
and/or gamma irradiation. Simultaneous and pre-irradiation in controlled temperature and pressure 
were used. Other parameters like monomer, solvent, dose and dose rate were considered. The grafted 
polymer film was sulfonated and the cation exchange membrane obtained was characterized by 
gravimetry, thermal analysis, vibrational spectroscopy, microscopy and electrochemical analysis. The 
performance and durability of cation exchange membrane will be tested in a fuel cell prototype in the 
near future. 

Polyvinyl chloride (PVC) flexible films were prepared, radiation grafted with dimethyl aminoethyl 
methacrylate (DMAEMA) monomer. This monomer traps heparin molecules in the PVC surface [8] 
for desired applications. This PVC-g-DMAEMA-heparin polymer presents less thrombogenic surface 
for medical applications in contact with blood. It would be desirable that migration or diffusion of 
plasticizers [9] (and other undesired substances inside flexible PVC) be reduced due to the grafting, 
when contact of this polymer occurs with stomach acids (by drips) or blood. This material could be 
applied as a new packaging material to prevent thromboembolism when packaging in blood banks. 
Diffusion/migration of plasticizer, like di-2-ethyl hexyl phthalate (DEHP) from PVC packaging to the 
food/hemoproducts, could be a source of possible chemical food or medicine contamination. It was 
proposed to apply a procedure and evaluate grafted film samples in order to quantify the amount of 
phthalate that migrates, comparing the grafted and non-grafted migrated amounts. Polymeric 
biomaterials with surface hemo-compatibility properties had been successfully synthesized by the 
grafting of hydrophilic monomers onto commercial polymeric films by the simultaneous gamma 
irradiation process [10]. DMAEMA is a monomer with amine and acrylate groups that are responsible 
by hydrophilic characteristics in grafted polymer. Heparin is a disaccharide which has the main 
characteristic to avoid hemorrhages, but this biomolecule does not make a covalent bond with the PVC 
matrix; to fix it to the polymeric substrate it is necessary to graft a specific monomer with physical 
and/or chemical affinities to bind heparin. Here, the DMAEMA grafting on PVC was performed by an 
innovative process using EB radiation. In the experimental migration process from these grafted PVC 
samples into biological simulant media, DEHP was quantified by classical UV spectrophotometry into 
the media. It was verified that PVC plasticizer migrates at lower concentration when grafted samples 
are used. 
 
The numerical method to simulate diffusion process evolved is simple and fast; it can utilize different 
diffusion coefficients for each different layer of medium (polymer, solution or grafting) and partition 
coefficient can be added between each interface of different materials. The use of this numerical 
method as a modified Cottrell equation solution will permit to fit the voltammetry assay results and to 
determine the diffusion coefficient as well as to model the behaviour of the grafted membrane during 
the ionic conduction. The diffusional numerical procedure was applied to fit the water uptake results in 
Fe3+ absorbed by PP-g GMA, in collaboration with Prof. Hegazy from Egypt. Details of the 
experimental conditions have been included on the mathematical model. 
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The characterization of cation exchange membrane obtained by the above process was performed by 
FTIR, gravimetry (to obtain the degree of grafting), SEM and electrochemical analysis (IEC and 
conductivity). 

The optimized samples will be tested in the fuel cell prototype (PROCEL/IPEN/CNEN-Brazil 
Programme) to evaluate the performance and the durability parameters. 
 
3.3. Diffusion process - 1D numerical simulation 
 
The diffusion simulation method is not intended to be applied in a rigorous metrological sense. It will 
be used as a guide to understand the mass movement through the grafted membrane. The use of this 
numerical method as a modified Cottrell equation solution, coupled with electromagnetic influence, 
will permit to fit the voltammetry assay results and to determine the diffusion coefficient and to model 
the behaviour of the grafted membrane during the ionic conduction. This will be the scope of a future 
work. In this paper is presented the main and innovative characteristics of the algorithm. 

The grafting causes the creation of new and different slices or layers in the surface of the backbone 
polymer. This multiphase system has different diffusion coefficients for each material phase 
concerning the diffusion species which can vary under temperature changes. In the PEMFC, proton 
diffusion could not be described by a simple Cottrell’s function, due to this multiphase aspect. As the 
thickness is much smaller than the area dimensions, diffusion can be assumed as one dimensional, at 
orthogonal direction. Description of the process is made by the Fick´s second law which, in one 
dimension: 
 

  (1) 
 
 

where C is the concentration of the migrant, generally in μg/mL, and is a mathematical function which 
depends on space and on time (x and t), or it is said C = C(x,t). D is the diffusion coefficient. The 
parameter x is dependent for many systems and its quantity is [distance]2/[time]. It is necessary to 
define the initial condition, which is Co = C(x,t=0), called here initial concentration profile (ICP) and 
the contour conditions. Starting from Co, C evolves in time, changing its profile, or mathematical 
form, as function of x. The numerical solution uses a non-uniform mesh of points for the discretization 
of x domain. The density of points is higher close to interfaces. In order to numerically solve Fick´s 
equation, Eq.(1), the x domain was discretized in n points by using a three-point finite difference 
scheme, which generates the following form for the left side of Eq. (2): 

 
   

                     
 
 
 
 

(2) 
 
 
 
 
 
                    

 
  
Δi (or ΔXi) is the non-constant distance between successive points i. 

 D is diffusion coefficient. Operator O condenses notation. 
 After some algebraic manipulations of operator O, Eq.(2) becomes: 
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  (3) 
 
 

The fi is a known value, easily calculated, and Δt is the time step. 
 
Equation (3) is the time evolution of the concentration function, C. It is a tridiagonal system of n linear 
equations, where n is the total number of points, which is easily solved by the Thomas algorithm [11]. 

 
4. RESULTS 
 
4.1. Radiation grafting of fluorinated and perfluorinated polymer samples 

Table 1 shows the results of percent of mutual styrene grafting performed in both kinds of irradiation 
sources: electron beam (22.4 kGy/s of dose rate) and gamma rays (4.7 kGy/h of dose rate); the 
absorbed dose of 100 kGy was the same at both irradiation sources. Distinct types of polymer films 
were immersed in distinct grafting media: styrene and butanol-1 at concentration 1:1 (both irradiation 
sources) and styrene and toluene at concentration 1:1 (only gamma rays). The irradiations were 
performed in air, at room temperature and under pressure (both irradiation sources) and under vacuum 
and at 60°C (only electron beam). High degree of grafting was observed by electron beam when the 
monomer was dispersed in alcohol as a grafting media and vacuum and warm conditions. When 
gamma rays were applied high degrees of grafting was obtained when the monomer was dissolved in 
toluene and the irradiation was conducted in air at room temperature and pressure. 

 
TABLE 1. PERCENT OF MUTUAL STYRENE GRAFTING IN DISTINCT TYPES OF 
POLYMERIC FILMS, IRRADIATION SOURCES, GRAFTING MEDIA AND PHYSICAL 
CHEMICAL CONDITIONS 

Samples 

Styrene grafting % (standard deviation) 
Electron beam, dose:100 kGy, 
dose rate: 22.4 kGy/s 

Gamma rays, dose: 100 kGy, 
dose rate: 4.7 kGy/h 

Air, room T and P Vacuum, 60°C Air, room T and P 

Styrene: 
butanol-1, 1:1  

Styrene: 
butanol-1, 1:1 

Styrene: 
toluene 1:1 

 

PTFE 0.5 (0.1) 3.3 (0.1)  4.6 (0.1) 7.4 (0.5)

PFA 1.0 (0.0) 6.2 (1.1) 5.8 (1.3) 11.3 (2.0)

PVDF 0.9 (0.1) 15.4 (0.7) 5.1 (0.2) 14.1 (0.3)

 

In comparison of the grafting carried out on warm and vacuum conditions, the PTFE had a grafting 
yield three times greater than that for the ambient condition, although this perfluorinated polymer 
always had the lowest grafting yield and the PVDF had the highest grafting yield, where it was around 
15 times greater than that for the liquid phase. 

 
These behaviours can be related to the observations of Chapiro [10], where PTFE swells slightly in 
styrene and this monomer diffuses into the partially grafted layers; in the same way, PVDF should 
have a low monomer diffusion resistance at the polymer-vapour interface. 

 
The result where PTFE films shows low degree of grafting, PFA films have values higher than PTFE 
and PVDF films present the highest values, also should be related to radicals formation characteristics 
for each film type. The reactivity of radicals formed on each polymer substrates and the G values 
(number of species formed or the number of chemical changes of a particular type induced on the 
deposition of 16 aJ (100 eV) of energy for radical formation are important factors to explain the 
experimental results in this work. For example, some typical G values for radical formation on gamma 
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radiolysis under vacuum at ambient temperature are PTFE, 0.14 [12], PFA, 0.93 [13] and PVDF, 3.3 
[14, 15]. By analogy, the high grafting yield onto PVDF and the observed decreasing grafting yields 
for PFA and PTFE respectively could be related to the number of radicals generated on these polymer 
matrices. 
 
The conditions of warm and vacuum performed in this experimental system suggested grafting occurs 
in a specific mechanism that can be proposed as: 
 
 R-OH → R-O• + •H (Solvent radiolysis)     (4) 
 M-H → M• + •H (Monomer radiolysis) 
 R-O• + P-H → R-OH + •P      (5) 
 M• + P-H → M-H + •P  
 H• + P-H → H-H + •P  
 •P + •M → P-M        (6) 
 
Where the first step of process (slow step), the irradiation allow the radiolysis of each component of 
grafting media, that results in high reactive radicals, mainly the alcoxy radical (R-O• or specifically n-
butoxy radical); in a second step, this more reactive radical scavenger a hydrogen atom of polymeric 
chain, even hydrogen scavenging can be achieved by other radicals originated in the first step. Finally, 
the polymer grafting by monomer radicals occur in the last step [15, 16]. 
 
Sulfonation is a kind of process performed to give a hydrophilic characteristic to these styrene grafted 
films by inclusion of sulfonic groups (-SO3H) in the grafted chains. The PTFE, PFA and PVDF films 
grafted in the conditions of warm and vacuum under electron beam irradiation were sulfonated and 
this process converts these films into an ionomer. High water swelling and cation exchange are some 
characteristics of these films. 
 
Figure 2 shows the increase of mass and the water uptake for each solfonated film type. A mass 
increase was observed after sulfonation of the grafted polymer films and these percent values are close 
correlation with the percent of grafting. It suggests that sulfonation process was accomplished, where 
one sulfonic group is bonded to one aromatic ring of styrene. The water uptake characteristic is 
coherent with the degrees of styrene grafting and increase of mass after sulfonation. Low degree of 
water uptake for PTFE films was observed that presented low degree of grafting and low gain of mass 
after sulfonation process. The value of percent of water uptake for PVDF film is close to that for 
Nafion® film and it suggest sulfonation and styrene grafting process are enough to achieve the values 
of this parameter for Nafion®. 

 
FIG. 2. Percent gain of mass of polymer films after sulfonation process and their percent of water uptake. 
Comparison with degree of water uptake of Nafion®. 
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Fig. 3. Here, the values of IEC are coherent with degrees of grafting, gain of mass after sulfonation 
and water uptake for each polymer film type. Again, the PVDF film presents a value of IEC close to 
that for Nafion® film. 

The tensile strength maximum was measured to evaluate the mechanical resistance for these polymer 
films that suffered aggressive process like irradiation grafting followed by sulfonation (Fig. 4). It was 
observed that fluoropolymer films like PTFE and PFA had low value for this parameter and it should 
be related to high crystallinity and the agressivity of applied process (grafting and sulfonation), where 
it was contributed for the weakness of final product. However, PVDF film showed a value of tensile 
strength maximum close to this parameter for Nafion®; it suggests PVDF styrene grafted and 
sulfonated film can be an alternative material to be compared to Nafion® films and to be tested in fuel 
cells. 

 

FIG. 3. The IEC values for polymer films styrene grafted by electron beam under mutual grafting mode, warm 
and vacuum conditions. Comparison to Nafion® film. 

 
FIG. 4. The tensile strength maximum values for polymer films styrene grafted by electron beam under mutual 
grafting mode, warm and vacuum conditions. Comparison to Nafion® film. 

In the same way, the PVDF styrene grafted film by ion tracking process received from Argentina 
(cooperation with Mr Rubén Mazzei, Argentina) presented gain of mass after sulfonation process as it 
is observed in Fig. 5. These films showed very high water uptake (minimum 50% to above 400% in 
mass) and it is related to the increase of surface proportioned by ion tracking process. 

Table 2 shows the characteristics and parameters for ion tracking PVDF films and after sulfonation of 
these styrene grafted films. It seems that IEC is favourable when pore size is high, but it should be 
confirmed. The film with 14 µm thickness can be a good candidate to be compared to Nafion® films 
because of its high values of IEC and tensile strength.  

The sulfonated films were characterized by their ion exchange capacity and the results are shown in 
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FIG. 5. Percent gain of mass of ion tracking PVDF styrene grafted films after sulfonation process and their 
percent of water uptake. 
 
 
TABLE 2. CHARACTERISTICS AND PARAMETERS FOR OBTENTION OF ION TRACKING 
PVDF STYRENE GRAFTED FILMS AND AFTER THEIR SULFONATION PROCESS 

Sty. graft
(%) 

Irradiat. 
type 

Fluence 
(cm-2) 

Etch. 
time 
(h) 

Pore 
size 
(μm) 

Film 
thickn. 
(μm) 

Water 
uptake1 

(%) 

IEC 
(meq/g) 

Tensile 
strength 
(MPa) 

3 
Fission 

fragment 
(252Cf) 

1012 0.75 0.25 25 38   

3.5 S 110 MeV 1011 0.75 0.42 25 108 3.15 7 

8 S 110 MeV 1011 0.75 0.33 25 90   

23 S 110 MeV 1011 0.75 0.19 14 286 1.18 11 

69 S 110 MeV 1011 1  25 241 3.97  

74 S 110 MeV 1011 1.5  25 290 4.17  

74 S 110 MeV 1011 1.5  25 290 4.17  

75 S 110 MeV 1011 2  25 363   

92 S 110 MeV 1011 0.5  25 436 6.3  

Nafion®     25 50* 1.0 13** 

1 From dry membrane conditioned in water at 25 °C for overnight (dry weight basis). 
* From dry membrane conditioned in water at 100 °C for overnight (dry weight basis). 
** From machine direction and water soaked at 23 °C (R.C. McDonald, C.K Mittelsteadt, E.L. Thompson, Fuel Cells 4 

(2004) 208-213. 
 
 
Figure 6 shows the polarization curves for PVDF grafted films in a Pt/membrane/Pt electrochemical 
system; the Nafion® curve and Pt-Pt behaviour were compared. The current-potential behaviour 
results show for all curves five distinct regions: hydrogen evolution region (-500 mV – 400 mV), 
equilibrium potential, charge transfer (-400 mV – 200 mV), mixed control region (-100 mV – 600 
mV), mass transport (450 mV – 600 mV) and oxygen evolution (above 650 mV). 
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FIG. 6. Polarization curves for ion tracking PVDF styrene grafted films. Comparison with polarization of 
Nafion® film and Pt electrodes. 

The equilibrium potential refers to Nernstian behaviour and the charge transfer is related to the Butler-
Volmer equation that describes the electrochemical system kinetics and it shows the way in which 
current density varies with exchange current density, over potential and the transfer coefficients. The 
mixed region is an intermediate situation where there is a control of the current by mass and electron 
transfer steps and it corresponds to much of the rising part of I-E curve. The mass transport region 
relate the current to the chemical changes at the electrode by equation the flux of electroactive species 
with the flux of electrons; in this case, the electroactive species concentration on electrode surface is a 
function of potential but the current is not and under a maximum concentration flux, the current is 
limited (IL) by electroactive species diffusion. 
 
The principal changes are in value of potential where charge transfer start (obtained by Tafel curves) 
and the potential interval that mixed control occur. The Pt-Pt curve shows mixed control anodic region 
interval of 450 mV; in Pt/Nafion/Pt curve, this region has an interval of 650 mV. Polarization curve of 
Pt/PVDF film 6% grafted/Pt is observed an interval of 400 mV and the 4.3% and 2% grafted films 
have values of 400 mV and 300 mV, respectively. The values that define the mass region can be 
extracted of these curves: to Pt-Pt curve the mass region starts in 600 mV (IL around 1.0 × 10-4 A), to 
Pt/ Nafion/Pt curve the mass region starts in 500 mV (IL around 2.25 × 10-4 A) and to Pt/ PVDF film 
6% grafted/Pt curve the mass region starts in 550 mV (IL around 1.7 × 10-4 A); another PVDF grafted 
films did not present well defined limit current. 
 
These results show a lower potential range in mixed control region for Pt-Pt system in H2SO4 0.1 mol 
dm-3 than those observed in Pt/Nafion®/Pt system and it suggests mixed control is important for 
Nafion® system. The high limit current value observed in mass region for Nafion® system suggests 
the maximum electroactive species concentration flux occur in high intensity when this membrane is 
used compared to Pt-Pt system (without membrane), it means that diffusional phenomena of 
electroactive species is favoured if Nafion® membrane is used; Nafion® potentialize the conduction 
nature of electrolyte. More electrochemical studies should be performed in PVDF grafted membranes 
to verify the behaviour between degree of grafting/sulfonic groups available and this electrochemical 
parameters; the Pt/PVDF film 6% grafted/Pt curve shows electrochemical potentialities if this 
membrane is used and it can be a good electrolyte. 
 
4.2. Radiation grafting of PVC and migration of DEHP 
 
In Table 3 the degree of grafting of DMAEMA into PVC for different EB irradiation doses is shown, 
and in Fig. 7 shows the Mid-ATR-FTIR spectra of irradiated and non-irradiated samples which have 
the absorption bands indicating the grafting.  
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TABLE 3. DEGREE OF GRAFTING OF DMAEMA-HEPARIN INTO PVC, ACCORDING TO 
IRRADIATION DOSE AT DOSE RATE 11.29 kGy/s 

Dose 
Degree of 

grafting (%) 
Average (standard deviation) 

 
5 kGy 
 

5.09 
4.91 
4.93 

 

 
4.98 (0.10) 

15 kGy 
 

8.53 
7.84 
8.72 

 
8.36 (0.46) 

 

Figure 7 shows absorption bands at 1500–1700 cm-1 region that is related to C-N bond vibration. 
These bands are present in both heparin and the DMAEMA, however, the absence of absorption band 
at 760 cm-1 characteristic of S-O vibration bond present at heparin molecule does not confirm its 
presence at irradiated substrate. The use of FTIR methodology for sample analysis is inadequate to 
verify the heparin presence because it was used in very small quantities at grafting solution (0.25% of 
heparin); the next step in this characterization will be another sample preparation methodology, like 
substrate dissolution and later film sample formation on KBr support. For gamma radiation at these 
doses, even at simultaneous grafting, the degradation of heparin does not happen [8]. So it was 
understood that this degradation was not happening in this electron beam procedure, but as the 
reaction mechanism is different, new characterizations should be made.  

 
FIG. 7. Mid-ATR-FTIR spectra of irradiated and non-irradiated samples. 

The developed analysis by UV spectrophotometry had a linear response and it is a simple method that 
was successfully used for DEHP determination. Figure 8 shows the calibration curve for DEHP 
quantitative analysis. 
 
The DEHP concentration determined by UV spectrophotometry at irradiated (15 kGy dose) and non-
irradiated samples after immersion essay was 1.95 ppm and 4.47 ppm, respectively. It shows that 
DEHP migration is lower at irradiated samples than non-irradiated samples; this irradiation 
methodology could be an alternative to decrease the DEHP migration effect at blood packages but 
more experiments in this way must be performed. 
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The diffusion coefficients were estimated as 8.6 × 10-14 m2/s into the PP and 6 × 10-6 m2/s into the 
grafting layer and into the iron solution. 
 
Geometrical considerations, inclusion of experimental parameters like pH, chemical potential, 
concentration, porosity etc. are necessary in order to continue with this simulation study. When kinetic 
migration experiments were done, this simulation will be applied in order to evaluate the diffusion 
coefficient of DEHP in PVC. 
 
5. CONCLUSIONS 
 
The high dose rate present in electron beam accelerators was not a limiting factor in the grafting 
process. The mutual grafting is an attractive technique since it has shown good reaction yields, which 
depend on the parameters chosen besides the polymer/monomer system. The degree of grafting of 
DMAEMA into PVC films has strong dependence on dose rates and it reduces the migration of DEHP. 
The styrene grafting occurs always in all studied parameters. The mutual styrene grafting can be 
performed at industrial EB accelerators under warm and vacuum conditions to achieve better process 
yields. 
Functionalized ion tracked PVDF have potential to be used in polymer electrolyte membrane for fuel 
cell (PEMFC). The water uptake is always above 50%, due the high surface area done by ion tracking, 
even in low percent of grafting. The excellent degree of water uptake does not compromise the 
mechanical properties of polymer films. Enhanced properties of grafted materials concerning better 
mechanical resistance and decrease of additive migration may be useful to optimize the new materials 
for packaging industries. 
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Abstract 
 
The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer containing epoxy ring, onto 
polypropylene fibres. The ring opening of the epoxy ring in GMA by different amino groups was studied to introduce various 
chelating agents. Some properties of grafted fibres were studied and the possibility of its practical use for water treatment 
from iron and manganese metals was investigated. The radiation initiated grafting of acrylic acid (AAc) or acrylamide 
(AAm) monomers onto poly(vinyl alcohol) (PVA), a 2-acrylamide-2-methyl propane sulfonic acid (AMPS) polymer was 
studied. Cationic/anionic membranes were also prepared by radiation-induced grafting of styrene/methacrylic acid 
(Sty/MAA) binary monomers onto LDPE films. To impart reactive cationic/anionic characters in the grafted membranes, 
sulfonation and alkaline treatments for styrene and carboxylic acid groups, respectively, were carried out. The possibility of 
their applications in the selective removal of some heavy metals was studied. The prepared grafted materials had a great 
ability to recover the metal ions such as: Ni2+, Co2+, Cu2+, Cd2+, Mg2+, Zn2+, Mn2+ and Cr3+ from their solutions. It was found 
that AMPS content in the grafted copolymers is the main parameter for the selectivity of the copolymer towards metal ions. 
The higher the AMPS content the higher the selectivity towards Co and Ni ions. In case of LDPE-g-P(STY/MAA), the 
sulfonation and alkaline treatments are the most effective methods to influence metal absorption and swelling behaviour of 
the prepared membranes. Graft composition, dose and pH have also a great influence on the membrane characteristics and 
applicability in wastewater treatments from heavy and toxic metals. Results revealed that the prepared grafted materials with 
different functionalized groups are promising as ion selective membranes and could be used for wastewater treatment.  
 
1. OBJECTIVE OF THE RESEARCH 
 
The objective of this work is to use gamma rays and electron beam irradiation for grafting of various 
monomers containing reactive functional groups such as carboxylic acid, amide, nitrile, oxime groups 
onto different kinds of natural and synthetic polymers. New grafting techniques are used to reduce the 
irradiation dose and overall cost of manufacturing of adsorbents. Some additives like acids and organic 
salts were used to obtain high grafting chains by chemical modification to enhance the functionality of 
the supported materials. The new adsorbents should be showing selectivity toward different kind of 
heavy metal ions. Material supported-reactive agents are common to many separation technologies, 
such as water softening, removal of heavy metal ions from industrial waste water, recovery of precious 
metals, separation, selection and purification of metal elements.  
 
2. INTRODUCTION 
 
Material supported-reactive agents are common to many separation technologies, such as water 
softening, removal of heavy metal ions from industrial wastewater, recovery of precious metals, 
separation, and purification of metal elements. There are a number of techniques for the removal of 
metal ions from water but solvent extraction and ion exchange methods are the most widely used ones. 
Solvent extraction has the advantage of fast kinetics, high capacity and selectivity for the target metal 
ions [1, 2] but it is normally not considered for dilute solution of the metal ions due to the large 
requirement of the extractants. One of the important materials which could be used for such treatments 
is the functionalized polymers are capable of metal chelation and/or complexation with their reactive 
functional groups such as carboxylic acid, amide, nitrile, oxime groups.  
 
Functional groups can be introduced in the polymeric materials by radiation grafting technique. 
Researches on fibrous reactive agents have shown many advantages over their resin counterparts. The 
high specific surface areas of fibrous supports improve the accessibilities of functional groups 
resulting in higher reaction rate than the resin type agents.  
 
Metal chelating radiation grafting supported hydrogels as ion exchangers can be used to remove the 
target metal ions at lower concentrations though the kinetics are slower than that of solvent extraction. 
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They are synthesized either by graft polymerization of functionalized monomers or by incorporation 
of chelating groups into the polymer matrix by stepwise functionalization of existing polymers. 
Although the number of known chelating ligands is large [3-6], the donor atoms in most cases are N, 
O, P and S. Grafted hydrogels containing amide, amine, carboxylic acid and ammonium groups, can 
bind metal ions and be a good polychelatogens for water purification applications [7]. The selective 
removal and recovery of metal ions has a potential in vast range of applications in conservation of the 
environment and use of resources. In respect of this point, polymeric materials have been extensively 
studied and many reviews are available in the field [8, 9]. 
 
In this work, PVA containing AMPS-co-AAc of AMPS-co-AAm units were prepared using gamma 
irradiation. The selectivity and affinity of the prepared terpolymer towards Co, Ni, Cu and Cr from 
aqueous solutions were investigated. Polypropylene (PP) was used as a substrate for various reasons; it 
is a highly useful thermoplastic, broadly used as a molding in many extruded forms and it can be 
grafted with acrylate monomers. Therefore, the direct radiation grafting technique was used to graft 
glycidyl methacrylate (GMA) monomer containing epoxy ring, onto PP. Also, in this work, the 
cationic/anionic membranes were also prepared by radiation-induced grafting of Styrene/methacrylic 
acid (Sty/MAA) binary monomers onto LDPE films followed by sulfonation and alkaline treatments. 
Properties of the radiation grafted membranes were studied. The possibility of their practical 
applications for different separation and wastewater treatment from heavy and toxic metals were 
studied and evaluated. 
 
3. MATERIALS AND METHODS 
 
3.1. Preparation of chelating fibres 
 
The grafted fibre PP-g-GMA containing an epoxy group, 1,4-dioxane, which acted as medium, and an 
amine compound such as diamino ethane, hydrazine hydrate, thiosemi carbazide, ethanol amine and 
ammonia were put into a 100 mL Wolff bottle equipped with an electromagnetic stirrer, a reflux 
condenser, and a heating bath. After the reaction, the obtained chelating fibres were washed with 
deionized water.  
  
3.2. Batch procedure 
 
The adsorption amount and distribution coefficients, Kd of metal ions between the chosen reactive 
polymer and dissolved metal ions were investigated out at constant temperature by a batch procedure. 
500 mL solution of metal ions and known weight of the reactive polymer were stirred for 24 h. The 
reactive polymer was previously pre-cleaned with 2.0 M HNO3. The concentration of ion remaining in 
the solution was detected by atomic absorption instruments (AAs) and confirmed by inductively 
coupled plasma-mass spectrometer (ICP-MS). The adsorbed metal was calculated as follows: 
 

A= [V (C1 - C2)]/W 
 

where A is adsorbed metal (mg/g), W is the weight of the chelating fibre (g), V is the volume of 
solution (L); and C1 and C2 are the concentrations of metal ions before and after adsorption, 
respectively (mg/L). 
  
The distribution coefficient (Kd), can be calculated using the following equitation: 
݀ܭ  = wt. of	metal	ion	on	the	polymer	(mg)/wt. of	the	reactive	groups	(g)wt. of	metal	ion	in	solution	(mg)/volume	of	solution	(cmଷ)  

 

Kd 
__
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3.3. Metal determination by AAs and ICP-MS 
   
Trace metal concentration in the remaining solution were determined according to the operating 
instructions of the manufacturer (Unicam model Solaar 929 atomic absorption) and (TJA solutions; 
plasma optical emission-mass spectrophotometer POEMS3). Synthetic metal standards having 2.0 mol 
dm-3 HNO3 as the experimental samples were used for calibration. 
 
3.4. Selectivity coefficient 
   
FeCl3 and MnCl2 solutions (about 1 mmol dm-3) are prepared in a citrate buffer (10 mmol dm-3) at pH 
5.6 to prevent precipitation of the hydroxides of the metal ions. A mixture of 10 mL of a Fe3+ solution 
and 10 mL of a Mn2+ solution was added to about 40 mg of fibre. The mixture was rotated at 25°C for 
24 h. The contents of Fe3+ and Mn2+ remaining in the solution were determined by AAs. For 
determining the amounts of Fe3+ and Mn2+ chelated on the fibre, the fibre was washed, added to 10 mL 
of 1 mmol dm-3 HNO3, and rotated for 24h, at 25°C to desorb the chelated metal ions. The amounts of 
desorbed Fe3+ and Mn2+ were measured by (AAs). The selectivity coefficients Ks, were calculated for 
the selective chelation reaction: 
 

F―Mn + Fe3+ ↔ F―Fe + Mn2+ 

 
Ks = ([Fe3+]2/[Mn2+]3)f × ([Mn2+]3/[Fe3+]2)s 

 
 
where F represents the fibre, s, the solution. 
 
 
4. RESULTS AND DISCUSSION 
 
The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer 
containing epoxy ring, onto polypropylene (PP). The effect of preparation conditions on the grafting 
yield and the optimum conditions at which the grafting process proceeds homogeneously were 
determined. 
 
4.1. Effect of solvent 
 
Solvents are basically used in radiation grafting processes to enhance the degree of accessibility of 
monomer to grafting sites within the polymer. The influence of different kinds of solvents on the 
grafting yield is investigated and shown in Fig.1. It can be seen that the highest degree of grafting was 
obtained with 1,4-dioxane as solvent. The results could be attributed to ability of 1,4-dioxane to swell 
the base polymer and enhance the efficiency and uniformity of the grafting.  
 
4.2. Reactivity of the epoxy group 
 
The pendant epoxy group in GMA offers a facile way of introducing a wide variety of novel 
functionalities into preformed supports. The epoxy group is characterized by a high reactivity and 
ability to enter into a vast number of reactions. This reactivity is caused by the presence of the highly 
strained three-membered ring with deformed valency angles, and shortened bond between the carbon 
atoms. The epoxide reacts with nucleophiles such as different amines; hydrazine hydrate, ethanol 
amine, diethanol amine, thiosemi carbazide, and ammonia by a ring-opening reaction. The possible 
use of such prepared fibre in some practical applications such as water treatment from iron and 
manganese metals was investigated. 
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4.3. Selectivity of the reactive polymer towards iron and manganese 
 
The knowledge of the selectivity of different reactive polymers towards iron and manganese allows 
choosing the most suitable polymer for a given metal ion in order to have a high recovery of such 
metal. The selectivity of different reactive polymers is investigated using mixture of iron and 
manganese in the same feed solution. A batch system containing an equimolar feed solution from iron 
and manganese is prepared. The selectivity ratio uptake of PP-g-GMA grafted fibre having 120% 
degree of grafting, treated with different amino groups, towards iron and manganese mixture in the 
same feed solution, and distribution coefficients are listed in Table 2. 
 
Since the different reactive polymers have a high affinity towards Fe3+ it might be possible that the 
polymer will show some selectivity between Fe3+ and Mn2+. The selectivity coefficient of fibre for Fe3+ 
and Mn2+ metal ions was investigated and the results are given in Table 3. It can be seen that the 
affinity of the polymer fibre was much higher for Fe3+ than Mn2+ metal ions. The selectivity coefficient 
observed for Fe3+ was 1.3 × 102. 
 

TABLE 2. SELECTIVITY RATIO UPTAKE AND DISTRIBUTION COEFFICIENT FOR IRON 
AND MANGANESE MIXTURE 

 Fe3+ + Mn2+  

 Metal 
uptake 

mg/g 

 

Kd 

Metal 

uptake 

mg/g 

 

Kd 

Selectivity ratio 
(M1/M2) 

Hydrazine hydrate 74 247 35 117 2.11 

Ammonia 27 90 26 87 1.03 

Diethanol amine 34 113 24 80 1.4 

Thiosemicarbazide 22 73 10 33 2.2 

Ethanol amine 26 87 20 67 1.3 

 

TABLE 3. SELECTIVITY COEFFICIENTS OF PP-G-GMA FIBER HAVING 120% DEGREE OF 
GRAFTING, TREATED WITH HYDRAZINE HYDRATE FOR Fe3+ TO Mn2+ 

Fe3+ (mmol)  Mn2+ (mmol) 
 

 

On fibre In solution On fibre In solution Ks 
 

0.82 
 

0.515 
 

0.24 
 

1.57 
 

1.3 × 102 

 
 

From the results of individual metal uptake and also, the selectivity of two metals, it can be seen that 
the reactive polymer of PP-g-GMA having 120% degree of grafting and treated with hydrazine hydrate 
shows the maximum metal ion uptake if compared with other reactive polymers treated with other 
amino groups. Also, the results revealed that all the treated reactive polymers had some selectivity 
towards iron rather than manganese. 
 
4.4. Efficiency of the reactive polymer 
 
To explore the applicability of the sorbent reactive polymer, it was important to obtain knowledge on 
its sorption capacity towards iron and manganese ions. These are carried out by equilibrating a fixed 
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amount of the sorbent with a series of metal ion solutions of gradually increasing concentration. A 
maximum amount of metal ion can be removed from the solution when the chelating sites of the 
sorbent are saturated. 
 
Table 4 presents the effect of initial feed concentration of Fe3+ and Mn2+ on its uptake by PP-g-GMA 
having degree of grafting of 120%, treated with hydrazine hydrate. It can be seen that increasing the 
concentration of metal ions results in increasing the amount of iron and manganese uptake (ppm) to 
reach a certain limiting value. Thereafter, it levels off at higher feed concentration. 

 
TABLE 4. EFFECT OF INITIAL CONCENTRATION OF Fe3+ AND Mn2+ ON ITS UPTAKE BY PP-
g-GMA 

Initial 
concentration 
(ppm) 

Max.Fe3+ 
uptake 
(ppm) 

 
uptake 
(%) 

 Max.Mn2+ 
uptake (ppm) 

 
uptake (%) 
 

25 

50 

100 

500 

1000 

1500 

24.43 

48.12 

94.84 

296.64 

298.54 

299.4 

 97 

 96 

 94 

 60 

 29 

 19 

23.52 

46.65 

92.2 

212.47 

214.2 

215.4 

94 

93 

92 

42 

21 

14 

4.5. Effect of salt anion type 
 
The effect of salt anion type on the uptake of metals under investigation was determined. Table 5 
shows the maximum uptake of iron and manganese by PP-g-GMA having 120% degree of grafting 
and treated with hydrazine hydrate, using different anion type of iron and manganese. 

TABLE 5. EFFECT OF METAL SALT ANION TYPE ON THE UPTAKE OF THE OTHER 
METALS (mg/g). 

  Fe2(SO4)3  Fe(NO3)3  FeCl3 
 Fe Mn Fe Mn Fe Mn 
MnSO4 

MnCl2 

Mn(NO3)2 

74 

73 

69 

35 

33 

36 

75 

69 

67 

30 

36 

33 

73 

74 

66 

29 

30 

34 

 

From Table 5 it can be seen that the maximum uptake of iron and manganese and selectivity ratio are 
almost the same at different anion type. So it can be concluded that, maximum uptake and selectivity 
of the prepared reactive polymers is not affected by changing the salt anion. 
 
4.6. Synthesis of metal ions selected grafted polymers from poly (vinyl alcohol), 2-acrylamido-2-
methyl propane sulfonic acid and acrylic acid or acrylamide.  
 
The graft-polymers were prepared from poly(vinyl alcohol) (PVA), 2-acrylamido-2-methyl propane 
sulfonic acid (AMPS), acrylic acid (AAc) or acrylamide (AAm) monomers irradiated using gamma 
rays as initiator. Characteristics and some properties of the prepared grafted polymers were 
investigated. Also, the possibility of their applications in the selective removal of some heavy metals 
was studied. The prepared grafted polymer had a great ability to recover the metal ions such as: Ni+2, 
Co+2, Cu+2 and Cr+3 from their solutions. 
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4.7. Effect of AAc and AAm terpolymer content on the swelling % in water 
 
The effect of feed solution composition i.e. AAc and AAm copolymer content on the swelling of the 
prepared grafted PVA/AMPS-AAc or PVA/AMPS-AAm terpolymer hydrogels in water was studied. 
An irradiation dose of 20 kGy was applied and water as used a diluent, monomer/copolymer 
concentration was 20% and the results are presented in Fig. 2. It can be seen that the swelling 
behaviour of the copolymer is greatly influenced by grafted polymer composition and the type of 
crosslinked polymer used for the polymer formation (AAc or AAm). For PVA/AMPS-AAc system, the 
swelling degree decreases as the AAc content in the graft-polymer increases. Whereas, for 
PVA/AMPS-AAm system, the swelling degree increases as the AAm content in the graft polymer 
hydrogel increases to reach a maximum at grafted-polymer containing 80% AAm. Thereafter, the 
increase in AAm content leads to decrease in grafted-polymer water absorbency. From Figure 2, it can 
be observed also that the swelling of PVA/AMPS-AAm is much higher than that for PVA/AMPS-AAc. 
These results may be due to the association of the carboxylic groups and the intermolecular hydrogen 
bonding between the COOH and OH of AAc and PVA. As the AAc content increases, the number of 
the associated groups increases and consequently, the intermolecular hydrogen bonding also increases 
which prevent a space for the AAc chain to swell freely in water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2. Effect of AMPS/AAm or AMPS/AAc composition in the swelling behaviour of PVA-AMPS/AAm graft 
copolymer. 

 
 
4.8. Possible applications of the prepared graft copolymer 
 
Studies have been made to investigate the ability of the prepared grafted materials in the removal of 
some toxic metals from their wastes such as Co, Ni, Cu and Cr ions. PVA/AMPS-AAc or PVA/AMPS-
AAm ter-polymers of different compositions were prepared and the affinity of such terpolymers 
towards Co, and Cu individually was investigated and shown in Fig 3 and Fig. 4. In general, it is clear 
that, the affinity of PVA/AMPS-AAc or PVA/AMPS-AAm grafted polymers of different compositions 
towards the metals under investigation decreases with increasing the AAm or AAc acid content in the 
prepared grafted terpolymers. The affinity decreases due to the increase in crosslinking density as a 
result of increase in AAc or AAm content in the grafted polymers. Such increase in crosslinking 
density restricts the diffusion of metal ions into the bulk of copolymer. 
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PVA/AAc has a great affinity towards Co rather than Ni, when these metal ions exist in a mixture. 
However, Co or Ni-imprinted PVA/AAm and Co or Ni-imprinted PVA/AMPS have almost the same 
affinity towards Co or Ni. Effect of different PVA/AAc compositions on the selectivity of a mixture of 
Co and Ni was investigated. It was found that as AAc content increases the selectivity towards Co, 
however, the selectivity towards Ni decreases by increasing AAc content. 
 
Figure 6 shows that the affinity of Co-imprinted PVA/AAc towards Co is higher than that of Ni, 
meanwhile, Ni-imprinted polymer shows high affinity towards both Co and Ni. This is probably due to 
the strong ionic interaction between PVA and AAc which may increases the stability of the complex 
formed between the copolymer and imprint molecule. 
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FIG. 6. Metal uptake using metal-imprinted and non-imprinted PVA/AAc of composition 1:1 wt%. 

 
In general, it can be concluded that, the imprinted polymers prepared by radiation grafting in order to 
compete with heavy metals and extract them from wastewater, especially, that prepared from 
(PVA/AAc) copolymer and PAMPS, gave higher selectivity towards heavy metal ions such as Co and 
Ni. 
 
4.9.3. Effect of different PVA/PAAc compositions on the selectivity towards Co and Ni in a mixture 
 
The effect of different compositions of non-imprinted and imprinted polymers on the affinity and 
selectivity towards Co and Ni was studied and shown in Figures 7–9. It was found that, as the AAc 
content increases in the copolymer, the selectivity towards Co increases, meanwhile, the selectivity 
towards Ni decreases. The data shows also that imprinting the polymer with Co or Ni metals or by 
increasing the AAc content in the copolymer decreases the affinity of polymer towards Ni. The affinity 
as well as the selectivity of Co-imprinted polymer increase with increasing poly(AAc) content in the 
copolymer compared with that obtained for non-imprinted or Ni-imprinted polymer. However, the 
selectivity and affinity for Co and Ni-imprinted polymer towards Co is higher than that for non-
imprinted ones. The affinity of Ni towards Ni-imprinted polymers is higher than that of Co-imprinted. 
 
4.10. Separation of Cu2+ from solution containing Fe3+  
 
Poly(vinyl alcohol) membrane (PVA) was modified by radiation graft copolymerization of acrylic 
acid/styrene (AAc/Sty) comonomers and the Cu and Fe ions-transport properties of these membranes 
were investigated using a diaphragm dialysis cell. In the feed solution containing CuCl2 or a mixture 
of CuCl2 and FeCl3, the PVA-g-P(AAc/Sty) membranes showed high degrees of perm-selectivity 
towards Cu2+ rather than toward Fe3+. The permeation of Cu2+ ions through the membranes was found 
to increase with the decrease in the grafting yield. The role of carboxylic acid and the hydroxyl groups 
of the grafted membranes in the transportation process of ions is discussed. 
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FIG. 7. Metal uptake from their mixture solutions, using non-imprinted PVA/AAc of different compositions. 
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FIG. 8. Metal uptake from their mixture solutions, using Ni- imprinted PVA/AAc of different compositions. 
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FIG. 9. Metal uptake from their mixture solutions, using Co- imprinted PVA/AAc of different compositions. 
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4.11. Radiation induced graft copolymerization of binary monomers (MAA/Sty) 
 

Preparation of graft copolymers by radiation induced graft copolymerization of methacrylic acid 
(MAA) and styrene (Sty) in a binary monomers mixture onto low density polyethylene films was 
studied. The graft copolymerization was carried out using the direct method in which the polymer 
substrate, monomers and solvent were subjected to 60Co gamma rays. The effect of grafting 
conditions, such as solvent monomer concentration and composition and dose on the grafting process 
was determined. 
 

4.11.1. Effect of solvent on the grafting of MAA/Sty binary monomers onto LDPE 
 
From Table 6 shows the effect of the mixture MeOH/H2O composition on the degree of grafting of 
MAA/Sty binary monomers of composition 50:50 (wt%), comonomer concentration 20 (wt%), film 
thickness 40mm, and irradiation dose 20 kGy. It can be seen that the degree of grafting increases as the 
water content in the reaction mixture increases. The presence of water resulted in an enhancement of 
the grafting yield as compared to that obtained when MeOH was used alone. 
 

TABLE 6. EFFECT OF MeOH/H2O COMPOSITION ON THE DEGREE OF GRAFTING OF 
MAA/Sty BINARY MONOMERS 

 MeOH/H2O 
 Composition (wt %) 

 Degree of grafting (%) 
  

 
 100:0 170.0 

 90:10 250.4 

 80:20 300.3 

 70:30 351.3 

 

4.11.2. Effect of irradiation time and dose on the grafting of MAA, MAA/Sty onto LDPE 
 
Figure 12 shows that the grafting rate increases with irradiation time up to 8 h, and then slows down at 
longer times. From Figure 13 it can be seen that the degree of grafting increases with dose to reach the 
maximum, 80 and 211 wt% graft yield at 15 kGy, respectively, and then decreases as the dose 
increases. These results indicate that, there is a critical dose at which maximum radical yield occurs 
leading to an increase in percentage of grafting. The decrease in percentage of grafting beyond 
optimum dose may be attributed to the fact that at higher doses, chain degradation of poly(methacrylic 
acid) may occur [10].  
 

4.12. Effect of comonomers composition 
 
Figure 14 shows the effect of comonomers composition on the grafting yield of MAA/Sty onto LDPE. 
Increasing the Sty content in the binary mixture resulted in increasing the degree of grafting. This is 
due to the inhibition and protection effects of styrene on the degradability of PMAA graft chains. Also 
the presence of Sty may inhibit the homopolymerization of MAA by resonance stabilization of its 
benzene rings.  
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FIG. 12. Degree of grafting vs. irradiation time for various MAA concentrations (wt%). 
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FIG. 13. Effect of dose on the grafting of MAA and Sty onto LDPE films of thickness 40 μm, in MeOH as a 
diluent. Comonomer concentration 20 wt%, (a) LDPE-g-Sty (b) LDPE-g-MAA and (c) LDPE-g-MAA/Sty (50/50 
wt%). 
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 FIG. 14. Effect of Sty/MAA composition on the degree of grafting in presence of methanol as a diluent. LDPE 
film thickness 70 µm; comonomer concentration 20 (wt%); dose 15 kGy. 
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4.12.1. Sulfonation and alkaline treatment of the grafted copolymers 
 
Further chemical treatments have been carried out to impart excellent properties for use in the field of 
ion-exchange membranes in wastewater treatments and separation processes. The physical and 
chemical properties of the grafted membranes and their applications as ion exchangers were studied. 
The hydrophilic properties of the chemically treated grafted copolymers significantly increase by 
sulfonation and alkaline treatments (Figures 15–16). The swelling increases continuously as the degree 
of grafting increases. Such behaviour may be expected from the increase in the ionic content of the 
membrane as the graft content increases. 
 
The perm-selectivity of this graft copolymer may be high towards different metal ions. This can be 
achieved by introducing such easily ionizable groups (anion and cation) by sulfonation and/or alkaline 
treatment. Introducing of these electrolytic groups into the grafted chains improve the hydrophilic 
properties. 
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FIG. 15. The equilibrium swelling of non sulfonated and sulfonated LDPE-g-(MAA/Sty) 50/50 wt%, graft 
percentage 100%. 
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FIG. 16. Effect of degree of grafting on degree of swelling of sulfonated LDPE-g- (MAA/Sty)(50/50), 3h. 
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4.12.2. Effect of grafting yield on the ion exchange capacity of the grafted membranes 
 
The IEC of membranes of comonomer composition (90/10) MAA/Sty and the results are shown in 
Fig. 17. It can be seen that, the higher degree of grafting the higher IEC of the membrane which reflect 
the increase in carboxylic acid groups content with grafting. However, the increase in IEC is not 
pronounced. The effect of grafting percentage and sulfonation reagent (concentrated sulphuric or 
chlorosulfonic acid) on the ion exchange capacity was investigated and the results are shown in Fig. 
18. It is observed that, the higher the degree of grafting, the higher is the ion exchange capacity of a 
membrane for both membranes that sulfonated with chlorosulfonic or sulphuric acid. As the degree of 
grafting increases, the number of ionic sites in a membrane also increases. The IEC is increased 
significantly by sulfonation and alkaline treatments of the functional groups in the graft copolymer. 
 
It can be seen from Fig. 18 that the sulphuric acid treated membranes have little exchange capacity 
with K+ ions than that chlorosulfonic acid sulfonated membranes (the sulfonation time for both H2SO4 
and chlorosulfonic acid was the same, 1.5 h). The grafting of poly (MAA/Sty) into LDPE films and 
subsequent sulfonation with H2SO4 for 1.5 h results in ion exchange capacities in the range of 1.9–3.4 
meq/g of the dry polymer depending on the degree of grafting in the range of 60−220%. However, 
when the sulfonation was carried out with chlorosulfonic acid, the ion exchange capacity of 4.2 meq/g 
was achieved; this value is acceptable with respect to common ion exchangers (Amberlite IR 3–
5 meq/g). 
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FIG. 17. Effect of degree of grafting of LDPE-g-(MAA/Sty) (90/10wt%) on ion exchange capacity (IEC). 
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FIG. 18.IEC vs. degree of grafting of sulfonated LDPE-g-MAA/Sty (50/50 wt%). 
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Abstract 
 
Track etched functionalized nanoporous β-PVDF membrane electrodes, or functionalized membrane electrodes (FME), are 
thin-layer cells made from poly(acrylic acid) (PAA) functionalized nanoporous β-poly(vinylidene fluoride) (β-PVDF) 
membranes with thin Au films sputtered on each side as electrodes. The Au film is thin enough that the pores of the 
membranes are not completely covered. The PAA functionalization is specifically localised in the walls of the nanoporous β-
PVDF membrane by grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as Pb2+, from aqueous 
solutions concentrating the ions into the membrane. After a time the FME is transferred to an electrochemical cell for 
analysis. A negative potential is applied to the Au film of the FME for a set time to reduce the adsorbed ions onto the Au film 
working electrode. The other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic 
stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations in the original 
solution. The calibration curve of charge versus log concentration has a Temkin isotherm form. The FME membranes are 9 
μm thick and have 40 nm diameter pores with a density of 1010 pores/cm2. This high pore density provides a large capacity 
for ion adsorption. Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface modified 
electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is performed at open circuit. The zero 
current intercept of the calibration for Pb2+ is 0.13 ppb (μg/L) and a detection limit of 0.050 ppb based on 3S/N from blank 
measurements. Voltammetry (CV) and chronoapmerometry (CA) were used to characterize the system. The apparent 
diffusion coefficient (D) for Pb2+ in the PAA functionalized pores was determined to be 2.44 × 10-7 cm2/s and the partition 
coefficient (pKM) was determined to be 3.08. 
 
1. OBJECTIVE OF THE RESEARCH 
 
Toxic metals content in water is usually on ppb (µg/L) levels. Reliable quantification of these low 
concentrations is difficult and the analysis equipment is not portable. The objective of the present 
research was to construct portable equipment with cation exchange polymer elebrode which is 
applicable for the analysis of aqueous solutions containing metal ions in ppb concentration. 
 
2. INTRODUCTION 
 
The maximum allowable levels for toxic metals in water are now set at low ppb (μg/L) levels. The 
maximum levels of Pb2+ in potable water established the European Environmental Agency (EEA) the 
United States Environmental Protection Agency (EPA) and recommendations from the World Health 
Organisation (WHO) are 7.2, 15.0, and 10.0 ppb respectively and the goal of the United States EPA is 
zero [1−3].  
 
Reliable quantification of these low concentrations is difficult time consuming and expensive. Also, 
the analysis equipment is not portable so the samples have to be sent a centralised lab which typically 
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These remaining radicals can be reacted with different monomers, such as RCOOH from acrylic acid 
(AA) to impart chemical functionalization to the nanopore interior without blocking the pores. The 
functionalized nanoporous β-PVDF membranes are then transformed into electrodes by the deposition 
of a thin gold or conductive layer onto the membrane surfaces to make an electrically conductive thin 
film. The metallic layer is thin enough (35 nm) that is does not completely cover the pores. The gold 
partially ingresses the nanopores during the sputtering [25].  
 
When the FMEs are immersed in a liquid sample they can selectively absorb certain ions, such as Pb2+, 
depending on their functionalization. They can then be removed from the sample, rinsed, and placed in 
an electrochemical cell for ASV analysis. β-PVDF is a very durable material with chemical and 
mechanical properties similar to Teflon and is nontoxic. 
 

3. MATERIALS AND METHODS 
 
Materials: β-poly(vinylidene fluoride) (β-PVDF) films of 9 µm thickness were provided by PiezoTech 
SA. Toluene, potassium hydroxide, potassium permanganate, potassium disulfite, acrylic acid (AA), 
Mohr’s salt ((NH4)2Fe(SO4)2 6H2O), sulphuric acid, C8H17N3 HCl (EDC), phosphate buffer saline 
(PBS), t-BuOH (C4H9OK 95%) were purchased from Sigma-Aldrich. Alexa Fluor R 488 hydrazide 
(C21H15N4NaO10S2) was purchased from Invitrogen. 
 
Irradiation: Prior to the swift heavy ion irradiation β-PVDF films are toluene-extracted for 24 h. The 
irradiation was performed at the GANIL irradiation centre (Caen, France). Films were irradiated with 
Kr ions (10.37 MeV/amu, fluence 107 to 1010 cm−2) in a He atmosphere. The irradiated films were 
stored at -20°C in a N2 atmosphere until chemical etching and radio grafting. 
 
Chemical etching: β-PVDF irradiated films were chemically etched using permanganate solution (0.25 
M) in a highly alkaline medium (KOH, 10 M) at 65°C for 30 min. After etching the membranes 
obtained were washed in potassium disulfite solution (15%) and deionized water. 
 
Radiografting: Etched β-PVDF films were immersed at room temperature into a radio grafting 
solution containing AA and Mohr’s salt (0.25%w/w) in a purgeable glass tube and then connected to a 
Schlenk line. After 15 min of N2 bubbling at room temperature, the glass tube is sealed and put into a 
thermostated water bath at 60°C for 1 h. The radio grafted film is washed with water and then Sohxlet 
extracted in boiling water for 24 hours in order to extract free homopolymer. The membrane was dried 
at 50°C under vacuum overnight. 
 
Field-emission scanning electron microscopy (FESEM): FESEM micrographs were acquired with a 
Hitachi S-4800 microscope. 
 
Infra-red spectroscopy: FTIR spectra of PVDF were obtained with a Nicolet Magna-IR 750 
spectrometer equipped with a DGTS detector. Spectra were recorded in attenuated total reflexion 
mode (ATR) using a diamond-crystal with single reflection. Spectra were collected by cumulating 32 
scans at a resolution of 2 cm−1. 
 
Confocal scanning laser microscopy (CSLM): Measurements were performed with a Leica TCS-SP2 
using an Ar laser (488 nm). Samples were observed in water with a 40× dry objective of numerical 
aperture 0.85. 
 
Atomic force microscopy (AFM): AFM images were acquired by tapping mode in air on a Multimode 
AFM system equipped with a Nanoscope III controller. 
 
Solutions: The Pb2+ solutions were diluted from 1.000 μg/mL AAS calibration standards (Alfa Aesar) 
or from PbCO3 powder 99% (VWR). The electrolyte for the voltammetry measurements was 0.1 M 
sodium acetate (Sigma-Aldrich). 18 Mohm deionised water (Aquadem Veolia) was used. 100 mL 
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polypropylene containers (VWR) were used for dilution and analysis to avoid loss of Pb2+ due to 
surface adsorption on glass [26]. 
 
Connections: The functionalized membrane was metalized by gold sputtering on both sides with a 
K550 gold sputter (EMITECH). Gold sputtering targets were purchased from NewMet (New Metals & 
Chemicals LTD). The metalized sides are then connected to 0.5 mm diameter stainless steel wires with 
silver paste (FERRO, CDS Electronique). The connections were water proofed with hot wax and 
fingernail polish. Kapton tape (3M) was used to cover the surface of the electrode for some 
experiments. 
 
Voltammetry: The voltammetry was performed in a three-compartment electrochemical cell controlled 
by a PalmSens potentiostat (PalmSens) or a BiStat 3200 (Uniscan). An Ag/AgCl (3M KCl) reference 
electrode (METROHM) was used for all measurements. 
 

4. RESULTS AND DISCUSSION 
 
The synthesis of functionalized radio grafted β−PVDF membranes was developed at the Laboratoire 
des Solides Irradies [24, 27−32]. β−PVDF polymer films are first bombarded by swift heavy ions 
(Figure 2a) and the tracks formed along the ion passage are revealed under alkaline chemical treatment 
(Figure 2b). The obtained nanoporous polymer membranes do not need to undergo subsequent e-beam 
irradiation to increase radicals in the polymer bulk for submicron pore diameters. After etching times 
less than one hour, the radical residues within the nanopore walls were sufficient for radio grafting 
[24]. In the presence of vinyl monomers such as AA, a radical polymerization takes place by a radio 
grafting to specifically functionalize the nanopore walls with a polymer hydrogel as demonstrated 
from FTIR spectra (Figure 2c). The double peak for CH2 vibrations in both films are seen at ~3000 
cm-1 and a new peak is seen for O-C=O stretching at 1710 cm-1 from the grafted PAA. 
  
 

 
FIG. 2. a) 9 µm thick β-PVDF films were irradiated with Kr ions (10.3 MeV/amu, fluence 107 to 1010 cm−2) 
under a He atmosphere. The dashed red arrows indicate the path of the Kr ions and the black/grey areas indicate 
the zone of irradiation damage in the film. b) The ion tracks were revealed under chemical etching. c) AR−FTIR 
spectra of etched (red) and grafted (blue) PAA β−PVDF films. d) Fluorescein isothiocyanate labelling reveals 
amine groups (green), i.e. surface oxidation and Alexa Fluor R hydrazide labelling reveals carboxyl group 
(blue), i.e. PAA. 
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The reduction peak at 0.62 V in Figure 6a is the reduction of one monolayer of Au oxide formed at 
potentials more positive than 0.850 V during the positive scan [33]. Integration of this reduction peak 
between 0.400 and 0.800 V gives a charge of 75 μC. The charge for the oxidation of a monolayer of 
gold (111) is 482 μC/cm2 [33]. This gives an area of 0.1556 cm2, however, the visual area of the FME 
is 0.126 cm2, 0.40 cm diameter, so the roughness factor (RF) of the electrode is 1.24. This high RF is 
likely due to the gold ingress in pores of the membrane during the sputtering, Figures 1a and 4a [25]. 
Figure 6b shows the same experiment as Figure 6a except the surface of the working was covered with 
Kapton tape in order to limit the measured current to the gold which ingresses in the pores of the 
membrane. This gives a surface area of 0.00229 cm2, based on the same calculation as Figure 6a. If we 
consider that the Au inside of the pores is 30 nm diameter disks then a geometric calculation of the 
surface gives a surface area of 0.00879 cm2 so what we have measured by the CV in Figure 6b is about 
25% of the disk model, however, is probably in the form of Au tubes with an outside diameter of 30 
nm with an unknown internal diameter and unknown length. The obvious thing to do would be to 
dissolve the membrane and observe the membranes side of the gold surface as was done by 
Vaidyanathan et al. [25] with polycarbonate membranes with 200 nm diameter pores.  β−PVDF is, 
however, difficult to dissolve and 30 nm structures are still a bit of a challenge to characterize so this is 
an on-going study. 
 
A CV of the FME in the same solution as Figure 6a with 0.025 mM Pb2+ added at a scan rate of 100 
mV/s (curve I) shows the electrochemical behaviour for the reduction and oxidation of the Pb2+ 
(Figure 6b). The Pb2+ reduction current peak occurs at -0.054 V and the oxidation peak occurs at -
0.033 V. The reduction peak current is ~14 μA and the oxidation peak current is ~9 μA. Even though 
the peak separation is only 0.021 V the difference in currents indicates the irreversibility of the Pb2+ on 
Au. This could be the result of alloy formation or oxidation of the deposited Pb by oxygen present in 
solution since no purging of the solution was performed. At a scan rate of 2 mV/s (curve II) the CV is 
sigmoid indicating that at long times the diffusion steady-state. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 7. a) CVs of a FME in a 0.025 mM Pb2+ solution with 0.1 M CH3COONa, pH ~4.5 (curve I scan rate = 100 
mV/s and for curve II scan rate = 2 mV/s). b) Chronoamperometric plot of a FME in a 0.0966 mM Pb2+ solution 
with 0.1 M CH3COONa, pH ~4.5. c) Current versus time-1/2 plot of the reduction part of the chronoamperometric 
plot. 
 

Chronoamperometry experiments were performed based on the potential window seen for the CVs in 
Figure 7a and 7b. The potential was switched from +0.400 V to -0.400 V and held for 5 seconds then 
switched back to +0.400 V and held for 5 seconds in order to measure the diffusion limited current 
(Idiff), the solution concentration was 0.100 mM Pb2+. The ratio of the oxidation current to the 
reduction current (iO/iR) at a given time after the potential step ranges from -0.124 to -0.030 which is 
much lower than predicted for a simple reversible reaction of -0.293 [37]. A plot of the current for the 
reduction step versus 1/t-1/2 yields a straight line with a good fit for the linear regression (Figure 7c).  
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During the immersion of a FME in a sample containing heavy metal ions, the membrane absorbs some 
of the metal cations by the PAA grafted in the nanopores of the β−PVDF membrane, Equation 1. The 
pKM of Pb2+ in bulk PAA is 4.0 at pH < 4.0, determined by potentiometric titrations and ion-selective 
electrodes [44]. 
 

Mn+ + R-COO- <--> R-COO-Mn+     (1) 
 

For the electrochemical analysis the FME is connected to a potentiostat and placed at a negative 
potential. The negative potential reduces the absorbed metals ions that are very close to the working 
electrode, from the poly (acrylic acid) in the pores to their metallic state at the Au surface, Equation 2. 

 
R-COO-Mn+ + ne- --> M(Au)      (2) 

 
After the reduction, square wave anodic stripping voltammetry (SW-ASV) analysis is performed in 
order to oxidize the metal from the working electrode surface and measure the resulting current, 
Equation 3. 
 

M(Au) --> Mn+ + ne-      (3) 
 
The parameters for the SW-ASV analysis were a frequency of 25 Hz, step amplitude of 25 mV and a 
potential increment of 4 mV. The optimisation of the deposition potential, time and immersion time 
follows: The deposition potential was determined by immersing a FME in 50 mL of stirred 3 μg/L 
Pb2+ sample for 10 minutes followed by SW-ASV. The charge increases with decreasing deposition 
potential (Figure 8a). There is, however, a local minimum at – 0.9 V. This is likely due to the hydrogen 
gas bubbles from proton reduction at the FME that could impair Pb2+ deposition, Equation 4. 

 
 2H+ + 2e- --> H2 (g)      (4) 

 
Also, for potentials more negative than -0.8 V there was a problem with the gold electrode adhesion 
due to the formation of hydrogen gas bubbles. Therefore, a deposition potential of -0.8 V was used for 
further studies. The absorption time was determined by immersing a FMS in 50 mL of a 3 μg/L Pb2+ 
sample for different times followed by deposition at – 0.8 V (Figure 8b). After 30 minutes equilibrium 
is established. Figure 8c shows the charge versus the deposition time. After 100 seconds a plateau is 
reached so a minimum deposition time of 100 seconds is used for further studies. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 8. a) A plot of oxidation charge from SW-ASV scans of FMEs that were immersed in 50 mL of stirred 3 μg/L 
Pb2+ samples for10 minutes with different deposition potentials. b) A plot of the charge versus immersion time in 
50 mL of stirred 3 μg/L Pb2+ samples using a deposition potential of -0.8 V. c) A plot of deposition time versus 
charge for a membrane that been immersed in 50 mL of stirred 3 μg/L Pb2+ samples for 30 minutes with a 
deposition potential of -0.8 V. 
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Figure 9a is a plot of superimposed SW-ASV current peaks for different concentrations of Pb2+ along 
with a blank scan. Each curve was obtained using a different FME. At concentrations higher than 3 to 
4 μg/L current/voltage curves do not increase much in height but become very broad. For this reason 
the calibration curve was plotted with the charge and not peak current. 
 
Figure 9b is a curve of the charges found from Figure 9a versus the concentrations of the solutions 
measured. Different isotherms were used to fit the curve in Figure 9b and a Temkin isotherm gave the 
best fit with a R2 of 0.98979. The Temkin isotherm indicates that there is a decrease in the heat of 
adsorptions with increasing coverage within the pores [38]. The intercept of the charge versus log 
[Pb2+] plot has a [Pb2+] value of 0.13 ppb. The 3S/N, standard deviation (σ), of eight blank scans was 
0.05 ppb. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 9. a) SW-ASV analysis plots of FMEs after immersion in 50 mL of stirred Pb2+ ion solutions for 30 minutes 
using different concentrations. The curve from a blank analysis is also plotted. b) A calibration curve for Pb2+ 
ions determined from Figure 8a. c) A charge vs. log concentration curve. 
 

 
A SW-ASV measurement of tap water showed no indication of Pb2+. When the same tap water sample 
was spiked with 3 ppb of Pb2+ the charge recovered was 88.5% of the charge corresponding to 3 ppb 
from the calibration curve in Figures 8b and c, however, this charge only corresponds to a 
concentration of 1.2 ppb. This could be due to the logarithmic nature of the calibration curve so it is 
very sensitive to slight charge variations at low concentrations. Or the discrepancy could be due to a 
masking of Pb2+ by something in the tap water or perhaps complex formation by an anion such as Cl- 
or F-. 
 
5. CONCLUSIONS 
 
The FME is very sensitive to sub-ppb concentrations of Pb2+. The membrane preparation is done in 
bulk and is very inexpensive in materials. The most expensive step is the gold metallisation. We are in 
the process of functionalizing the PVDF membranes with polymers other than PAA to evaluate 
different ion adsorption efficiencies and selectivities. Because of their versatility, the FME can be 
thought of as a template for electroactive polymers as ion sensors.  
 
The Temkin isotherm indicates that the energy of adsorption of Pb2+ is inhomogeneous in the PAA 
functionalized membrane so there is a need to develop techniques to improve the uniformity of the 
PAA polymerisation. The group is currently working on improving the reproducibility of the grafting 
yield by studying Reverse Addition Fragmentation Transfer Polymerization inside tracks. The kinetics 
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of the adsorption isotherm needs also to be addressed in order to understand and better optimize the 
adsorption. 
 
The adsorption is done at open circuit and the SW-ASV analysis is very fast, less than 3 minutes. The 
ability to preconcentrate the ions at open circuit means that many samples can be collected in parallel 
and stored for later analysis. 
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Abstract 

The effect of high energy ionizing radiation on cotton-cellulose was studied. It was found that degradation of cellulose started 
at low doses, below 5 kGy, resulting in decrease in the degree of polymerization. However, the mechanical properties of 
cotton-cellulose samples only slightly changed with the dose up to 40 kGy. Acrylate type monomers were successfully 
grafted to cellulose by mutual and by pre-irradiation grafting technique. With both techniques the grafting yield increased 
with increasing dose and monomer concentration. In the case of pre-irradiation grafting the increase in grafting time also 
resulted in an increase in grafting percentage. Cotton-cellulose was functionalized using pre-irradiation grafting (PIG) and 
simultaneous grafting (SG) of glycidyl methacrylate (GMA). The adsorption properties of this material were further 
enhanced by β-cyclodextrin (CD) immobilization. This molecule is known for its unique ability to form inclusion complexes 
among others with aromatic compounds like phenols, pesticide, dyes, etc. 
 
1. OBJECTIVE OF THE RESEARCH 

 
Phenol and its derivatives are toxic causing serious health problems even at very low concentration. 
Therefore, it is very important to remove them from drinking water and from wastewater, as well. 
Among other techniques, cellulose based adsorbent produced by radiation induced grafting can be 
used for this purpose. 
The objective of the present work focuses on the optimization of synthesis of specific adsorbents 
based on cellulose, and characterization of the grafted samples. The final objective is to produce 
cellulose samples with selective adsorption properties and optimize the conditions for adsorption.  
 
2. INTRODUCTION 
 
Heavy metal ions, pharmaceutical compounds, and pesticides are mostly toxic and carcinogenic even 
at low concentration causing ecological disequilibrium and severe public health problem [1–6]. 
Prolonged exposure in the aquatic environment causes adverse effects in the ecosystem. Wastewater 
treatment plants are ineffective in eliminating these toxic compounds, and most part of them passes 
through the treatment plants without any change. 
 
Various methods, such as chemical precipitation, oxidation, reduction, coagulation, ion exchange, 
reverse osmosis, solvent extraction, flocculation, membrane separation, filtration, evaporation, 
electrolysis and adsorption have been used to remove and recover heavy metal ions from sewage and 
industrial effluents [2−3, 7−10]. A series of advantages and disadvantages are associated with each of 
these techniques. Among all the treatment processes mentioned, adsorption using the chelating 
properties of adsorbents is one of the most effective and economically feasible alternative methods [2, 
4, 7].  
 
Several adsorbents have been developed for removing heavy metal ions from aqueous solutions, e.g. 
different types of clays, activated carbon, chelating resins containing amidoxime or iminodiacetic acid 
groups, simple and binary metal oxides, activated sludge, bone char, canola meal, red mud and 
metallurgical slag [3, 11]. After investigating 200 functional groups, Tamada et al. [12] found that 
amidoxime shows the best chelating properties. The conventional adsorbents such as synthetic cation 
exchange resins are non-renewable and non-biodegradable [6]. The natural materials including 
cellulose, chitosan (a cellulose derivative) are renewable, biodegradable, cheap and available in large 
amount [9]. Natural materials can be chemically modified for enhancing metal-binding ability by 
addition of new functional groups [9, 13]. There is an intensive research nowadays for their 
application in metal ion adsorption from aqueous wastes. 
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Several agricultural products and by-products such as cotton, hemp, flax, rice husk, sugarcane bagasse, 
sawdust of wood, wheat straw, onion skins, palm kernel husk, peanut skin, pinus bark, corn cobs, cane 
stick, jute stem etc., have been applied as efficient adsorbents for heavy metal, especially for divalent 
metal cation removal [4, 6, 14, 17]. These by-products are accessible in huge amount and as shown in 
Table 1, they consist of cellulose, hemicellulose, lignin and some protein, lipids, wax, etc. [6]. 
 

TABLE 1. α-CELLULOSE, HEMICELLULOSE AND LIGNIN CONTENT (%) OF DIFFERENT 
PLANTS 

Plant type α-cellulose Hemicellulose Lignin Ash Reference 
 

Cane stick 39.37 27.61 26.2 1.29 [14] 

Corncobs 38.4 40.7 9.1 1.3 [6] 

Cotton stalks 58 

48 

14.38 21.45 2.17 [15] 

Jute 58-63 20-22 13-15  [16] 

Jute stem 37.07 32.17 24.48 0.55 [14] 

Olivepruning 
 

35.67 25.80 19.71 1.36 [15] 

Rice straw 41.20 19.50 21.90 9.20 [15] 

Sorghumstalks 
 

41.50 24.43 15.64 4.85 [15] 

Sugarcane 
bagasse 

40-50 25-30 20-25  [1] 

 
Sugarcane 
bagasse 
 

 

50 

 

27 

 

23 

  

[5] 

Sugarcane 
bagasse 
 

  19.80 2.1 [15] 

Sunflower 
stalks 
 

37.60 29.30 10.80 7.9 [15] 

Vine shoots 41.14 26.00 20.27 3.49 [15] 

Wheat straw 39.72 36.48 17.28 6.49 [15] 

 
 
The use of ionizing radiation increases the reactivity of cellulose towards certain reagents [18]. The 
radiation-induced reactions in the macromolecules of the cellulose materials are known to be initiated 
through rapid localization of the absorbed energy within the molecules to produce very reactive 
intermediates, long- and short-lived free radicals, ions and excited states [19, 20]. Some of the radical 
species decay rather slowly: they are observable by EPR spectroscopy days after the irradiation [21]. 
Arthur [22, 23] published reviews on the structure of radicals produced in cellulose by a large variety 
of initiation. On gamma irradiation of cellulose radicals are formed with localized unpaired electrons 
in positions 1 and 4 of the pyranose ring, the formation of which is accompanied by rupture of the 
glycoside bond. Thermal transformations of these radicals cause their degradation: dehydration of the 
radicals with double bond in the pyranose ring forming by that allyl type radical is the most probable 
process (Fig. 1) [24−27]. 
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ionic polymerization needs ‘ultrapure’ conditions, e.g. absence traces of water, which can act as chain 
breaker, in practice the grafting occurs with a free radical chain mechanism. In the pre-irradiation 
grafting (PIG) technique the polymer is irradiated in inert gas (N2, Ar) or in vacuum, during irradiation 
free radicals form on the polymer backbone. The irradiation results in forming of radicals on the 
surface of cellulose fibbers and inside the fibrilles [38]. These radicals are surprisingly long lived, by 
EPR method they can be detected days after the irradiation [24, 25]. 
 
Usually the pre-irradiation is carried out in the presence of air or oxygen. Under such conditions the 
peroxy radicals formed on the polymer backbone transform slowly to relatively stable ROOH type 
hydroperoxides and ROOR type peroxides. (The method is also called peroxidation grafting method 
[39].) The peroxy products can be stored for long periods before performing the grafting step. During 
grafting the irradiated polymer is immersed in the liquid monomer or in solution of monomer and the 
system is heated to approximately 40–70°C. The peroxy products undergo decomposition to radicals, 
these radicals initiate the grafting. Since in the pre-irradiation method the monomer is not exposed to 
radiation the obvious advantage is that the final product is free from homopolymer. During irradiation 
of the base polymer some degradation takes place, which is a disadvantage. 

 
ROOH ⎯→ RO• + •OH        (5) 

 ROOR ⎯→ 2RO•         (6) 
 
In the mutual or simultaneous irradiation grafting (SG) technique the monomer and the polymer are 
irradiated simultaneously to form free radicals for polymerization. When irradiation is carried out in 
solution, free radicals form in the decomposition of monomer, polymer and solvent. Generally the 
mass of the solvent is much higher than the masses of the monomer and polymer. As an approximation 
it is generally assumed that the energy of ionizing radiation is absorbed by the solvent and the free 
radicals formed from the solvent react both with the monomer and the polymer. In aqueous solutions 
the radiolysis of water supplies hydroxyl radical (radiation chemical yield, G−value = 0.27 µmol J-1), 
hydrogen atom (0.07 µmol J-1) and hydrated electron (0.27 µmol J-1) reactive intermediates [40, 41]. 
The hydroxyl radicals and to smaller extent the hydrogen atoms are capable of removing hydrogen 
atoms from cellulose producing by that radicals on the polymer backbone. All the three intermediates 
may react with the monomer in radical addition reaction yielding radicals that can take part both in 
homopolymer formation and grafting. 

The disadvantage of the method is the homopolymer formation in the liquid phase. Higher grafting 
yields are expected at higher monomer concentrations, as any instant radicals generated on the 
backbone are able to interact with more monomer molecules. However at high monomer 
concentrations, as more monomer radicals will be generated in the bulk, homo-polymerization will be 
equally favoured. 
 
Homopolymer formation, and by that the loss of a considerable part of the monomer, is usually 
suppressed by adding inhibitors to the liquid. In most cases Mohr−salt (Fe(NH4)2(SO4)2(6H2O)) and 
Cu2+ sulphate (CuSO4 × 5H2O) are used for this purpose. The adsorption of these metal ions on the 
cellulose surface may inhibit also grafting. In hydrophilic backbones like cotton cellulose, dissolved 
oxygen can diffuse into the backbone and quench the radicals generated on the backbone; this may 
lead to decrease in the grafting yield. Presence of oxygen hinders the homo-polymerization and 
grafting reaction to the same extent. 
 
After the grafted polymer is prepared it is washed thoroughly in water or in other solvent (e.g. 
methanol, water-methanol mixtures, acetone) at elevated temperature (∼70°C) in order to remove the 
un-reacted monomer and the homopolymer. Then the graft is dried at 40−60°C in oven, in a vacuum 
drying system, or in desiccator. The mass of the dried sample measured before and after grafting is 
used to calculate the grafting yield. 
 
The polymer that will become grafted on the cotton surface is crucial from the point of view of the 
end-product properties. Acrylate and methacrylate type monomers were used for the experiments. 
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Glycidyl methacrylate (GMA) is an interesting choice under increasing interest [42, 43], because it has 
the highly reactive epoxide group at one end. The grafted materials containing the epoxide groups can 
be used for the adsorption of water contaminants [44]. The adsorption properties of this material could 
be enhanced by further functionalization. The desired functionality can be introduced via chemical 
reaction with the epoxy group. Amino type adsorbent was synthesized for the removal of mercury ions 
[43] from GMA grafted nonwoven cotton fabric. 
 
β-cyclodextrin (CD) is known for its unique ability to form inclusion complexes with aromatic (mainly 
phenol derivatives) compounds, metals and dyes [45, 46]. In most cases CD functional group is 
attached to the base material (e.g. cellulose) by chemical reaction using crosslinking or coupling 
agents [45−47]. The accessibility of CD may be limited in these cases due to its controlled mobility. 
This problem can be solved by coupling CD to the GMA grafted cotton using GMA as a spacer. 
 
3. MATERIALS AND METHODS 
 
3.1. Materials 
 
Analytical grade monomers were purchased from Sigma Aldrich, CD from CycloLab and were used as 
received. Purified water was obtained from an ion exchanger equipment type ELGA Option 4. 
Bleached cotton fabric samples (110 g/m2, Colortex Kft., Hungary) were washed first in 1% acetic 
acid solution at 50 ο  ofor 5 minutes, then in deionised water and the samples were dried. 
Carboxymethylation using monochloroacetic acid and sodium hydroxide was carried out by the 
technology described previously [48]. The degree of substitution was 0.05. This slight modification 
resulted in high improvement of accessibility: accessible surface characterised by iodine sorption 
capacity (IS), [49] increased by about 200%. The IS of slightly carboxymethylated cellulose was 119 
mg/g, while that of untreated one 38 mg/g. 
 
3.2. Grafting methods 
 
Simultaneous grafting (SG): First the monomer solution (containing Mohr salt to avoid 
homopolymerization) was deaerated for about 5 minutes by N2 or Ar bubbling, then the cotton samples 
were immersed in the monomer solution (liquor ratio: 0.1 g sample/10 mL solution) and the bubbling 
was continued for a further 15 minutes. The ampoules were flame sealed in inert atmosphere and 
irradiated at room temperature by 60Co gamma rays up to 40 kGy doses (dose rate 10 kGy/h). After 
irradiation the samples were washed in deionised water and the unreacted monomer was removed by 
extraction at 40°C with deionised water for 6 hours. The samples were dried in air until constant 
weight and weighted (wg). 
 
Pre-irradiation grafting (PIG): Cotton-cellulose fabric samples were irradiated in air, at room 
temperature up to 40 kGy doses (dose rate 10 kGy/h). Immediately after irradiation the samples were 
immersed in 1 mol dm-3 aqueous monomer solutions at 40οC for 1 hour (liquor ratio: 0.1 g sample/10 
mL solution). N2 bubbling was applied to deoxygenate the monomer solutions. Bubbling was started 
about half hour before grafting and continued during the whole grafting procedure. Grafted samples 
were washed and extracted as described before. 
 
3.3. β-cyclodextrin (CD) immobilization 
 
CD was successfully immobilized during SG. 0.017 mol dm-3 CD was added to the grafting solution 
(33% H2O, 33% methanol, 33% dimethyl formamide, DMF). The rest of the procedure was the same 
as in normal SG. 
 
3.4. Characterization of samples 
 
The grafting yield (= 100% × (wg-w0)/w0) was determined by weighting the dried samples before (w0) 
and after (wg) grafting. The yield was also determined by following the IR absorption using a Unicam 
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Mattson Research Series 1 FTIR instrument, with diffuse reflexion detection. The absorption peak at 
1740 cm-1 assigned to the stretching vibrations of C=O group was used to characterize the grafting 
yield. The band at 2900 cm-1 assigned to the stretching vibrations of aliphatic C-H bonds served as 
internal standard. 
 
The X ray diffraction (XRD) patterns were taken on textile samples of ~20 × 30 mm using a Philips 
instrument equipped with a Bragg-Brentano parafocusing goniometer, secondary beam graphite 
monochromator and proportional counter. 
 
The advance of grafting was checked by scanning electron microscopic (SEM) images of cotton fabric 
samples covered with evaporated gold in vacuum. JEOL JSM 5600LV type instrument was used for 
taking images. 
 
The determination of the degree of polymerization (DP) was based on the viscosity measurements of 
the sample dissolved in cupriethylenediamine (Cuen) solution [50]. 
 
The tensile strength was measured on fabric samples of 5 cm width using Instron type equipment. 
 
The Swelling = 100 % × (ws-wg)/wg) was determined by weighting the wet grafted samples after 
blotting them with filter-paper (ws) and after drying in air (wg). 
 
The UV-spectroscopy of an aqueous solution of 0.2 mmol dm-3 2,4−D and phenol before and after 
adsorption on the grafted samples was performed with a JASCO U-550 UV/VIS spectrophotometer. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Effect of irradiation on cotton−cellulose 
 
The degradation of pure cotton-cellulose starts at relatively low doses. As shown in Fig. 2 the degree 
of polymerization (DP) was 1680 for the untreated sample and it decreased down to 400 already after 
5 kGy absorbed dose. The further decrease in DP was not as fast as it was at smaller doses: the DP 
was 480 after 10 kGy, finally 230 after 40 kGy. The change in tensile strength with dose was not as 
drastic as it was with DP. Only a slight change in tensile strength was observed up to 40 kGy dose.  
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FIG. 2. Degree of polymerization on logarithmic scale (logDP) and tensile strength of cotton−cellulose as a 
function of dose. 
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As Fig. 4A shows the infrared spectrum of cellulose is rather complex due to the large number of 
different chemical bonds, due to the interactions between the polymer chains, crystalline and 
amorphous regions, and the absorbed water also complicates the spectrum. The absorbance above 
3000 cm-1 is basically connected to the OH groups and H atoms. The wide absorption band is due to a 
large number of overlapping absorption peaks. The well resolved peak at about 2900 cm-1 is assigned 
to the symmetrical CH2 stretching vibration. The absorbancies in the 1500−500 cm-1 range are due to a 
large number of asymmetrical and deformation vibrations. At about 1700 cm-1 appears the C=O 
stretching vibration. In pure, un-oxidized cellulose this absorbance is weak. The absorbance increases 
with irradiation of the sample. This absorbance at 1740 cm-1 linearly increased by the dose as indicated 
on Fig. 4B. Due to self-termination reaction of the radicals formed on the cellulose chain the carbonyl 
concentration was lower with the EB irradiated samples than those with the gamma irradiated samples 
of about three order of magnitude lower dose rates. Based on the results obtained in radiation 
degradation doses above 40 kGy were never applied. 
 
 
4.2. Grafting 
 
4.2.1. Pre-irradiation grafting 
 
The effect of dose, grafting time, temperature and monomer concentration in grafting solution was 
studied. The effect of monomer structure and the structure of the trunk material were also studied. As 
mentioned in the introduction, in the case of PIG some degradation of the trunk material starts already 
during irradiation. Therefore, the grafting conditions should be very carefully optimized because 
during grafting this degradation may continue resulting in samples of pure mechanical stability. 

The grafting yield increased almost linearly with the absorbed dose in acrylic acid solution as Fig. 5 
shows. However, with this monomer in 2 mol dm-3 concentration, the samples started to disintegrate 
above 20 kGy. Similar phenomena were observed when the effect of grafting time and monomer 
concentration was studied. Although grafting yield rapidly increased with grafting time, in 1 mol dm-3 
AAm solution, above 60 minutes the disintegration of the samples started again (Fig. 6). Concerning 
the effect of monomer concentration with AAc sample irradiated with 20 kGy the disintegration of the 
samples started above 2 mol dm-3 (Fig. 7). In PIG the doses applied were below 30 kGy. The 
mechanical properties of cellulose irradiated with 30 kGy are not much different from those of the 
unirradiated sample. Therefore it’s supposed that the interaction between the irregularities caused by 
the radiation in the cellulose structure and the monomer together with the swelling of the cellulose in 
the aqueous solution lead to destruction of the structure resulting in disintegration of the samples. 

The presence of crosslinking agent N,N−methylene bis-acrylamide, (BAAm) in the AAm containing 
grafting solution resulted in a remarkable increase in the grafting yield (Fig. 8). In the case of simple 
cellulose the grafting yield with only AAm was 70%. Addition of 1% BAAm (with respect to AAm) 
increased the grafting yield to 155% while with 5% it was ∼200%. BAAm resulted in a considerable 
(50%) decrease in the water uptake as compared to the sample grafted without this additive. In the 
case of CMC BAAm additive did not result in a considerable improvement in the grafting yield, the 
yield increased by about 20% (Fig. 8). Here, too, there is a decrease in the water uptake as shown on 
Fig. 8. 

It was supposed that the increase in grafting yield observed in the presence of crosslinking additive is 
partly due to the homopolymer trapped into the loose crosslinked structure formed in the reaction of 
AAm and BAAm. This homopolymer may form interpenetrating network resulting in a dense 
structure. This idea is supported by the fact that the swelling of the sample decreases with increasing 
grafting yield in the presence of the crosslinking monomer (Fig. 8), although both AAm and BAAm 
are hydrogel forming monomers. 
 

 

88



0 5 10 15 20 25 30 35 40
0

20

40

60

80

100 Preirradiation grafting of

2 mmol dm-3 AAc, 40 oC

G
ra

ft
in

g,
 %

Dose, kGy  
FIG. 5. Effect of absorbed dose on grafting yield in PIG. 

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

G
ra

fti
ng

, %

Grafting time, minutes

1 mmol dm-3 AAm, 40 oC, 10 kGy 

 
FIG. 6. Effect of grafting time on grafting yield in PIG. 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

G
ra

ft
in

g,
 %

AAc concentration, mol dm-3

Dose 20 kGy, 40 oC

 
FIG. 7. Effect of monomer concentration on grafting yield in PIG. 
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FIG. 8. Effect of bifunctional monomer and the structure of cellulose on grafting yield in PIG. Closed symbols 
belong to cellulose opened symbols to slightly carboxy-methylated cellulose. 
 
 
4.2.2. Simultaneous grafting 
 
The mutual grafting procedure is complicated by homopolymer formation. In this case radicals are 
formed not only on the cellulose but on the monomer, too. The homopolymer formation can be 
supressed by different additives which react with radicals in the solution: it was used Mohr salt which 
has a good solubility in water. When optimizing the grafting conditions with mutual grafting of acrylic 
acid onto cotton-cellulose it was found 0.02 mol dm-3 as optimum for Mohr salt concentration.  

 
With increasing dose the grafting yield increased, however, above 25 kGy no further increase was 
observed (Fig. 9). At higher doses the samples were covered by a thick dense layer of grafted polymer. 
Polymer formation was excessive in these cases and we called this phenomenon over-grafting. The 
film which persisted after solvent extraction appears to be crosslinked polymer. Therefore, the values 
measured for these samples may not be true indication of grafting but rather a combination of grafting 
and interpenetrating network formation (crosslinked polymer, and trapped homopolymer in the matrix 
of the cellulosic substrate). 

 
With increasing monomer concentration from 0.5–2 mol dm-3 the grafting yield increased (Fig. 10), 
but above this monomer concentration over-grafting occurred even at lower doses. 

 
4.3. Comparison of pre-irradiation and simultaneous grafting of GMA to cellulose 
 
Glycidyl methacrylate (GMA) grafted samples are often applied for further functionalization with CD. 
The effect of absorbed dose and monomer concentration were compared for PIG and SG grafted 
samples. 
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FIG. 9. Effect of dose on grafting yield in SG. 
 

0 1 2 3 4 5
0

5

10

15

0.02 mol dm-3 Mohr salt,  20 kGy

G
ra

ft
in

g,
%

Acrylic acid, mol dm-3

 
FIG. 10. Effect of monomer concentration on grafting yield in SG. 

 
 
4.3.1. Effect of the absorbed dose 
 
Great difference was found between the samples grafted by PIG and SG concerning the DG. While in 
the case of PIG grafted in 1.5 mol dm-3 GMA solution DG below 75% was measured, SG lead to much 
higher degrees of grafting, a concentration of 0.38 mol dm-3 GMA at doses of 20 kGy resulted in DG 
(wt %) of over 350% (Fig. 11). 
 
The grafting of GMA on cotton was also clearly observed using FTIR spectroscopy. The IR spectrum 
of GMA shows absorption peaks at 907 cm-1 due to the stretching vibration of the epoxy group, at 
1728 cm-1 due to the carbonyl group and at 1153 and 1255 cm-1 because of the C–O stretching of the 
ester group. The progress of grafting was observed by following the change in the absorbance assigned 
to the carbonyl group at 1728 cm-1 appearing in the spectrum of GMA, since there are no peaks in this 
region in the spectrum of cellulose. 
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FIG. 11. Degree of grafting as a function of the absorbed dose, SG grafted in a 0.38 mol dm-3 GMA solution, 
PIG grafted at 50 °C for 1 h in 1.5 mol dm-3 GMA grafting solution. 
 

Although the FTIR spectra for simultaneously grafted fibres could be expected to be the same as for 
the pre-irradiated grafted fibres, there is a remarkable difference (Fig. 12). The spectra of the SG 
samples show some extra peeks in the 2900–3000 cm-1 and in the 1600−1500 cm-1 regions. These 
peeks demonstrate the incorporation of styrene homopolymer suppressor co-grafted to the cellulose. A 
similar case was already reported by Badawy and co-workers [51] in the simultaneous grafting of 
acrylonitrile on cellulose in the presence of styrene. In their experiments small amounts of styrene 
were also consumed serving as a comonomer in the graft copolymerization reaction. 
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FIG. 12. FTIR spectra of a: cellulose, b: GMA-grafted cellulose using PIG, c: GMA-grafted cellulose using SG, 
d: styrene, e: GMA. 
 
 
For both PIG and SG the degree of polymerization (DG) increases with the absorbed dose although the 
reaction mechanism is different. SG leads to a higher DG than PIG at the same dose. 

In PIG during the pre-irradiation phase, the amount of generated radicals is expected to be linearly 
dependent on absorbed dose. These radicals will then react with the oxygen and form peroxy 
compounds. However, a part of the radicals decays in self-termination or another reaction (e.g. 
reacting with some impurities). Dissociation of the peroxy compounds by heating the grafting reaction 
mixture initiates grafting more or less the same time at all peroxy groups and chains can start growing 
simultaneously. An important side effect is degradation since the sample is irradiated directly, for this 
reason 30−40 kGy dose is a practical maximum. 
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Together with radical formation there is a second effect of irradiation that is the degradation of the 
cellulose, the extent of degradation also increasing with the dose. At an absorbed dose of 32 kGy the 
degree of polymerization (DP) of cellulose has already decreased by a factor 8 [25] and at 50 kGy the 
DP decreased to such an extent that the tensile strength of the cellulose is reported to be just half of its 
initial value [43]. Since such a drastic decrease in mechanical properties is not desired, 40 kGy is 
recommended as an absolute maximum value. 
 
At PIG the slope of the DG versus dose curve is decreasing for higher absorbed doses, probably since 
higher concentrations of radicals will have an increased chance to follow other reaction routes (decay, 
degradation). 
 
For SG on the other hand, radiation creates radicals both in the solvent molecules and on the cellulose 
sample. These solvent radicals may react with both the GMA and with the cellulose substrate. This 
leads to the formation of grafted PGMA chains as well as homopolymer (in spite of homopolymer 
suppressor added). After some time, the surface is completely covered with PGMA which blocks the 
further penetration of GMA inside the fibre. Most possibly, further irradiation will then mainly result 
in a thickening film of PGMA homopolymer. At 5 kGy dose, there is already a DG (M%) of approx. 
100%, which means that for every present AGU there is a GMA molecule. The whole reaction 
happens in one step in a closed system and more radicals will result in a polymerization reaction. 
 
4.3.2. Effect of monomer concentration 
 
Increasing monomer concentration resulted in increase in DG both in PIG and in SG. Samples 
procured upon the same doses and monomer concentrations have much higher yield in SG as in PIG. 
In PIG, the highest DG, about 65%, was measured when GMA−monomer concentration was 2 mol 
dm-3 (Fig. 13), in SG more 300% DG was obtained in solution containing 1.5% monomer. 
 
For PIG, a maximum DG is reached at a 2 mol dm-3 GMA concentration. Initially, as the concentration 
of reactant (GMA) increases, the polymerization rate increases as well, and more GMA is grafted on 
cellulose. At higher concentrations, viscosity effects start playing a role and also homopolymerization 
may occur by a radical transfer mechanism, decreasing the concentration of monomer available for the 
grafting reaction and slowing down the grafting. 
 
For SG, the yields are so high: at 1 mol dm-3, the apparent DG (M%) exceeds 200% (while in PIG this 
it is approx. 40−70%). Together with the visual assessment this leads to the belief that there is already 
a significant amount of homopolymer present, rendering experiments at even higher concentrations 
inaccurate. Concentrations higher than 0.5 mol dm-3 are thus not recommended. 
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FIG. 13. Degree of grafting as a function of the GMA-monomer concentration. PIG: 20 kGy, 50 °C, 1 h, SG: 
5 kGy. 
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5. CONCLUSIONS 
 
The radiation induced degradation of cotton-cellulose starts at very low doses (5−10 kGy) resulting in 
a decrease in DP. However, the degradation does not result in a significant change in the mechanical 
properties. 
 
Optimum conditions for obtaining highest grafting yield with low degradation depend on the monomer 
structure both for pre-irradiation grafting and for simultaneous grafting. 
 
In the case of pre-irradiation grafting for acrylamide, acrylic acid, and N,N−methylene bis-acrylamide 
BAAm the highest grafting yield was obtained at: irradiation with 20 kGy absorbed dose, grafting in 
solution with 2 mol dm-3 monomer concentration, at 40°C 60 minutes. For glycidyl methacrylate 
(GMA) the optimum conditions were: 40 kGy absorbed dose, grafting in solution with 1.5 mol dm-3 
monomer concentration, at 50°C 60 minutes. 
 
In the case of simultaneous grafting for acrylamide, acrylic acid and BAAm the highest grafting yield 
was obtained at: irradiation with 20 kGy absorbed dose, monomer solution with 2 mol dm-3 
concentration, room temperature. For glycidyl methacrylate (GMA) the optimum conditions were: 5 
kGy absorbed dose, monomer solution with 0.38 mol dm-3 concentration, room temperature. 
The swelling in water of cotton-cellulose can be increased by grafting with acrylamide, acrylic acid 
and N,N’−methylene bis-acrylamide, it can be decreased by grafting with glycidyl methacrylate 
(GMA). The first three monomers can be applied for adsorption of heavy metal ions. GMA grafted 
cellulose functionalized with cyclodextrin can be applied for the adsorption of phenol and its 
derivatives. 
 
The adsorption properties tested using UV/VIS spectroscopy proved to be better for samples grafted 
with GMA using SG due to their more hydrophobic nature than the samples grafted using PIG. The 
functionalization by CD resulted in a further increase in adsorption capacity. 
 
Using the mutual grafting method at higher doses the samples were covered by a thick layer while in 
pre-irradiation method the samples disintegrated. Both phenomena can be called over-grafting. The 
difference in the appearance of over-grafting between mutual and pre-irradiation grafting is due to the 
difference in the reaction mechanism. During irradiation radicals are produced not only on the surface 
of the cellulose but also inside. In the pre-irradiation technique peroxide groups are incorporated both 
inside and outside. In the heated solution initiation occurs both outside and inside as the monomer 
could diffuse inside the fibres swollen in aqueous medium. The growing chains inside the fibres cause 
disintegration. In the case of mutual grafting cellulose radicals initiate the grafting. The grafting starts 
at surface of the cellulose fibres and the long grafted chains form a dens film on the surface of the 
fibres forming a barrier layer hindering the diffusion of further monomer molecules inside the fibre. 
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Abstract 
 
Grafting of acrylonitrile onto non-woven porous polypropylene fibre sheet using electron beam was carried out by post-
irradiation grafting. Grafting extent of ~125% was achieved. The grafted nitrile groups were amidoximated and studied for 
uranium uptake from sea water and heavy metal ions (Co2+, Ni2+, Mn2+, and Cd2+) from aqueous solutions. Adsorption and 
elution of adsorbed ions in suitable eluents was studied. The grafting process was upgraded to pilot scale to obtain 1x1 m2 
sheets. Mutual radiation grafting technique was used for grafting of vinylbenzyltrimethyl ammonium chloride, [2-
(methacryloyloxy)ethyl] trimethylammonium chloride and [2-(acryloyloxyethyl)]trimethylammonium chloride onto cotton 
cellulose substrate. The grafted matrices showed significantly higher water uptake and good water retention properties. The 
antibacterial efficacy of the grafted products was found to be a function of extent of grafting and the type of bacteria 
(Escherichia coli, Pseudomonas flourescens, Staphylococcus aureus and Bacillus cereus). PVBT-g-cotton was studied for its 
protein adsorption behaviour in continuous column process using Bovine serum albumin (BSA) as a model protein. Mutual 
radiation grafting technique was used to graft acrylic acid on micrometer thick micro-porous polypropylene membrane. 
Contact angle measurement studies showed that initial grafting as well as radiation treatment of poly(propylene) in aqueous 
medium and in presence of Mohr’s salt enhances its affinity towards the grafting solution. The enhancement in the polar 
component of surface energy of treated polypropylene membrane is the primary cause of grafting enhancement. The 
membranes grafted to an extent of ~20% were found to perform comparably with the battery separator presently being used 
by battery industry. Acrylic acid was grafted to Teflon scrap by mutual radiation grafting technique. The grafting extent 
decreased with increasing dose rate and thickness of the substrate. The SEM studies indicate significant difference in bulk 
and interface due to change in thickness of the Teflon backbone. 
 
1. OBJECTIVE OF THE RESEARCH 
 
The grafted products have potential applications in several industrial applications. The objective of the 
present investigation was to synthesize radiation grafted products which have immediate or potential 
applications in industry. The investigation included standardizing various experimental parameters 
starting from choice of trunk polymer and monomer to be grafted, dose, dose rate, presence of 
additives and ambient condition etc. to achieve desired grafting extent. 
 
2. INTRODUCTION 
 
Graft polymerization is an easy and efficient technique for modifying base polymers as it results in 
superposition of properties of backbone and the pendent grafted chains. Grafting can be initiated 
conventionally using suitable redox system [1] or using radiation [2]. Radiation grafting is an easy and 
highly efficient procedure for modifying the properties of polymeric substrates of synthetic as well as 
natural origin [3] and offers some unique advantages over the conventional chemical grafting method 
[4]. Radiation grafted co-polymers have been investigated for spectrum of applications like metal 
absorption [5, 6], separation purposes [7, 8], biotechnology [9, 10], electrochemical applications such 
as electro-dialysis [11], battery separator [12], as solid polymer electrolyte in fuel cells [13, 14] and 
bio-medical applications [15, 16]. For separation and purification purpose chelating groups like 
amidoxime [17, 18] have shown to form stable complex with heavy metal ions like uranium, 
vanadium, cadmium, copper and ion exchange type of matrices have also been tried for the purpose 
[19, 20]. 
 
There are many well-known chemicals, which act as germicides, e.g. halogens, alcohols, peroxygen 
compounds (H2O2, peracetic acid), phenolic compounds, aldehydes and ionic surfactants. Among the 
various classes of surfactants, particularly the cationic quaternary ammonium compounds are among 
the most effective germicides. In recent years, trialkyl ammonium chlorides have been reported to 
possess germicidal effect in dilute aqueous solutions [21]. Thus with a view that radiation grafting of 
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trialkyl ammonium chlorides (Quaternary ammonium salts) like Vinylbenzyltrimethyl ammonium 
chloride (VBT), [2-(Methacryloyloxy)ethyl]trimethylammonium chloride (MAETC) and [2-
(Acryloyloxyethyl)]trimethylammonium chloride (AETC) onto finished cotton cloth may lead to 
incorporation of anti-bacterial into cotton, grafting of these monomers onto cotton was investigated. 
 
Ion exchange membranes have been investigated for their suitability as battery separator because of 
their durability, long life, high charge density and appreciable ion exchange capacity at optimum water 
content which is the most desirable property of the separator membranes [22]. The mutual radiation 
grafting technique has been used to graft acrylic acid onto micrometer thick polypropylene sheet to get 
proton exchange membranes (PEM). The grafted membranes were tested under actual battery 
conditions for their electrical properties. 
 
Polytetrafluoroethylene (PTFE) commercially known as Teflon® is known for its many exceptional 
properties [23, 24]. However these exceptional properties make its disposal difficult as it does not 
undergo any degradation under natural conditions. Grafting of acrylic acid onto PTFE scrap was 
carried out to obtain a matrix which can uptake dyes from industrial effluents and wastewater. This 
approach would mitigate environmental pollution in two ways by utilizing the PTFE scrap and using 
the grafted scrap to treat industrial effluents. 
 
3. MATERIALS AND METHODS 
 
3.1. Material 
 
Polymer backbone materials non-woven thermally bonded polypropylene (NWPP) with properties 
given in Table 1 were obtained from a local supplier, micrometer thick polypropylene (PP) was 
provided by M/s High Energy Batteries, INDIA was a product of 3M®, USA and used as received. 
Finished cotton cloth, procured from a local supplier, was washed in ethanol followed by boiling in 
1% sodium hydroxide solution for three hours. Treated fabric was then repeatedly washed with 
distilled water until neutral washings were obtained. The cotton samples thus obtained were dried at 
50°C and stored in desiccator for further use. Teflon scrap in ribbon form obtained by machining of 
Teflon rods was procured from local supplier M/s Max Tools Co. The cleaned PTFE scrap had a bulk 
density = 2.1 g/cm3, Melting point = 330°C and surface energy = 22 mJ/m2. 

TABLE 1. DETAILS OF THE NWPP SHEET USED FOR GRAFTING 

Property Value 

Weight 525 g/m2 

Thickness 2.7 mm 

Breaking strength 90 kgf (for 20 cm × 5 cm strip size) 

Busting strength 30-35 kg/cm2 

Operable temperature 90°C 

Air permeability 280 (L/dm2/min) 

 
 
Commercial grade acrylonitrile (AN) from M/s IPCL India and dimethyl formamide (DMF) from M/s 
SD Fine chemicals, Mumbai were used. Hydroxylamine hydrochloride, (ar-
vinylbenzyl)trimethylammonium chloride (VBT), a mixture of 3-vinyl and 4-vinyl isomers, [2-
(Methacryloyloxy)ethyl]trimethylammonium chloride (MAETC), Mol wt. = 207.7 in 75% aqueous 
solution, [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETC), 80 wt.% solution in water from 
Aldrich were used as received. 2-Hydroxyethyl methacrylate (HEMA), Mol wt. 130.14 from Aldrich 
chemicals (purity > 97%), was further purified by vacuum distillation at 78°C and 5 mmHg pressure. 
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Acrylic acid (AA) purity >99% and all other chemicals used were from Aldrich. Himedia (India) 
nutrient broth (M244S) was used for cultivating bacterial culture and Himedia Plate count Agar 
(M091) was used for bacterial count experiments. Escherichia coli JM109, Pseudomonas fluorescens 
(lab isolate), Staphylococcus aureus ATCC 6538P, Bacillus cereus MTCC 470 cultures were 
maintained at 4°C. Before the start of experiment, they were grown on nutrient agar for 2 days at 
37°C. The isolates were subcultured twice before inoculation. The long-term storage of cultures was 
done in 20% glycerol (v/v) at -20°C. All the bacterial counts were done on plate count agar, (Himedia, 
Mumbai, India) incubated at 37°C for 24 h during the course of this work N2 and O2 (purity > 99%) 
were locally procured. Nanopure water from Millipore was used for all experiments. 
 
3.2. Methods 
 
3.2.1. Irradiation method and sources 
 
Electron beam irradiation of NWPP sheets was carried out using an industrial 2 MeV, 20 kW ILU-6 
accelerator (Budker Institute of Nuclear Physics, Russia) under following conditions: energy = 1.8 
MeV, current = 10 mA and variable conveyor speed. Grafting was carried out using post irradiation 
technique i.e. sheets were irradiated prior to immersing them in grafting solution. Gamma chambers 
having 60Co gamma radiation source GC−5000 and GC−900, supplied by M/s BRIT, India were used 
for irradiation purpose with suitable lead attenuators to achieve dose rate of 0.5–5 kGy h-1. 
 
3.2.2. Radiation grafting 
 
Post irradiation grafting technique was used to graft AN onto NWPP whereas mutual radiation grafting 
method was used to graft VBT, MAETC, AETC onto cotton cellulose and to graft AA onto PP and 
Teflon scrap. For post irradiation grafting the NWPP was irradiated using electron beam and dipped in 
grafting solution of known composition for desired time. For mutual grafting experiments the 
backbone polymers were dipped in grafting solution in glass stoppered for at least an hour prior to 
irradiation in gamma chamber for required doses at desired dose rates. Homo-polymer was extracted 
from the grafted samples using suitable solvent by Soxhlet extraction for 8 hours. The grafted sample 
was then dried and grafting yield and grafting efficiency were determined gravimetrically using 
relations 
 
% Grafting = {(weight after grafting - initial weight)/initial weight} × 100  (1) 
 
% Grafting efficiency = monomer grafted/monomer converted to polymer × 100  (2) 
  
3.2.3. Antibacterial assay 
 
To check whether grafted cotton or radiation polymerized polymers of VBT, MAETC & AETC were 
bactericidal or bacteriostatic in nature; all four bacterial cultures were inoculated to the level of 103 
cells/mL in nutrient broth individually. Polymers were added (0.1% w/v) to this and incubated at 37°C 
for 24 h. Samples were withdrawn at regular intervals and growth was checked by measuring turbidity 
at 600 nm. The samples were also spread plated to count the colonies after incubation. The minimum 
bactericidal concentration (MBC) was found out by addition of different concentrations of polymer to 
0.1 mol dm-3 phosphate buffered saline (PBS) (pH 7.0). The cultures were grown in nutrient broth for 
18 h and centrifuged at 6000 rpm for 10 min to harvest the cells. The cells were washed twice with 
PBS and re-suspended in buffer containing polymers. MBC was defined as the lowest concentration at 
which complete elimination of cells was achieved at 37°C in 24 h. The antibacterial activity of 
samples grafted to different extents was assayed by colony count method. Cultures were grown; cells 
were harvested and suspended in similar way as described above for MBC. Aliquots of samples were 
withdrawn and spread plated on plate count agar to estimate the initial counts. The grafted sample as 
well as cotton fabric (control) was then added to this suspension and kept on rotary shaker at 37°C. 
Cell blank was also included in the experiment. Samples were withdrawn after different intervals of 
time and spread plated. 
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3.2.4. U(VI) uptake in amidoximated membrane (AO-membrane) 
 
The uptake studies of U(VI) in AO-membrane from aqueous solutions having pH = 4−8 and seawater 
were carried out using 233U radiotracer. The amount of 233U spiked in seawater and aqueous samples 
having different pH was 9.54 μg/mL. This amount of 233U was taken to obtain sufficient α-scintillation 
counts (≈10 000 cpm (counts per minute)) in 50 μL sample of aqueous feed added to liquid 
scintillation cocktail. In order to keep the pH of aqueous feed unaltered, the known volume of 233U 
radiotracer solution was dried under the infrared (IR) lamp, and 100 mg/mL NaHCO3 solution was 
added to prevent the precipitation of uranium from aqueous feed. The uptake of U(VI) in the 
membrane sample (2 cm × 1 cm) was monitored by liquid scintillation counting of samples 
(50−100 μL) of feed solution (15 mL) taken before and after equilibration with the membrane. The 
uptake of U(VI) in the membrane was obtained from following equation: 
 
% U(VI) uptake = {(Cbefore-Cafter)/Cbefore} × 100      (3) 
 
where Cbefore and Cafter are the α-scintillation counts (cps (counts per second)) of 233U in the samples 
taken from feed solution before and after equilibrating the AO-membrane sample, respectively.  
 
The equilibration time required for optimum uptake of U(VI) in AO-membrane sample was 
determined by spiking known radioactivity of 233U in 15 mL seawater, and equilibrating this solution 
with membrane sample (1 cm × 2 cm) with constant stirring using magnetic stirrer at room 
temperature. The uptake of 233U in the membrane was monitored by α-scintillation counting of 50 μL 
samples taken from equilibrating solution at regular time intervals. The U(VI) loading capacity of AO-
membrane was measured by drying fixed volume of solution containing known concentration of 
uranyl nitrate (natUO2(NO3)2) spiked with required radioactivity of 233U, and 15 mL of seawater was 
added to equilibrate the membrane sample of known weight for 250 min with constant stirring. 233U 
radiotracer sorbed in the membrane samples was obtained from the difference in total radioactivity of 
233U in solution and total radioactivity of 233U in solution left after equilibrating the membrane sample. 
U(VI) loading capacity of the AO-membrane was calculated from the standard radioactivity 
comparison method, and knowledge of weight of the membrane sample using following equation: 
 
U (VI) uptake capacity (mol/g) = (Amem/Astd × Wmem)     (4) 
 
where Amem is the radioactivity (cps) of 233U sorbed in the membrane sample, Astd is the radioactivity 
of 233U (cps) of 1 mol of uranium having same proportion of 238U and 233U as used for loading uranium 
in the membrane, and Wmem is the weight of dry membrane sample.  
 
The value of Astd was obtained by taking 100 μL stock solution having known concentration of 
uranium (233U + 238U) in seawater, and subjecting it to liquid scintillation counting as described above. 
 
3.2.5. Na+ exchange capacity of AO-membrane 
 
The Na+ exchange capacity of AO-membrane was measured by equilibrating the membrane sample of 
known weight with 0.1 mol dm-3 NaCl containing known amount of 22Na radioactivity for 3−4 h with 
constant stirring. 22Na radioactivity in the samples was measured by γ-counting using a well-type 
NaI(Tl) detector based gamma spectrometer. In order to obtain amount of Na+ ions sorbed in the 
membrane, the standard sample was prepared by drying required volume of solution containing known 
amounts of NaCl, containing same proportion of 22Na radioactivity as that used for equilibrating 
membrane, on Whatman−41 filter paper having same dimensions as that of membrane samples. The 
amount of Na+ ions sorbed in the membrane samples was obtained by measuring γ activities of 
membrane samples and standards under identical sample to detector geometry, and comparing the  

activity of the membrane sample with that of standard. 
 
Desorption studies were carried by loading the membrane samples with uranium with known 
radioactivity of 233U as described above. The release of 233U from the AO−membrane sample in to 15 
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Schematic representation of experimental setup for protein adsorption data collection in column 
process is shown in Figure 1. VBT-g-cotton cellulose matrix was packed in a glass column 
(Pharmacia, Sweden) of 50 mm length and 10 mm I.D. The column volume for all the experiments 
was kept 3.0 mL. The column was equilibrated with buffer solution. The column was attached to a 
pump (P-1, Pharmacia, Sweden), connected to the fraction collector (Pharmacia, Sweden), wherein 
effluent passed through the anion exchange PVBT-g-Cotton adsorbent was continuously sampled. All 
experiments were performed at ~0.5 mL/min. flow rate. Protein solution of known concentration was 
loaded into the column, connected to the buffer solution for washing of unbound protein. After 
washing, the column was switched to buffer solution containing 1 mol dm-3 NaCl solution for elution 
of bound protein. The concentration of protein in different fractions was estimated by monitoring 
optical densities of protein solutions at 280 nm referenced with calibration plot using UV−visible 
spectrophotometer (Chemito UV−Vis 2500, India). Different pH solutions were prepared using buffer 
solutions namely, pH~4.0 (10 mM acetate buffer), pH~5.6 (10 mM acetate buffer), pH~7.0 (10 mM 
phosphate buffer), pH~8.6 (10 mM borate buffer). 
 
Binding capacity (BC) and elution percentage (EP) were defined as: 
 
BC (mg/g) = (protein loaded - protein un-adsorbed)/weight of dry adsorbent  (6) 
 
EP (%) = (amount of protein eluted/ amount of protein adsorbed) × 100   (7) 
 
The breakthrough curve was obtained by feeding dilute aqueous solution (0.4 mg/mL) of protein 
through the column at the flow rate of 0.5 mL/min. The relative concentration of protein in the effluent 
was plotted against the effluent volume. 
 
The equilibrium binding capacity (EBC) of the anion-exchange grafted matrix was estimated from 
breakthrough curve using the following relation 
 

  s 
 EBC (mg/g) = Σ(C0 – Ci)Vi /W         (8) 

 i = 1 

 
where C0 and Ci

 are the protein concentration (mg/mL) in the feed and ith fraction of effluent 
respectively, Vi is the volume (mL) of ith fraction of effluent and W is the weight (g) of the dry anion 
exchange adsorbent. (i = s when Ci reaches to C0). 
 
4. RESULTS AND DISCUSSION 
 
4.1. Post-irradiation grafting of AN on NWPP sheet 
 
4.1.1. Parameter standardization for grafting and amidoximation of grafted sheet 
 
After scrutiny of several polymers available in different forms in local market, NWPP was chosen as 
backbone material because of its ready availability, low cost and higher surface area for grafting of 
acrylonitrile. The PP backbone was characterized by DSC (endothermic peak at ~165°C corresponding 
to Tm

 of PP and by FTIR. Initial experiments indicated post irradiation method using electron beam 
(EB) to be more suitable for this grafting system. Effect of several experimental variables like dose & 
dose rate, ambient conditions of irradiation, time of exposure after irradiation, solvent-monomer 
composition, temperature of grafting, optimum time for grafting and stacking were investigated. 
Figures 2 and 3 show effect of time spent after irradiation and dose and dose rate on grafting extent. 
On the basis of this investigation it was found that grafting extent of ~110% could be achieved under 
following conditions: [25] 
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• Irradiation for a dose of 200 kGy at the rate of 10 kGy/pass in air; 
• Cooling irradiated sheets for 15 minutes in air; 
• Grafting solution AN-DMF mixture of composition ratio 70:30 v/v; 
• Grafting at a temperature of 60°C. 
 

The cyano group of the grafted NWPP sheet was converted to an amidoxime group by soaking the 
grafted sheet in 3% hydroxylamine hydrochloride 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
  
 
The hydroxylamine hydrochloride was neutralized by adding suitable alkaline solution. After the 
reaction, the sheets were rinsed with water-methanol mixture. ~75−80% of the grafted CN group were 
amidoximated {-C(NH2)=NOH} (AO-membrane) within three hours of treatment as estimated by 
established titration and copper uptake method [26, 27] in accordance with equations below. 
 

 N  
 ⏐ 
 ⎯C≡N + NH2OH → ⎯ C = N ⎯ OH    (9a) 
 
 ⎯ NH2 + HCl → NH3

+Cl−  (9b) 
 
4.1.2. Sorption and desorption of uranium from simulated samples 
 
The alkali treated AO-membrane samples readily sorbed the water, and water uptake capacity of 
membrane was higher than the weight of dry membrane. The uptake of uranium in the AO-membrane 
sample from aqueous solutions having pH = 4−8 and seawater was studied by spiking solution with 
known radioactivity of 233U radiotracer. The uptake of uranium species, existing in these equilibrating 
solutions, in AO-membrane samples was found to be more than 90%. 
 
The Na+-exchange capacity of the AO-membrane was found to be (3.1±0.2)×10-4 mol/g, which was 
significantly lower than the calculated functional group density indicating polymer chains bearing 
amidoxime groups act as weak polyelectrolyte. The saturation uranium uptake in AO-membranes was 
determined by equilibrating them in solution containing 3−4-fold excess of moles of uranium than the 
calculated moles of functional groups in the membrane. The profile of sorption rate of uranium in the 
membrane sample from seawater is shown in Figure 4. Equilibration time was found to be 200 min. 
The average uranium loading capacity in the AO-membrane was (1.60±0.18)×10-3 mole/g [28]. 

FIG. 2. Effect of retention time of irradiated 
NWPP on grafting. 

FIG. 3. Effect of dose on grafting extent; Dose rate of 10 
kGy/pass. Inset: Extent of grafting at different dose rates 
for total dose of 200 kGy. 
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Langmuir isotherms were in good agreement with the experimental equilibrium adsorption capacities 
and also follow the order i.e. Cd2+ > Co2+ > Ni2+ > Mn2+. On the other hand Freundlich equation 
treatment of sorption data for the metal ions showed deviation from linearity and instead showed a two 
segment relationship. 

TABLE 2. LANGMUIR ADSORPTION PARAMETERS OF EB GRAFTED AMO-G-PP 
ADSORBENT GRAFTING EXTENT ~115% AT 25°C 

S. No. Metal ion KL(L/g) aL (L/mg) qmax (mg/g) C.F.* 

1. Cd2+ 6.18 0.20 31.58 0.998 

2. Co2+ 5.88 0.33 17.57 0.999 

3. Ni2+ 2.72 0.19 14.24 0.999 

4. Mn2+ 1.91 0.18 10.76 0.998 

* Correlation coefficient. 

 
TABLE 3. FREUNDLICH ADSORPTION PARAMETERS OF EB GRAFTED AMO-G-PP 
ADSORBENT GRAFTING EXTENT ~115% AT 25°C 

S. No. Metal ion Kf (L/g) n #C.R. (mg/L) C.F.*

1. Cd2+ 1.95 1.24 0-300 0.998 

2. Co2+ 4.43 2.54 0-215 0.983 

3. Ni2+ 4.38 3.93 0-250 0.988 

4. Mn2+ 0.79 1.29 0-150 0.989 

#Concentration range. 
*Correlation coefficient. 
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FIG. 11. Water uptake by grafted cotton. 
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TABLE 5. EFFECT OF GRAFTING EXTENT ON S. AUREUS CELLS 

 
Time of 
exposure 
 (h) 

% Grafting 
5% 13% 20% 

Counts (CFU/mL) 
 

0 1.0×109 1.0×109 1.1×109 

2 1.0×109 6.1×108 1.0×109 

4 1.0×109 1.8×104 1.7×104 

6 8.0×106 3.0×104 1.6×104 

 
 
It was observed that grafted samples showed toxicity against both these organisms at grafting levels as 
low as approximately 5%. The toxicity increased with the grafting extent of 13% and thereafter no 
significant increase in toxicity was observed. The samples grafted to the extent of ≥13% showed a 
decrease of about 4−5 log cycles within first two hours for E. coli and four hours for S. aureus. 
 
The anti-bacterial activity of the grafted cotton samples was retained after several cycles of washing 
and drying in a commercial detergent powder. 
 
The qualitative test for antibacterial activity of radiation synthesized PMAETC in nutrient broth 
showed it to be bactericidal as there was no significant increase in turbidity and number of colonies 
formed on solid media reduced with time. These results indicated the polymer to be bactericidal in 
nature rather than inhibitory. The MBC of the polymer ranged from 0.025– 0.075% depending on the 
organism used. The lowest MBC was found to be for S. aureus, followed by E. coli, B. cereus and P. 
fluorescens. 
 
Figure 13(a–d) shows reduction in initial load of E. coli, S. aureus, B. cereus and P. fluorescens with 
time for MAETC grafted samples grafted to different extents. Antibacterial assay showed variations in 
activity between pure PMAETC and grafted on cotton. The activity of grafted samples was less as 
compared to pure polymer, which may be due to its bound state on cotton but it was observed that 
grafted sample showed antibacterial activity against all these organisms at grafting levels as low as 
2%. The antibacterial activity increased with extent of grafting up to 19% and thereafter there was no 
significant increase in activity. Maximum activity was found against S. aureus, as there was 
approximately 5−log cycle kill in 24 h (Figure 13-b). This was expected as PMAETC had lowest MBC 
against this organism. In case of B. cereus (Figure 13-c) and E. coli (Figure 13-a), up to 4 log cycle 
was observed with 19% grafting followed by P. fluorescens (Fig 13-d) where only 3 log cycle kill was 
observed. 
 
The decrease for E. coli and S. aureus was also monitored with time for sample grafted to an extent of 
approximately 33%. It was found that reduction in initial count reaches minimum value after 6 hours 
itself and thereafter no significant decrease in the number of organism is observed. These studies 
establish that decrease in bacterial count is less than the VBT grafted cotton an reported by us earlier 
[31] also the decrease is not to that extent as in the earlier case. This indicated that VBT-grafted cotton 
inhibits the growth of E. coli and S. aureus more efficiently and effectively in comparison to MAETC 
grafted cotton.  
 
For AETC-grafted-cotton anti-bacterial activity followed the order: pure polymers>grafted cotton>co-
grafted cotton>co-polymer [33]. The lower activity of the grafted matrices may be due to bound state 
of these polymer/co-polymer chains wherein the flexibility of the grafted chains in restricted which in 
turn restricts the diffusion of hydrophobic chain into the bacteria once the bacteria held onto by 
charged interactions [34]. 
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FIG. 13. Anti-bacterial activity of MAETC-g-cotton against (a) E. coli (b) S. aureus (c) B. cereus (d) P. 
fluorescens. 

The AETC-grafted cotton showed antibacterial activity against all these organisms at grafting levels as 
low as 4.7% and increased with grafting extent. The co-grafted matrices showed noticeable 
antibacterial activity at much higher grafting extent of ~11% which didn’t improve on increase in co-
grafting extent. Maximum activity was found against gram positive S. aureus & B. cereus and not so 
significant activity was found against gram negative E. coli & P. flourescens. This was on expected 
lines as poly(AETC) had highest MBC against E. coli & P. flourescens. This observation was 
important in the sense that AETC grafted matrices were effective against gram positive bacteria 
whereas our earlier studies show that MAETC and VBT [31, 32] were more effective against gram 
negative organisms which are known to have lipopolysaccharide layer present over their cell walls 
[35]. 
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4.2.2. Protein binding studies of VBT grafted cotton 
 
PVBT-g-cotton, an anion exchange matrix was evaluated for protein adsorption and elution behaviour 
were investigated in a continuous column process under various experimental conditions, using 
Bovine serum albumin (BSA) as a model protein. Binding and elution behaviour of the anion 
exchange matrix was found to depend on different experimental parameters, such as grafting yield, 
ionic strength, pH of medium and amount of protein loaded. Figure 14 shows binding capacity (BC) of 
grafted anion-exchange matrix and elution percentage (EP) of the bound protein, as a function of GY. 
As expected, the protein BC of the adsorbent increased with the increase in GY. Form the elution 
profile; it was found that up to 10% GY, only about 60% of bound protein could be eluted out. But for 
adsorbent with GY ≥15%, the EP reached to the saturation value (approximately 95%). In order to 
estimate the equilibrium binding capacity of 20% GY breakthrough curve were plotted (Figure 15). 

 

 
 
 
 
 
Data presented in Figure 15 shows that protein content in the unadsorbed fraction increased gradually 
with the increase in effluent volume, and finally reached to the concentration of feed solution i.e. point 
of equilibrium at about 100 mL effluent volume. The equilibrated column was then washed and the 
bound protein was eluted out in 1 mol dm-3 NaCl solution. The adsorbed protein could be effectively 
eluted out in a small volume (~10 mL) of NaCl solution. The equilibrium binding capacity and EP of 
the PVBT-g-cotton cellulose anion exchange adsorbent, estimated from breakthrough curve, was 
found to be 40.0 mg/g and 94% respectively [36]. 
 
4.3. Mutual radiation grafting of AA onto micron thick PP membrane for battery separator 
applications 
 
For AA-PP grafting system grafting presence of Mohr’s salt effectively retarded the polymerization of 
acrylic acid but did not lead to significant grafting enhancement. Mohr’s salt in presence of acids was 
found to be effective in enhancing the grafting yield. Figure 16 shows effect of combination of salt 
with acid on grafting extent. 
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FIG. 14. BC and EP of PVBT-g-cotton cellulose as 
a function of GY. pH ~7.0 in 10 mM phosphate 
buffer, protein loaded = 8.9 mg, flow rate = 0.5 
mL/min. Data are expressed as mean ± S.D. (n=3). 
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Contact angle measurements of the grafted and radiation treated polypropylene showed that initial 
grafting as well as radiation treatment of poly(propylene) in aqueous medium and in presence of 
Mohr’s salt enhances its affinity towards the grafting solution (Figure 17). The surface energy 
measurement using solvents water and diiodomethane with Owens-Wendt method [37] indicated 
enhancement in the polar component of surface energy of treated polypropylene membrane is the 
primary cause of surface energy increase. 
 
The developed grafted AA grafted PP sheet was tested for its performance under actual battery 
conditions vis-à-vis the battery separator membrane presently used by Indian battery industry. For 
testing the grafted samples, the samples grafted to different extent were put in one Ni/2Cd electrode 
cells and soaked with KOH electrolyte. All the cells were subject to C/5 charging and 1C rate 
discharging. Those samples, which enabled the cells to pass 60 minutes of discharging, were 
considered to be working satisfactorily. Samples grafted to different extents were tested. Figures 18 
and 19 show the results of some of the samples. It was seen that samples grafted to extent of 10% did 
not give satisfactory results. The samples grafted to extent >20% only gave satisfactory results. The 
sample grafted to an extent of 21% was also used for a full cell consisting of 17 Ni and 16 Cd 
electrodes. The performance was at par with the cell assembled using battery separator presently used 
by the industry. The actual testing results indicated that grafting not only converts the hydrophobic PP 
into battery active hydrophilic state but also helps to retain the hydrophilic state over longer storage 
period, which is a necessity for Ni-Cd batteries [38]. 
 
4.4 Teflon scrap based cation exchanger by radiation grafting 

High-energy gamma radiation from 60Co-gamma radiation source has been used to covalently link 
acrylic acid to Teflon by mutual radiation grafting technique. 
 
The grafting extent decreased with increasing dose rate and increased with monomer concentration 
and optimum concentration of Mohr’s salt and sulphuric acid. As shown in Figure 20 the extent and 
depth of grafting was strong function of the backbone thickness.  
 
The crystallinity of the PTFE increased on irradiation (Figure 21). As during grafting the bulk of the 
backbone could further crystallize and hinder immediate grafting reaction. 
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FIG. 16. Effect of H2SO4 on grafting in 20% AA + 
4% FeSO4.(NH4)2SO4 at a dose rate of 5 kGy h-1. 

FIG. 17. Grafting of treated (a) untreated (b) Grafted to 
~0.99% (c) irradiated in water (d) irradiated in 0.5 mol 
dm-3 H2SO4 (e) irradiated in 4% Mohr’s salt. Dose rate = 
3.2 kGy h-1. 
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AFM image studies and kurtosis of the AFM images (Figure 22) clearly showed that radiation grafting 
does not uniformly take place over whole surface. The surface in fact showed more uniformity (less 
spread) only on higher grafting as reported earlier [39]. Dynamic contact angle measurement studies 
of the grafted and radiation treated Teflon® showed that initial grafting as well as radiation treatment 
of Teflon® enhances its hydrophilicity as shown in Figure 23. In order to quantify the change in 
hydrophobic character of PTFE on treatment and grafting surface energy of the samples was estimated 
by dynamic contact angle analysis [37]. Table 6 shows results of these studies. It is clear from the 
values in Table 6 that irradiation of PTFE in water does not affect the surface energy significantly but 
presence of Mohr’s salt and acid during irradiation does enhance the surface energy when irradiated to 
higher doses. Probably the increase in surface energy (polar component) in presence of Mohr’s salt 
and acid is among the reasons which contribute to affinity enhancement of the PTFE for grafting 
solution which results in higher extent of grafting. 
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irradiated at dose rate of 3 kGy/h. 
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TABLE 6. SURFACE ENERGY OF SAMPLES 

 

Sample 

Surface energy (mJ/m2) 
Total 

Energy 

Polar 

component 

Dispersive 

component 

Ungrafted Teflon 22.5 1.2 21.3 

Teflon grafted 1.89% 24.9 1.3 23.6 

Teflon grafted 3.48% 28.4 2.7 25.6 

Teflon grafted 8.51% 29.1 4.3 24.8 

Teflon grafted 13.57% 32.9 6.9 23.6 

Teflon grafted 21.43% 41.3 14.6 26.7 

Teflon irradiated in aqueous solution 
containing 4% Mohr’s salt + 0.5 mol dm-3 
H2SO4 (Dose = 4 kGy) 
 

25.4 1.8 23.6 

Teflon irradiated in aqueous solution 
containing 4% Mohr’s salt + 0.5 mol dm-3 
H2SO4 (Dose = 18 kGy) 
 

30.5 8.7 21.8 

Teflon irradiated in water (4 kGy) 22.8 2.5 20.3 

Teflon irradiated in water (18 kGy) 23.1 2.8 20.4 
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FIG. 23. Change in contact angle with time against water
(a) PTFE (b) PTFE irradiated in water ~24 kGy (c) PTFE
irradiated in solution 4% FeSO4(NH4)2SO4.6H2O + 0.5 mol
dm-3 H2SO4 24 kGy (d) PTFE grafted ~1.87% (e) PTFE
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FIG. 22. Surface kurtosis studies of the AFM images 
(a) Un-irradiated thickness 0.5 mm (b) Grafted 
5.59%, 0.5 mm, 2.8kGy (c) Grafted 17.75%, 0.5 mm, 
5.6 kGy (d) PTFE irradiated in solution 0.5 mm, 20 
kGy. 
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5. CONCLUSIONS 
 
Post irradiation and mutual radiation grafting technique, both can be used for grafting of desired 
monomers on commercially available polymer backbones to get products which have applications in 
separation, health-care and waste water treatment industry. High energy radiation sources electron 
beam or gamma radiation both can be utilized for irradiation purpose depending on the backbone 
polymer. In general for all grafting systems the grafting extent is a function of dose, dose rate, homo-
polymerization inhibitor, additives like acid and ambiance of grafting. As grafting leads to co-grafted 
product having properties of both the parent precursors, by judicious choice of pre-cursors and 
experimental conditions a polymer like cotton prone to bacterial and fungal attack can be made 
antibacterial which will retain all properties of cotton and also highly hydrophobic PTFE can be 
converted to a hydrophilic polymer. 
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OF NATURAL POLYMER-BASED GRAFT ADSORBENT 
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Takasaki,  
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Abstract 
 

In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions 
and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out 
by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal 
ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven 
fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly 
efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based 
adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can 
also be used as a trunk material for the grafting. 

1. OBJECTIVE OF THE RESEARCH 

Fibrous metal adsorbents have been developed by radiation induced grafting. The grafted adsorbents 
can selectively and swiftly adsorb toxic metal ions. However, these adsorbents have some drawbacks 
such as high production cost and high environmental burden. For practical use, these drawbacks must 
be reduced. 

The objective was focused on the development of fibrous metal adsorbent by highly efficient and 
economic grafting technique. Furthermore, from the view point of the reduction of environmental 
burden, natural polymer was used as the trunk material for the grafting. 

2. INTRODUCTION 

Japan Atomic Energy Agency (JAEA) has 11 sites of research institutes. Takasaki site, JAEA carries 
out application R&D of radiation processing using of facilities such as gamma source, electron beam 
accelerator, and ion accelerators. Two divisions, environment and industrial materials research division 
and radiation-applied biology division, of quantum beam science directorate are located in Takasaki 
site. Environmental polymer group in environment and industrial materials research division applied 
to this CRP in the research subject of ‘Development of fibrous adsorbents for toxic metal ions in 
streaming water’. Environmental polymer group has studied radiation processing of polymer to apply 
the resulting materials to the fields of environmental preservation and the resources conservation. 

Fibrous adsorbents for toxic ions were synthesized by graft polymerization and they were adapted to 
the purification of contaminated streaming water. The adsorbent can be applied to the remove 
significant metals as well as toxic ions from the water. The purification of streaming water is important 
for the environment.  

In the case of recovery of significant metal ions, no slag was produced in the collection process since 
the adsorbent collected the metal directly from the water. The adsorbent can be used repeatedly after 
the adsorbed metal was eluted. By using fibrous graft adsorbents, it was successfully achieved the 
recovery of U from seawater [1, 3] the recovery of Sc from hot spring water [4, 5] and removal of Cd 
from scallop processing [2, 6], respectively. Currently, this research focuses on two subjects: these are 
development of low-cost production method and reduction of environmental burdens. 

It was developed a new highly efficient and economic grafting technique and synthesized natural 
polymer-based graft adsorbent to reduce environmental burden.  
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Abstract 
 
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-
hexafluoropropylene) (FEP-g-PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl 
chloride(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride 
moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of 
thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. 
Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study 
performed with Fenton’s reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70°C revealed that FEP-g-PVBSA has a 
higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). An EDX analysis was also 
used to observe the cross-sectional distribution behaviors of the hydrophilic sulfonic acid groups and hydrophobic fluorine 
groups. The characteristics of an ion-exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton 
conductivity as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes with 
different degrees of grafting (36–102%) were measured to be in the range of 0.8–1.62 meq/g, and 10–30%, respectively. 
When the degree of grafting reached 60% the proton conductivity was higher than that of a Nafion® 212 membrane (6.1E-02 
S/cm). The methanol permeability and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the 
Nafion® 212 membrane, and even the degree of grafting reached 102%. 
 
1. OBJECTIVE OF THE RESEARCH  
 
This study aims to develop fuel cell membranes with higer chemical stability agains  the radical attack 
by introducing poly(vinylbenzyl sulfonic acid)-graft polymer chains onto a fluoropolymer film using a 
radiaton grafting method. The sulfonic acid group of the membranes was designed to be indirectly 
connected to the benzene ring of the graft chain with a methylene spacer group, and this structural 
change of the substituent was expected to change the benzyl radical stability of the graft chain.  
 
2. INTRODUCTION 

Among the many global efforts to solve serious energy and environmental problems concerning the 
consumption of fossil fuels and pollutant emissions, fuel cells have been considered as a very 
attractive alternative for fossil fuel based power generation systems ranging from stationary power 
generation to automotive transportation. Nafion® membrane is a polymer electrolyte that has typically 
been used in the fuel cells since it shows good chemical and mechanical properties as well as high 
proton conductivity. However, the disadvantages of the Nafion® membranes such as high production 
cost and high methanol cross-over in direct methanol fuel cell (DMFC) have limited their practical 
applications [1] and thus have led many researchers to develop promising alternative membranes that 
can overcome the problems associated with the Nafion® membranes. 
 
By utilizing a radiation grafting process [2], poly(styrene sulfonic acid) chains could be easily grafted 
onto various fluorinated polymer films with strong chemical, mechanical and thermal properties, and 
the grafted membranes have been studied as a fuel cell polymer electrolyte [2−6]. According to these 
studies, the membranes showed promising electrochemical performances but the lower chemical 
stability of the membranes resulting from the graft chain scission was also observed [1, 2, 7, 8]. This 
graft chain scission is known to occur at the benzyl position of the graft chain, by radicals produced in 
the fuel cell environment. In order to overcome the chemical stability problem of the membranes, two 
strategies have been extensively studied. The first is to utilize the more stable substituted monomers 
such as α,α,β-trifluorostyrene (TFS) and α-methylstyrene (AMS), [2, 7] which cannot generate a labile 
benzylic hydrogen atom after graft polymerization. However, these monomers are usually expensive 
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and/or show slow kinetics. The second is to add crosslinkers such as divinylbenzene (DVB), bis(vinyl 
phenyl)ethane (VBPE) and triallylcyanurate (TAC) during the radiation grafting process to produce a 
cross-linked network that can improve the chemical and mechanical properties [2, 5, 7, 9]. The 
crosslinking strategy is relatively simple; however, it only retards the degradation rate without 
changing the inherent reactivity of the benzyl position against the radical attack. 
 
It has been reported that benzyl radical stability could largely be influenced by various substituents on 
the benzene ring [10−13]. Both electron donating and electron withdrawing substituents have been 
reported to stabilize the benzyl radical in these studies. This result implies that the sulfonic acid 
substituent on the benzene ring of the graft chain could enhance the benzyl radical stability, and this 
can facilitate the formation of radicals on the graft chain that cause the graft chain scission.  
 
In this study, a novel polymer electrolyte membrane with a methylene sulfonic acid substituent on the 
benzene ring of the graft chain has been prepared. The sulfonic acid group of the membrane was 
designed to be indirectly connected to the benzene ring of the graft chain with a methylene spacer 
group, and this structural change of the substituent was expected to change the benzyl radical stability 
of the graft chain. In order to obtain the desired membrane, a FEP-g-PBVC film prepared by a 
simultaneous irradiation grafting of vinylbenzyl chloride (VBC) [14] was utilized as a starting 
material. The benzyl chloride moiety of the graft chain was then converted to the benzyl sulfonic acid 
moiety. FEP-g-PVBC films prepared by a pre-irradiation grafting of VBC have been applied to 
prepare anion exchange membranes by amination [15−20] and a cation exchange membrane by 
phosphonation [21]. However, no sulfonation of the membrane has been attempted as far as it’s 
expected. 
 
This paper describes the preparation method of the desired FEP-g-PVBSA membrane and the relative 
chemical stability of the membrane against radicals. The physio-chemical properties, including IEC 
value, water and methanol uptake, methanol permeability, and proton conductivity of the FEP-g-
PVBSA membranes with various DOGs, were also evaluated for direct methanol fuel cell application. 
 
3. SIMULTANEOUS RADIATION GRAFTING OF VINYLBENZYL CHLORIDE (VBC) ONTO 
POLY(TETRAFLUOROETHYLENE-CO-HEXAFLUOROPROPYLENE) (FEP) FILMS 
 
3.1. Materials and methods 
 
3.1.1. Materials 
 
The poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films with 25, 50, and 100 μm thickness 
(UNIVERSAL Co. Ltd., Japan) were used as the base films. All reagents including the VBC monomer 
(a mixture of m- and p-isomers, 96% purity, Acros Organics) and thiourea (99%, extra pure, Acros 
Organics) were used as received from the commercial suppliers. 

 
3.1.2. 1H NMR study for the radiolytic polymerization of VBC in CDCl3 
 
NMR spectroscopy (JEOL, 500 MHz for 1H NMR) was used to monitor the radiolytic polymerization 
of VBC in CDCl3. VBC and CDCl3 were mixed in small vials prior to a nitrogen purging. The 
mixtures (VBC: CDCl3, 10:0, 5:5, volume ratio) were exposed to γ ray irradiation for 20 h at does 
rates of 2 and 4 kGy/h. Small portions of the irradiated samples were diluted with CDCl3 for the 1H 
NMR analysis. When pure VBC (10:0) was exposed to irradiation, it became very rigid so it could not 
be dissolved in CDCl3. 

 
3.1.3. Simultaneous radiation grafting of VBC onto FEP films 
 
Generally, a FEP film (25 μm thickness) cut into 2 cm × 3 cm, was immersed in a vial containing a 
VBC monomer and CHCl3 with a 1:1 volume ratio. A series of mixture samples containing a FEP film, 
VBC, and CHCl3 was purged with nitrogen gas for 10 min to remove the oxygen, and then subjected 
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to a γ ray irradiation up to a total dose of 40 kGy at dose rates of 1, 2, and 4 kGy/h for the grafting of 
VBC onto the FEP films. The PVBC grafted FEP films were washed with DCM three times to remove 
the unbound homopolymers and the excess VBC monomer. After drying the films in a vacuum oven at 
60°C overnight, the degrees of grafting (DOG) of the grafted films were calculated as shown below. 
(Wo: original sample weight, Wg: grafted sample weight). 
 

DOG (%) = [(Wg – Wo )/Wo] × 100         (1) 
 
3.1.4. Characterization of the PVBC grafted FEP films 
 
IR spectra of the PVBC grafted FEP films were obtained by using the FTIR spectrometer Tensor-37 
(Brucker, Germany) at ambient conditions in the transmittance mode. The spectra were measured in a 
wave number range of 400−4000 cm−1. The thermal property of the PVBC grafted FEP films was 
investigated by a thermogravimetric analysis (TGA). The samples were heated from 40 to 650°C at a 
rate of 10°C min−1 under a dry nitrogen atmosphere. 
 
SEM EDX (SIRION, FEI Company) measurement was conducted to investigate the distribution of the 
PVBC grafting polymer on the cross-section of the FEP-g-PVBC films. The grafted films were broken 
in liquid nitrogen and placed between two silicon wafers. These samples were coated with platinum 
and subjected for a SEM EDX analysis. The SEM EDX operating conditions were set as follows: 
accelerating voltage with 20 kV, spot size of 4 and a working distance of 5~10 mm for obtaining CPS: 
1500. In the EDX mode, the relative content of the chlorine atom over the cross-section of the FEP-g-
PVBC films presented in a diagram. 
 
3.2. Result and discussion 
 
3.2.1. 1H NMR study of the polymerization of VBC in CDCl3 
 
Mixtures of VBC monomer and CDCl3 (1:1 volume ratio) were exposed to γ ray up to 80 kGy at a 
dose rate of 4 kGy/h. Small amounts of the irradiated samples were diluted with CDCl3 prior to the 1H 
NMR analysis. The 1H NMR spectra of the pure VBC and the irradiated VBC samples are illustrated 
in Figure 1. The multiplets at 7.25−7.44 ppm correspond to four aromatic hydrogen of VBC and the 
three peaks at 5.28, 5.76, and 6.70 ppm correspond to three hydrogen at the C=C double bond of VBC, 
respectively. A sharp singlet observed at 4.59 ppm can be assigned to the methylene peak of the 
chloromethyl group of VBC. As shown in Figure 1 (B) and (C), new broad peaks resulting from the 
polymerization of VBC appeared at around 1.4, 1.7, 4.4, 6.5 and 7.0 ppm and theses intensities of the 
peaks increased as the radiation dose increased. These spectra show that the peaks from the aromatic 
hydrogen of VBC were slightly shifted to 6.5 and 7.0 ppm, whereas the peaks from the hydrogen at the 
C=C double bond of VBC were significantly shifted to a downfield region (1.4 and 1.7 ppm) due to a 
change of the C=C double bond to a single bond. These spectra also show that the methylene peak 
resulting from the chloromethyl moiety of VBC was shifted from 4.59 ppm to 4.4 ppm with a line 
broadening response. By comparing the integral values of the peaks arising from VBC and PVBC, it 
can be concluded that the chloromethyl moiety of VBC is fairly stable at the given irradiation 
conditions (up to 80 kGy) and therefore could be applied for a simultaneous radiation grafting onto a 
polymer film. 

The usage of a suitable solvent for a simultaneous irradiation grafting polymerization could not only 
improve the grafting efficiency but also minimize the homopolymerization [22, 23]. This can be 
attributed to the facts that the diffusion of the monomer onto the grafting sites is largely determined by 
the swellability of the polymer in a solvent. The reactivity and lifetime of the radicals generated during 
an irradiation are also affected by the solvent [24]. 
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3.3. Conclusions 
 
It was demonstrated that a simultaneous irradiation method could be applied for the grafting of VBC 
onto FEP films without a noticeable degradation of the chloromethyl group. It is also concluded that 
chloroform is a more effective solvent than the other solvents including dichloromethane during a 
radiation grafting of VBC onto a FEP film. Studies showed that the degree of grafting of the FEP-g-
PVBC increased with an increasing irradiation dose and the monomer concentration increased. The 
optimum radiation grafting conditions were also determined to be in the ranges of 1~2 kGy/h for the 
dose rate and 40~50% (v/v) for the VBC concentration in chloroform. Several instruments such as 
FTIR, TGA and SEM EDX were utilized to characterize the prepared FEP-g-PVBC films and the 
results support a successful grafting of VBC onto a FEP film via a simultaneous irradiation method. 
 
 
4. PREPARATION AND CHARACTERIZATION OF A POLY(VINYLBENZYL SULFONIC 

ACID)-GRAFTED FEP MEMBRANE AS POLYMER ELECTROLYTES FOR DIRECT 
METHANOL FUEL CELLS 

 
4.1. Materials and methods 
 
4.1.1. Materials 

 
VBC (a mixture of m- and p-isomers, 96% purity) and thiourea (99% purity) were purchased from 
Acros Organics and used as received. Other chemicals (sodium sulfite, sodium bisulfite, and sodium 
hydroxide) and solvents used are of reagent or higher grade, and used without further purification. A 
FEP film of 25 µm thickness was supplied by the Universal Company (Japan). 

 
4.1.2. Preparation of poly(vinylbenzyl sulfonic acid)-grafted FEP membrane (FEP-g-PVBSA) 
 
PVBC-grafted FEP film (FEP-g-PVBC) was prepared by simultaneous radiation grafting of PVBC 
onto FEP films as described in previous-section. In brief, a FEP film (4 cm × 30 cm) with 25 µm 
thickness was washed with acetone and dried prior to immersing it in a VBC/chloroform (40/60 
volume ratio) mixture. The mixture containing the FEP film was purged with nitrogen for 10 mins and 
then irradiated by γ–ray from 60Co source at a dose of 40 and 50 kGy with a dose rate of 2 kGy/h at 
room temperature. The irradiated film was washed with dichloromethane several times and dried in a 
vacuum oven for 12 h at 60°C to give the grafted film. DOG values of the prepared films were 64% (at 
40 kGy) and 73% (at 50 kGy). Anal. Calcd. (%) for the film of 64% DOG: C, 42.3; H, 2.3. Found (%): 
C, 42.9; H, 3.37. 
 
4.1.3. Preparation of poly(vinylbenzyl thiouronium salt)-grafted FEP film (FEP-g-PVBTS) 
 
The prepared FEP-g-PVBC film (3 cm × 4 cm) was immersed in 0.13 M thiourea ethanol solution. 
The mixture was reacted at 40°C for 6 h to convert the chloride of the film to the thiouronium salt. The 
prepared film was several times washed with ethanol and dried at 60°C in a vacuum oven. Anal. calcd 
(%): C, 35.2; H, 2.2; N, 4.8; S, 5.5. Found (%): C, 37.1; H, 3.6; N, 5.7; S, 6.6. 
 
4.1.4. Preparation of poly(vinylbenzyl thiol)-grafted FEP film (FEP-g-PVBSH) 
 
The prepared FEP-g-PVBTS film was immersed in a 0.25 M sodium hydroxide aqueous solution at 
room temperature for 8 h. The film was washed three times with dilute hydrochloric acid and with 
distilled water until the pH of the washing solution was neutral. The washed films were dried at 60°C 
in a vacuum oven. Anal. calcd (%): C, 42.7; H, 2.6; S, 8.3. Found (%): C, 40.9; H, 2.8; S, 7.0. 
 
4.1.5. Preparation of Poly(vinylbenzyl sulfonic acid)-grafted FEP membrane (FEP-g-PVBSA) 
 
The prepared FEP-g-PVBTS film was added in a mixture of 30% hydrogen peroxide and acetic acid 
solution (40/60 volume ratio). The mixture was then reacted at room temperature for 12 h. The 
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prepared membrane was washed several times with distilled water and then dried at 60°C in a vacuum 
oven. Anal. calcd (%): C, 36.0; H, 1.9; O, 9.4; S, 6.3. Found (%): C, 36.0; H, 3.0; O, 30.7; S, 5.2. 
 
4.1.6. Instrumental analysis 
 
Infrared (IR) spectra of the prepared membrane and intermediates were obtained by using a FTIR 
spectrometer Tensor-37 (Brucker, Germany) at ambient conditions in the transmittance mode. SEM 
EDX (7200-H, HORIBA Company) measurements were conducted to investigate the relative 
distribution patterns of the graft polymers on the cross-section of the prepared films. The prepared 
films were broken in liquid nitrogen and then coated with platinum for SEM EDX analysis. The SEM 
EDX operating conditions were set as follows: accelerating voltage with 15 kV and working distance 
12 mm for getting CPS: 2200. Elemental analysis (Vario-EL Elemental Analyzer, Germany) 
measurements were conducted to determine C, N, S, H and O contents of the samples. 2 mg of each 
sample was subjected to the high temperature combustion mode (1150oC) for the complete combustion 
of the sample. 

 
4.1.7. Ion exchange capacity (IEC) and degree of sulfonation (DOS) 
 
Ion exchange capacity (IEC) of the prepared membranes was determined by acid-base titration. The 
membrane samples in acid form were immersed into a 3 mol dm-3 NaCl solution overnight at room 
temperature. The protons (H+) released in the solution were titrated with standardized 0.1 mol dm-3 
NaOH solution by using an automatic titrator (DL22, Mettler Toledo Company). The IEC value was 
calculated as below, 

 
IECexp = [0.1 × VNaOH]/Wdry          (2) 

 
where, VNaOH is the volume of 0.1 mol dm-3 NaOH aqueous solution consumed for the volumetric 
titration, and Wdry is the dry weight of the membrane. The degree of sulfonation (DOS) was defined as 
follows, 

 
DOS (%) = (IECexp/IECtheor) × 100        (3) 

 
where, the IECtheor is the theoretical ion exchange capacity calculated from the degree of grafting 
(DOG) and can be expressed by the following formula, 

 
 IECtheor = 1000 × DOG/(100MVBC + DOG × MPVBSA)       (4) 

 
where, MVBC is the molar weight of VBC monomer, and MPVBSA is the molar weight of sulfonated 
VBC monomer. 
 
4.1.8. Chemical stability 
 
The chemical stability of the prepared FEP-g-PVBSA membrane was assessed by measuring the 
weight change of the swollen membrane in an aqueous H2O2/Fe2+ solution [7, 8, 34]. In this study, a 
membrane with a size of 2 cm × 3 cm was first soaked in distilled water at 70oC until a maximum 
swelling was achieved (original wet weight). The swollen membrane was then transferred to an 
aqueous 3% H2O2 solution containing 4 ppm Fe2+ (Fenton’s reagent), and the solution was shaken in 
water bath at 70oC. The weight change of the swollen membrane was intermittently measured every 
20~30 minutes after wiping off solvent from the surface. 
 
4.1.9. Water and methanol uptake 
 
Water uptake and methanol uptake of the prepared FEP-g-PVBSA membranes were measured by 
immersing the membranes in distilled water and 10 M methanol solution for 24 h at room temperature, 
respectively. Before measuring the weight of the swollen membranes, the adhering water (or 
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4.3. Conclusions 
 
A novel FEP-g-PVBSA polymer membrane with improved chemical stability was successfully 
prepared by the chemical modification of the radion grafted FEP-g-PVBC film. The reactions for the 
introduction of the sulfonic acid moiety to the graft chain were carried out via the formation of 
thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with 
hydrogen peroxide. FTIR, elemental analysis, and SEM-EDX results indicated that each chemical 
conversion step was processed. The chemical stability test performed with Fenton’s reagent indicated 
that the FEP-g-PVBSA membrane had better chemical stability compared to the FEP-g-PSSA 
membranes. The characteristic studies of the membranes for DMFC application including IEC, water 
and methanol uptake, methanol permeability, and proton conductivity indicated that the FEP-g-
PVBSA membrane could be utilized as a polymer electrolyte membrane for DMFC application. 
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Abstract 
 

The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel 
cell operated above 100°C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic 
acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam 
(EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of 
acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were 
evaluated and the in situ performance was tested in a single H2/O2 fuel cell under dynamic conditions and compared with a 
similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and 
subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and 
higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite 
membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-
vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film 
storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled 
condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the 
variation in G% and temperature (30−130°C). The performance of 34 and 49% grafted and doped membranes was tested in a 
single fuel cell at 130°C under dynamic conditions with 146 and 127 mW/cm2 power densities. The polarization, power 
density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell 
operation above 100°C.  
 

1. OBJECTIVE OF THE RESEARCH 
 
The main objective of this research is to develop highly conductive, stable and less water-dependent 
radiation grafted membranes PEM for fuel cells operation above 100°C. The scope of the work also 
involves development of sulfonic acid membranes for low temperature fuel cell operation using 
shorter radiation induced grafting route to improve the properties of the membranes and reduce their 
cost of preparation. 
 
2. INTRODUCTION 
 
The search for new alternative cost effective electrolyte membranes for polymer electrolyte membrane 
(PEM) fuel cell continues to attract an increasing worldwide attention in the field of advanced materials 
and electrochemical systems. Various approaches have been explored by many research groups to obtain 
highly conductive, stable and cost effective materials. This includes formation of Nafion® composites 
or modification of Nafion® membranes by surface coatings. Direct sulfonation of non-fluorinated 
polymer backbones such as polystyrene, polyphosphazene, polyphenylene oxide, polysulfone, polyether 
sulfone, polyether ether ketone, polybenzimidazole and polyimides was also adopted. The challenge in 
this approach is to achieve sufficient sulfonation for high proton conductivity in the membranes without 
the polymer becoming soluble. Another approach involves sulfonation of pendent aromatic rings 
attached to a variety of copolymer (grafted) films obtained by chemical plasma, thermal or 
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radiochemical graft copolymerization of styrene monomer was pursued. The various approaches for 
membrane preparation were recently reviewed [2]. Radiation-induced graft copolymerization has been 
found to be an effective method for preparation of alternative cost effective PEM for fuel cells [3, 4]. 
The membranes obtained by this method have the advantages of ease of preparation, compositional 
controllability and absence of shaping problem. 
 
Radiation grafted fuel cell membranes are commonly prepared by grafting of styrene onto fluorinated 
polymer films followed by sulfonation reaction. However, the obtained membranes have been found to 
lack chemical and mechanical stabilities as indicated by short life time in fuel cell [5]. To enhance the 
stability of the polystyrene sulfonic acid membranes and to meet the durability demands in fuel cell, 
research workers used various strategies including crosslinking with agents such as divinylbenzene 
(DVB) [6−10], grafting of substituted styrene monomers such as α-methylstyrene [11, 12] and α,β,β-
trifluorostyrene [13], grafting of a comonomer with styrene or substituted styrene [14−16]. However, 
proton transport in sulfonic acid bearing membranes such as Nafion and their analogous commercial 
or developmental counterparts takes place in the aqueous phase of these membranes and therefore it is 
necessary to have an adequate membrane humidification during fuel cell operation. Both excess and 
less water in the membranes hinder the performance of fuel cell. This also limits the usage of these 
membranes to application having fuel cell operating below 100°C (60−80°C) [17, 18]. At temperatures 
above 100°C Nafion loses water and conductivity leading to a sharp drop in the PEM fuel cell 
performance [19]. This trend together with the high cost has motivated the search for new membranes 
for higher temperature operation. Technically, operating fuel cell at temperature above 100°C makes 
water management easier because water molecules exist in a gaseous state. Furthermore, the high 
temperature operation enhances the catalytic activity at the electrodes and reduces the poisoning by 
CO [20]. 
 
Various approaches have used to develop alternative membranes for high temperature fuel cell 
operation: 1) modification of Nafion® membranes with inorganic conductors/fillers such as zirconium 
phosphate, zirconium oxide or silica to enhance water retention within the membrane [19, 21], 2) 
loading of Nafion® with less water dependent proton conductor such as phosphoric acid [22], N-
heterocycles [23] or ionic liquids [24] and 3) formation of acid-base composites of basic polymers, 
like poly(ethylene oxide) [26] and poly(4-vinylimidazole) [27], doped with various organic and 
inorganic acids (mostly phosphoric acid) [28, 29]. Most of these membranes acquire sufficient proton 
conductivities whereas their mechanical stabilities are deemed to be low particularly at higher acid 
doping levels. 
 
Applying radiation induced grafting method to prepare fuel cell membranes for higher temperature 
operation has been very scarce. Grafting monomers such as N-vinylpyridine (NVP) onto radiation 
resistant fluorinated polymer such as ETFE films followed by doping with phosphoric acid provide 
acid-base composite membranes that can reduce the reliance of the ionic conductivity on the water 
absorbance. 
 
3. MATERIALS AND METHODS 
 
3.1. Materials 
 
ETFE films with various thicknesses (50−120 μm) were obtained from Nowofol GmbH (Germany) 
and used as polymer substrates for preparation of the membranes in this study. Pieces of ETFE film of 
surface area of 10 cm × 10 cm were used as standard samples. NVP of purity more than 95% (Aldrich) 
was used immediately after purification by vacuum distillation under reduced pressure (6.7 mbar, 
54°C). Other solvents such as acetone, isopropanol, tetrahydrofuran, methanol and toluene were 
research grade and used as received. 
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3.2. Preparation of the membranes 
 
3.2.1. Irradiation of polymer films 
 
ETFE or PVDF films were washed with acetone or ethanol and dried in a vacuum oven at 70oC for 1 
hour. The initial weights of the film samples were recorded. The films were irradiated by electron 
beam (EB) accelerator (NHV-Nissin high voltage, EPS 3000, Cockroft Walton type, Japan) with doses 
ranging from 20–100 kGy at 10 kGy per pass under N2 atmosphere. Details of parameters of EB 
accelerator and irradiation conditions are given in Table 1. After irradiation, the irradiated films were 
quickly sealed in evacuated thin polyethylene bag and kept in a low temperature freezer at - 60°C. 

TABLE 1. PARAMETERS OF EB ACCELERATOR AND IRRADIATION CONDITIONS OF ETFE 
FILMS 

EB acceleration parameters: 
Accelerating voltage    200 keV (PVDF) 

500 keV (ETFE) 
Beam current     2.0 mA 
Dose per pass     10 kGy 

Irradiation conditions: 
Dose range      20–100 kGy 
Atmosphere      N2 
Temperature     ambient 

3.2.2. Grafting of N−vinylpyridine 
 
Graft copolymerization of NVP onto ETFE films was carried out using the grafting system shown in 
Fig. 1. The irradiated ETFE film was placed in a glass reactor, which was tightly sealed then evacuated 
to remove air using a vacuum pump (10 mbar). In the meantime, a bubbler containing a solution of the 
monomer/solvent (with a specified composition) was bubbled with purified N2 gas for 10 minutes to 
remove air. The deaerated grafting solution was then transferred to the evacuated glass reactor 
containing ETFE film through a tri-way stopcock and the reactor side inlet was carefully sealed under 
N2 atmosphere and eventually detached from the rest of the system. To allow the graft 
copolymerization reaction to be initiated, the glass reactor was placed in a thermostatic bath at 
specified temperature for a desired period of time. After completion of the grafting reaction, the 
grafted films were removed and extracted with methanol and tetrahydrofuran under ultrasonication for 
one day to remove the excess monomer and the homopolymer occluded in the surfaces of the films. 
The grafted films were dried under vacuum (10 mbar) at 70°C until a constant weight was obtained. 
The grafted films were then weighed and the degree of grafting (G%) was calculated by considering 
the percent of weight increase in the grafted film using Eq. (1). 

 

      (1) 

 
where Wo and Wg are the weights of original and grafted PVDF films, respectively. 
 

The grafted films were doped with phosphoric acid using procedure reported in Ref. 19. The grafted 
films were immersed in 85% and 70% aqueous phosphoric acid for various periods of time at room 
temperature. The weight gain due to both water and phosphoric acid was obtained by comparing the 
weight change before and after doping. The doped polymer membranes were dried at 110°C under 
vacuum until no weight change was reached to separate the doping acid and water uptake. The acid 
doping was estimated using eq. (2). 
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3.3.3. Water uptake 
 
The water uptake of the membranes was determined by soaking the membrane samples in deionized 
water until a swelling equilibrium was achieved. Samples were removed and the excess water adhered 
to their surfaces was quickly blotted by tissue papers and then weighed. The water uptake was 
determined as the weight gain of the membrane in the wet state compared to the dry one. The 
hydration number or the number of sorbed water molecules per sulfonic acid group was calculated 
using taking water uptake, water molecular weight and IEC into consideration. 
 
3.3.4. Thermal gravimetric analysis (TGA) 
 
TGA analysis of the membranes was performed using Perkin-Elmer TGA-7. All the heating runs were 
made in a temperature range of 50−650°C at a constant heating rate of 20°C/min and under N2 
atmosphere. 
 
3.3.5. Differential scanning calorimetry (DSC) 
 
DSC measurements were recorded on a Perkin Elmer Pyris-1 calorimeter under N2 atmosphere. The 
degree of crystallinity of the membranes was calculated by correcting their recorded ΔHm by dividing 
over the weight fraction of PVDF in the investigated grafted films and sulfonated membranes. 
 
3.3.6. X ray diffraction analysis (XRD)  
 
XRD measurements were performed using a Philips, PW 1840, X ray diffractometer. The 
diffractograms were collected at ambient temperature in scanning range of 2θ 5−50° by means Cu-Kα 
radiation (λ = 1.54nm) and monochromated by means of Nickel filter. 
 
3.3.7. STEM analysis 
 
Scanning transmission electron microscope (STEM) measurements were conducted using SEI Quanta 
400 microanalyzer. The samples were mounted on a sample holder by double sided tape and gold 
sputtered after being sliced with a microtome. 
 
3.3.8. Ionic conductivity (IC) 
 
IC of both polymer electrolyte membranes was measured at room temperature by complex AC 
impedance spectroscopy. Measurements were carried using frequency response analyser (Autolab 
PGSTAT 30) at frequency range of 0.01−100 kHz. Analysis was conducted on membrane samples 
dried at 110°C for 8 h. Circular samples were sandwiched between two stainless steel electrodes 
having round-end discs (20 mm diameter) hosted into self-made Teflon® cell. The two halves of the 
cell were clamped in a way that prevents the samples from being squeezed between the two discs of 
the electrodes when the cell is assembled. Freshly polished electrodes were always used to ensure 
exclude microscopic corrosion. The IC of the polymer electrolyte membranes was calculated by taking 
the resistance obtained from the intercept on the real axis at the high frequency end of the Nyquist plot 
of complex impedance into consideration. Measurements of IC of PVDF-g-PSSA membrane were 
conducted under fully hydrated conditions where those of phosphoric acid dopes ETFE-g-PNVP 
membranes were conducted under dry conditions. The conductivity measurements were repeated at 
various temperatures by placing the conductivity cell in a modified oven in a temperature range of 
30−130°C. 
 
3.4. Fuel cell testing 
 

3.4.1. Single fuel cell test for PVDF-g-PSSA membranes 
 

The performance of the membranes was tested in a single fuel cell of 5 cm2 (Globe Tech., Inc., USA). 
The cell was operated under: humidifier temperature: TH2/TO2 = 75/65°C; cell temperature: 60 ± 2°C; 
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Abstract 
 
The reported investigations were focused on the elucidation of the most important factors influencing radiation-induced 
grafting; particularly (1) the effect of radical population generated in polymeric matrix on degree of grafting, (2) parameters 
determined grafting and its procedure, (3) correlation between layer structure formed via copolymerization and content of 
monomers in the initial solution. Sorption capacity of the adsorbants was evaluated using 152Eu3+ as a marker monitoring 
depletion of the radioisotope from the initial solution by gamma radiometer. Electron spin resonance spectroscopy (EPR) and 
gas chromatography (GC) studies confirmed that yield of radiation-induced radicals increases in the following order 
polystyrene (PS) < polypropylene (PP) < polyethylene (PE). The same relationship was found for efficiency of radiation 
grafting. It was concluded that under comparable conditions the content of radicals in polymeric matrices determines grafting 
degree. It was found that application of the simultaneous method of grafting introduces to the grafted layers crosslinking 
or/and branching as well as degradation of functional groups. All these phenomena reduce access of Eu3+ to the studied 
sorbent therefore sorption capacity of the polyamide functionalized via pre-irradiation (indirect) method is higher than that 
determined for the sorbent prepared by simultaneous method of grafting. When two monomers, acrylic acid (AAc) and 
acrylamide (AAm) , contributed in the formation of grafted layer, their input into copolymerization was not proportional to 
the concentrations in the feed solution. It was confirmed that grafting of the monomers shows synergetic effect as the yield of 
copolymerization exceeds degree of grafting achieved for individual components 
 
1.  OBJECTIVE OF THE RESEARCH 
 
Radiation induced grafting offers many advantages that might be commercialized: simplicity in 
controlling parameters of processing, uniform grafting of monomers or other low molecular weight 
moieties at ambient temperature, flexibility and good reproducibility of treatment. The adsorbent 
fabricated in this way can be applied to concentrate radioactive isotopes that possess chemical affinity 
to ligands present in grafted layers. Therefore, selection of suitable radiation grafted groups 
complexing with chosen metal ions seems to be promising way for working out novel separation 
technique. The results might contribute in the development of radiation technologies for the 
production of adsorbents of trivalent ions demonstrating similar chemical properties, e.g. Lanthanides. 
 
2.  INTRODUCTION 
 
Several methods have been developed for the metal ions separation or their recovery from dilute 
solutions such as industrial fluids and wastewater [1−3]. Among them is sorption of metal ions on the 
polymers containing nitrogen, oxygen or sulphur donor atoms, i.e. groups that usually demonstrate 
coordination ability. Radiation induced graft polymerization is one of the most promising methods for 
obtaining materials having desired properties. Introducing different functional groups bonded 
covalently with polymeric matrix, the chemically active layers are formed that might be used as 
sorbents of heavy and/or radioactive metal ions. High concentrations of ligands localized in the layers 
and their ability to coordinate metal ions by several functional groups, similarly to the multidentate 
complexing agents, are the most important requirements for such type of sorbents. Great variety of 
monomers may be used to produce reactive macromolecules containing appropriate ligands, e.g. 
amino, carboxylic, hydroxyl, and amidoxime groups. It was chosen vinyl monomers comprising in the 
structure oxygen and/or nitrogen atoms, namely N-vinylpyrrolidon, (NVP), acrylamide (AAm) and 
acrylic acid (AAc) that are classified as ligands able to form mono- or polydentate polymer-metal 
complexes. However, as was confirmed by Kaliyappan and Kannan [4], due to steric obstruction, 
chance for binding metal ion by the second ligand positioned at the same chain seems to be limited. 
Utility of the grafted layers and their potential application depend not only on the introduced monomer 
but also on the method of grafting [5] which to some extend determines the structure of grafted layers 
and their final features. The following aspects of radiation-induced grafting are reported: 
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a) The influence of radicals generated in polymeric matrix and in monomer solutions on 
radiation yield of grafting. The simultaneous radiation grafting of acrylic acid (AAc) onto 
polyethylene (PE), polypropylene (PP) and polystyrene (PS) films was investigated. The 
contribution of processes initiated by active sites situated in the matrices was determined and 
analyzed. 

b) The influence of grafting method using simultaneous and pre-irradiation procedures on ability 
to sorption of europium-152 on the surface modified with two vinyl monomers – NVP and 
AAm. 

c) Graft copolymerization of two monomers, AAc and AAm, in order to improve sorption 
capacity of radioactive isotopes. Studies of simultaneous grafting of two components were 
performed to find if the introduction of carboxyl groups increasing hydrophilic properties of 
the polymeric matrix (polypropylene) enhances affinity towards cation attraction, and 
subsequently production of complex/chelate compounds. 

 
Characterization of the sorbents at each step of their production was carried out using gravimetric 
method, EPR spectroscopy, ATR-FTIR, thermal and contact angle measurements. Sorption properties 
of the prepared materials were determined using LG-1 gamma radiometer, constructed at the Institute 
of Nuclear Chemistry and Technology, by the measurements of solutions radioactivity before and after 
sorption. The sorption capacity indirectly reveals construction of the grafted layers as well as their 
usefulness for coordination of the selected metal ions. It is known that the coordination chemistry of 
trivalent lanthanides does not differ neither along the series nor from the actinide series [6] thus 
obtained data can be extrapolated for both groups of elements. 
 
3. MATERIALS AND METHODS 
 
3.1. Materials and their irradiation 
 
Following materials used in this work were commercially available LDPE - Malen FGNX 23D-022, 
PP - Malen P J601 and PS - GPPS - Owispol 525 0001TH supplied from PKN Orlen S.A. PA 6,10 
polyamide and PP filter of microporous structure (20 μm) were studied as matrices. Acrylic acid 
(AAc), N-vinyl-pyrrolidone (NVP) and acrylamide (AAm), ferric chloride and Mohr’s salt were 
purchased from Aldrich Chemical Company Inc. and used without any purification. Methanol was 
delivered from Chempur Co. The polymers in form of tape or PP filter were washed with water in 
ultrasonic bath and dried at 60°C under vacuum. Before irradiation the materials were kept 24 h in 
solvents. 
 
The samples were irradiated with a 10 MeV electron beam generated by an Elektronika accelerator in 
air atmosphere at room temperature. The total doses were obtained by multipass exposure (ca. 25 kGy 
per one pass). For some samples 60Co source Issledovatiel (dose rate 1.14–0.97 kGy/h) was applied for 
simultaneous grafting. 
 
3.2. EPR spectroscopy 
 
The radicals produced in the polymeric matrices were monitored and identified by electron 
paramagnetic resonance (EPR) spectroscopy using X-band ESP 300 Bruker spectrometer equipped 
with the Apollo software. 
 
3.3. Gas chromatography 
 
The radiation yields of hydrogen in the gas phase evolved from irradiated polymers were determined 
with a gas chromatograph Shimadzu – 14B. 1 m long column was packed with molecular sieves of 5 
Å; the thermoconductivity method was used for detection. The carrier gas was argon; calibration was 
performed with hydrogen of purity 99.99%. 
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3.4. Thermal analysis 
 
Thermal properties were investigated using DSC technique. Phase transitions were determined by a TA 
Instruments apparatus with nitrogen flow and heating rate of 10°C/min. The crystallization and 
melting behaviour of the samples were studied during first heating/cooling cycle or after erasing of the 
thermal and mechanical history of samples in the second run. Measurements were performed in the 
temperature range from 25–200°C. About 5 mg of the sample inserted in the pan was heated, then kept 
for 5 min at 200°C and gradually cooled. Afterwards, the second run was performed applying the same 
conditions as for the first cycle. Thermal decomposition of the polymers was performed on a TA 
Instruments TGA Q500 apparatus. Analyses were conducted over the temperature range from 30°C to 
600°C with a programmed temperature increment of 10°C/min under nitrogen atmosphere. 
 
3.5. Swelling measurements 
 
Swelling of the polymeric material was examined by immersing ca. 0.025 g samples in distillated 
water or in the aqueous solutions of monomers at 40°C for 18 h, when saturation was reached. 
Subsequently, the samples were dried carefully with the filter paper and immediately weighed. 
Swelling was calculated by the following equation: 
 

Swelling (%) = [(ws – wo)/wo] × 100%     (1) 
 
were ws and wo represent the weights of swelled and initial (dry) samples, respectively.  
 
3.6. Radiation-induced grafting 
 
Simultaneous grafting was performed using aqueous solutions of NVP and AAm at concentrations 
indicated in Figures 8 and 9. Tapes of PA immersed in the solutions containing an inhibitor of 
homopolymerization (20 mmol dm-3 CuCl2) and monomers were irradiated either in gamma source at 
ambient temperature or in accelerator Elektronika. For pre-irradiation grafting, polyamide was 
exposed to electron beam in an accelerator Elektronika under air atmosphere and subsequently 
contacted with aqueous solutions of monomer at 40°C.  
 
Upon grafting, the samples made from PA covered with the layers of polymerized NVP or AAm were 
washed for 0.5 h in ultrasonic water bath and dried under vacuum at 80°C until a constant weight was 
reached. The degree of grafting was determined gravimetrically and expressed as follows: 
 

Degree of grafting (%) = [(wg – wo )/wo] x 100%   (2) 
 

where wg and wo represent the weights of grafted and initial samples, respectively. 
  
For PP filter, grafting was performed from methanol solution of AAc and AAm. The procedure applied 
after grafting was analogous to that one described above. 
 
3.7. Dynamic contact angle measurements 
 
The surface of the grafted polyamide was characterized by dynamic contact angle measurements 
carried out by means of Wilhelmy method using Krűss Tensjometer K100. The presented data were 
calculated on a basis of eight independent assays. 
 
3.8. ATR-FTIR spectroscopy 
 
ATR-IR spectra were recorded with a Bruker Equinox 55 FT-IR spectrometer. The spectra were 
collected in the range of 4000−650 cm-1 at a resolution of 4 cm-1 by means of an accessory designed 
for single reflection ATR technique equipped with ZnSe crystal. 
 

175



3.9. Sorp
 
The graf
mol dm-

dm-3 Na
solutions
glass ele
that batc
MultiBio
initial an
 
4. RESU
 
4.1. Infl

yiel
 
Generall
polymer
spectrosc
radicals 
  
PS is co
radiation
radiation
Clough 
hydrogen
upon irra
low effic

FIG. 1. E
atmosphe
 

Figure 2
dominan
is very s
substrate
of the p
degradat
obtained

ption  

fted polymer
-3 HCl, 1.0 m
aCl solution)
s were adjus
ectrode conn
ch sorption 
o RS-24 (Bi
nd equilibrium

ULTS AND D

luence of ra
ld of graftin

ly, grafting 
ric matrix a
copy enables
what indirec

onsidered as
n energy int
n yield of th
et al. [6] th
n and one is
adiation with
ciency of the

EPR spectra of
ere) and expec

2 shows the
nt product is 
stable and ca
e for applyin
polymer to 
tion increase
d EPR signal 

ric samples, 
mol dm-3 NaC
) was used 
ted by addin

nected to a p
equilibrium

iosan, Latvia
m radioactiv

DISCUSSION

dicals gener
ng 

yield is det
and in solv
s to estimate
ctly reveals th

s the most 
to the heat 

he radicals in
hree radicals
s created via 
h a dose of 2

e radical proc

f radicals form
cted radical st

e spectra of 
third ordere

an be detecte
ng pre-oxidat

much highe
es. The leve
is more than

before using
Cl and water
as a marker

ng 0.05 mol d
pH meter (of

m was reach
a). Home-ma
vity of the sol

N 

rated in poly

termined pr
vent. The a
e contribution
heir ability to

radiation re
by aromatic

n PS is much
s can be ide

addition of 
25 kGy (Fig
cesses influen

 

med in PS by i
tructures [7].

the radicals
ed alkyl radic
ed even man
tion method 
er doses tha
el of radical
n 4 times hig

g as a sorben
r. Europium 
r monitoring
dm-3 NaOH o
f the HI-221
hed after 2 h
ade gamma 
lutions.  

ymeric mat

redominantly
analysis of 
n of particula
o construct c

esistant poly
c rings. Thu
h lower than
entified – tw
hydrogen to

g. 1) is unch
ncing yield o

ionizing radia

s formed in 
cal that fast 
ny months u
of grafting. 
an in simul
ls, as was ro
gher in PP tha

nt, were activ
radioisotope

g sorption ca
or HCl and w
 type, Hann

h shaking u
radiometer L

rix and in m

y by the lev
paramagnet

ar polymers 
covalent bond

ymer since e
us, radiation 
n that found 
wo of them 
o aromatic ri
aracteristic a
of radiation-i

ation with a do

PP upon ex
undergoes o
pon irradiati
However su

ltaneous me
oughly deter
an in PS. 

CCH2

C

vated by 0.5 
e 152Eu3+ (10
apacity. pH 
were controll
a Instrument

using progra
LG-1 was u

monomer so

vel of radic
tic species 
to radiation 
ds with mono

efficient con
processes a
in other pol
are formed 
ng. The EPR
and of low in
induced graft

ose of 25 kGy 

xposure to a
oxidation. Fo
ion thus PP 

uch a procedu
thod, thus t
rmined by d

CH

C CH C CH

 h treatment
0-7 mol dm-3 

values of th
led using a c
ts Co.). It w

ammable rot
used to deter

olutions on r

cals initiated
performed 
induced form

nomers. 

nversion of 
are very lim
lymers. Acc

upon abstr
R spectrum m
ntensity wha

fting. 

(electron bea

an electron 
ormed peroxy
seems to be 
ure requires 
the risk of 
double integ

CH2

H

H

H2

t with 1.0 
in 1 mol 
he initial 
combined 

was found 
to−shaker 
rmine the 

radiation 

d both in 
by EPR 

mation of 

absorbed 
mited and 
ording to 
action of 
measured 
at reveals 

am, air 

beam. A 
yl radical 
a proper 
exposure 
polymer 

gration of 

176



PE is al
different
of bonds
radiation
composi
Deconvo
polyenyl
basis of 

 
FIG. 2. E
atmosphe

The dom
polyenyl
paramag
of radica
that used
concern 

FIG. 3. E
and expec

lso consider
t than in the 
s between ma
n induces re
ite signal a
olution of th
l radicals are
the signals o

EPR spectra o
ere) and expec

minant interm
l radicals tha

gnetic specie
als in PE esti
d polymers 
these particu

EPR spectra of
cted radical st

red as a rad
case of PS. 

ain chains th
esidual radic
arising from
he experimen
e produced u
of individual 

of radicals for
cted radical st

mediate is a s
at might be 
s should faci
imated direct
are commer
ular material

f radicals form
tructures [7]. 

iation resista
A dominant 

hat occurs in 
cals in crys

m various c
ntal spectra 

under vacuum
species). 

 
rmed in PP by
tructures [7].

second order
selected upo
ilitate format
tly upon irra
cial product
s. 

med in PE by io

ant polymer
factor deter
amorphous p
stalline phas
contribution
leads to the

m (in Fig. 3 d

y ionizing rad

red alkyl radi
on partial de
ation of cova
adiation over
ts thus obser

 

onizing radiat

r but the ba
rmining final
phase. Excep
se. The exp
s of severa
e conclusion
dotted lines p

diation with a

ical; less pop
cay of the m
lent bonds d
come that fo
rved variatio

tion with a dos

C
C

H

H

H 2

C
C

H 2

H

C
C

H 2

p

ckground of
l effect of irr
pt effective cr
perimental sp
al radical 

n that eventu
present spect

a dose of 25 k

pulated are a
main product
during graftin
ound in PP. It
ons among p

se of 25 kGy (

C
C

C

H 2

2

a lk yl ra d ic a l

C

C
H

H

C
C

C
H

H

a lly l ra d ica l

n

p o lye n yl ra d ic a

f the phenom
radiation is f
cross-linking
pectrum of 
individuals, 
ually alkyl, 
tra reconstru

kGy (electron 

allyl type rad
t. Significant
ng. The conc
t must be em

population of

(electron beam

C
C
H 2

H 2

C
C
H 2

H 2

H

C
C
H 2

H 2

a l

menon is 
formation 
, ionizing 
PE is a 
Fig. 3. 

allyl and 
ucted on a 

beam, air 

dicals and 
t level of 
centration 

mphasized 
f radicals 

m, vacuum) 

177



The radicals formed in the studied polymers, PS, PP and PE, are predominantly generated upon 
abstraction of hydrogen. Consequently, radiation yield of hydrogen reflects indirectly level of formed 
paramagnetic species. Values of radiation yield of hydrogen, G(H2), in Table 1 reveal great 
discrepancies among particular polymers. The most intensive is emission of hydrogen from PE 
(0.46 μmol/J), smaller from PP (0.27 μmol/J) and the smallest from PS (0.036 μmol/J). 
Dehydrogenation results in the production of alkyl radicals as well as cross-linking, and the last 
process is the most significant in PE. 

TABLE 1. RADIATION YIELD OF HYDROGEN G (H2) 

Polymer Radiation yield of hydrogen 

µmol/J 

PP 0.27 

PS 0.036 

PE 0.46 

Then, an influence of the radical population on efficiency of simultaneous grafting was investigated. 
Figures 4 A, B and C illustrate relationships between grafting degree and concentration of the agent 
inhibiting homopolymerization observed for PS, PP and PE matrices, respectively. For PS, even upon 
a relatively high dose, 25 kGy, yield of the process is insignificant at concentration of 50% of AAc and 
negligible at 25%. EPR and GC results indicate that the level of radicals in PS is very low. Therefore, 
lack of noticeable changes reveals that the radicals occurred in the matrix have dominant influence on 
the initiation of grafting. Additionally, life-time of intermediates in PS is shorter than in irradiated PE 
and PP thus conversion to diamagnetic product competes with grafting processes. 

0

5

10

15

20

2          4         6         8        10       12        14       16

 AAc-25% 
 AAc-50% 

Inhibiotor concentration/ x 10-3 mol x dm-3

D
eg

re
e

 o
f 

g
ra

ft
in

g
/ %

25 kGy

A

 

0

20

40

60

80

100

2           4          6          8         10        12         14        16

 AAc-25%  
 AAc-50%

Inh ib ioto r concentra tion /m ol x  dm -3

D
e

g
re

e
 o

f 
g

ra
ft

in
g

/ %

10  kG y

B

0

2 0

4 0

6 0

8 0

1 0 0

 A A c -2 5 %  
 A A c -5 0 %  

In h ib io to r co n ce n tra tio n / x  1 0 -3 m o l x  d m -3

de
gr

ee
 o

f 
 g

ra
ft

in
g 

/ %

1 0  kG y

2           4          6          8         1 0        1 2         1 4        1 6

C

 
FIG. 4. Effects of concentration of homopolymerization inhibitor (Fe(SO4).(NH4)2(SO4)) on the degree of grafting of 
AAc onto PS (A), PP (B) and PE (C) [7]. 
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CH2
CH2CHCO NH  

As was suggested earlier by Takigami et al. [10], the PA spectrum corresponds probably to the radical 
which centre is localized at α position towards amide group (see below). In such a case EPR spectrum 
reveals interaction of unpaired electron and protons at α and β carbon atoms. 

CO NH CH  

During the last stage of radical processes disproportionation might lead to the production of 
unsaturated bonds and eventually to the conjugated double bond systems that are able to stabilize 
unpaired spin efficiently. Such a product reveals EPR spectrum in form of singlet, analogously to 
irradiated polyethylene. The last observed in PA spectrum might be assigned to that type of 
intermediate. The kinetics of radical decay shown in Fig. 4 reveals that paramagnetic species are stable 
in PA matrix only for 24 h. The EPR data demonstrate that (i) the radical centred at α position towards 
amide group is a precursor of vinyl monomer grafting and (ii) in pre-irradiation grafting the matrix has 
to be contacted with monomers during first few hours after irradiation. Two different monomers 
containing nitrogen and oxygen donor atoms that form complexes of high stability with many metal 
ions were used for radiation induced grafting. These were namely N-vinyl pyrrolidone (NVP) and 
acrylamide (AAm) dissolved in double distilled water. 
 
Swelling of PA matrix was determined using aqueous solutions containing monomers at various 
concentrations. The process might facilitate penetration of monomer molecules into the external layer 
of matrix. For 40% solutions swelling reaches 10% and 12% for NVP and AAm, respectively, Fig. 6. 
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FIG. 6. Swelling of PA in aqueous solution of NVP and AAm [8]. 

In order to carry out grafting by means of simultaneous method, the dose was split and delivered in 
portions of 25 kGy. Figure 7A shows a relationship between absorbed dose and grafting degree of 
NVP in presence of air. The function is linear and depends considerably on the monomer 
concentration. If the concentration is doubled, then also the grafting process is almost twice more 
efficient. In order to detect exothermic effect of the growing NVP chain, a rise in temperature was 
measured after each pass under electron beam (Fig. 7B). The increase in temperature results not only 
from the simple conversion of radiation energy into the heat but also from exothermic radical 
polymerization since the observed effect depends on the monomer concentration and consequently 
degree of grafting. 
 
The AAm monomer was grafted using simultaneous and indirect procedures (Fig. 8). As was expected, 
efficiency of AAm grafting per 1 kGy of absorbed energy was much higher when simultaneous 
method of grafting was applied. In such a procedure just for doses in the range of 2−5 kGy the degree 
of grafting reaches 20% and 80% at concentrations of 10% and 40% AAm, respectively, whereas for 
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pre-irradiation method the yield of grafting is much lower, as seen in Fig. 8B and 8C. The kinetics of 
AAm pre-irradiation grafting shows that at 40°C the maximal effect is reached just after 1 h. The final 
result is strongly influenced by absorbed dose. For pre-irradiation method the grafting yield is growing 
with the monomer concentration only till 30% and for higher content of AAm changes are 
insignificant. 
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FIG. 7. A - Relationship between absorbed dose and degree of grafting for PA/NVP system (simultaneous grafting, 
EB). B – Increase in temperature after each pass under electron beam for NVP grafting on PA [8]. 
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FIG. 8. A - Relationship between absorbed dose and degree of grafting for PA/AAm system (simultaneous 
grafting, gamma source). B - Optimization of the reaction time for pre-irradiation grafting of AAm on PA for a 
dose of 25 kGy; C - Function of grafting degree versus absorption dose at various concentrations of AAm [8]. 

An increase in hydrophilic properties of the PA surface covered with grafted AAm and NVP 
macromolecules was monitored by the dynamic contact angle measurements. The data obtained for 
advanced angle do not reflect wettability correctly since the system was far from reaching equilibrium 
with water. Thus, only recede angle clearly confirms considerable raise of hydrophilicity (Table 2). 
Low values of contact angle are attributed to the surfaces of enhanced ability towards attraction of 
polar moieties what can support metal ion sorption. 

181



Sorption properties of the grafted polymeric materials have been determined using radioactive isotope 
152Eu. Initial pH of 10-7 M Eu3+ aqueous solution in NaCl was 4.55. Solution acidity, upon contacting 
with the grafted samples, remarkable decreases (equilibrium pH for the studied samples is shown in 
Table 3). 

TABLE 2. EXAMPLES OF RECEDE CONTACT ANGLE OF PA BEFORE AND AFTER 
GRAFTING, 25°C 

PA 
CA Rec. 

(deg) 

0 kGy 32 

20 kGy 40 

Pre-irradiation grafting 
20% NVP 

23 

Pre-irradiation grafting 
30% AAm 

15 

TABLE 3. UPTAKE OF EUROPIUM IONS BY GRAFTED LAYERS OF NVP AND AAM ON PA 
MATRIX. AVERAGE RADIOACTIVITY WAS CALCULATED ON A BASIS OF THREE 
INDEPENDENT MEASUREMENTS 

Sorbent Grafted layer/mass of PA 
(mmol/g) 

pH after grafting Radioactivity kBq/g 
(grafted layer) 

NVP 
Simultaneous grafting 

15.2 5.27 310 

AAm 
Simultaneous grafting 

6.0 4.90 586 

AAm 
Pre-irradiation grafting 

4.2 5.05 1283 

 

It is known that up to about pH = 6.0 europium exists predominantly in form of trivalent ion, however 
for more basic solutions, the trivalent cation undergoes hydrolysis forming Eu(OH)2+ and Eu(OH)2

+ 

structures [11, 12]. On the other hand, sorption from the acidic solutions is limited due to competition 
between the excess of H+ ions and cationic species. The process was confirmed by Sharma and Tomar 
[13] who investigated influence of pH on sorption of some lanthanides onto the analogue of mesolite. 
According to the results, below pH = 5.5 the removal of U(IV), Th(IV) and Eu(III) decreased 
considerably, reaching at pH = 1 level more than three times lower than at pH = 5. Since the trivalent 
europium ion sorption significantly depends on pH, increasing basicity during sorption (Table 2) is 
supposed to enhance the efficiency of metal ion binding. Therefore, the resulting pH seems to improve 
conditions for sorption of the studied cation. 
 
In model studies europium ion is frequently used as an analogue to trivalent actinides and applied as a 
tracer of radionuclide migration in the geosphere. In these investigations various minerals were 
applied as potential complexing agents, e.g. hydrous silica [14], Gorleben sand and humic substances 
[15] and analogue of mesolite [13]. Two types of Eu3+ bonding to mineral surfaces have been 
distinguished: (i) electrostatic interaction with negatively charged surface sites and (ii) formation of 
surface complexes with oxygen containing polar groups. The second mechanism was also confirmed 
in some other organic europium complexes – in conjugated Eu3+ complexes involving carbonyl and 
pyridine groups [16] as well as in complexes with pyridyl oxadiazole derivative and dibenzoylmethane 
[17]. These organic compounds served as ligands delivering oxygen and nitrogen atoms bonded with 
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the central ion. Complexes of Eu3+ with grafted layers of AAm and NVP probably also are formed 
with contribution of the heteroatom. Bidentate ligands based on oxygen and nitrogen atoms present in 
each monomer are responsible for the capacity of europium ion sorption. The neighbouring mers 
provide subsequent pairs of functional groups that might contribute in Eu3+ complexation. Such a 
system characterizes a considerable hydrophilization of the surface and efficient sorption of selected 
metal ions. 
 
4.3. Copolymerization of AAm and AAc on PP filters 
 
In order to intensify sorption capacity, PP filter of extended boundary surface facilitating penetration 
of low molecular species was applied as a matrix. Polyacrylamide which, as was found in the previous 
studies, efficiently forms complexes with europium ion, was enriched with AAc mers that additionally 
increased hydrophilic properties of the product and enhanced affinity towards cations due to 
introduction of carboxyl groups. 
 
Grafting yield measurements: The PP-g-AAc-AAm sorbent was prepared via simultaneous grafting 
applying methanol solvents of monomers in various concentrations with AAc:AAm ratio was as 
follows: 0:100, 20:80, 40:60, 60:40, 80:20, 100:0, (Fig. 9). The obtained data indicated that grafting of 
acrylamide is more efficient than acrylic acid, and the highest yield was achieved when the mixture of 
both components was in the proportion of AAc/AAm = 40:60. 
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FIG. 9. Effect of monomer concentration on the grafting yield for the system PP-g-AAc-AAm. Grafting conditions 
were as follows: total concentration of monomers in methanol: 30%, inhibitor concentration (CuCl2):5x10-4 mol 
dm-3, dose: 10 kGy, temperature: 50°C. 

The profile of grafting yield unambiguously reveals that radiation induced processes in the system 
comprising two monomers, namely AAc and AAm, demonstrates synergetic effect as under such 
conditions the efficiency of the reaction exceeds yields achieved for the individual components. 
 
Thermogravimetric analysis in ambient gas (nitrogen): Thermal stability of grafted PP depends on the 
nature of mers. The initial weight loss was due to the presence of small amount of moisture in the 
samples, Fig. 10. The thermographs of PP-g-AAc and PP-g-AAm show one distinct zone of thermal 
degradation of maximal decay rate (Tm3) at about 460°C. For PP-g-AAc the small peak below 400°C 
is due to the decarboxylation combined with the emission of carbon dioxide. 
 
Contrary to this findings, the PP-g-AAc-AAm system is more thermally sensitive as the first step of 
decay starting at low temperatures achieves maximal decay rate just at Tm1 = 217°C, and second one at 
Tm2 = 390°C, Fig. 10. In both stages the thermal decomposition deepens with increasing concentration 
of AAm and reaches maximum for AAc: AAm=20:80 (Fig. 9, right side). Position of the signals is in 
correlation with Tm3 which increases insignificantly when thermal decay at Tm1 and Tm2 becomes more 
intensive. The first stage decomposition at around Tm1 was due to dehydration as well as loss of 
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FIG. 12. Left side: thermographs presenting phase transitions of PP-g-AAc-AAm detected during the second 
heating. Right side: changes of melting point and enthalpy of fusion determined on a basis of the graphs shown 
nearby. 
 

EPR spectroscopy gives insight into radical processes initiated during exposition to ionizing radiation. 
As in solutions the generated intermediates are unstable at room temperature, the following systems 
were frozen in liquid nitrogen: AAc/methanol, AAm/methanol, AAc/AAm/methanol, 
AAc/AAm/methanol/PP. Then, upon irradiation, the EPR spectra were recorded using Bruker EPR 
spectrometer. As expected, the character of all spectra is comparable (Fig. 13). It seems that the radical 
showed below is generated in the main chains of growing macromolecules: 

 - CH2 – C• – CH2 – R = COOH, CONH2 
                                                             ⏐ 

 R 
The unpaired spin interacts with four almost equivalent protons at β position revealing hyperfine 
splitting (hfs) near 2.4 mT. Before annealing poorly resolved lines attributed to γ-hydrogen atoms 
appear in all recorded spectra as well as triplet corresponding to methanol radical. However, after 
heating to -113°C, only distinct quintet is observed (Fig. 13 (b)) that at elevated temperatures, e.g. at -
53°C, is converted to the spectrum comprising anisotropic signal of oxidative degradation products 
(Fig. 13 (c)). 
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FIG. 13. Left side: EPR spectra of AAc. Right side: EPR spectra of AAm, AAc + AAm and PP + AAc + AAm. 

 
The following terminal radical responsible for graft polymerization was not found in the analyzing 
EPR spectra: 

- CH2 – CH• 
 ⏐ 
 R 

 
This radical is supposed to demonstrate quartet of hfs typical for alkyl radicals that was not identified 
in the detected spectra. Such a product due to high reactivity is efficiently consumed during the chains 
grow. Thus, initiated by ionizing radiation primary species were not detected even under cryogenic 
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conditions and radicals formed in the grafted products provide evidence that polymerization proceeds 
very efficiently. 
 
ATR-FTIR spectroscopy: the ratio between AAc and AAm monomers in the solution needs not reflect 
the contribution of AAc and AAm mers in the grafted layer. In order to estimate the correlation 
between participation of the particular components in growing chains of copolymers and their 
concentration in the initial methanol solution, IR spectra were recorded using ATR-FTIR spectroscopy. 
Many various bands were detected revealing complexity of the system. Two of them were selected in 
order to monitor the contribution of amide group in the studied system. 
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FIG. 14. Left side: ATR-FTIR spectra of PP-g-AAc-AAm. Right side: decrease in intensity of N-H bending vibration 
– II amide band (1617 nm) and interference of C=O stretching vibrations – I amide band (1679). 

 

If the contribution between mers in grafted copolymer is additive, the relationship between AAc 
concentration and diminishing intensity of 1679 and 1617 cm1- bands would demonstrate a green line 
(Fig. 14, right diagram). However, for the solutions containing 20 and 40% of AAm, the contribution 
of acrylamide component in the grafted layer is not directly proportional to the concentration in the 
solutions and the results are ca. 20 and 30 % smaller, respectively. 
 
Adsorption of europium ion: The sorption capacity of produced sorbents is changing significantly 
depending on the ratio between components. It was found that the highest radioactivity per gram of 
grafted layer was determined for grafted polyacrylic acid homopolymer (Fig. 15). About 40% lower 
values were achieved for polyacrylamide only and for copolymer comprising mers in the proportion of 
AAm:AAc = 20:80. However, depletion of europium ions by grinded grafted filters from the aqueous 
solutions was substantial for all prepared sorbents and reaches above 93%. As seen in Fig. 9 degree of 
grafting for AAc was the lowest thus sorption calculated per gram of layer is the highest. It seems that 
the internal fractions of the grafted layers do not contribute in the sorption and predominantly the 
external functional groups are engaged in bounding of europium ions. Thus, the yield of sorption for 
all studied homo- and co-polymers is comparable (Table 4). 

TABLE 4. DEPLETION OF THE 152EU3+ RADIONUCLIDE FROM 10-7 mol dm-3 AQUEOUS 
SOLUTION 

Relative concentration of AAc (%) 0 20 40 60 80 100 
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crystallinity, particularly when AAm is used. This can be explained by effective chain transfer 
reactions during polymerization of AAm. The following factors determine sorption capacity: 
availability of heteroatoms contributed in the formation of complexes, hydrophilic properties of 
introduced functional groups and pH of feed solution. Only external layers of the grafted 
homopolymers (PAAc and PAAm) and copolymers (P(AAc + AAm)) contribute in sorption of 
radioactive europium ions. Depletion of the radionuclide from 10-7 mol dm-3 aqueous solution is above 
93% for all prepared adsorbents. The final product can be exploited for the preconcentration and 
removal of cations including lanthanide from very dilute solutions as well as for the decontamination 
and treatment of radioactive waste water. 
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FIG. 12. Ohmic resistance development over life time for OCV hold test of Gen 1 and Gen 2 membranes, based 
on 25 μm thick ETFE-films. 

 
6. CONCLUSIONS 
 

Several fundamental aspects of synthesis, characterization, and fuel cell testing of radiation grafted 
membranes have been addressed. Progress in terms of stability under fuel cell operating conditions has 
been achieved in moving from Gen 1 to Gen 2 membranes. Crosslinking is important for both 
generations of membranes, indicating the importance of water uptake respectively gas cross-over for 
the longevity of membrane properties under in situ conditions. 
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Abstract 
 
Polymer membranes (PP and PE) had been grafted with basic and acidic functional groups using gamma radiation. Two 
binary mixtures had been used for the grafting reactions: acrylic acid/N-vinyl pyrrolidone, and acrylic acid/N-vinyl 
imidazole. The influence of different reaction parameters on the grafting yield had been investigated as: type of solvent and 
solvent composition, comonomer concentration and composition, addition of inhibitors, and dose. Water uptake with respect 
to the grafting yield had also been evaluated. The ability of PP films, grafted with acrylic acid/ vinyl pyrrolidone, to uptake 
heavy metal ions such as Hg2+, Pb2+, Cd2+, Co2+, Ni2+ and Cu2+ was elaborated. The uptake of the metal ions increases with 
increasing the grafting yield. Furthermore, the Pb+2 uptake was much higher than the uptake of the Hg2+ and Cd2+ ions. The 
membranes may be considered for the separation of Pb2+ ions from Hg2+ or Cd2+ ions. Also the ability of PE films, grafted 
with acrylic acid/ N-vinyl imidazole to uptake heavy metal ions such as Pb2+, Cd2+, Co2+ and Ni2+ was elaborated. An 
increase in the uptake of the metal ions was observed as the grafting yield increased.  

  
 
1. OBJECTIVE OF THE RESEARCH 
 
The Syrian contribution in the CRP project is a part of national project concerning the preparation of 
polymeric membranes for different applications, which are grafted with basic and acidic functional 
groups using gamma radiation. The present project was intended to prepare polyethylene and 
polypropylene membranes grafted with two binary mixtures of acrycilic acid/N-vinyl pyrrolidone, and 
acrylic acid/N-vinyl imidazole using gamma radiation. The factors affecting the grafting process and 
the possible use of the modified membranes in the field of ion adsorption have been investigated.  
  
 
2. INTRODUCTION 
 
The effective treatment of heavy metals in the environment has become one the major issues of public 
interest due to their toxicity. The treatment of aqueous waste, including soluble heavy metals, needs 
concentration of the metallic solution into small volume, followed by recovery or secure disposal. The 
modification of hydrophilic polymer membranes to an adsorbent has been reported to be useful for 
collecting target ions and molecules [1]. 
 
Gamma radiation induced graft copolymerization of vinyl monomers onto different substrates has 
attracted the interest of many researchers since different types of polymer chains containing various 
functional groups can be introduced in the structure of trunk polymers used. The conditions of grafting 
reactions can be manipulated and graft copolymer with desired properties may be obtained; extensive 
work has already been performed on methods for optimization of the reaction yield [2−3]. The use of a 
mixture of monomers may also influence the extent of grafting of the individual monomer onto the 
substrate polymers, especially when of synergism occurs during such reaction [4]. Such grafting 
reactions can also give more economical grafts under the most favourable reaction conditions [5].  
 
The goal of the present project was the preparation of polymeric membranes grafted with basic and 
acidic functional groups using gamma radiation. The factors affecting the grafting process and the 
possible use of the modified membranes in the field of ion adsorption. 
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3. MATERIALS AND METHODS 
 
3.1. Materials  
 
Polypropylene (PP) films (thickness: 20 μm) were supplied by the company ERGIS S.A., Poland. 
Polyethylene films (thickness 100 μm) were obtained from the company PKN Orlen S. A., Poland. 
Various chemicals were supplied by Merck, Germany as: N-vinyl pyrrolidone (purity > 99%), 
methanol (purity > 99.8), acetone (purity > 99.8). N-vinyl imidazole (purity > 99%) and acrylic acid 
(purity > 99%), were purchased from Fluka, Germany. Ethanol was obtained from Riedel de Haën, 
Germany (purity 99.8%). 
 
3.2. Graft copolymerization 

 

The direct radiation-induced grafting of acrylic acid and N-vinyl pyrrolidone or acrylic acid/ N-vinyl 
imidazole monomers onto PP and PE films was used as a preparation technique in an air atmosphere. 
PP or PE strips were washed with acetone, dried at 50°C, weighed and then immersed in the monomer 
or binary monomer solution in glass ampoules. The glass ampoules containing all the reactants and 
polymer substrates were subjected to 60Co gamma rays in N2 gas atmosphere. The grafted films were 
removed and washed thoroughly with suitable solvent to extract the residual monomer or 
homopolymer may be accumulated in the grafted films. The films were then dried in an oven at 50°C. 
The degree of grafting was determined by the percent increase in weight as follow: 

100% Grafting of Degree ×
−

=
o

og

W

WW
 

where Wo and Wg are the weights of initial and grafted films, respectively. 

 
3.3. Maximum swelling 

 

The clean dried grafted films of known weight (after the washing procedure mentioned above) were 
immersed in distilled water until a constant weight was reached (equilibrium swelling); the films were 
then removed, blotted quickly with absorbent paper and weighed. The maximum swelling (Smax%) was 
then calculated by the following equation:  
 

 

 

 

where WS is the weight of membrane at equilibrium, and Wo is the weight of dried membrane. 
 
3.4. Ion uptake 
 
The dry membranes were immersed in the metal feed solution of concentration 2000 ppm. An atomic 
absorption instrument (Avanta; GBC scientific equipment) was utilized to determine the remaining 
metal salt in their feed solutions using lamps for Pb, Cd, and Hg. The ion uptake was calculated 
according to the following equation: 
 Metal	ion	uptake	 = 	 uptaken	metal	ions	(mg)weight	of	the	dry	gel	(g)  

 
3.5. Mechanical measurements 
 
The tensile strength was determined using an Instron instrument Model 1011; for each point, the 
average of five specimens was calculated. 
 

100%max ×−=
o

oS

W

WW
S

200



4. RESULTS AND DISCUSSION 
 
4. 1. Grafting of polypropylene and polyethylene with N-vinyl pyrrolidone and acrylic acid 
 
4.1.1. Effect of inhibitor concentration 
 
Addition of inhibitors to grafting solutions is an essential step towards overcoming the problem of 
homopolymerization, which affects the grafting reactions and the degree of grafting in membranes. 
The suppression of homopolymer formation is of utmost importance when reactive monomers such as 
acrylic acid and methacrylic acid are grafted [6−9].  
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FIG. 1. Grafting yield on PP with respect to the inhibitor concentration in aqueous solution; dose = 25 kGy; 
monomer concentration = 20%; comonomer composition (AAc:VP = 3:1).  

 

The influence of inhibitor concentration on the grafting yield of AAc/VP onto PP and PE was 
investigated, and the results are represented in Figs 1 and 2 (dose = 25 kGy; AAc:VP = 3:1; monomer 
concentration = 20%). The data show that the grafting yield increases in presence of the inhibitor 
(FeCl3) achieving the highest value at an inhibitor concentration of 1.5%. Thereafter, the grafting yield 
decreases with increasing the concentration of the inhibitor.  
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FIG. 2. Effect of inhibitor concentration (FeCl3) on the grafting yield of AAc/VP onto PE, comonomer 
composition: 3/1: AAc/VP; dose = 25 kGy; comonomer concentration = 20wt%. 
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4.1.2. Effect of comonomer composition 
 
The synergistic effect of two monomers may lead to more efficient grafting processes [4]. Therefore, 
the influence of the comonomer composition on the grafting process has been studied. The grafting 
yield of AAc/VP binary monomer systems of various relative compositions was determined with 
respect to the comonomer composition (inhibitor = 1.5%; dose = 25 kGy; comonomer concentration = 
20wt% in water), and the obtained data are represented in Fig. 3 and 4. It is obvious that the grafting 
yield increases with increasing the content of AAc in comonomer solution to reach a maximum 
grafting yield at an AAc/VP composition of 75/25 mol/mol in the presence of both monomers in the 
feed solution. The grafting of pure AAc onto PP was higher than that of the comonomer.  
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FIG. 3. Grafting yield with respect to the comonomer composition (VP:AAc); dose = 25 kGy; monomer 
concentration = 20%; inhibitor concentration FeCl3 = 1.5% ; solvent is water. 
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FIG. 4. Degree of grafting onto PE films vs. AAc/VP comonomer composition; comonomer concentration = 
20%; inhibitor concentration (FeCl3) = 1.5%; dose = 25 kGy. 

4.1.3. Effect of comonomer concentration 
 
The concentration of the monomer to be grafted has a significant role to play during membrane 
preparation by radiation-induced graft copolymerization method. The content of the monomer in the 
bulk solution strongly affects its diffusivity to the grafting zone and consequently the rate as well as 
the final degree of grafting varies [10]. The comonomer concentration during radiation grafting may 
affect the kinetic parameters of this process. Therefore, the suitable comonomer concentration differs 
from system to another, depending on the diluent used, type of polymer support materials, comonomer 
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composition, irradiation dose and dose rate etc. The effect of dilution of AAc/VP binary monomers 
mixture at a comonomer composition (3/1, mol/mol) on the graft copolymerization onto PP and PE is 
investigated and the results are represented in Figs 5 and 6. It can be seen that the degree of grafting 
increases with increasing the comonomer concentration in the reaction medium. The high 
concentration of free radicals at grafting sites favours propagation of growing chains and 
consequently, the grafting yield increases [5]. 
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FIG. 5. Grafting yield on PP vs. comonomer concentration (VP: AAc); dose = 25 kGy; inhibitor FeCl3 = 1.5%; 
comonomer composition (VP: AAc =1:3); solvent is water. 
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FIG. 6. Grafting yield of AAc/VP on PE films vs. comonomer concentration on; comonomer composition of 3/1: 
AAc/VP; dose = 25 kGy; inhibitor concentration = 1.5%. 

 
4.1.4. Effect of absorbed dose 
 
The influence of absorbed dose, on the grafting yield of AAc/VP binary monomers onto PP and PE 
films is investigated, and the results are illustrated in Figs 7 and 8. It can be seen that the grafting yield 
becomes higher as the absorbed dose increases. From results, it can be assumed that the increase in 
exposure dose resulted in increasing the concentration of free radicals formed in the polymer substrate 
as well as in the AAc/VP comonomer. 
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FIG. 7. Grafting yield on PP with respect to dose; FeCl3 = 1.5%; comonomer composition (VP: AAc =1:3); 
monomer concentration (VP: AAc) = 40%; solvent is water. 
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FIG. 8. Effect of absorbed dose on the degree of grafting of AAc/VP onto PE films; comonomer composition of 
3/1: AAc/VP; FeCl3 = 1.5%; comonomer conc. = 30wt%. 
 
 
4.1.5. Swelling behaviour 
 
Figures 9 and 10 show the water uptake percent for the untreated PP-g-AAc/VP and PE-g-AAc/VP 
grafted membranes, and also for membranes treated with NaOH. It can be seen that the water uptake 
increases with increased grafting yield, which could be explained with higher content of hydrophilic 
groups in the graft copolymer. It can also be seen that the chemically treated grafted copolymers 
possessed higher water uptake compared with untreated membranes. This behaviour could be due to 
the formation of easily ionizable carboxylate groups, which have good hydrophilic properties. Such 
hydrophilic grafted material may be of interest for the use as biomaterial. 
 
4.1.6. FTIR spectroscopy 
 
Figures 11 and 12 show FTIR spectra of the PP, PP-g-AAc/VP, PE, PE-g-AAc/VP films. It can be seen 
according to the presence of the carbonyl bands that both monomers are grafted onto the polymer 
substrates. The carbonyl bands centred at around 1720 cm-1 can be assigned to the carboxylic acid. The 
bands centred around 1549 cm-1 can be assigned to vinyl pyrrolidone.  
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FIG. 9. Water uptake versus grafting yield of AAc/VP onto PP films; comonomer composition of 3/1: AAc/VP; 
inhibitor concentration = 1.5%; comonomer concentration = 40 wt%. 
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FIG. 10. Water uptake vs. grafting yield of AAc/VP onto PE films; comonomer composition of 3/1: (AAc/VP); 
inhibitor concentration = 1.5 %; comonomer concentration = 30 wt%. 
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FIG. 11. Spectra of the original PP and PP-g-AAc/VP films. 
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FIG. 12. FTIR spectra of PE and PE-g-AAc/VP films. 

 
4.1.7. Mechanical properties 
 

Figure 13 represents the stresses at break of the PE-g-AAc/VP films versus the grafting yield; the 
preparation conditions were as follows: inhibitor concentration (FeCl3) = 1.5%; comonomer 
composition of 3/1: (AAc/VP); dose = 25 kGy; comonomer conc. = 30 wt%. The stress at break rises 
with increasing grafting yield due to the increase of the crosslink density.  
 

The strain % is illustrated in Fig. 14 with respect to degree of grafting %. It can be seen that the strain 
% decreases significantly as the grafting yield increases, which can be explained with an increase of 
the cross-link density due to irradiation as mentioned above.  
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FIG. 13. Stress at auto break with respect to degree of grafting; FeCl3 = 1.5%; comonomer composition 3/1: 
(AAc/VP); 25 kGy; comonomer concentration = 30 wt%. 

0 20 40 60 80 100 120
0

20

40

60

80

400

420

440

460

480

500

S
tr

ai
n 

at
 a

u
to

 b
re

a
k%

Degree of grafting%

 
FIG. 14. Strain at auto break with respect to degree of grafting; FeCl3 = 1.5%; comonomer composition 3/1: 
AAc/VP; dose = 25 kGy; concentration wt% = 30%. 
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4.1.8. Ion uptake 
 
The ion uptake of PP-g-VP/AAc membranes versus the degree of grafting is represented in Fig. 15 and 
16. As the degree of grafting increases, the ion uptake of the membrane increases. This behaviour can 
be reasonably attributed to the increase in the number of functional groups (carboxylic and amide 
groups) grafted onto the polymer backbone in the membrane with the increase in the degree of 
grafting. It is also observed that the efficiency of PP-g-VP/AAc membrane having degree of grafting 
166.7% is very high, and the amount of recovered Pb2+ ions attained is about 749.5 mg/g. This result 
can be explained with the availability of different functional groups, which can interact with lead ions 
in various ways forming ionic bonds (carboxyl group) or/ and complex bonds (hydroxyl or N-amide 
group). 
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FIG. 15. Uptake of Hg2+, Pb2+ and Cd2+ ions versus grafting yield of PP-g-AAc/VP; initial feed concentration = 
2000 ppm; time = several days; temperature = 22°C. 
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FIG. 16. Uptake of Co2+, Ni2+ and Cu2+ ions versus the grafting yield of PP-g-AAc/VP; initial feed concentration 
= 2000 ppm; time = several days; temperature = 22°C. 
 

4.2. Grafting of polypropylene and polyethylene with N-vinyl imidazole and acrylic acid 
 
4.2.1. Effect of solvent Type 
 
Solvents play an important role in enhancing the grafting process of a monomer onto a trunk polymer. 
The solvent may influence the grafting process by diluting the monomer, thus reducing the rate of 
propagation and kinetic chain length. The solvent may also swell the polymer substrate to facilitate 
accessibility and diffusion of the monomer to the active sites and/or may modify the thermodynamic 
equilibrium of the copolymer in the particular monomer solvent mixture.  
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The grafting yield of vinyl imidazole (Azole) and acrylic acid (AAc) onto polypropylene and 
polyethylene are shown in Fig. 17 and 18 with respect to solvent type and its mixture with water. It 
can be seen that acetone as solvent leads to the highest grafting yield onto polypropylene and 
polyethylene.  
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FIG. 17. Grafting yield in different solvents; dose = 30 kGy; monomer concentration = 20%; FeCl3 = 1%; 
comonomer composition Azole/AAc=1:3. 
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FIG. 18. Grafting yield in different solvents; dose = 30 kGy; monomer concentration = 20%; FeCl3 = 1%; 
comonomer composition Azole/AAc=1:3. 
 
4.2.2. Effect of inhibitor concentration 
 
The influence of inhibitor concentration on the grafting yield of AAc/Azole onto PP and PE was 
investigated, and the results are presented in Figs 19 and 20. The data show that the grafting yield 
increases in the presence of the inhibitor with a maximum at 0.5% inhibitor concentration for PP. For 
PE the grafting yield increased up to 4% of inhibitor, and did not show a maximum. The maximum 
value seems to lay at higher values. 
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FIG. 19. Grafting yield onto PP with respect to the inhibitor concentration; dose = 30 kGy; monomer conc. = 
20%; Azole:AAc = 3:1; acetone/water composition = 40:60(%). 
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FIG. 20. Grafting yield onto polyethylene with respect to the inhibitor concentration; at 30 kGy; monomer conc. 
= 20%; Azole:AAc=3:1; acetone/water composition = 30:70(%). 

 
4.2.3. Effect of solvent composition 
 
The influence of the solvent composition on the grafting process has been investigated for all three 
polymer substrates. Figures 21 and 22 present the grafting yield with respect to the water/ solvent 
content in the solution; other reaction parameters are constant. A water content of 60−80% is necessary 
to achieve the highest grafting yield. The presence of water has an enhancing effect on the grafting 
process. This behaviour can be explained by the fact that the reactive intermediates formed in water 
radiolysis (hydrogen atom and hydroxyl radical) attack the polymer chain and activate the polymer 
substrate by H atom abstraction: 
 

 H2O ⎯⎯⎯⎯→ R• (H• + OH•) 
R• + Polymer ⎯⎯⎯⎯→ RH + Polymer• 

 
However, at higher water content beyond optimum, radiolysis of water produces a radical species, 
which annihilate the growing grafted chains leading to decrease in percent grafting. 
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FIG. 21. Grafting yield onto polypropylene vs. solvent composition; dose = 30 kGy; monomer concentration = 
20%; FeCl3 = 1%; Azole/AAc = 1:3. 
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FIG. 22. Grafting yield onto PP with respect to solvent composition; dose = 30 kGy; monomer concentration = 
20%; FeCl3 = 1%; comonomer composition Azole/AAc=1:3. 
 
 
4.2.4. Effect of comonomer composition 
 
The influence of the comonomer composition on the grafting process has been studied because of the 
synergistic effect of two monomers, which may lead to more efficient grafting processes. The grafting 
yield of AAc/Azole binary monomer systems of various relative compositions was determined with 
respect to the comonomer composition; the other reaction parameters were held constant as optimized 
in previous experiments (inhibitor concentration, irradiation dose, total comonomer concentration), 
and the obtained data are represented in Fig. 23 and 24. It is obvious that the grafting yield increases 
with increasing the content of AAc in comonomer solution. 
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FIG. 23. Grafting yield onto polypropylene with respect to the comonomer composition (Azole/AAc); dose = 30 
kGy; monomer concentration = 20%; FeCl3 = 0.5%; solvent composition (acetone/water) = 40:60(%). 
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FIG. 24. Grafting yield onto polyethylene vs. comonomer composition (Azole/AAc); dose = 30 kGy; monomer 
concentration = 20%; FeCl3 = 4%; acetone/water = 30:70(%). 
 
 
4.2.5. Effect of comonomer concentration 
 
The influence of comonomer concentration during radiation grafting may affect the kinetic parameters 
of this process. Therefore, the suitable comonomer concentration differs from one system to another, 
depending on the diluent used, type of polymer support materials, comonomer composition, irradiation 
dose and dose rate etc. 
 
The effect of dilution of AAc/Azole monomers mixture on the graft copolymerization onto PP and PE 
has been investigated and the results are presented in Fig. 25 and 26. It can be seen that the degree of 
grafting increases with increasing the comonomer concentration. The increase in the grafting yield 
with comonomer concentration may be due to the increase in diffused monomer into the bulk polymer. 
The high concentration of free radicals at grafting sites favours propagation of growing chains and 
consequently the grafting yield increases. 
 

10 20 30 40
0

50

100

150

200

250

300

 

 

D
e

g
re

e
 o

f 
g

ra
ft

in
g 

(%
)

Comonomer concentration %

 
FIG. 25. Grafting yield onto PP with respect to comonomer concentration; dose = 30 kGy; FeCl3 = 0.5%; 
comonomer composition (Azole/AAc=1:3); acetone: water = 40:60(%). 
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FIG. 26. Grafting yield onto PE with respect to comonomer concentration; dose = 30 kGy; FeCl3 = 1%; 
comonomer composition (Azole/AAc=1:3); acetone: water = 70:30(%). 
 
4.2.6. Effect of absorbed dose 
 
The increase in the irradiation dose results in increase in the concentration of free radicals formed in 
the polymer substrate as well as in the monomer itself. The influence of dose on the grafting yield of 
AAc/Azole binary monomers onto PP and PE films was investigated. The results are illustrated in Fig. 
27 and 28. The grafting yield generally increases with increasing dose till a maximum, and then tends 
to level off or to decrease due to degradation.  
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FIG. 27. Grafting yield onto PP with respect to the dose; comonomer concentration = 40%; FeCl3 = 0.5%; 
comonomer composition (Azole/AAc=1:3); acetone:water = 40:60 (%). 
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FIG. 28. Grafting yield onto PE with respect to the dose; comonomer concentration = 40%; FeCl3 = 1%; 
Azole/AAc=1:3; acetone: water = 30:70 (%). 
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4.2.7. FTIR spectroscopy 
 
Figures 29 and 30 show FTIR spectra of the original PE, PP-g-AAc/Azole, original PE, PE-g-
AAc/Azole films. The carbonyl bands centred at around 1720 cm-1 can be assigned to the carboxylic 
acid. The band appearing at 3160 cm-1 can be assigned to the C–H (ring) stretching mode for 
poly(vinyl imidazole). 
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FIG. 29. FRIR spectra of PP and PP-g-AAc/Azole films. 

 

 
 

 

 

 

 

 

 

 

 
FIG. 30. FTIR spectra of PE and PE-g-AAc/Azole films. 

 
4.2.8. Ion Uptake 
 
The ion uptake of PE-g-Azole/AAc membranes versus the degree of grafting is represented in Fig. 31. 
As the degree of grafting increases, the ion uptake of the membrane increases. This behaviour can be 
reasonably attributed to the increase in the number of functional groups grafted onto the polymer 
backbone.  
 
5. CONCLUSION 
 
Polypropylene and polyethylene films were grafted with acrylic acid/N-vinyl imidazole or acrylic 
acid/N-vinyl pyrrolidone binary mixtures using gamma radiation. The grafting conditions were 
determined regarding their influence on the grafting yield as: type of solvent and solvent composition, 
comonomer concentration and composition, addition of inhibitor, and absorbed dose. The ability of the 
grafted films to adsorb heavy metal ions was evaluated with respect to the grafting yields. It increases 
with increasing the grafting yield. Because of their basic/acidic character the prepared membranes may 
be considered for removal of the studied ions from wastewater. Further work is in progress to 
elaborate the use of the prepared membranes in separation processes. 
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METAL ADSORBENT PREPARED FROM POLY(METHYL ACRYLATE)- 
GRAFTED CASSAVA STARCH VIA GAMMA IRRADIATION 
 
P. SUWANMALA, K. HEMVICHIAN, W. SRINUTTRAKUL 
 
Nuclear Research and Development Group 
Thailand Institute of Nuclear Technology 
Bangkok,  
THAILAND 
 

Abstract 

Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft 
copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of 
% degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer 
into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The 
maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the 
hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and 
methanol solution (methanol:H2O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent 
was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic 
acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals 
was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % 
adsorption for Cd2+, Al3+, UO2 

2+, V5+ and Pb2+ at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total 
adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd2+, Al3+, UO2

2+, V5+ and Pb2+, respectively, in 
the batch mode adsorption. 
 

1. OBJECTIVE OF THE RESEARCH 

This research project aimed to apply radiation processing to synthesize metal adsorbents with specific 
affinity to particular metal ions. Native natural polymers, cassava starch, was be used as starting 
materials. The monomers with desired functional groups were grafted onto the backbone of natural 
polymers via radiation-induced graft polymerization. Various factors were investigated in order to 
determine the optimum conditions for the graft copolymerization. Chemical modification was 
employed to improve the efficiency of the copolymers so that they have specific affinities towards 
particular metal ions. The optimum conditions for the chemical modifications were verified. 
Subsequently, the properties and efficiency of the obtained adsorbents were examined in order to 
evaluate the possibility of their used for environmental applications. 
 
2. INTRODUCTION 
 
In recent years, there has been considerable interest in the design, synthesis, and application of 
polymers having functional group that can form coordinate bonds with heavy metals [1−3]. Polymeric 
chelating resin containing the hydroxamic acid group has been found to be an effective chelating 
ligand with a wide range of metals [3]. Polymeric chelating resins bearing hydroxamic acid group 
have been used for extraction and separation of metal ions due to the hydroxamic acid groups can 
form complexes with various metal ions [3,4,5,6,7] such as Cd2+, V5+, Fe2+, Fe3+, Zn2+, Pb2+, Ni2+, 
Hg2+, Au3+, Ag+, Cu2+, Co2+, Cr3+, and UO2

+2. Starch is a renewable natural polymer that can be 
modified by chemical reaction to give novel properties for different purposes [3, 7, 8]. A number of 
studies have investigated the graft copolymerization of vinyl monomers on starch [2, 3, 9] and 
concluded that this chemical modification can expand the range of its utilization. 
 
Radiation−induced graft polymerization (RIGP) is a powerful method for preparation of polymeric 
materials with new properties for practicable applications. The advantages of this method include: (1) 
it can give uniform and rapid creation of active radical sites allowing a high degree of penetration of 
graft chains to the polymer matrix, (2) it can be effectively and conveniently carried out at room 
temperature, (3) polymer chains containing functional groups can be added without significant 
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3. MATERIALS AND METHODS 
 
3.1. Materials 
Commercial cassava starch was obtained from Siam Ouality Starch Co., Ltd. Methyl acrylate was 
purchased from Aldrich and was used as received. Hydroxylamine hydrochloride was obtained from 
Fluka. All other chemicals and solvents were also used without further purification. 
 
3.2. Adsorbent preparation 
 
3.2.1. Radiation-induced graft polymerization 
 
In a gelatinization reactor, 20 g of cassava starch was mixed with 190 mL of distilled water. The 
mixture was continuously stirred using a mechanical stirrer under nitrogen atmosphere. The mixture 
was gradually heated from ambient temperature to 80°C and held at this temperature for one hour. The 
mixture was left to cool down to room temperature to yield the gelatinized starch. The obtained 
gelatinized cassava starch was mixed with 45 mL of methyl acrylate. The mixture was stirred under 
nitrogen atmosphere at room temperature for one hour to form a homogeneous mixture. The 
gelatinized starch−methyl acrylate mixture was transferred into the glass bottle and purged with 
nitrogen gas for 5 minutes. The bottle was tightly closed with cap, and then irradiated under gamma 
radiation in Gammacell 220 Excel (60Co source) at a dose rate of 0.14 kGy/min and a dose of 7.5 kGy. 
After irradiation, the crude product was precipitated in methanol, filtered, and then dried at 50°C in 
vacuum oven. PMA homopolymer formed during the graft copolymerization was separated from the 
grafted copolymer by washing several times with methanol: water (4:1). Then, the product was dried 
in vacuum oven at 50°C. The degree of grafting was determined by the following equation: 
 

Dg (%) = 100 [(W2-W1)/W1]  
 
where W1 and W2 are the weights of cassava starch and graft copolymer, respectively. 
 
3.2.2. Preparation of hydroxylamine (NH2OH) solution 
 
Hydroxylamine hydrochloride (NH2OH.HCl) 20% (w/v) was dissolved in a 300 mL methanol solution 
(MeOH:H2O = 5:1) The HCl was neutralized by the NaOH pellets. The precipitated NaCl was 
separated by filtration. The pH of the reagent was adjusted to pH 13 by addition of the NaOH pellets. 
 
3.2.3. Modification of graft copolymer 
 
The graft copolymer (20 g) was placed in the reactor which was equipped with a mechanical stirrer 
and condenser and the hydroxylamine solution was added. The reaction was carried at 75°C for 2 
hours. After completion of the reaction, the modified graft copolymer was washed several times with a 
methanol solution (methanol:water = 4:1) then, it was dried in vacuum oven at 50°C overnight.  
 
Finally, the modified graft copolymer was treated with 100 mL of methanol HCl solution (0.2 M) for 
10 minutes, washed several times with the methanol solution (methanol:water = 4:1) and then dried in 
vacuum oven at 50°C. 
 
3.3. Fourier transform infrared spectroscopy 
 
Fourier transform infrared (FTIR) spectra were recorded by FTIR spectrometer (Tensor 27, BRUKER) 
using the KBr disc technique at a resolution of 4 cm-1 and 16 co-added scans. The spectral scan range 
was 4000−500 cm-1. 
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3.4. Thermogravimetric analysis  
  
Thermogravimetric analysis (TGA) experiments were performed using a TGA/SDTA851e from 
Mettler Toledo. The analyses were carried out in nitrogen atmosphere in the temperature range from 
25–800°C at a heating rate of 10°C/min with a N2 flow rate of 90 mL/min. 
 
3.5. Differential scanning calorimeter 
 
Differential scanning calorimetric (DSC) experiments were performed with a DSC822e/700 from 
Mettler Toledo with the N2 flow rate set at 50 mL/min and a heating rate of 10°C/min. 
 
3.6. Elemental analysis 
 
Elemental analysis provides accurate information of the conversion of poly(methylacrylate ester) into 
poly(hydroxamic acid) via treatment with hydroxylamine in an alkaline medium. It can be used to 
determine the conversion of poly(methylacrylate ester) into poly(hydroxamic acid) because the 
modified graft copolymer has nitrogen atoms in its molecular structure, but unmodified graft 
copolymer does not. Elemental analysis of the modified copolymer was carried out with a CHNS/O 
2400 Series II element analyzer (Perkin Elmer). The percent conversion of poly(methylacrylate ester) 
into poly(hydroxamic acid) was calculated as follows: 
 
Amount of hydroxamic acid groups (X): 
 

X = 
31014/

100

.
x

NWs 







 

 
where Ws denotes the weight of sample, and N denotes the percentage of nitrogen. 
 
Density of hydroxamic acid group (Y): 
 

Y = 
sW

X
 

Conversion(%): 
 

% Conversion = 100x
Z

Y
 

 

Z = 1
01 /

09.86
W

WW






 −

 
 

where W0 and W1 are the weights of cassava starch, and PMA-grafted copolymer. The factor 86.09 
corresponds to the molecular weight of MA. 
 
3.7. Metal absorption 
 
The adsorbent (0.5 g) was soaked into metal solution and shaken using a rotary shaker at room 
temperature. After equilibration was completed, a 5 mL supernatant was collected for metal ion 
determination. 
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Abstract 
 
Nonwoven fabrics made of PE coated PP fibres were irradiated by accelerated electrons in inert atmospheres for grafting of 
two different monomers, glycidyl methacrylate and dimethylaminoethyl methacrylate. Grafting conditions were optimized by 
a systematic investigation of the effects of absorbed dose, monomer concentration, grafting reaction temperature and 
duration. 150% grafted copolymers were later modified by protonation and quaternization of poly(dimethylaminoethyl 
methacrylate) chains and by Cu(II) loading of dipyridyl amine modified poly(glycidyl methacrylate) graft chains. The PE/PP 
based adsorbents thus prepared were used for their suitability of removing phosphate and chromate ions from aqueous 
systems. Adsorption/removal studies were carried out in both batch and continuous flow type systems. The selectivity of 
adsorption of phosphate ions in the presence of other competing anions were also checked showing the enhanced selectivity 
for phosphate ions. 
 
1. OBJECTIVE OF THE RESEARCH 
 
To develop nonwoven fabric based adsorbents by radiation-induced grafting of some selected 
monomers for further functionalization toward efficient removal of anions and in particular phosphate 
and chromate ions from aqueous systems. 
 
2. INTRODUCTION 
 
Water resources have been and continue to be contaminated with biologically and environmentally 
resistant pollutants from industrial, municipal and agricultural discharges. Pollution coming from these 
resources includes untreated sewage, chemical discharges, petroleum leaks and spills and agricultural 
chemicals that are washed off from farm fields. 
 
The short and long term consequences of these polluted waters causing a serious threat to mankind 
have led the scientists and technologists to look for developing new technologies for treatment of 
wastewaters. A variety of methods based on biological, chemical, photochemical and electrochemical 
processes are being explored for treating the chemical and biological contaminants present in 
wastewaters. The number and kind of chemical and biological species causing pollution in especially 
drinking water sources are enormous mainly consisting of ionic and molecular products. Among the 
ionic pollutants phosphorus containing anionic species requires special attention. 
 
Phosphates are not toxic to people or animals unless they are present in very high levels. Digestive 
problems could occur from extremely high levels of phosphate. Phosphorus can provide an additional 
nutrient for growth of photosynthetic macro- and microorganisms in aquatic bodies, but also leading to 
the eutrophication problem especially in enclosed water bodies. The removal of phosphate from waters 
can be an effective method for the control of eutrophication in natural waters. Phosphorus 
concentrations in excess of 0.03−0.05 mg/L have been associated with algae blooms, which lead to the 
eutrophication of lakes and rivers [1−3]. In order to decrease eutrophication in lakes and other water 
sources, concentration of phosphorus must be limited to 0.01 mg/L or less [4]. Extensive studies on the 
effective treatment of phosphates in water systems have been previously conducted [5−8]. The major 
methods for the removal of phosphate include precipitation and coagulation, as well as adsorption or 
ion exchange process. The precipitation and coagulation processes with iron (III) [9], aluminium [10], 
calcium [11], and lanthanum salts [12], which convert anions into insoluble form, have been widely 
used. Although the precipitation and coagulation method is simple and economical, this process will 
result in a wet bulky sludge disposal problem and requires final filtration for secondary treatment. 
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Moreover, the ion−exchange process using ion exchangers has also been identified as a treatment 
method for phosphate removal [8]. The process development for the removal and recovery of 
phosphorus from wastewater using enhanced activated alumina has been published in a series by 
Urano and Tachikawa [13]. They reported that the enhanced activated alumina can adsorb various 
inorganic phosphorus species in a pH range of 4−7. Recently, a new class ion-exchange sorbent after 
treatment of commercial DOW 3N polymer with copper solution which is designated as DOW 3N-Cu 
or PLE (polymeric ligand exchanger) used for the selective removal of phosphates from contaminated 
water [7]. A PLE consists of a polymer with chelating functional groups that can bind tightly to a 
transition metal, which can remove anions from water by complex formation. PLE used in the above 
mentioned work is basically a copper-loaded chelating ion exchanger with styrene-divinylbenzene 
polymer matrix designed to effectively remove divalent phosphate ion (HPO4

2-) at above neutral pH. 
The results appeared technically feasible. However, in actual municipal and industrial wastewater, 
where the pH widely varies, the existence of other forms of phosphate ions such H2PO4

-, HPO4
2- and 

PO4
3- or other species is inevitable due to nature of phosphate originating from a polyprotic acid. In 

such a case, PLE sorbent becomes technically ineffective unless those phosphate species are first 
converted into divalent form and then the pH of the solution is adjusted to above the neutral range for 
adsorption. Therefore, it is very important to use an adsorbent that can adsorb various species of 
phosphates and that can work effectively in a wide range of pH. 
 
Chromium compounds are extensively used in electroplating, anodizing operations in the surface 
finishing industry, corrosion control, oxidation, leather industry and various other industrial 
applications. The effluents from these industries contain Cr(III) and Cr(VI) with the latter being the 
most toxic form. The discharge of Cr(VI) into surface water is regulated to be below 0.05 mg/L while 
total Cr (including Cr(III), Cr(VI) and other forms) is regulated to be below 2 mg/L. Cr(III) is not a 
significant groundwater contaminant whereas Cr(VI) is approximately 100 times more toxic than 
Cr(III). 
 
Graft polymerization on polymeric matrixes followed by functionalization is widely used for the 
surface modification of adsorbent materials. The polymeric adsorbents prepared in different forms 
(hollow fibre, nonwoven fabric, film) with varied concentration of ion-exchange groups enhance 
adsorption efficiency of the adsorbents [14−17]. Graft polymerization can be initiated by using γ rays, 
electron beams, ultraviolet, plasma treatment, and chemical initiators. Among these methods, ionizing 
radiation is one of the most promising methods, because of ease of creation of active sites for initiating 
grafting through the polymeric substrate and moderate reaction conditions. Radiation−induced grafting 
being a clean technique [18] is a convenient method for the modification of physical and chemical 
properties of polymeric materials [19−21]. Radiation grafted adsorbents have been used usually for 
separation and wastewater treatment processes [22−26]. Several types of ion exchange matrices have 
been prepared by grafting monomers like acrylic acid, methacrylic acids, acrylonitrile on trunk 
materials like polyethylene and polypropylene [27−29]. 
 
3. MATERIALS AND METHODS 
 
3.1. Radiation−induced grafting of functional monomers onto PE/PP non-woven fabric 
 
3.1.1. Grafting of glycidyl methacrylate (GMA) 

 
The preparation of nonwoven fabric adsorbents based on GMA grafting and further functionalization 
requires two steps: (1) grafting of an epoxide group containing monomer, glycidyl methacrylate 
(GMA) by preirradiation grafting technique and (2) modification of epoxy group with a proper ligand. 
 
First GMA was grafted onto PE coated PP nonwoven fibres by preirradiation technique as described 
above. The concentration of GMA solution was set at 10% (w/w) in methanol as the solvent. The 
degree of grafting was calculated as described above. GMA grafted fabrics with 150% graft ratio was 
used for the further characterizations and modifications as this graft ratio was found to be the optimum 
in one of our previous publications [30]. 
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Functionalization of GMA grafted fabrics 
 

Following the grafting of GMA, epoxide groups in grafted nonwoven fabric were reacted with 
different chemicals such as triazol, dipicolylamine, dipyridylamine (DPA). In this second step, effect 
of solvent, ligand concentration and the reaction time were investigated to achieve an optimized 
reaction condition. Modifications were performed in four solvents; methanol, ethanol, 
dimethylsulfoxide (DMSO) and dioxane. In a typical modification reaction, approximately 0.5 g of 
GMA grafted nonwoven fabric was immersed in 25 mL of DPA containing solutions. Three different 
DPA concentrations were examined: 5%, 10% and 15%, w/v. The reaction was performed at 80°C for 
different time periods to construct the conversion curve. After binding of DPA onto the epoxide group 
of GMA grafted polymer, the remaining unreacted epoxy groups were hydrolyzed with acid solution 
for 2 h at 80°C. Subsequently nonwoven fabric was washed with methanol and then was dried at room 
temperature and in a vacuum oven at 40°C. The percent replacement of the epoxide groups with DPA 
was calculated as follows: 
 

Conversion (%) = mmol DPA / mmol GMA      (1) 
 
Preparation of Cu-loaded polymeric ligand exchangers 
 
Preparation of polymeric ligand exchanger (PLE) was conducted by loading Cu(II) onto DPA modified 
PP/PE fabric. For this purpose approximately 0.5 g of DPA immobilized fabric was placed into 200 
mL of 1500 ppm Cu(II) ion solution at pH∼4 in a bottle stirred magnetically at moderate rpm for a 
given time period. The time needed was predetermined in a separate adsorption kinetics study. In order 
to determine the amount of Cu(II) ions loaded onto the fabric, Cu(II) ion concentration remaining in 
the solutions was determined by using an UV-Vis spectroscopic technique [31]. The amount of Cu(II) 
ion adsorbed per unit mass of PP/PE fabric was evaluated using the following expression, 
 

( )e 0
e

C -C ×V
q =

W         (2) 
 
where, qe is the amount of Cu(II) ions adsorbed onto unit dry mass of PP/PE fabric (mg/g); C0 and Ce 
are the concentrations of Cu(II) ion solutions (mg/L) prior and after the treatment for a certain period 
of time, respectively; V is the volume of aqueous phase (L) and W is the amount of dry fabric used (g). 

 
3.1.2. Grafting of dimethylaminoethylmethacrylate (DMAEMA) 

 
A new adsorbent was prepared by radiation-induced graft polymerization of DMAEMA onto 
polyethylene/polypropylene (PE/PP) nonwoven fabric. The PE/PP nonwoven fabrics cut into pieces of 
10 cm by 5 cm were sealed in polyethylene bags purged with nitrogen gas. The trunk polymer was 
irradiated by an electron beam (2 MeV, 3 mA) at dry-ice temperature to different doses. The irradiated 
fabrics were immersed in different concentrations of DMAEMA solutions ranging from 5% (w/w) to 
20% in water at different temperatures. After a pre-determined period, the DMAEMA grafted 
nonwoven fabrics were removed from the grafting solution, washed several times with distilled water 
and methanol to remove the homopolymer and residual monomer and dried under reduced pressure. 
The degree of grafting was determined gravimetrically as a function of dose, monomer concentration, 
temperature, and reaction time. 
 
The degree of DMAEMA grafting (Dg) was determined by using the following expression: 
 

Dg (%) = [(W1-W0)/W0] x100        (3) 
 
where W0 and W1 are the weights of the trunk and DMAEMA grafted nonwoven fabrics in dry state. 
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3.1.2.1. Protonation of the DMAEMA grafted fabrics 
 
Grafting conditions were optimized, and DMAEMA grafted polymer was later protonated by using 
acid solution to prepare an adsorbent for the removal of anions. DMAEMA grafted nonwoven fabric 
was placed into 1 M HCl solution for 24 h at room temperature. The protonated DMAEMA grafted 
nonwoven fabric was removed from the solution and washed with distilled water to remove unreacted 
acid and kept in wet form for the adsorption tests. 
 
3.1.2.2. Quaternization of the DMAEMA grafted fabrics 
 
Particular amount of DMAEMA grafted fabric was immersed in DMF solution of dimethyl sulphate. 
The grafted fabrics placed in this solution were heated in thermostated oil bath at 65°C under nitrogen 
atmosphere for 24 h with stirring. The fabric was removed from reaction medium and then washed 
with DMF, water and methanol several times and dried under vacuum at room temperature, according 
to literature [32]. After quaternization, the sulphate form of fabric adsorbent was converted to chloride 
form by using HCl. 
 
3.2. Continuous flow adsorption tests 
 
By dissolving analytical grade sodium dihydrogen phosphate (NaH2PO4) in water 100 ppb phosphate 
(as P) solution was prepared. The solution was passed through protonated DMAEMA grafted 
nonwoven fabric adsorbent-packed in 7 mm inner diameter column. The phosphate solution was fed 
into fabric adsorbent-packed column at two flow rates (space velocities, SV) 250 h-1 and 1000 h-1. 
Column effluents were collected by a fraction collector (Advantec SF2100). The concentration in each 
fraction was measured by an inductively coupled plasma-optical emission spectrometer (ICP-OES, 
Perkin Elmer, Optima 5200). 
 
3.3. Batch adsorption experiments 
 
Batch adsorption experiments with quaternized DMAEMA grafted fabrics for phosphate and chromate 
removal were conducted by using both low (0.5–25 ppm) and high ion concentrations (50 – 1000 
ppm). The effect of pH on phosphate and chromate adsorption was studied at different pH values with 
the same initial phosphate and chromate concentration (100 mg anion/L). Competitive adsorption 
experiments were also carried out with two concentration levels (low concentration: 1 ppm phosphate, 
1 ppm bromide, 1 ppm nitrite, 10 ppm sulphate and 10 ppm nitrate mixture and high concentration: 50 
ppm phosphate, 50 ppm bromide, 50 ppm nitrite, 500 ppm sulphate and 500 ppm nitrate mixture). The 
pH of the solution was adjusted by either HCl or NaOH solution. The phosphate and chromate ion 
concentrations in the equilibrated solutions were measured with the UV-Visible Spectrophotometer 
(Carry 100, Varian) by using ammonium molybdate method and diphenylcarbazide method, 
respectively [33−34]. Phosphate, bromide, nitrite, sulphate and nitrate analyses were carried out by 
using a Dionex Ion Chromatograph (DIONEX ICS 3000, USA). 
 
4. RESULTS AND DISCUSSION 
 
4.1. Grafting of glycidyl methacrylate (GMA) and functionalization of GMA grafted fabrics 
 
DPA was immobilized onto GMA grafted nonwoven fabric with 150% graft ratio by a reaction 
between the epoxy rings of GMA grafts and the amine group of DPA (the details of the preparation of 
GMA grafted fabric can be found in our previous publication) [16]. The percent replacement of the 
epoxide groups by DPA was calculated by eq. (1) and the modifications were tested in four different 
solvents; methanol, ethanol, dioxane and DMSO. Modifications in methanol and ethanol resulted in 
similar DPA replacement ratios which were lower than those obtained in other two solvents. The 
conversion (i.e. replacement) ratio obtained in DMSO was slightly lower than that observed in dioxane 
(both were around 70% at 80 h). As the boiling point of dioxane is lower than DMSO, we preferred 
this solvent as it offers an easier removal after the modification. The effect of DPA concentration on 
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The effect of dose and initial monomer concentration on degree of grafting (Dg) of DMAEMA were 
investigated. For this purpose, PE/PP nonwoven fabric was irradiated at four different doses (30, 50, 
100 and 200 kGy) by an electron accelerator in nitrogen atmosphere at dry ice temperature (-20ºC). 
Irradiated nonwoven fabrics were then reacted with three different monomer concentrations (5%, 10% 
and 15%). The results shown in Fig. 3 indicate that the maximum grafting was achieved at 200 kGy 
dose and 15% monomer concentration at 4 hours reaction time. The grafting yield of DMAEMA 
increases with the increasing dose due to the formation of more free radicals at higher doses. But this 
reaction medium was not chosen as the optimum grafting condition due to reduced flexibility of the 
nonwoven fabric at this dose. It was also observed that at higher degrees of grafting (>200%), the 
cloth became even brittle. Considering these unwanted properties, 50 kGy dose, 15% monomer 
concentration and 4 h reaction time were selected as optimum conditions for the preparation of 
DMAEMA grafted nonwoven fabrics. The detailed preparation conditions of DMAEMA grafted fibres 
were given in our previous paper [30]. Recently, DMAEMA grafting onto polypropylene films by 
using radiation induced graft polymerization has been reported by Chen et al. [17]. 170% degree of 
grafting for DMAEMA was obtained at 200 kGy dose, 20% DMAEMA concentration and 4 h reaction 
times in EtOH/H2O. 
 

 
FIG. 3. Change in degree of grafting with dose for fabrics at indicated DMAEMA concentrations. 

 
 
After grafting of DMAEA, the tertiary amine group of DMAEMA graft chain was then protonated by 
using acid solution and chemically treated with dimethyl sulphate to obtain quaternized DMAEMA 
grafted nonwoven fibre having ion exchange properties. Approximately 90% quaternization was 
obtained in 24 hours. 
 
4.3. Adsorption of phosphate 
 
4.3.1. Adsorption of phosphate by using DPA modified GMA grafted nonwoven fabric 
 
The performance of polymeric ligand exchanger (PLE) was investigated with respect to adsorption 
kinetics, adsorption and desorption behaviour and pH effects toward the target phosphate anion. The 
pH of the aqueous solution is an important variable influencing the adsorption process especially in 
ion exchangers. Phosphate species present in water include H3PO4, H2PO4

-, HPO4
2- and PO4

3-, and 
their relative amounts depend on the pH of the medium. Experiment was performed for five different 
pH values ranging from 5 to 9 and it was observed that phosphate adsorption did not change virtually 
within the studied pH range. This shows that adsorbent material can effectively remove different forms 
of phosphate ions, namely H3PO4, H2PO4

-, HPO4
2- and PO4

3- from aqueous solution at each pH value 
where these species exist. 
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The PLEs should be suitable for efficient regeneration so that they can be used for multiple cycles of 
operations. Sodium chloride is an ideal regenerator as it is easily available, inexpensive and nontoxic. 
Therefore, 6% of NaCl solution was used for regeneration of phosphate adsorbed by the PLEs. Ion 
chromatography was used for the determination of regeneration amount. PLEs easily desorbed the 
loaded phosphate under given conditions and were reusable. High regeneration efficiencies were 
achieved with a phosphate recovery of nearly 100%. 
 
4.3.2. Adsorption of phosphate by using protonated DMAEMA grafted nonwoven fabric 
 
Adsorption experiments were performed in column mode for removal of phosphate ions by using 
protonated DMAEMA grafted nonwoven fabric. Figure 6 shows the adsorption characteristics of 
phosphate ions on protonated DMAEMA grafted nonwoven fabric by plotting C/C0 vs. bed volumes. 
Here C and C0 are effluent and feed solution concentrations of anion and bed volume is defined as the 
ratio of feed solution volume to the fixed polymer bed volume (mL feed solution/mL polymer). Flow 
rate is calculated as the bed volumes of feed solution hourly provided (h-1 in space velocity) [36]. 
Approximately 2000 bed volumes (BV) of phosphate-free water can be produced from 10 ppb 
phosphate solution at low (250 SV) and high (1000 SV) space velocities. After 2000 BV, phosphate 
adsorption showed breakthrough gradually. 
 

 
FIG 6. Breakthrough curves for phosphate removal at indicated space velocities (SV). 

 
 
4.3.3. Adsorption of phosphate by using quaternized DMAEMA grafted nonwoven fabric 
 
Figure 7 and 8 show adsorption of phosphate ions at low phosphate concentrations (0.5–25 ppm) and 
high phosphate concentrations (50–1000 ppm) at pH 7.00 on quaternized DMAEMA grafted fabrics, 
respectively. Both results showed that the adsorption of phosphate ions increases linearly with 
increasing the initial feed concentration both at low and high phosphate concentrations due to density 
of ion exchange sites on the adsorbent. Adsorbed phosphate amounts were found to be 63 mg 
phosphate/g polymer and 512 mg phosphate/g polymer for low phosphate concentration (25 ppm) and 
high phosphate concentration (1000 ppm), respectively. This result shows that the adsorbent material 
quite effective in removing phosphate in wide concentration range. Detailed adsorption results were 
given in our previous paper [37]. 
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FIG. 7. Phosphate uptake onto quaternized DMAEMA grafted nonwoven fabric at low phosphate concentrations 
at pH 7. 

 

 
 FIG. 8. Phosphate uptake onto quaternized DMAEMA grafted nonwoven fabric at high phosphate 

concentrations at pH 7. 

 
 
4.4. Effect of competing anions on phosphate adsorption 
 
Figure 9 shows the effect of competing ions at two concentration levels at pH 7. Phosphate adsorption 
on quaternized DMAEMA grafted nonwoven fabric was higher than the other competing ions at two 
concentration levels. At high concentration level, the adsorption order was phosphate > nitrite > 
bromide > sulphate > nitrate and at low concentration level, the adsorption order was phosphate ≅ 
sulphate > bromide > nitrite > nitrate, respectively. These results indicate that adsorbent can also 
adsorb competing ions beside phosphate ion which is a normal (expected result) effect due to relative 
affinities of anions toward adsorbent. 6% of NaCl solution was used for regeneration of phosphate 
adsorbed quaternized DMAEMA grafted nonwoven fabric. High regeneration efficiencies were 
achieved with a phosphate recovery of nearly 100%. 
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TABLE 1. A COMPARISON OF Cr(VI) ADSORPTION USING VARIOUS POLYMERIC 
ADSORBENTS 

Polymeric Adsorbent mg Cr(VI)/g polymer 

Solvent impregnated resins containing Aliquat 336 [38] 48 

Quaternary ammonium moieties immobilized on 
glycidylmethacrylate/N,N-methylene bis-acrylamide resin. [39] 

50 

This work 125 

 
 
5. CONCLUSIONS 
 
Radiation-induced graft polymerization is an easy and highly efficient surface modification procedure 
for functionalization of polymeric materials. Environmentally stable PE/PP nonwoven fibres were 
used as base material for the synthesis of a new adsorbent for anions. To introduce specific functional 
groups to the trunk polymer, GMA and DMAEMA were grafted onto preirradiated fabrics. Following 
the grafting of GMA and DMAEMA, epoxide groups in GMA grafted nonwoven fabric were reacted 
with DPA and the tertiary amine group of DMAEMA graft chains were protonated by using acid 
solution and quaternized by using dimethyl sulphate for removal of phosphate ions in aqueous 
solutions. The protonated and quaternized DMAEMA grafted nonwoven fabrics were found to have 
higher adsorption capacity for phosphate ions than the DPA modified GMA grafted nonwoven fabric. 
The quaternized DMAEMA grafted nonwoven fabric have also high adsorption capacity for chromate 
ions from aqueous media containing different concentrations in wide pH range. 
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Abstract 

 
Using high-energy irradiation initiation, isopropylacrylamide (IPAA) was grafted to a porous membrane dish composed of 
poly(ethylene terephthalate) (PET). IPPA demonstrates a transition from a hydrophobic to a hydrophilic structure with a 
simple change in temperature. The dishes were used for cell grow. Cells generally grow in an environment set at 37°C, at 
which the IPAA polymer exhibits its hydrophobic structure. IPAA was attached uniformly to a cell culture surface, and cells 
were able to grow on top of the IPAA while it was in its hydrophobic state. Cells were easily removed from the surface of the 
dishes after changing the temperature below the LCST of IPAA. By changing the temperature polymer altered its structure to 
a hydrophilic state and no longer provided a suitable surface for the cells to adhere to. This caused the cells to lift off the 
culture surface without the use of a destructive enzyme such as trypsin or dispase. These cell sheets are useful to cell sheet 
engineering because the cells will retain both their extracellular matrix (ECM) and cell-to-cell junctions, which are normally 
lost in the harvest of cells. Poly(tetrafluoroethylene-co-hexefluoropropylene) (FEP) is a material under investigation as a 
polymer electrolyte membrane for fuel cells. In order to make it ionically conductive, styrene was grafted to it and then 
subsequently sulfonated. Grafting of styrene to FEP was performed by simultaneous irradiation of the monomer and substrate 
to initiate the reaction, followed by a heat treatment to allow the reaction to undergo propagation. The effects of dose rate and 
heat treatment time on the weight percent yield of grafting and uniformity as a function of depth in the substrate was 
investigated. A 38.5 wt% graft was obtained after a 50 kGy dose of electron irradiation at a dose rate of 2,8 Gy/pulse and 
post-irradiation heat treatment of 60°C for three hours. FTIR analysis of 10 µm sections of material grafted under these 
conditions indicated that styrene had been grafted through the entire depth of the 125 µm FEP substrate, as could be seen by 
the presence of bands at 2910, 2940, 1597, 1490 and 1444 cm-1 which correspond to styrene. Additional characterization of 
the morphology and chemical composition of the material (on the surface and cross-section) was performed by atomic force 
microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X ray spectroscopy (EDS), and X ray 
photoelectron spectroscopy (XPS). 
 
1. OBJECTIVE OF THE RESEARCH 
 
The objective of the research was to prepare membrane dishes with smart surface for cell sheet grows. 
Using porous membrane dishes composed of poly(ethylene terephthalate) (PET) as trunk material and 
grafting a temperature sensitive monomer, isopropylacrylamide (IPAA) to its surface the hydrophilic-
hydrophobic properties of the surface can be changed by simply changing the temperature allowing 
the easy removal of the cell sheets. The other objective of the work was the preparation of a polymer 
electrolyte membrane for fuel cells. It is necessary to make poly(tetrafluoroethylene-co-
hexafluoropropylene) (FEP) ionically conductive, therefore styrene was grafted to it and then 
subsenquently sulfonated.  
 
2. INTRODUCTION 
  
2.1. Cell sheets 
 
Polymers sensitive to a particular stimulus, often called ‘smart’ polymers, have been increasingly 
employed in biomedical and medicinal applications. The temperature sensitive polymer 
isopropylacrylamide (IPAA) has been a very useful polymer in the research being conducted in tissue 
engineering. IPAA demonstrates a transition from a hydrophobic to a hydrophilic structure with a 
simple change in temperature. The lower critical solution temperature (LCST) of IPAA is around 
32°C. Above this temperature, IPAA behaves like a hydrophobic polymer while below this 
temperature, it behave like a hydrophilic polymer. Since this temperature lies near a physiologically 
favourable temperature, it is understandable why IPAA has been used for so many biological 
applications.  
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solution when the solution was deposited on the surface. Since it was desirable to use a lower dose on 
the PET membranes in this experiment, it was useful to eliminate the inhibition period as much as 
possible. The main objectives of this experiment were (1) to graft IPAA polymers uniformly to the 
surface of the PET membrane using a low dose of radiation and (2) to use a change in temperature to 
cause the spontaneous detachment of a cell sheet cultured on the surface of the grafted membrane. 
 
2.2. Fuel cell membranes 
 

Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) is a material under investigation as a polymer 
electrolyte membrane for fuel cells. In order to make it ionically conductive, styrene is grafted to it 
and then subsequently sulfonated. Grafting of styrene to FEP was performed by simultaneous 
irradiation of the monomer and substrate to initiate the reaction, followed by a heat treatment to allow 
the reaction to undergo propagation. The effects of dose rate and heat treatment time on the weight 
percent yield of grafting and uniformity as a function of depth in the substrate was investigated. A 38.5 
wt% graft was obtained after a 50 kGy dose of electron irradiation at a dose rate of 2.8 Gy/pulse and 
post-irradiation heat treatment of 60°C for three hours. FTIR analysis of 10 µm sections of material 
grafted under these conditions indicated that styrene had been grafted through the entire depth of the 
125 µm FEP substrate, as could be seen by the presence of bands at 2910, 2840, 1597, 1490, and 1444 
cm-1 which correspond to styrene. Additional characterization of the morphology and chemical 
composition of the material (on the surface and cross-section) was performed by atomic force 
microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X ray spectroscopy 
(EDS), and X ray photoelectron spectroscopy (XPS). 
 
3. CELL SHEETS PROJECT 
 

3.1. Materials and methods 
 

3.1.1. Materials 
  

The N-isopropylacrylamide (IPAA) monomer and the poly(ethylene glycol)-methacrylate (PEG-
methacrylate) polymer (MW 526) used in this experiment were purchased from Sigma-Aldrich. 
Isopropanol was the chosen solvent for dissolving these two materials. The Cell Culture InsertsTM, or 
porous membrane dishes, with a pore size of 0.45 µm, a pore density of 1.6 × 106/cm2, and a surface 
area of 4.2 cm2 were obtained from VWR. The cell line, phosphate-buffered saline (PBS), trypsin-0.53 
mM EDTA solution, and Fetal Bovine Serum (FBS) were purchased from ATCC. The cell line used 
consisted of human prostate epithelium cells (HPECs). The medium used to nourish the cells was 
prepared using a kit purchased from Invitrogen. This kit contained Keratinocyte Serum Free Media 
(K-SFM), bovine pituitary extract (BPE), and human recombinant epidermal growth factor (EGF). 
 
3.1.2. Solution preparation 
  

The solution containing the temperature sensitive monomer was the first item to be prepared. A basic 
stock solution with a 60 wt% IPAA and 40 wt% isopropanol composition was created. The IPAA was 
in the form of a powder, and it was added to the isopropanol solvent, which was mixed with a 
magnetic stirrer until it was completely dissolved. During the dissolving process, the flask containing 
the solution was covered with aluminium foil to limit the UV exposure of the solution. Once 
dissolved, the solution was bubbled with argon gas for about 30 minutes to minimize the concentration 
of oxygen in the solution. After the bubbling was completed, the flask was sealed and covered with 
aluminium foil. This stock solution was stored in the refrigerator for later use. 
 
A portion of the stock solution was set aside for further preparation. The final solution had a 
composition consisting of a 99.5 wt% of the stock solution and a 0.5 wt% of poly(ethylene glycol) 
methacrylate (PEG-methacrylate). In order to determine the necessary proportions needed of these 
materials, the density of the stock solution was calculated. By determining the weight and volume of a 
small sample of the stock solution, the density was calculated and determined to be approximately 
0.9645 g cm-3. Once this density was determined, the proper amount of PEG-methacrylate was added 
to create the complete IPAA solution. 
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A membrane dish with 30 μL of the prepared solution was also subjected to a very high dose of 200 
kGy at 25 Gy/pulse. Its solution was not bubbled prior to irradiation, the sample was not pre-
irradiated, and argon was not blown on the surface of the membrane in this part of the experiment. 
This sample was done to make a comparison of the effects of a high dose on the PET membrane dish 
with the effects of a lower dose. A table containing the details about all the samples irradiated is shown 
in Table 1. 
 

TABLE 1. SUMMARY OF ALL THE COMBINATIONS USED WHEN MEMBRANES WERE 
IRRADIATED 

Irradiation summary 

Pre-irradiation  

dose (kGy) 

Dose  

(kGy) 

Solution  

bubbled 

Argon  

blowing 

1 20 no no 

1 20 no yes 

1 25 yes no 

1 25 yes yes 

2 25 yes no 

2 25 yes yes 

0 200 no no 

 

3.1.4. Washing procedure 
 
Once the irradiation was complete, the membrane dish was washed vigorously with distilled water to 
remove any unreacted monomer or unattached homopolymer. After this preliminary washing, FTIR 
measurements were taken of the membrane dish surface. Once these measurements were completed, 
the membrane was washed in an ultrasonic cleaner for 60 minutes. The temperature in the ultrasonic 
cleaner was monitored and not allowed to rise above 30°C. More FTIR measurements were taken after 
the ultrasonic cleaning to determine if this more thorough cleansing removed the polymer present on 
the surface of the membrane dish. 

 
3.1.5. Membrane surface analyses 
 
The main method employed to characterize the surface of the membrane dish before and after 
irradiation was Fourier transform infrared (FTIR) spectroscopy. A Nicolet Magna 550 IR Spectrometer 
was used to conduct FTIR spectrometry on all the samples. The results of FTIR spectroscopy allowed 
for the functional groups present on the surface of the membrane to be ascertained. FTIR 
measurements were taken before and after all stages of washing. 
 
3.1.6. Cell culture 
 
The HPECs were growth and subcultured based on the instructions given in the Product Information 
Sheet for ATCC® CRL-11609TM. The medium was prepared using the base medium of K-SFM plus 
0.05 mg/mL BFE and 5 ng/mL EGF. The medium was incubated at 37°C before it was used in the 
culture in order to raise its pH to an acceptable level. The cells were thawed in a 37°C water bath and 
centrifuged at 125 × g for 6 minutes. The supernatant was disposed of and the cell pellet suspended in 
fresh growth medium. The resuspended cells were transferred to a polystyrene cell culture flask and 
supplied with a suitable amount of growth medium. This flask was placed in an incubator set at 37°C, 
and the HPECs were allowed to grow for several days before they were subcultured. 
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In order to subculture the cells, the growth medium was removed using a vacuum pump. The cells 
attached to the flask were rinsed with PBS. Then a 1:1 solution of Trypsin-EDTA and PBS was added 
to the flask and placed in an incubator set at 37°C for 6 minutes in order to dissociate the cells from 
the surface. A solution containing 2% FBS in PBS was added to the flask to inhibit the trypsin, and the 
contents of the flask were gently pipetted. The flask contents were centrifuged at 125 × g for 6 
minutes. The supernatant was disposed of and the cell pellet was suspended into three new culture 
flasks with fresh growth medium. These flasks were placed in an incubator set at 37°C, and the 
HPECs were allowed to grow for several days before they were subcultured in the membrane dishes. 
 
When the HPECs were subcultured in the membrane dishes, the membranes were held in a six-well 
plate because of their pores. The same subculturing steps mentioned above were used. Only the steps 
following the suspension of the centrifuged cell pellet in fresh growth medium were altered. First, the 
concentration of the cell suspended solution was ascertained using a haemocytometer, which was 
found to be approximately 2 × 106 cells/mL. Each membrane was then situated in its own well in the 
six-well plate along with 5 mL of growth medium and 0.5 mL (1 × 106 cells) of the cell suspended 
solution. Membrane dishes with both 1 kGy and 2 kGy pre-irradiation doses were used. Unirradiated 
membrane dishes were used as a control group. Table 2 shows the pre-irradiation dose, dose, and 
amount of solution added to the membranes that were selected to culture the cells. 
 

TABLE 2. SELECTION OF MEMBRANE DISHES USED FOR CELL CULTURE 

Membranes dishes for cell culture 

Pre-irradiation  

dose (kGy) 

Dose  

(kGy) 

Solution deposited 

(μL) 

0 0 0 

1 20 30 

1 25 30 

2 25 30 

 

3.1.7. Cell sheet release 
 
The HPECs were cultured in the membrane dishes for 4.5 days. The cells were removed from the 
incubator set at 37°C and placed at room temperature (approximately 24°C), which was below the 
LCST of IPAA. The cells were observed and photographed after the cells had been placed at room 
temperature. The time which was required for detachment of the cell sheets to be achieved was also 
recorded. 
 
4. RESULTS 
 
4.1. Presence of IPAA solution 
 
The membrane dishes illustrated visible changes following their irradiation with the prepared IPAA 
solution. When removed from their sterile casing, each membrane dish consisted of a smooth, 
transparent membrane and housing composed of PET. The monomer solution was transparent as well, 
but it had a light yellow colour. When the solution was deposited on the membrane, it seemed to 
distribute itself across the entire membrane surface. The layer of solution was respectively very thin 
given that only 30 μL was deposited. Since the membrane used was porous, the solution was able to 
diffuse through the pores during the irradiation procedure. Due to this diffusion, the membrane was 
suspended in the air during the experiment to prevent it from sticking to the surface it was irradiated 
on. 
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Some areas on the membrane where the polymer had seemingly attached itself during the irradiation 
process were visible to the naked eye. However, these areas were not uniformly distributed over the 
surface of the membrane. These polymer regions on the membrane looked uneven and translucent, not 
smooth and transparent like the remainder of the membrane. The portions of the membrane that did 
not have polymer on them looked similar to an unirradiated membrane surface. FTIR measurements 
were taken of the unirradiated membranes as well as the polymer and non-polymer regions of the 
irradiated membranes. A comparison of these three different spectrums for one sample is shown in 
Figure 3. These FTIR measurements showed the presence of additional functional groups on the 
irradiated membranes in Figures 3b and 3c that were not present on the unirradiated membrane in 
Figure 3a. The peak near the 1750 wavelength was highly characteristic of PET, which is the polymer 
the membrane was composed of. All three spectra in Figure 3 displayed this peak, meaning the PET 
was distinguished in all the samples. This peak was attributable to the ester carbonyl functional group 
found in PET which is not present in IPAA, as can be seen in their structures shown in Figures 1a and 
1b [12]. The peaks on the spectra around the 1650 and 3300 wavelengths were indicative of the 
presence of IPAA because they were visible on the spectra of the irradiated membranes but not the 
unirradiated membrane. The 1650 wavelength fell in the range for the FTIR absorption frequency of 
the amide carbonyl functional group, while the 3300 wavelength fell in the range of the amine 
functional group [12]. Both of these functional groups were present in the IPAA structure but not the 
PET structure, which can again be compared in Figures 1a and 1b. Whenever FTIR measurements 
were taken and the peaks at the 1650 and 3300 wavelengths were not detected, it was assumed that 
there was no IPAA present on the membrane [12]. Also, due to the very small concentration of PEG-
methacrylate in the solution, no identifying peaks were able to be detected for this portion of the 
solution. 
 
4.2. Anaerobic condition 
 
The purpose of using argon to bubble the solution and blow the surface during irradiation was to 
lessen the concentration of oxygen. The polymeric regions on the membrane after irradiation varied in 
appearance based on whether or not the solution was bubbled directly before being deposited on the 
membrane. When bubbled directly before irradiation, the polymeric region looked smoother and more 
uniform. If the solution was not bubbled directly before irradiation, the polymeric region appeared 
uneven and not uniformly distributed. There were some discrepancies with the solution bubbled 
directly before the irradiation of the membranes irradiated with a 2 kGy pre-dose and a 25 kGy dose. 
The solution had started to become thicker and was not as aqueous as it had been for the other 
samples. This caused the polymeric region formed on these membranes to be more uneven than the 
samples whose bubbled solution was smoother. 
 
The blowing of argon on the surface of the solution had several different effects on the outcome of the 
polymer formed on the irradiated membrane. If the argon was blowing in a stream that was too 
concentrated and powerful, the solution on the surface of the membrane was disturbed and splashed 
around. This resulted in a non-uniform coating of the polymer regions on the membrane. The blowing 
also seemed to produce bubbles in the polymeric regions of the irradiated membranes. A cone with an 
opening similar to the size of the membrane dish was therefore attached to the end of the piping that 
delivered the argon gas. This successfully reduced the strength of the stream of argon gas and 
distributed it more uniformly across the surface of the membrane. 
 
Membranes that did not have argon gas blowing on them did not have a uniform polymeric covering 
like the samples that did have argon blown on them. The FTIR measurements of the membranes with 
argon blowing showed a higher absorbance for the presence of IPAA than the membranes without 
argon blowing, as shown in Figure 4.  
 
The higher absorbance shown in Figure 4b may have been a result of the polymer regions on the 
membranes blown with argon being thicker than the polymer regions of the membranes without argon 
blown. This meant that after irradiation, more polymer was present on the membrane surfaces that had 
argon blowing on them than the surfaces without it. 
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Fourier transform infrared (FTIR) analysis was performed using a Nicolet Magna 550 spectrometer to 
verify successful formation of the grafted material. Each spectrum was determined from 32 scans 
measured with a resolution of 4 cm-1. Two different types of FTIR analysis were performed. One 
technique involved the measurement of the transmittance spectrum of the entire 125 μm film. The 
other technique involved microtoming the grafted 125 μm film into cross-sections of 10 μm thickness, 
followed by measurement of the transmittance spectrum of each section corresponding to successive 
thicknesses. 
 
5.6. Morphology 
 
Analysis of changes in the morphology of the surface and cross-section of the grafted films as a 
function of various synthesis conditions was performed by atomic force microscopy (AFM) and 
scanning electron microscopy (SEM). Samples were embedded in epoxy and sputtered with gold prior 
to SEM analysis. Energy dispersive X ray spectroscopy (EDS) was employed to measure the chemical 
composition of the material along its cross-section, thereby confirming the graft uniformity as a 
function of depth. 
 
X ray photoelectron spectroscopy (XPS) was performed on a Kratos Axis 165 X ray photoelectron 
spectrometer operating in hybrid mode using monochromated Al Kα X radiation (1486.6 eV) at 300 
W. Charge neutralization was used to minimize sample charging and the pressure of the system was 
maintained at 1 × 10-8 Torr or lower throughout the experiment. 
 
Survey spectra and high resolution spectra were collected at pass energies of 160 eV and 20 eV, 
respectively. Some sample degradation was noted during XPS data collection evidenced by a gradual 
decrease in the C/F ratio, corresponding to changes in C 1s peak shape and yellowing of sample with 
increased analysis time [11]. XPS data presented here were collected from samples exposed to X rays 
for a maximum of 20 minutes.  
 
5.7. Ion conductivity 
 
Proton conductivity was measured at 80°C and a fixed humidity using an AC impendence method at 
3M Company. The humidity was started at 70% RH and measurements were collected at successive 10 
RH percentage point reductions. Additionally, measurements were taken as the humidity was increased 
from 20% RH by units of 10 percentage points up to 90% RH. A standard PFSA membrane with an 
equivalent weight of 825 g/mol was used to compare proton conductivity to the styrene-grafted films. 
 
6. RESULTS 
 
6.1. Radiation-induced grafting of styrene to FEP 
 
Figure 8 shows the degree of grafting as a function of post-irradiation heat treatment time for 
FEP/styrene grafted simultaneously with electron beam irradiation. At each heat treatment time 
employed, the degree of grafting was observed to increase with temperature. This is due to the 
enhancement of the diffusivity of the styrene monomer through the FEP film as temperature increases, 
which causes the rate of initiation and propagation of the grafting copolymerization reaction to 
increase. At each of the temperatures employed, the rate of grafting was observed initially to increase 
rapidly with heat treatment time, then to increase more slowly at longer heat treatment times. A similar 
pattern of change in the rate of grafting was reported by Gupta [12], in which the initial rapid increase 
in grafting was attributed to the predominance of the initiation and propagation steps of the reaction, 
while the slower changes in rate of grafting at longer times were due to the increased significance of 
the termination reaction.  
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6.3. Ion conductivity of FEP-g-SSA membrane 
 
The proton conductivity measurements acquired with an AC impedance value are presented in Figure 
21. The 25 μm FEP styrene-grafted films yielding the closest proton conductivity to the standard had 
weight grafting percentages of 21.8% and 24% with medium absorbed grafting dose (62 kGy and 
81 kGy, respectively) yet used very different 60ºC heat treatment times (2 hours and 24 hours, 
respectively). Yet on the contrary, a FEP specimen with 23 % grafting using a 86 kGy absorbed dose 
and 5 hour 60ºC heat treatment yielded much lower conductivity. Additionally, a second sample using 
63 kGy and 2 hour heat treatment times yielded very low conductivity as compared to the specimen 
yielding conductivity close to the standard. This discrepancy between specimens having similar 
gravimetric grafting rates can be postulated to depend on the uniformity of the graft.  
 
One specimen in which the FEP film was pre-irradiated and to which styrene was then immediately 
added, yielded only a 1.8% of grafting and exhibited low proton conductivity. This may indicate that 
the simultaneous grafting method is much more efficient in yielding high grafting percentages 
(Table 3) 
 

TABLE 3. FEP FILMS FOR PROTON CONDUCTIVITY WITH ELECTRON BEAM 
IRRADIATION DOSE, HEAT TREATMENT TIME AND RESULTING % STYRENE GRAFTING 
IN ORDER OF DECREASING CONDUCTIVITY 

Absorbed Dose (kGy) H.T. Time (h) H.T. Temp (°C) Irrad. Method Grafting (%) 

81.2 24 60 Simultaneous 24.1 

62 2 60 Simultaneous 21.8 

86.2 5 60 Simultaneous 22.8 

23.5 5 60 Pre-irradiated 1.8 

25.1 25 60 Simultaneous 8.9 

63 2 60 Simultaneous 20.6 

 

7. DISCUSSION 
 
The most effective technique of styrene grafting to FEP investigated in this work involved the 
simultaneous electron beam irradiation followed by post-irradiation heat treatment. This approach 
produced a styrene graft through the entire thickness of the FEP film, with a degree of grafting of over 
30 wt% and a smooth surface morphology. The uniformity of grafting as a function of depth in the 
FEP substrate was observed by EDS to be highly dependent on the length of time that the irradiated 
samples were exposed to heat treatment. The data presented through FTIR, SEM micrographs, and 
EDS line scans indicate that after a 50 kGy dose of electron irradiation and two hours of 60°C heat 
treatment, a uniform graft forms within the FEP film. Shorter heat treatment times produce ’grafting 
fronts’ which indicate that the styrene has only diffused partially through the film  
 
During the simultaneous irradiation of styrene and FEP, both species are expected to form carbon-
centred free radicals. The high electronegativity of fluorine causes the C-F bonds in FEP to be 
sensitive to radiation-induced scission, and would be expected to generate radicals much more rapidly 
and with higher yields than would be produced from the styrene monomer. The radicals on the styrene 
and FEP combine with each other to form a covalent bond, or graft. 
 
Grafting performed using 60Co γ radiation generated yields which were comparable to those produce 
with the same dose of electron beam radiation without post-irradiation heat treatment. This result 
illustrates the importance of exposing the irradiated FEP/styrene to elevated temperatures in order to 
achieve uniformly grafted materials. It is proposed that under low dose rate and room temperature 
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conditions after irradiation, the styrene will graft to the surface and outer regions of the FEP film, then 
homopolymerize to form long polystyrene chains that extend out from and/or lay on the surface of the 
substrate. The high concentrations of C-C and C=C bonds observed in the XPS spectra of the grafted 
material indicates that there is a relatively high concentration of styrene and/or polystyrene near the 
surface of the film. Styrene appears to graft only near the surface of each side of the FEP film under 
low dose rate and room temperature conditions, rather than penetrating through the film. 
 
Additionally, SEM micrographs and AFM images point to the uneven morphology of the γ-grafted 
surface. These striations may be associated with the polystyrene agglomerations caused by 
homopolymerization. The use of 60Co γ irradiation to graft styrene monomer to FEP without post-
irradiation heat treatment causes agglomeration on the surface of the film instead of diffusion into the 
thickness of the film for grafting. 
 
The proton conductivity measurements showed mixed results. There was no clear pattern in achieving 
higher proton conductivity between dose or heat treatment time. Some of the specimens used in proton 
conductivity measurements exhibited behaviour close to the control at the high RH and were 
somewhat lower at the lower RH. This behaviour is typical for hydrocarbon based membranes. 
Generally, a medium absorbed dose (60–80 kGy) yielded the highest proton conductivity. Doses below 
40 kGy yielded low grafting percentages and conductivity measurements. Additionally, doses above 
80 kGy reduced the conductivity slightly, possibly due to FEP film degradation. Beyond two hours, 
heat treatment time did not have a significant effect on conductivity as grafting reaches a plateau. For 
specimens yielding generally low conductivity, the apparent increase in conductivity at lower RH is 
noise in the measurement rather than a true effect. Overall, these samples show 100–1000 times lower 
conductivity than the other samples and are near the detection limit. 
 
Generally, the use of a hydrocarbon based fuel cell membrane is likely to yield these types of proton 
conductivity results. While the 125 μm films allow us to probe the morphology and mechanisms of 
grafting, this study is limited by the use of two FEP film thicknesses. Characterization with 25 μm thin 
films would produce a stronger correlation between absorbed dose, dose rate and heat treatment time. 
Also, the higher doses used with conductivity samples was not probed for degradation. While it was 
achieved a very uniform graft even through a thickness of 125 μm, and presumably with the 25 μm 
film, the styrene graft must be made shorter. As was shown with the γ-irradiated specimens, a low dose 
rate will produce a long styrene chain off the surface. The use of an even higher dose rate than 
achieved with the pulsed electron beam will likely yield more favourable proton conductivities even 
closer to the standard sample.  

 
8. CONCLUSIONS 
 
Simultaneous electron beam irradiation of FEP and styrene followed by post-irradiation heat treatment 
has been demonstrated to be a successful technique of production of a polymer electrolyte membrane 
for substrate thicknesses of 25–125 µm. A uniform styrene graft as a function of depth within the FEP 
substrate was observed when the system was irradiated with a dose of 50 kGy of electron irradiation 
and held at either 45°C for three hours or 60°C for two hours after irradiation. Although lower levels 
of grafting were achieved using gamma irradiation, this method was unable to produce uniformly 
grafted materials. The graft uniformity therefore appears to be highly dependent on the radiation dose 
rate, whereas the degree of grafting depends heavily on the heat treatment conditions. The 
simultaneous grafting method followed by heat treatment reported in this work can be used to 
successfully produce polymer electrolyte membranes with significant levels of proton conductivity. 
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This publication summarizes the results of a coordinated research 
project on the Development of Novel Adsorbents and Membranes 
by Radiation-induced Grafting for Selective Separation Purposes. 
Radiation-induced grafting is a technique that uses readily 
available, low cost synthetic and natural polymers to prepare novel 
materials for use where the requirements for bulk properties and 
surface properties cannot be readily met using a single polymeric 
material. The objective of the coordinated research project was 
to use gamma rays, electron beams and swift heavy ions to graft 
various monomers onto natural and synthetic polymers for the 
development of novel adsorbents and membranes for environmental 
and industrial applications. The publication provides a summary 
of the project results and includes reports by the participants.
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