

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration

GIF SCWR System Steering Committee

Vienna, Austria Oct. 29, 2009

Outline

- Why SCWR?
- SCWR Reference Parameters
- Conceptual Designs under Consideration
- GIF Collaborative R&D Projects
- Conclusions

Why SCWR?

- Merging proven advanced nuclear and fossil technologies
- Many utilities operate both nuclear and supercritical fossil plants

Supercritical Water-Cooled Reactor

- •Many years of experience in
 - -Advanced water-cooled reactor
 - -Supercritical fossil plant development
- Proven advanced concepts and systems
 - Advanced passive safety systems
 - -Supercritical turbine technology
- •Main challenge
 - -Combine advanced reactor technology with supercritical fossil technology

SCWR Features

Improved economics

-Higher thermal efficiency

-Plant simplification opportunities

»Once-through reactor

»Direct thermodynamic cycle

•Enhanced safety, sustainability, proliferation resistance and physical protection

-Design flexibility for fast and thermal spectra

-Opportunities to utilize conventional or advanced fuel and fuel cycles

Applications

-Design for electricity production

-Hydrogen and heat generation

SCWR Reference Parameters

• Design possibilities

- -Pressure vessel or pressure tube
- -Thermal or fast spectrum
- -Fuel choice
- -Moderator Choice
- Several designs are under consideration
 - -Most R&D is common to these designs
- Design activities to define R&D needs
 - -System Integration and Assessment

Parameter	Reference Value(s) [unit]
Pressure Boundary	Pressure Vessel (PV) or Pressure Tube (PT)
Neutron Spectrum	Thermal, Fast, or Mixed
Burnup (Thermal / Fast)	Up to 60/120 [GWd/tHM]
Fuel	UO_2 , MOX, or thorium
Fuel Cycle	Once Through or Closed
Moderator	Light Water or ZrH ₂ (PV) or Heavy Water (PT)
Coolant	Light Water
Electric Power	Up to 1700 [MWe]
Operating Pressure	25.0 [MPa]
Core Outlet Temperature	Up to 625 [°C]
Thermal Efficiency	Up to 50 [%]

Two SCWR Design Options

GIF Collaborative R&D

- GIF SCWR collaborators
 Members
 - Canada
 - Euratom
 - Japan

Observers*

- Republic of Korea
- France
- Most of the R&D is common to all designs under consideration

*China is a recent GIF member whose R&D Institutes are "invited observers" Generation IV Nuclear Energy Systems System Research Plan for the Supercritical Water-cooled Reactor

> Rev. 0 March 2007

Preparing Today for Tomorrow's Energy Needs

Is sue d by the Generation IV International Forum S CWR System S teering C om mittee

GIF Collaborative R&D Project: System Integration and Assessment

- Definition of a reference design(s) that meets the GIF Goals:
 - Economics
 - Safety and reliability
 - Proliferation resistance and physical protection
 - Sustainability
- Identification of an achievable outlet temperature based on materials and fuel performance, and linkages to proven steam cycles in supercritical fossil plants
- Design and construct an in-reactor fuel test loop to qualify the reference fuel design.

GIF Collaborative R&D Project: Thermal-hydraulics and Safety

- Establishment of heat transfer and critical flow database for SCWR designs
- Heat transfer tests at prototypical SCWR conditions
- Stability
- Safety system requirements and evaluation

GIF Collaborative R&D Project: Materials and chemistry

- Testing of key materials for in-core and out-core applications
- Selection of key materials for SCWR designs
- Reference chemistry based on materials compatibility and radiolysis behavior

Other R&D Projects

- R&D for specific designs
 - Advanced fuel and fuel cycles
 - » Thorium for the pressure-tube design
 - » Fast core and mixed core options for the pressure vessel design
 - Non-electricity applications (e.g., hydrogen production)
- Projects to build major test facilities to qualify certain aspects of the SCWR (e.g., in-reactor fuel qualification loop)

Conclusion

- The SCWR has a strong foundation in two advanced technologies
 - Advanced Gen-III+ water-cooled reactor technology
 - Advanced supercritical fossil power technology
- Flexibility in design options to address GIF requirements
- Most R&D needs are common to all designs under consideration
- Major collaborative R&D projects are underway to address R&D needs