HOW ELECTRON BEAM COULD AFFECT THE PAH FORMATION MECHANISM AT ENERGY GENERATION

A M Mastral, M S Callen, J M Lopez

ICB-CSIC, Zaragoza, Spain

OBJETIVE

 To know how the EBT could affect organic emissions when applied for SO₂ and NOx gas cleaning at energy generation from coal combustion

(1) Inlet sampling point; (2) Outlet sampling point; (3) Solids sampling point

EB on PAH formation and emisions from:

---gas samples from coal combustion power station provided with EBT

---solid samples: fly ash and residue after EBT

PAH removal efficiency (%)

(1) Inlet sampling point; (2) Outlet sampling point; (3) Solids sampling point

EMISSIONS IN POWER GENERATION

Inorganics:

- CO_x
- NO_x
- SO_x
- TRACE ELEMENTS
- PARTICULATE MATTER (PM)

Organics:

- PARTICULATE MATTER (PM)
- VOLATILE ORGANIC COMPOUNDS:
 - -Dioxins
 - Furanes
 - _ PAH

Fuel composition: C, H, N, S, O

Combustion chemical reactions

$$C + O_2 \longrightarrow CO_X (CO, CO_2)$$
 $H_2 + O_2 \longrightarrow H_2O$
 $N + O_2 \longrightarrow NO_X$
 $S + O_2 \longrightarrow SO_X$
 $C + C \longrightarrow SOOTS (polyaromatics)$

chem. bonds-chem. breakings

A:B E_1 energy bond by applying $E_2 > E_1$

A* + B* homolitic breaking = radicals

(AA, AB, BB, AAA, AAB....and so on)

Radical reactions (very fast, high T°C, lots of side reactions)

A+ + B- heterolitic breaking = ions (AB)

lonic reactions (longer times, lower temperatures, few side reactions)

General mechanisms of PAH formation and growth

Mechanisms of PAH formation and growth. The numbers in parenthesis are the molecular weights.

Pyrolytic formation of BaP

Pyrolytic formation of benzo(a)pyrene.

Gaseous PAH / Solid PAH

nucleation
smaller PAH → larger PAH ← Coronene ← Condensation

nanotubes and semifullerenes — soots

Atmospheric PAH Origin

- Natural Sources: e.g. Volcanos, spontaneous fires, etc
- Antropogenic Sources:
 - stationary sources: POWER STATIONS
 - mobile sources: TRANSPORT

Human exposure to PAH

Inhalation

active smoking pasive smoking air

Retention

Adding to the caronogenic risk

Ingestion

vegetables-roots-leaves sea food meat and fish (smoked, fried, grilled and broiled) drinks, including water

Waste

urine faeces

PAH formation and emission

Mastral et al., Environ. Sci. & Technol. 33 (18), 3177, 1999

BaP EU directive proposal

 According to the European Parlament, the BaP annual mean value should not be higgher than 1ng/m³

```
(UK, 0,25 ng/m<sup>3</sup>; NL, 0,50 ng/m<sup>3</sup>; Italy, 1 ng/m<sup>3</sup>)
```

 $B(a)P_{eq}=B(a)P+BFx0.07+B(a)Ax0.06+D(a,h)Ax0.6+Ipx0.08$

PAH Removal in Energy Generation

•During combustion:

•improving combustion efficiencies by variables optimization

•Post combustion :

•Solid Phase:

- •By trapping in cyclons, electrostatic precipitators, scrubbers, etc
- •Gas Phase (laboratory tests):
 - by adsorbents
 - by catalysts
 - by EB treatment

CONCLUSIONS

- Results showed that PAH gas emissions from coal combustion are influenced by the EBT showing a reduction of the most volatile PAH and an increase in PAH with higher molecular weight when EBT is applied.
- For a good air quality, this trend could be tried to be addressed to PAH formation in solid phase, easier to control than the gas phase.

ICB Samples preparation and PAH analysis

- After the addition of deuterated internal standards for quantification (acenaphthene-d10, anthracene-d10, benzo(a)anthracene-d12, benzo(a)pyrene-d12, perylene-d12 and benzo(g,h,i)perylene-d12), samples were Soxhlets extracted, concentrated and then purify on silica-gel column with DCM. The eluted was concentrated by N₂ stream and the solvent exchanged to hexane (50 µl).
- Before 1µl injection to the GC-MS-MS, 5 ml of pterphenyl native was added as internal standard.

To check the analytical accuracy and precission, an appropriate standard reference material (SRM 1649) of NIST was analysed

PAH removal efficiency %

