An Undergraduate Ion Beam Analysis Laboratory

Graham F. Peaslee Paul A. DeYoung

Outline

- Motivation
- Hope College Approach
 - RNB studies
 - Ion Beam Analysis Laboratory
- Representative science:
 - Lake sediment chemistry
 - Metalloprotein biochemistry
 - Luminescence & forensic geology
- Conclusions

The Need for Change in the US?
Traditional Undergraduate Approach: Lectures (and labs)

This approach is limited/threatened by:

- (a) Changing demographics
- (b) Changing student interests
- (c) Years since discovery...

There hasn't been a sputnik recently...

• SOURCE: AIP Statistical Research

International Perspective?

 Same observations for the "traditional" undergraduate educational approach

Lectures (and labs)

- New instrumentation and connectivity allow new collaborative approaches
- Interdisciplinary and non-proliferative

Where is Hope?

~3200 undergraduates

The Hope College Nuclear Group

- The integration of research and education
- Publication-driven, NSF funded
- An interdisciplinary expansion

Our Research Model (#1)

• Heavy Ion Reactions

Radioactive Nuclear Beams

- Off-site experiments at MSU & Notre Dame
- Equipment building at Hope
- Data analysis at Hope
- Small to medium-sized collaborations
- Multi-year projects

Our Research Model (#1)

- Equipment building at Hope
- Data analysis at Hope
- Small to medium-sized collaborations
- Multi-year projects

Our Research Model (#1)

- Equipment building at F
- Data analysis at Hope

- Small to medium-sized collaborations
- Multi-year projects

MONA The Modular Neutron Array

<u>Issue 33, (April 20, 2007).</u>

Our Research Model (#2)

• Ion Beam Analysis

PIXE, RBS, PESA, IBIL...

- On-site experiments (HIBAL)
- Sample preparation at Hope
- Data analysis at Hope
- Small collaborations
- Single and multi-year projects
- Very interdisciplinary

Ion Beam Analysis Techniques:

Particle Induced X-Ray Emission (PIXE) Rutherford Backscattering (RBS) Proton Elastic Scattering Analysis (PESA) Ion Beam Induced Luminescence (IBIL)

Hope College Ion Beam Analysis Lab

"Standard" Alphatross Ion Source

Rb`charge exchange: H⁻ or He⁻

Pelletron Tank: +1.7MV

Extra lead shielding option...<2mR/hr

HE Focusing & Analyzing

Endstations & Microprobe

5-axis goniometer, CCD camera, sample vacuum interlock, separate control console

Control Consoles

Windows CAMAC/ FPGA DAQ control

Trace Metal Analysis of Sediment...

Metals via ICP

Metals via PIXE

Sample prep:1. dry sediment2. press into self-supporting target

Radiodating Lake Cores

Sediment Chemistry

ICP vs. PIXE • White Lake Sediment Core

- Quantitative,
 reproducible,
 non-destructive
- Faster by a factor of ~3!
 - J. M. Lunderberg et al. NIM B266 (2008) 4782-4787

Chromium ICP and PIXE Results for White Lake Core 3

Gel Thickness Determination

Proton Elastic Scattering Analysis (PESA)

- ΔE is directly proportional to Δx
- SIMNRA allows us to relate energy loss to atoms/cm²

J.Warner, L.Ellsworth, M.Rycenga, L.Kiessel

Myoglobin

PESA Analysis

SIMNRA Analysis

SIMNRA by Matej Mayer http://www.rzg.mpg.de/~mam/index.html

J. D. Warner et al. NIM B (2009) submitted

CL System for Forensic Geology

Soil Analysis

Ion Beam Induced Luminescence

Another Example: Feldspars

CL peaks of known origin, mostly...

Mn²⁺ **Fe**³⁺

PeakFit 4.0[©]

Similar Spectra: Feldspar IBIL

Conclusions

- It is not only possible to integrate research and education it attracts students
- New instrumentation and connectivity allow new collaborative approaches
- Undergraduates can contribute
- Interdisciplinary and non-proliferative

Acknowledgements

NSF – MRI 0319523 & RUI 0651627 Dave Daugherty, Ken Brown, Ed Hansen, **Brian Bodenbender** (*Hope College*) Graham Bench (LLNL), Rick Rediske (GVSU), Tom Guarr (*Gentex*), Bryce Bergethon (*Huron*) **Technology**), JoAnn Buscaglia, Bob Koons(FBI) **Recent Students:** Andy Huisman, Lee Kiessel, Jill Pinter, Natalie Hoogeveen, Matt Rycenga, Josh Warner, Pat Mears, Richard Sampson, Derek Padilla, Erica Beck, Mark Lunderberg, **Rachel Driscoll, Dyanne Cooper, Dale Purcell**