

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

The XT-ADS core design

Gert Van den Eynde

SCK•CEN

AccApp09, Morning Satelite Meeting IV, "MYRRHA/XT-ADS"

₁May 6th, 2009

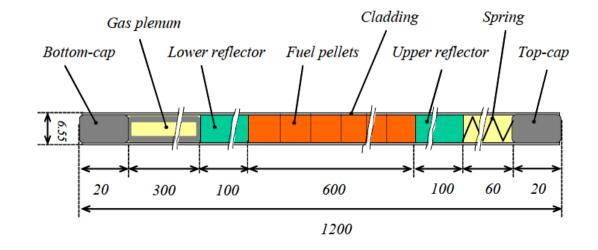
Acknowledgements

- This is the work of
 - The MYRRHA team at SCK•CEN
 - The MYRRHA Support team at SCK•CEN
 - Domain 1 of EUROTRANS (and especially Work Package 1.2 and Work Package 1.4)
 - A successful collaboration with JAEA

In short: people who want to see this machine constructed!

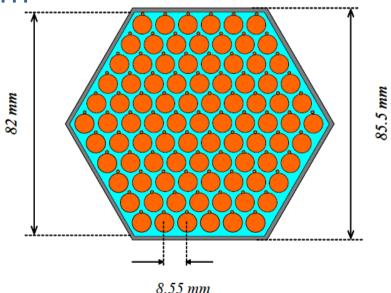
Contents

1. MYRRHA Draft2


- 2. A safety concern
- 3. New fuel pin and fuel assembly
- 4. Clean core configuration
- 5. Reference core
- Analysis of irradiation capabilities

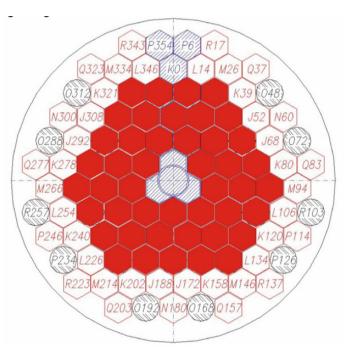
MYRRHA Draft 2 Fuel pin & assembly

- MOX 30 wt% Pu
- Solid pellets D 5.40 mm
- Clad: T91 OD 6.55 mm
- Neutron reflector (YSZ)
- Gas plenum
- Caps



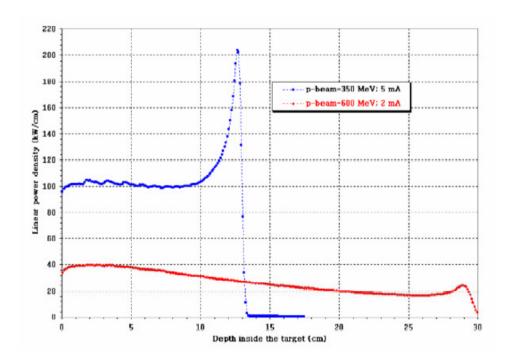
MYRRHA Draft 2 Fuel assembly

- Pin pitch: 8.55 mm
- P/D = 1.305
- 91 pins
- Wrapper thickness: 1.75 mm
- Inter FA space: 2 mm



MYRRHA Draft 2 core layout

- 45 Fuel assemblies
- Lattice 99 positions
- 350 MeV x 5 mA proton beam
- k_{eff} = 0.955, k_s = 0.960
- P = 52 MW_{th}
- Peak linear power: 352 W/cm
- Hot pin Φ_{tot} : 4.10¹⁵ n/cm².s
- Hot pin $\Phi_{>1MeV}$: 0.8 · 10¹⁵ n/cm².s
- Hot pin Φ_{>0.75 MeV}: 1·10¹⁵ n/cm².s



CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

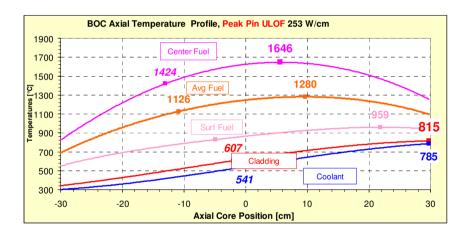
Increased proton energy

- At 350 MeV Bragg peak is significant
 - Heat production
 - Recirculation
- Switch to 600 MeV
 - I = 2 2.5 mA
 - Lower total power
 - Higher n/p

Contents

- 1. MYRRHA Draft2
- 2. New fuel pin and fuel assembly
- 3. Clean core configuration
- 4. Reference core
- 5. Analysis of irradiation capabilities

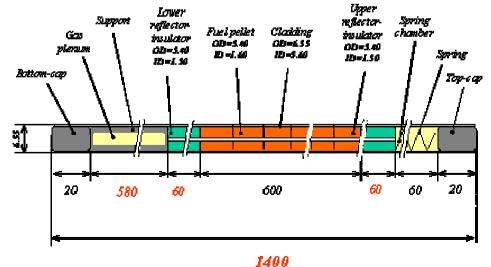
MYRRHA Draft 2 Safety analysis


- ULOF was worst case scenario (grace time)
- No problem with the fuel
 - Safety limit of 2500°C is not reached
- Clad (T91) does have a problem
 - Safety limit of 700°C is reached
 - After 10s for ULOF
 - After 10min for ULOHS

ULOF analysis

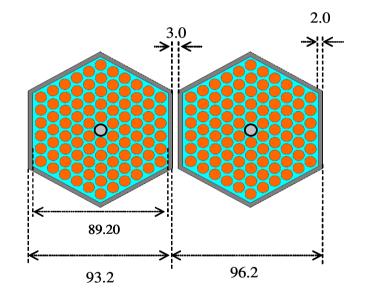
- Increase coolability in case of ULOF
 - Drastic increase of natural circulation potential
 - Reduction of the pressure drop over the core
 - Target value: 1000 mbar
- Consequences:
 - Larger pin pitch
 - Larger assembly pitch

ULOF analysis


- Risk at an ULOF is clad failure due to
 - High temperature
 - Fission gas pressure build-up
- Decision to increase the gas plenum
 - Larger fuel pin
 - Height of fuel assembly increases
 - Core height increases

XT-ADS A new fuel pin

- Pellet with central hole
- Increased gas plenum
- Reduced YSB reflector
- Total height = 1400mm
 - (+200 mm)

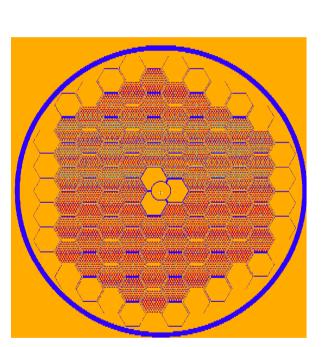


XT-ADS A new FA

- Pin pitch: 9.17 mm
- P/D = 1.40
- 90 fuel pins
- 1 instrumentation pin
- Wrapper thickness: 2 mm
- Inter FA space: 3 mm

Contents

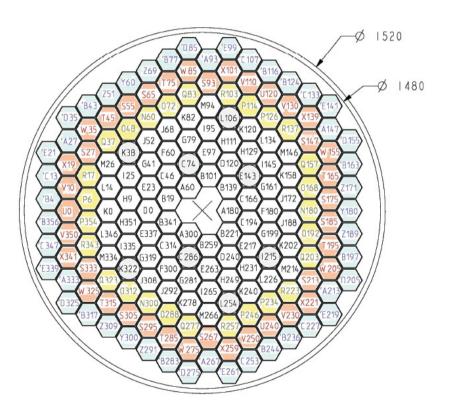
- 1. MYRRHA Draft2
- 2. New fuel pin and fuel assembly
- **3. Clean core configuration**
- 4. Reference core
- 5. Analysis of irradiation capabilities



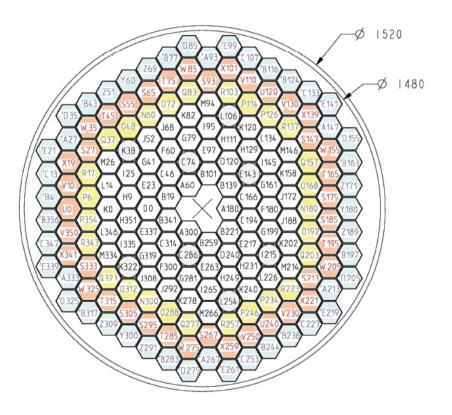
XT-ADS "Clean core"

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Parameter		Unit	XT-ADS Value	MYRRHA Value
Proton beam energy		MeV	600	350
Proton beam current		mA	2.33 †	5
Proton beam deposited heat		MW	1.40	1.75
Total neutron yield per incident proton			15.3	6.0
Neutron source intensity	-	10 ¹⁷ n/s	2.23	1.9
Initial fuel mixture		MOX	(U-Pu)O ₂	(U-Pu)O ₂
Initial (HM) fuel mass		kg	857	514
Initial Pu enrichment		wt%	31.5	30
k _{eff}			0.95324	0.95521
k _s			0.95711	0.96007
$MF = 1/(1-k_s)$			23.31	25.04
Source importance φ*			1.095	1.127
Thermal power		MW	56.75‡	51.75‡
Specific power		kW/kgHM	66.22	101
Peak linear power (hottest pin)		W/cm	253	352
Average linear power (hottest pin)		W/cm	146	252
Max Φ_{total} in the core near hottes	st pin		3.31	4.1
Max $\Phi_{_{>1MeV}}$ in the core near hott	test pin	10 ¹⁵ n/(cm ² .s)	0.53	0.8
Max $\Phi_{_{>0.75}}$ MeV in the core near	hottest pin		0.72	1.0
(†) Normalised to fuel power density of 700 W/cm ³ (‡) 210 MeV/fission				


XT-ADS "Clean core"

- Damage on inner vessel structures?
 - Core barrel
 - Core support plate
- From DM4-Demetra
 - Guidelines (some debate on realism...)
- Resulted in an exercise to maximally protect the core barrel



- Added two extra rows
- Evaluation of
 - Steel pins
 - Boron carbide pins
 - Combination
- Too penalizing for the core performances!

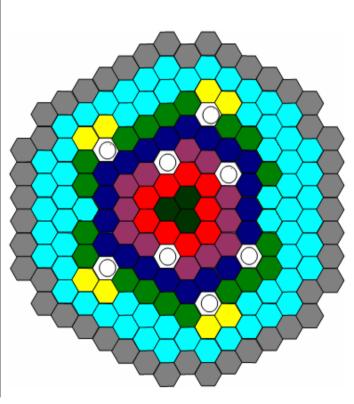
- Simply empty hex cans
- Increased distance fuel assembly – core barrel halves dpa rate
- "Clean core"
 - 5.5 dpa/360 EFPDs
- This core
 - 2.3 dpa/360 EFPDs

XT-ADS Reference core

- Goals MYRRHA/XT-ADS
 - Flexible fast-spectrum irradiation facility
 - Demonstration ADS "at power"
 - Demonstration of transmutation of MAs
- Dedicated 8 positions in the core to house "In-Pile-Loops"
 - Penetration through the lid
 - Irradiation conditions (flux, temperature, environment) can be fixed at customers wish

Contents

- 1. MYRRHA Draft2
- 2. New fuel pin and fuel assembly
- 3. Clean core configuration
- **4. Reference core**
- 5. Analysis of irradiation capabilities



XT-ADS Reference core

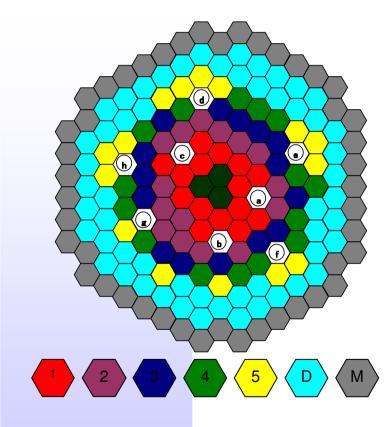
STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Parameter	Unit	Value
Proton beam energy	MeV	600
Proton beam current	mA	2.1
Proton beam deposited heat	MW	0.94
Total neutron yield per incident proto		15.3
Neutron source intensity	10 ¹⁷ n/s	2.23
Initial fuel mixture	MOX	(U-Pu)O ₂
Initial Pu enrichment	wt%	35
k _{eff}		0.955
k _s =		0.960
$MF = 1/(1-k_s)$		25
0		
Source importance $\phi^*=$		1.12
Thermal power	MW	57
Specific power	kW/kgHM	66.22
Peak linear power (hottest pin)	W/cm	225
Average linear power (hottest pin)	W/cm	146
Max Φ_{total} in the core near hottest pin	1	3.1
Max $\Phi_{>1MeV}$ in the core near hottest p	bin $10^{15} \text{ n/(cm^2.s)}$	0.50
Max $\Phi_{>0.75}$ MeV in the core near hott	est pin	0.66

Cycle analysis

- Proposed cycle
 - 90 days operation
 - 30 days maintenance
 - 90 days operation
 - 30 days maintenance
 - 90 days operation
 - 90 days maintenance

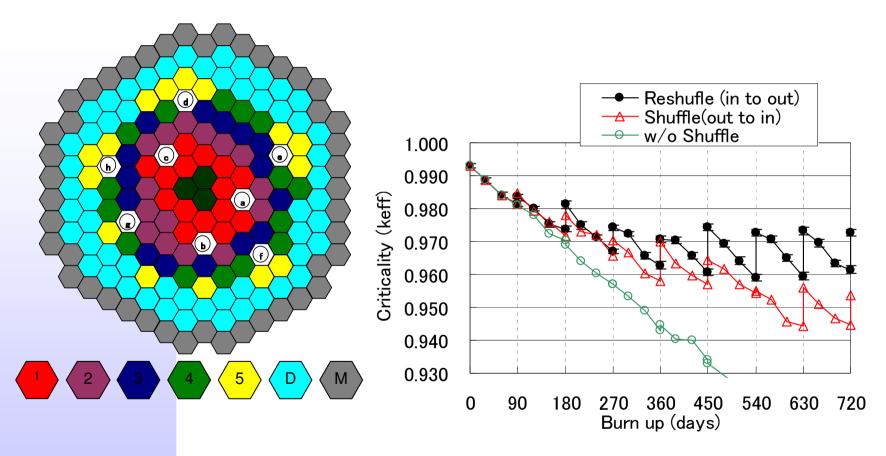
- Characteristics
 - 13 pcm/EFPD loss
 - 1200 pcm per operational cycle


20% loss in power Or... 20% increase in beam Or... Compensate using burnable poison

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

5-step cycle

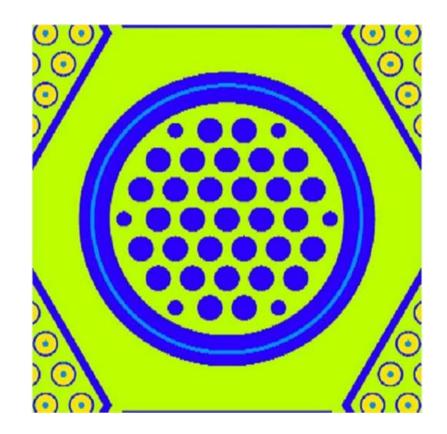
- Start with fresh core (75 fuel assemblies)
- Shuffle in 5 steps
- Question to be answered:


Can we get to a stable cycle ?

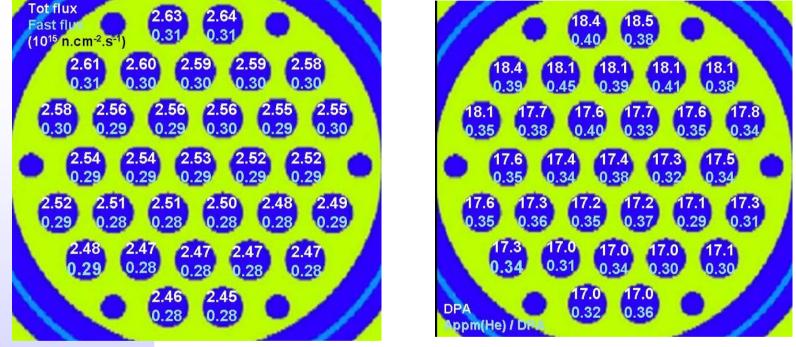
5-step cycle

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

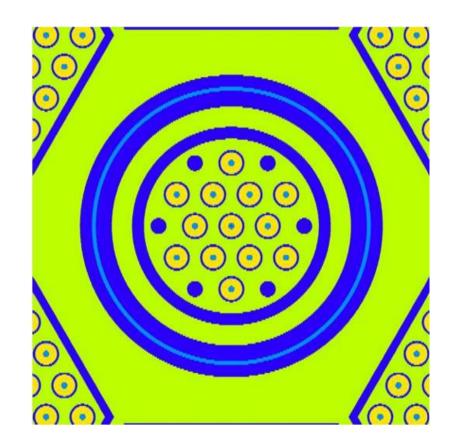
Contents



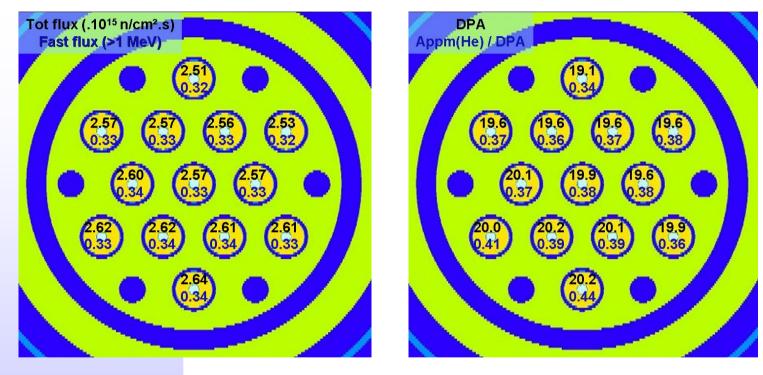
- 1. MYRRHA Draft2
- 2. New fuel pin and fuel assembly
- 3. Clean core configuration
- 4. Reference core
- **5. Analysis of irradiation** capabilities



- Induced damage in steel material
 - 31 rod lattice
 - In-Pile-Loop
 - In C74 position



Dpa rate: 17-18.5 dpa/year (avg 17.6)



- Induced damage in fuel clad material
 - 13 rod lattice
 - In-Pile-Loop
 - In K322 position

Dpa rate: up to 20 dpa/year

Contents

- 1. MYRRHA Draft2
- 2. New fuel pin and fuel assembly
- 3. Clean core configuration
- 4. Reference core
- 5. Analysis of irradiation capabilities
- 6. Updated target design

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

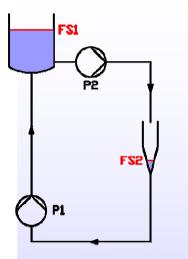
MYRRHA draft 2

- no flow detachment allowed
- height of the target free surface must be actively controlled by LIDAR measurement device and MHD pump

 drag enhancer by vertical ribs in the concentric feeder channel seems to cause a lot of turbulence at the target surface

- flow detachment enforced
- shape and height of the target free surface determined by nozzle geometry and flow rate
 → extra free surface act as buffer during beam transients
 → no active control needed

 new drag enhancer design with 140 vertical fins and accelerating flow


 \rightarrow less turbulent flow and thus improved target surface stability

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

MYRRHA draft 2

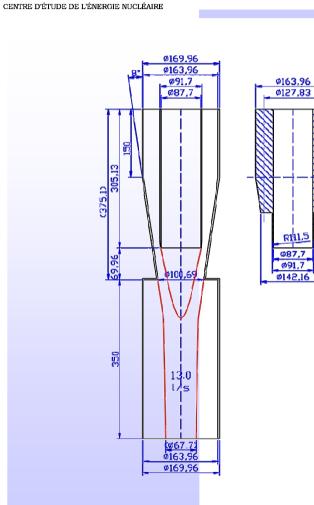
- pump P1: mechanical impeller type
- pump P2: MHD type that has to react within 10ms to compensate for sudden beam transients

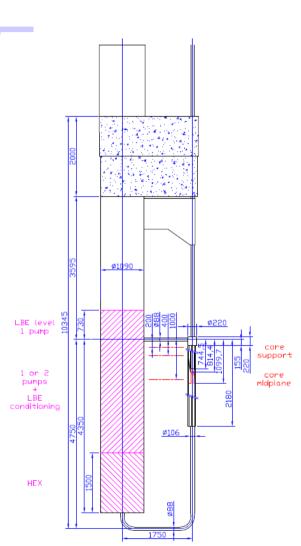
FS1 P2 FS2 FS3 P1

- pump P1: MHD type
 - \rightarrow no moving mechanical parts in the LBE
 - \rightarrow improved reliability of the system

XT-ADS

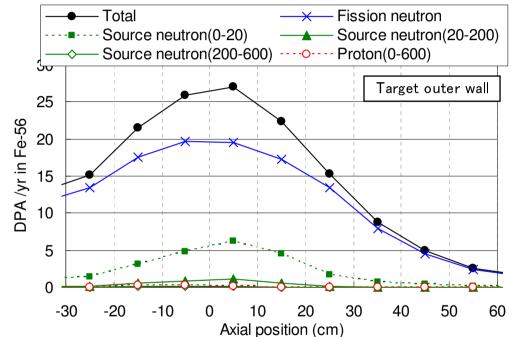
- pump P2: MHD type
 - \rightarrow no need for rapid reaction to beam transients (relaxed pump specifications)


 \rightarrow only needed to compensate for slow changes in the loop (changes in pipe friction, pump efficiency, ...)

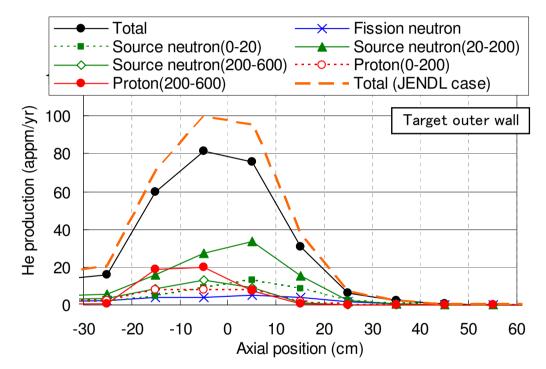


Design drawings

5



Irradiation damage Target outer wall


- Similar to cladding
- Only He rate is higher
 - Due to high energy protons

- Similar to cladding
- Only He rate is higher
 - Due to high energy protons

Irradiation damage Target outer wall

Conclusions

- The design has matured a lot since "Draft 2"
- Feedback from
 - Safety
 - Design engineers
 - Neutronics
 - Thermal hydraulics
 - Accelerator

Let's go even further in CDT !