

Proton LINAC for the Frankfurt Neutron Source FRANZ

- IAEA -

International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators

Oliver Meusel

4-8 May 2009

Vienna, Austria

GOETHE Institut für Angewandte Physik **Motivation** UNIVERSI FRANKFURT AM MAI Frankfurt Neutron Source at the Stern - Gerlach- Zentrum ⁷Li target development of new nuclear astro physics, accelerator concepts for p⁺ beam collimated measurement of neutron n₀ beam intense proton and ion capture cross sections beams development of high power targets

GOETHE Institut für Angewandte Physik **Experimental Setup** UNIVERSITÄT FRANKFURT AM MAIN Scheme of the neutron source 150 kV Beam Dump $W_{h} = 120 \text{ keV}$ $W_{b} = 0.7 \text{ MeV}$ $W_{\rm b} = 1.87 - 2.1 \text{ MeV}$ Terminal Detector Development $P_{\rm b} = 2.4 \text{ x } 10^4 \text{ W}$ $P_{hmax} = 7 \times 10^3 \text{ W}$ $P_{hmax} = 2.1 \times 10^4 \text{ W}$ high n - flux (dc) ⁷Li Target Rebuncher IH III RFQ Bunch Volume Type Compressor Ion Source Steerer Chopper Chopper Dipole 🔎 $\Delta t = 50-100$ ns f = 250 kHzMagnet f = 250 kHz⁷Li Target cw operation $I_{\rm h} \sim 30 \text{ mA}$ activation mode dc extraction & transport pulsed operation, rep. rate 250 kHz, $\tau = 1$ ns $I_{\rm h} \sim 2 \, {\rm mA}$ compressor mode

Primary beam properties and resuling neutron flux

Volume type ion source with hot filament driven gas discharge

© K. Volk, R. Nörenberg

Ion Source

Operation mode	dc
lon species / fraction	Protons / 90 %
Discharge power	10 – 12 kW
Extraction current	200 mA
Extraction voltage	62 kV
Extraction field strength	5 kV/mm
Beam energy	120 keV
Input emittance (norm. rms)	$0.07 \ \pi \ \text{mm} \ \text{mrad}$
Aspect ratio	0.2

Cross-sectional view of the ion source

GOETHE Institut für Angewandte Physik **Ion Source** UNIVERSITÄT FRANKFURT AM MAIN Ion beam extraction 0,30 $v_{\parallel} = \sqrt{\frac{2eU}{2}}$ Up=120015.9, Te=5.0 eV, Ui=5.0 eV, mass=1.0, Ti=0.5 eV, Usput=0 V 0,25 0.280 A, crossover at R= 145.8, Z=696 mesh units, Debye=0.796 mesh units VolkD 0,20 **⊄** 0,15 . 0000 V 1XX 300 200 0,10 100 0,05 200 400 800 1000 1200 1400 1600 1800 2000 600 0.00 IGUN-7.032(C)R.Becker - RUN 01/22/08+003, file=VOLK37.IN -0,02 -0,01 0,00 0,01 0,02 0,03 -0,03 simulated beam extraction using a pentode system t/s extracted beam current with 3% noice (simulated) $\eta = \frac{I_{peak}}{I_0}$ $K = \frac{1}{4\pi\varepsilon_0} \sqrt{\frac{A}{2q}} \cdot \frac{I}{U^{3/2}}$ $n_p = \frac{1}{2\pi e \cdot v_{\parallel} \cdot r_p}$ proton density $n_p = 8.2 \cdot 10^{14} \text{ m}^{-3}$ gen. Perveance K = $3.1 \cdot 10^{-3}$ compression ratio $\eta = 1$,

Low Energy Beam Transport

Solenoidal transport section to provide space charge compensation

$$\frac{d^{2}}{dz^{2}}r_{S} = \frac{\varepsilon^{2}}{r_{S}^{3}} + \frac{K}{r_{S}} - \kappa (z)r_{S}$$

KV - envelope equation

Chopper for macro pulse generation

scheme of the chopper system

Chopper

Accelerator

Institut für Angewandte Physik

Radio Frequency Quadrupol - RFQ

RFQ test module

© A. Schempp / NTG company

RFQ technical design

Focussing, Compression and Acceleration

Operating frequency	175 MHz
Ion species	Protons
Length of RFQ	1.7 m
Length of IH-DTL	0.6 m
Tank diameter IH	510 mm
# of RFQ cells	97
# of IH gaps	8
Input energy	120 keV
Input emittance (norm. rms)	0.56π mm
Electrode voltage (RFQ)	75 kV
Max. gap Voltage IH-DTL	300 kV
Exp. Power consumption RFQ	150 kW
Exp. Power consumption IH	45 kW
Current	max. 200
Output eenergy RFQ	700 keV
Output ebergy IH	2 MeV
Coupling factor	0.03

Bunch Compressor

GOETHE Institut für Angewandte Physik Target UNIVERSITÄT FRANKFURT AM MAIN Development of high power target at FZ Karlsruhe and KALLAS - Laboratory © D. Petrich, F. Käppeler r = 10 mmCu backing with capillaries 350 300 y profile 250 200 Intensity 150 O-ring high pressure 100 water supply 50 -10 0 10 20 30 -30 -20 cooling for O-ring x / mm transverse beam profile (simulated) pro 10 mm avg. power ~ 4 kW target prototype for beam power up to 6 kW peak power ~ 20 MW

4πBaF₂ Detector Array

Institut für Angewandte Physik

- high granularity (#43) to reduce count rate per module
- fast timing (600 ps) to achieve acceptable TOF resolution
- good energy resolution
- low neutron sensitivity

Thank you for your attention.

on behalf of:

A. Bechtold, L.P. Chau, M. Heilmann H. Podlech, U. Ratzinger, A. Schempp, C. Wiesner, S. Schmidt, K. Volk / IAP, Goethe University Frankfurt
M. Heil, R. Plag, R. Reifarth / GSI, Darmstadt
K. Stiebing, J. Stroth / IKF, Goethe University Frankfurt
F. Käppeler, D. Petrich / IKF, FZ Karlsruhe

acknowledgment:

- LINAC-AG http://linac.physik.uni-frankfurt.de/
- AG-Schempp http://iaprfq.physik.uni-frankfurt.de/
- NNP-AG http://nnp.physik.uni-frankfurt.de

FZK / GSI / IAEA