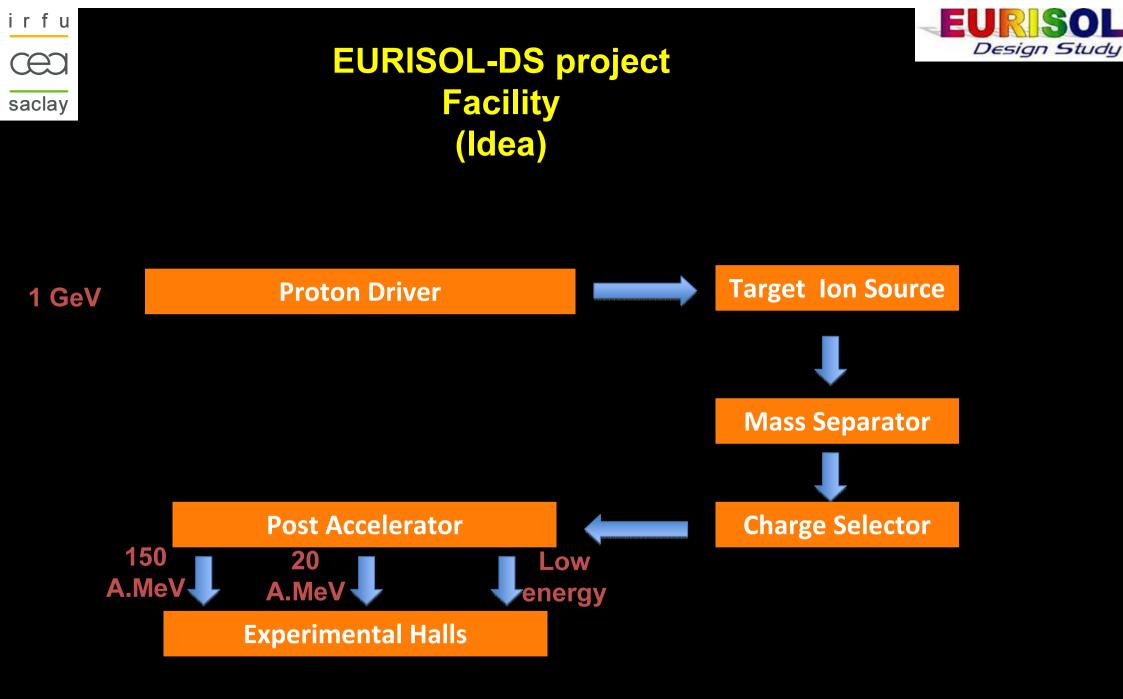


In-target yields for Radioactive Ion Beam (RIB) production with EURISOL

J.-C. David

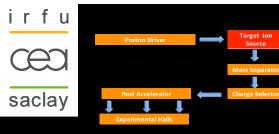
with

D. Doré, B. Rapp, D. Ridikas
S. Chabod, N. Thiollière, D. Ridikas
D. Ene, D. Ridikas
Fission target

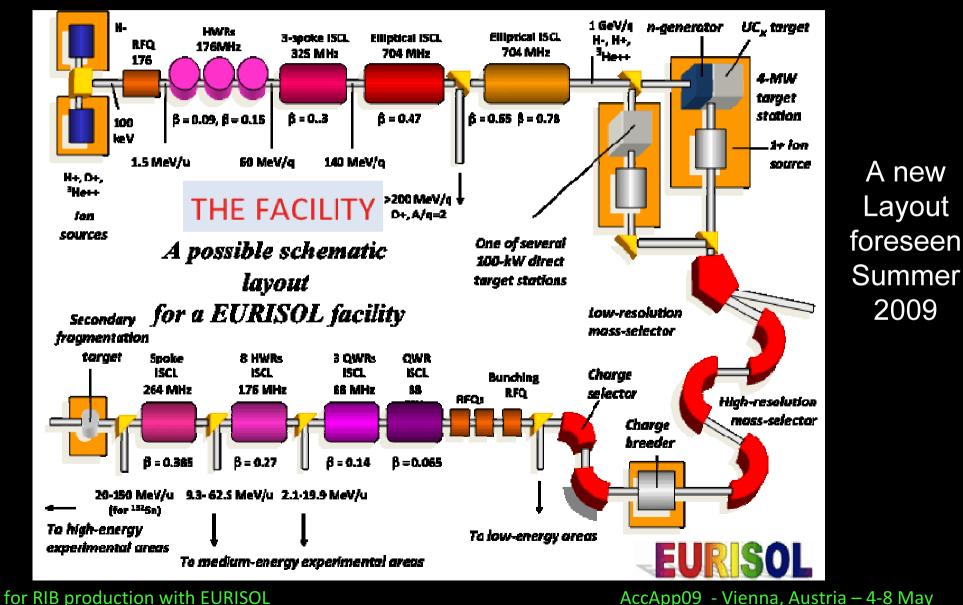

• NuPECC recommends the construction of 2 'next generation' RIB facilities.

- > An in-flight machine: a major upgrade of the current GSI facility: FAIR
- A new ISOL machine: EURISOL

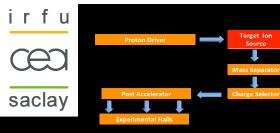
• <u>EURISOL Design Study</u>: Design and prototyping of the most specific and challenging parts of EURISOL


Highest Intensities (*100 compared to existing facilities) More exotic nuclei

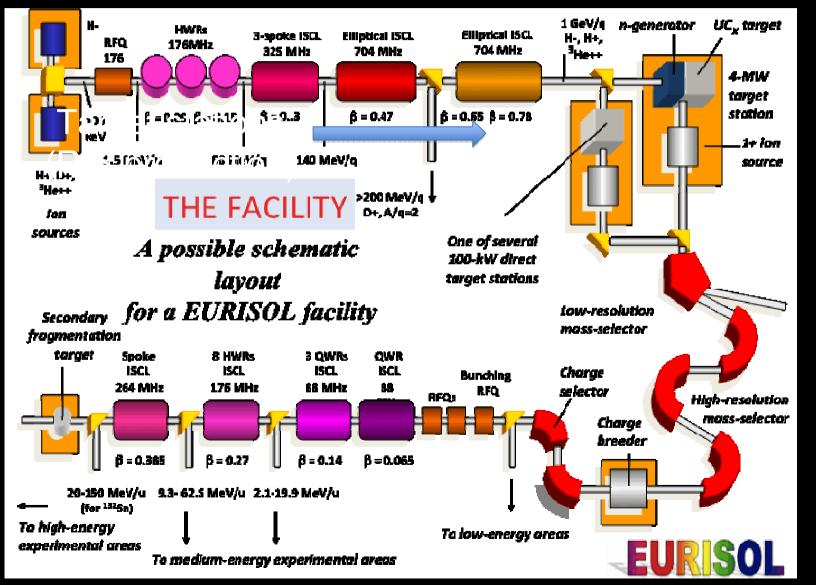
• Nuclei of interest: Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr



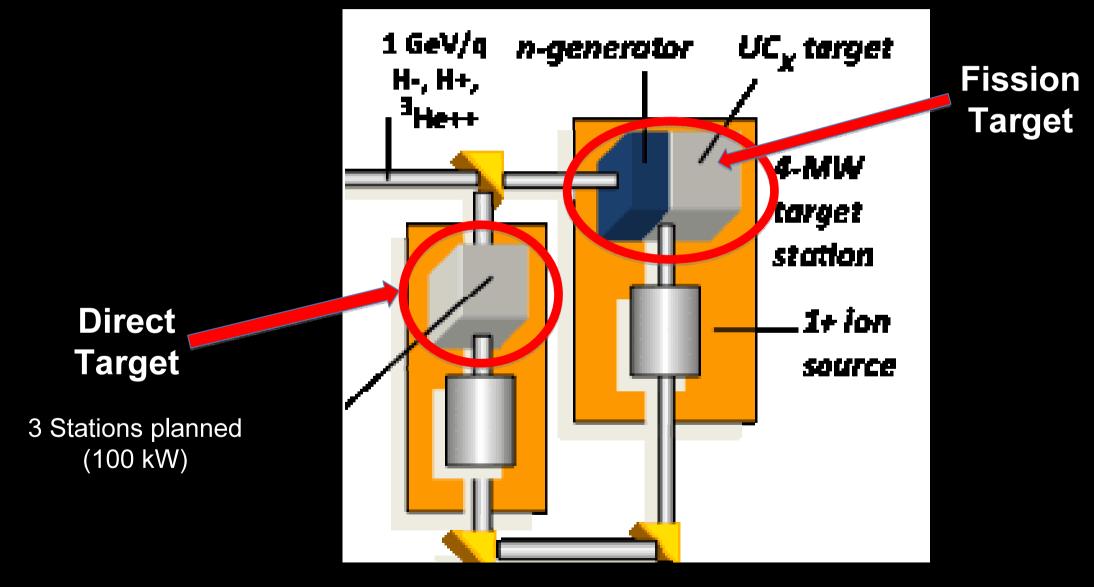
In-target yields for RIB production with EURISOL



EURISOL-DS project Facility (Schematic view)



Layout 2005


EURISOL-DS project Facility (Schematic view)

EURISOL-DS project Facility (Schematic view)

Benchmarking

Direct Target

Nuclei produced via spallation reactions

 \rightarrow Residue production benchmarked

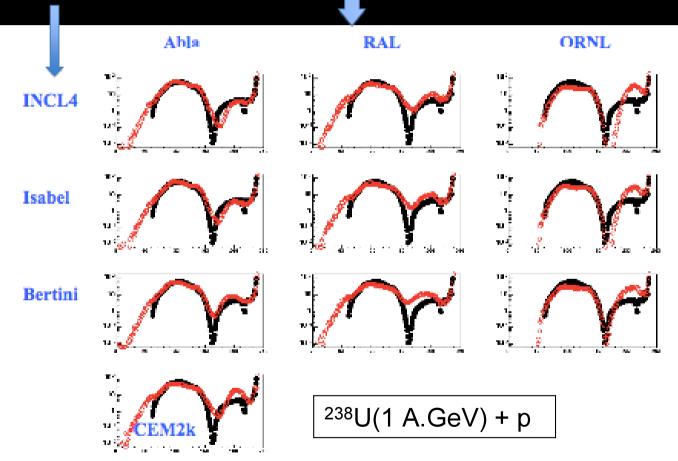
Fission Target

Nuclei produced via neutrons inducing fission

 \rightarrow Neutron production benchmarked

- Transport code used: MCNPX2.5.0
- Why? 10 spallation model combinations available

(FLUKA has also been benchmarked within EURISOL - CERN-AB-Note-2006-006)



Benchmarking Residue

MCNPX: 10 models

Cascade / Deexcitation

Data on thin and thick target were used...

Benchmarking Residue

Thin targets

- A, Z and (A,Z) distributions: U, Pb, Au, Fe ($1 \rightarrow 0.3$ A.GeV) (GSI)
- Excitation functions: Pb, U, Th (40 MeV \rightarrow 2.6 GeV) (R. Michel Y. Titarenko)

Thick targets

- In-target mass distributions of noble gas (ISOLDE) $(UCx (1.4 \text{ GeV}) / ThCx (1 \text{ GeV}) L=20 \text{cm}; \phi=1.8 \text{cm})$
- Axial specific activities in a lead cylinder (Pb (660 MeV) – L=30.8 cm; φ=8cm)

Conclusion: INCL4/Abla, Isabel/Abla and CEM2k(running time) are the best choices

(Dubna)

Benchmarking Neutron

Thin targets

• Neutron spectra: U, Pb, W, Fe, C, Be (800 MeV) at Los Alamos

Thick targets

• Neutron spectra: Pb and Fe at Saturne

Conclusion: All models have more or less the same quite good quality for neutron production

Direct Target Which ones?

Target material	Al_2O_3	SiC	Pb (molten)	Та	UC ₃
ρ [g.cm ⁻³]	2.0	3.2	11.4	12.5	2.418
<i>R</i> [mm]	9.0 - 12.7 - 18.0 - 25.5				
L [cm]	50 - 75 -	32 - 48 -	9 - 18 -	8 - 16 -	40 - 60 -
	100 - 125	64 - 80	27 - 36	24 - 32	80 - 100
Beam particles	Protons				
<i>P</i> [kW]	100				
E [GeV]	0.5 - 1.0 - 1.5 - 2.0				
σ [mm]	<i>R</i> /3				

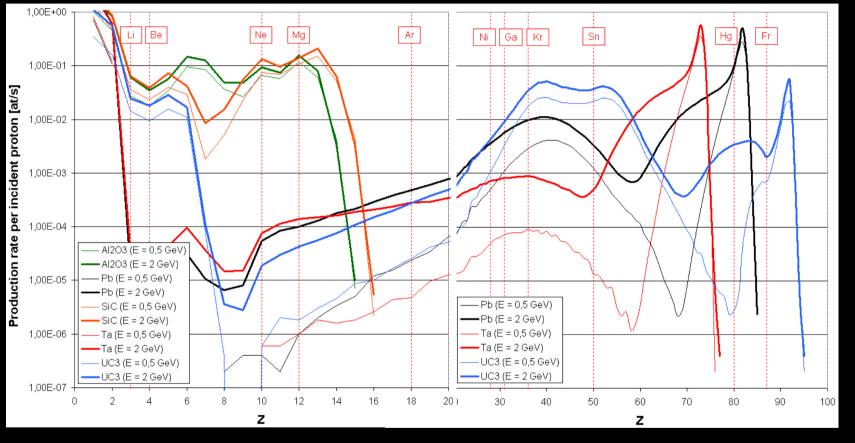
• 4 types of material:

oxides (Al_2O_3) , carbides $(SiC-UC_3)$, molten metals (Pb) and refractory metals (Ta)

- 4 radii
- 4 lengths
- 4 proton energies

320 configurations were calculated (*2 \rightarrow INCL4/Abla and CEM2k)!!!

- <u>Codes</u>: MCNPX2.5.0 (INCL4/Abla CEM2k) + Cinder'90 (decays and low energy neutrons) (5.10⁶ protons run)
- Yields calculated, but also an attempt to optimize... **_____** strategy and basic ideas
 - Material, Size, beam Energy to be defined: step by step
 - ▷ Energy costs more than Intensity → production_rate/energy (nuclei/incident_proton/s/MeV)
 - > In-target yield increases with L*R², BUT effusion/diffusion efficiencies decrease with L / R



Direct Target Results

Charge distribution

E = 0.5 or 2 GeV R = 18 mm (fixed) L / Mass = 2 kg

Which target for which ion?

First information

In-target yields for RIB production with EURISOL

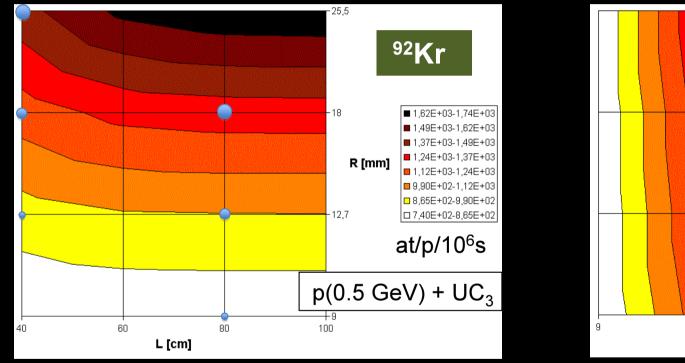
Direct Target Results

Z and A distributions lead to premilinary selection

lon	Target		lon	Target
Z	Best material		А	Best material
pprox 7	Al_2O_3		≈ 15	Al_2O_3
≈ 15	SiC		pprox 30	SiC
$30 \le Z \le 55$	UC_3		$160 \le A \le 180$	Та
$65 \le Z \le 70$	Та		$185 \le A \le 210$	Pb
$75 \le Z \le 80$	Pb]	$A \ge 215$	UC ₃
$Z \ge 85$	UC_3			

• Number of files to be analyzed will be reduced

• Then, R and L to be defined...



-25,5

Direct Target Results

L and R determination (2 examples)

180 H C' -18 2.55E+01-2.70E+01 2,40E+01-2,55E+01 2.25E+01-2.40E+01 2,10E+01-2,25E+01 R [mm] 1.95E+01-2.10E+01 1,80E+01-1,95E+01 1.65E+01-1.80E+01 -12.7 □ 1.50E+01-1.65E+01 at/p/10⁶s p(1 GeV) + Pb 27 18 36 L [cm]

- : volume = 203.57 cm³
- : volume = 2 * 203.57 cm³
- : volume = 4 * 203.57 cm³

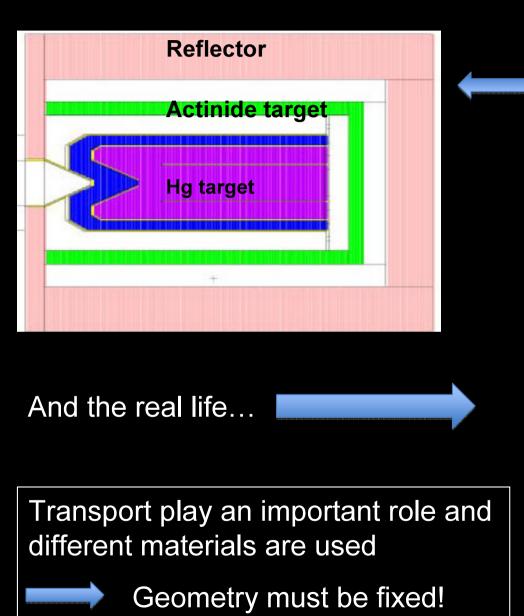
In-target yields for RIB production with EURISOL

- 1- optimization depends on isotope
- 2- only a set of possibilities
- 3- extraction efficiencies needed to optimize

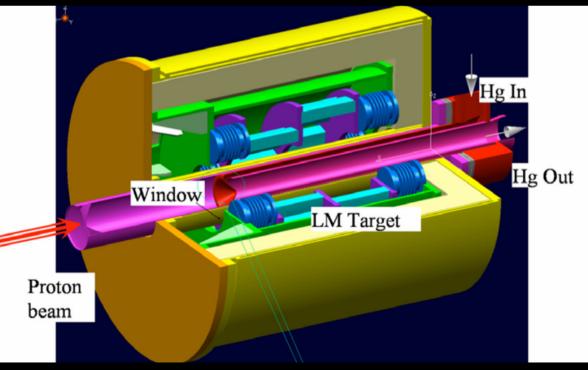
Direct Target Results

Nevertheless, here are some in-target production yields obtained:

Isotope	Material
^{II} Li	Al_2O_3
⁷ Be	SiC
¹¹ Be	Al_2O_3
¹² Be	Al_2O_3
¹⁸ Ne	SiC
²⁵ Ne	SiC
²⁰ Mg	SiC
⁷² Ni	UC ₃
⁸¹ Ga	UC ₃
⁹² Kr	UC ₃
¹³² Sn	UC ₃
²⁰⁶ Hg	Pb
¹⁸⁰ Hg	Pb
²⁰⁵ Fr	UC ₃


Beam energy (GeV)	In-target rate (at/s)
1	1.8 109
0.5	$1.0\ 10^{13}$
1	$1.2 \ 10^{11}$
1	$3.0\ 10^{10}$
1	8.3 10 ¹⁰
1	3.2 109
1	$2.4 \ 10^{10}$
0.5	7.6 10 ¹⁰
0.5	$1.9 \ 10^{10}$
0.5	8.9 10 ¹¹
0.5	2.9 10 ¹¹
0.5	$2.9 \ 10^{11}$
1	$1.5 \ 10^{10}$
1	1.8 109

Model: INCL4/Abla

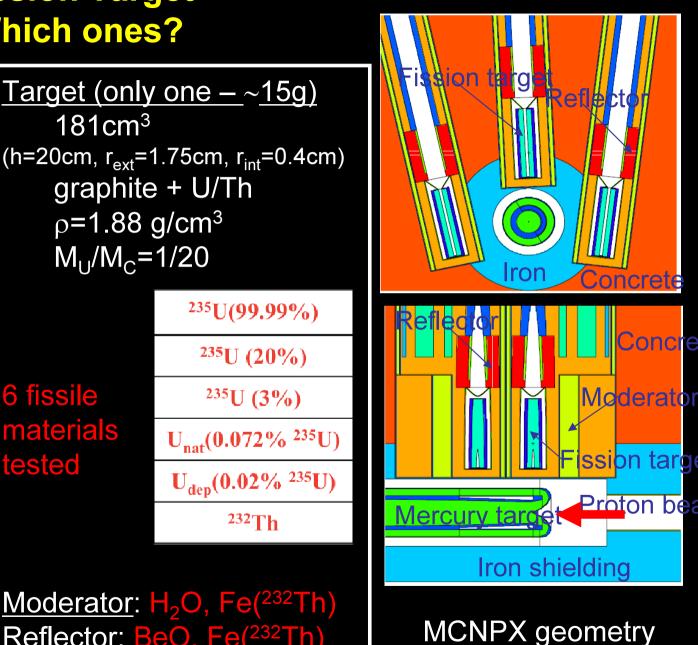


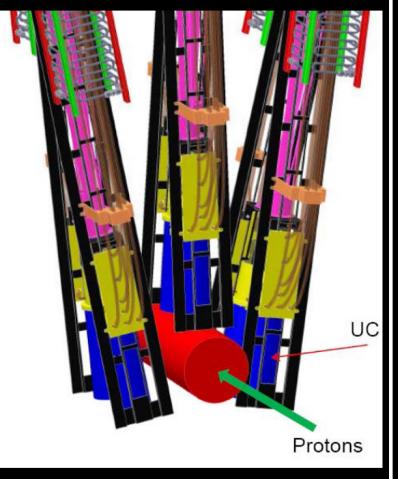
Fission Target Which ones?

Schematic view of the MMW target: neutron convector + fission target

In-target yields for RIB production with EURISOL

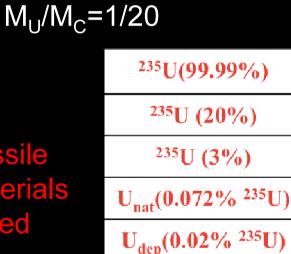
Fission Target Which ones?


181cm³


<u>Target (only one – ~15g)</u>

graphite + U/Th

 ρ =1.88 g/cm³



The 6 fission targets around the Hg convector

materials tested

6 fissile

²³²Th

Moderator: H₂O, Fe(²³²Th) Reflector: BeO, Fe(232Th)

In-target yields for RIB production with EURISOL

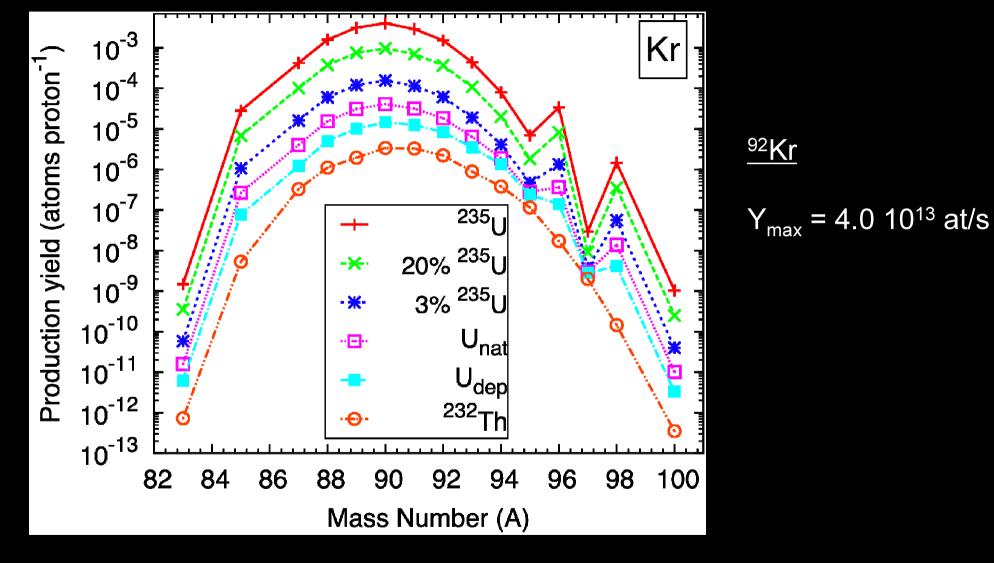
Fission Target Strategy

$$Yield = Y_{fis}^{T} \cdot \tau_{fis}^{T} + Y_{fis}^{F} \cdot \tau_{fis}^{F} + Y_{fis}^{H} \cdot \tau_{fis}^{H}$$

• 3 regions ($E_{min} \rightarrow E_{max}$): Thermal (0 → 5 keV) Fast (5 keV → 5 MeV) High energy (5MeV → 1 GeV)

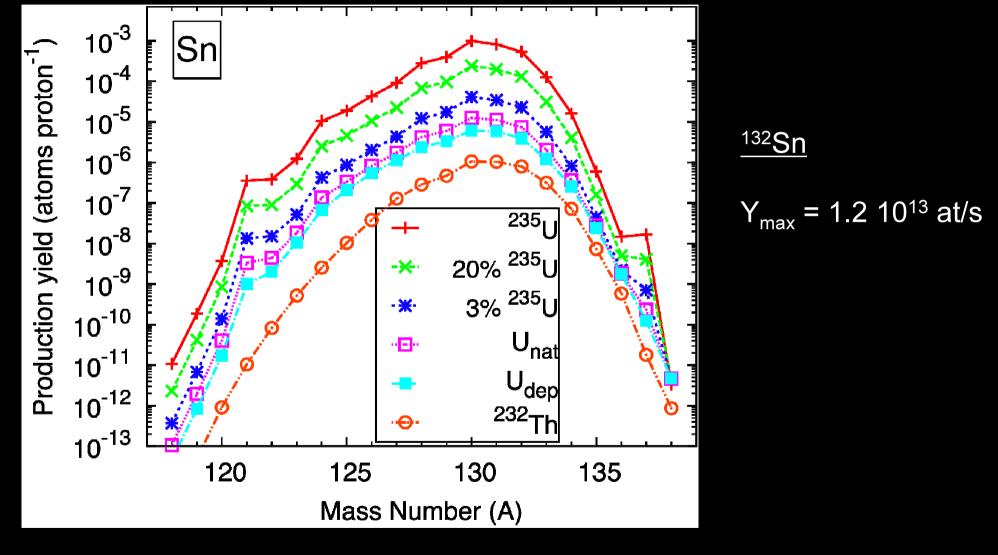
• Y_{fis}: fission yields (T.R. England and B.F. Rider, LA-UR-94-3106, ENDF-349)

•
$$\tau_{fis} = N \int_{\mathcal{F}_{s}}^{\mathcal{F}_{max}} (\mathcal{E}) \cdot \phi(\mathcal{E}) \cdot d\mathcal{E}$$
; Fission rates by MCNPX2.5.0 (CEM2k)



	Configuration	²³⁵ U*	²³⁸ U	Total	²³⁵ U
		(fiss/s)	(fiss/s)	(fiss/s)	[%]
Fission rates (given for 1mA)	²³⁵ U	5.7689E+14		5.7689E+14	100
	20% ²³⁵ U	1.3823E+14	1.2021E+12	1.3943E+14	99.14
	3% ²³⁵ U	2.1712E+13	1.3931E+12	2.3106E+13	93.97
	U _{nat}	5.2449E+12	1.4172E+12	6.6621E+12	78.73
	$\mathbf{U}_{\mathbf{dep}}$	1.4591E+12	1.4223E+12	2.8814E+12	50.64
	²³² Th	5.2366E+11		5.2366E+11	
	²³² Th for Th case				

- Objective of 10^{15} fis/s reached (5.7689 $10^{14} * 4 = 2.3076 10^{15}$)
- Highly enriched Uranium needed
- ... but ²³²Th can be useful in some cases (ex.: Ni neutron rich side)



Fission Yields | Kr

Fission Yields | Sn

- In-target yields have been calculated for the targets possibly used in EURISOL
- Benchmarking and knowledge of the tools are needed to understand results
- Direct target: 320 configurations were studied
- Fission target: 6 target materials were tested

10¹⁵ fission/s and values up to 10¹³ p/s have been obtained

But now extraction efficiencies must be applied

References

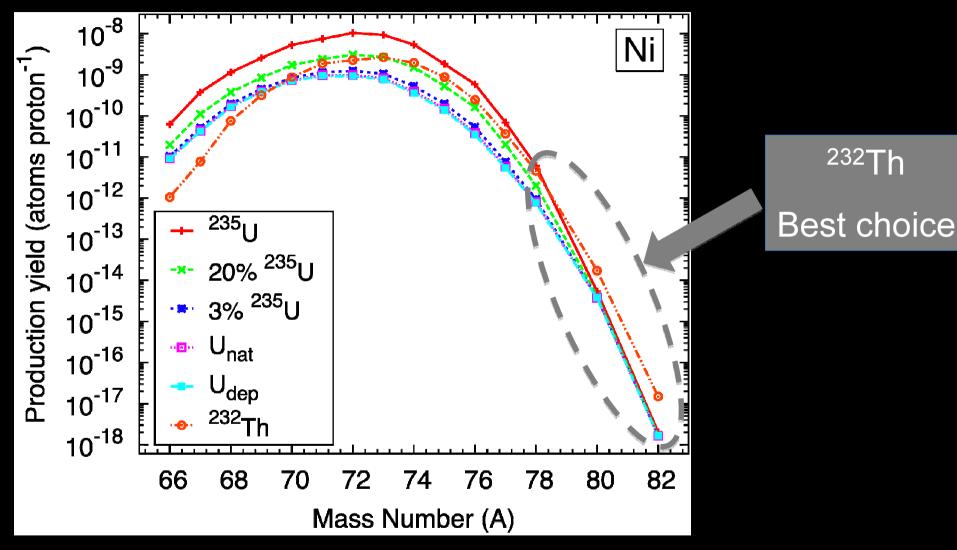
J.-C. David, D. Doré, B. Rapp, D. Ridikas Benchmarking J.-C. David et al., Benchmark calculations on residue production within the EURISOL DS project, Part I: thin targets, CEA Saclay internal report DAPNIA-07-04 (2007) J.-C. David et al., Benchmark calculations on residue production within the EURISOL DS project, Part II: thick targets, CEA Saclay internal report DAPNIA-07-59 (2007) B. Rapp et al., Benchmark calculations on particle production within the EURISOL DS project, CEA Saclay , Mar. 2006 --- http://www.eurisol.org/ (TN-06-04) S. Chabod, N. Thiollière, J.-C. David, D. Ridikas Direct target

S. Chabod et al., Optimization of in-target yields for RIB production Part I: direct targets, CEA Saclay internal report Irfu-08-21 (2008) and paper in preparation

• D. Ene, J.-C. David, D. Ridikas

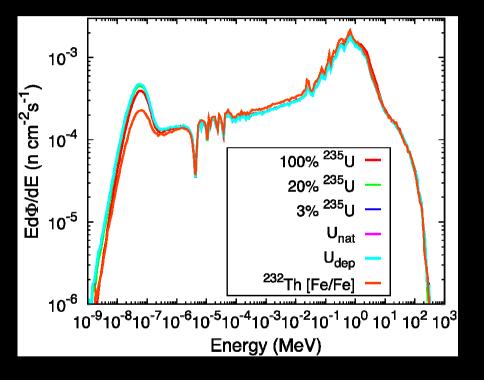
D. Ene et al., Optimization of in-target yields for RIB production Part II: fission targets, CEA Saclay internal report Irfu and EPJA to be published

More information on http://www.eurisol.org/site02/index.php (Task 11)

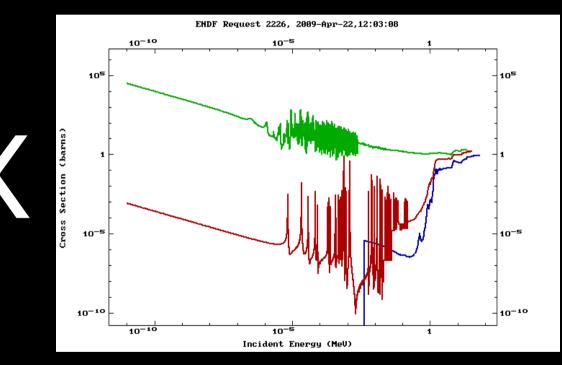

In-target yields for RIB production with EURISOL

AccApp09 - Vienna, Austria – 4-8 May

Fission target



Fission Yields | Ni



Fission rate =

Neutron flux

Fission cross sections