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Introduction: Space Propulsion

• Spacecraft acceleration generated by propellant

discharge:

• Rate of expulsion of propellant

• Specific impulse:

• For constant exhaust velocity:
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The Electric Propulsion

Acceleration of propulsion gases by electrical heating and/or by
electric and magnetic body forces. 

� Electrothermal : electrical heat addition and expansion

through nozzle. Resistojets and Arcjets.

� Electrostatic : application of electric fields. 

Ion  Thrusters and Colloid Thrusters

� Electromagnetic : application of electromagnetic fields.

Hall Thrusters, Pulsed Plasma

Thrusters(PPT) and Magnetoplasmadynamic

Thrusters (MPDT).

Robert G. Jahn - Physics of Electric Propulsion.(1968)



Pictures from Uni-Stuttgart website

To the Moon with SIMPLEX
Stuttgart Instationary MagnetoPlasmadynamic thruster for Lunar Exploration

• Pulse time: 8 µs

• Peak current: 40 kA

• Capacitor voltage: 2000 V

• Exhaust velocity: 12 km/s 

• Mean thrust: 1,4 mN

• Mass ablated/Bit 160 µg



Physical Mathematical Modelling

• Electrical quasi neutrality conditions

• Non-equilibrium conditions in several

degrees of freedom. Failure of 

continuous models,e.g. Fluid models

• Presence of external and self-induced

E-B fields

• Charged-Neutral collisions and                                                        

Chemical reactions

• Elastic charged particle interactions
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Fokker-Planck Equation (FP)
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KEY QUANTITIES: THE ROSENBLTUH POTENTIALS

Dynamical Friction

Diffusion Tensor

THE STOCHASTIC DIFFERENTIAL EQUATION (SDE)
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with transition probability ⇒
2P fullfills a FP equation

Intra-Species Collision: Governing Equations



Evaluate the „key-quantities“

on the grid

Interpolate the coefficients

onto the particles

Push the particles

in velocity space

Reconstruct the

distribution function at t n+1 = t n + ∆t

Numerical Framework: PIC Scheme



Delta vs. Maxwell

Possible approaches:

• FULLY SELF-CONSISTENT

Mutual Influence of beam and 

background particles

• NOT SELF-CONSISTENT

Stochastical modelling of beam

particles evolution with fixed

background Maxwell

• TEST-PARTICLE ANSATZ

Separation of friction and diffusion

effects unrealstic⇒

Time Scaling Analysis



Mean value investigation

Moments Analysis

Variance investigation

Transversal variance time evolution for

self-consistent and reference simulation

Mean value time evolution for self-

consistent and reference simulation



Inter-Species Collision: Governing Equations

• Preliminaries: 

• Friction and Diffusion known from the simple form of:

• SDE becomes:                                                     , where:

• First and second moment time development :
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(e,X) Collision

Final electron distribution function Moment  temporal evolution

Electron beam impinging a background Ion distribution: ( ) ( ) ( ) 0  ,0  , 0,
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Coupled Calculations:(e,X) + (e,e) Collision

Non-equilibrium electrons impinging a background Ion distribution:

Initial electron distribution function Moment  temporal evolution



Coupled Calculations:(e,X) + (e,e) Collision

Non-equilibrium electrons impinging a background Ion distribution:

Initial electron distribution function Moments temporal evolution



Comparison

• Comparison between the mean  

value decay for the x-direction of the 

velocity in the (e-X) case and the 

coupled case (e-e)+ (e-X) 

• Delay in the coupled case due to 

non constant
2α



Summary and Conclusions

• Development of a three dimensional, self-consistent code for Coulomb

collisions simulations

• Qualitative time scaling analysis performed for intra- and inter-species case

• Comparison with coupled calculation indicate the fundamental role of the

momentum transfer collision frequency

• Coupling with a Maxwell-Vlasov solver will give a better insight of the

influence of the electromagntic fields, external and self-generated


