Utilization of variable energy radio-frequency quadrupole linear accelerator systems.

Chris Franklyn Head: P-LABS

Radiation Science Dept. Necsa

Utilization for:

Fast neutron radiography/tomography.

Radio-isotope production.

Radiography Problem:

Analysis of bulk samples through which X-rays and thermal neutrons are unable to penetrate.

Solution:

Fast neutrons 1.0 – 10 MeV

necsa 🛓

Opportunity to utilize resonance features of fast neutron interaction cross-sections.

Requirement:

High yield of quasi mono-energetic neutrons to cater for low interaction c/s, low fast neutron detection efficiency, and low gamma-ray yield

Ideal reaction: ²H(d,n)³He

ADM Radio Frequency Quadrupole (RFQ) linac

Gas target

DIAMOND SECURITY scanning parcels for diamonds

D-100 RFQ accelerator system

Schematic layout of the D-100 RFQ accelerator facility at Necsa

Extracted proton beam at 180 kW in first cavity

DESIGN

50 mA, 20% duty cycle

3 bar deuterium gas cell

10¹² n.s⁻¹

CURRENT

10 mA, 2.5% duty cycle

1 bar

10¹⁰ n.s⁻¹

Operating specifications for the two accelerator systems.

Features	D-100	ADM	
operating frequency (MHz)	200	425	
injection energy (keV)	35.0	25.0	
output energy (MeV)	3.7 - 5.1	3.6 - 4.9	
injector output current (pulsed)(mA)	55	12	
booster output current (pulsed)(mA)	50	8	
maximum beam pulse width (ms)	2	0.1	/
repetition rate (Hz)	20-100	20-200	
maximum RF duty factor	20 %	1.2 %	
pulsed RF power requirement (kW)	1000/200	280/160	/
linac length (m)	4.5	4.4	(
Neutron flux (n.s ⁻¹)	10 ¹²	10 ¹⁰	ecsa 🛓

Conventional radiography configuration - ADM

necsa

D-100 detection system

ADM

Opportunities for R&D are vast and intended to be open to all

e.g.

Radio-isotopes: e.g. ^{195m}Pt ^{117m}Sn

Scanning: contaminants, contraband, illicit material, PGMs

Fast neutron radiography/tomography: geosciences, cultural heritage

Accelerator science & technology

