

Commissioning of the New Spallation Target for the n_TOF facility at CERN

<u>Outline</u>

- n_TOF operation until 2004
- New target construction
- Commissioning of the new target
- Facility Upgrade
- Measurements programme

AccApp2009 Vienna 4-8 May 2009

Samuel Andriamonje

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Concept of n_TOF

ADS Developments:

- Nuclear Waste Transmutation
- Medical Isotopes Production
- Cleaner Energy Production
- Boron Neutron Capture Therapy [BNCT]
- Require the complete and precise knowledge of neutron cross sections

Idea:

- Knowledge acquired from TARC (PS-211)
- PS of CERN [26 GeV/c, 3 10¹³ pr
- Spallation target Pb, to produce neutrons
 [1 proton 24 GeV/c ⇒ ~700 neutrons]
- Long flight path ~200 m

CERN/ET/Int. Note 97-19 http://proj-ntof.web.cern.ch/proj-nTOF

(A Google-view of) The n_TOF facility at CERN

n_TOF beam characteristics

- Wide energy range
- High instantaneous neutron flux
- High resolution
- Low ambient background
- Low repetion frequency
- Favorable duty cycle for radioactive samples.

The neutron fluence in EAR-1 Uncollimated Capture mode Fission mode Energy range [n/pulse/cm2] [n/pulse] 2.0E+06 < 1 eV 2.0E+05 3.1E+05 1 eV - 10 eV 2.7E+04 4.5E+04 2.9E+05 10 eV - 100 eV 2.9E+04 4.7E+04 3.1E+05 100 eV - 1000 eV 5.1E+04 3.3E+05 3.0E+04 1 eV - 1 keV 8.6E+04 1.4E+05 9.3E+05 1 keV - 10 keV 3.2E+04 5.4E+04 3.6E+05 3.9E+04 7.1E+04 4.7E+05 10 keV - 100 keV 100 keV - 1000 ke\ 1.1E+05 2.3E+05 1.5E+06 1.8E+05 3.5E+05 2.3E+06 1 keV - 1 MeV 1 MeV - 10 MeV 8.3E+04 2.4E+05 1.7E+06 10 MeV - 100 MeV 2.8E+04 7.2E+04 5.1E+05 > 100 MeV 4.4E+04 1.2E+05

Note: 1 pulse is 7E+12 protons. Collimated fluence (fission and capture modes) is integrated over the beam surface.

4.4E+05

1.2E+06

1.6E+05

6.2E+05

AccApp09 Vienna 4-8 May 2009

1 MeV - > 100 MeV

Total

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

^{233,234}U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branching
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

Isotope	Activity Activity		Act	vity	Ratio
	concentrat	ion concentrati	on con	centration	Nov. 2004/
	11.11.2003	3 12.10.2004	16.1	1.2004	Nov. 2003
	$({\rm Bq g}^{-1})$	$({\rm Bq g}^{-1})$	(Bq	g ⁻¹)	
⁷ Be	99.6	84.4	74		0.74
⁶⁵ Zn	4.49 10 ⁻²	1.63	6.6		147
⁸⁸ Y	$2.88 \ 10^{-2}$	4.51	18		625
¹⁷² Hf/Lu	3.6 10 ⁻²	6.44	23		639
¹⁸³ Re	7.27 10-2	8.83	73		1004
¹⁸⁵ Os	3.46 10 ⁻²	25.9	120		3468
¹⁹⁵ Au	9.02 10 ⁻²	59.0	360		3991
Isotope	Exemption	Activity	Multipl	e Total	Multiple
	Limit	concentration a	of $L_{\rm E}$	activity	A of
	$L_{\rm E} ({\rm Bq}~{\rm g}^{-1})$	16.11.2004		in 700	1 100 L _E
	or (Bq)	$(Bq g^{-1})$			
⁷ Be	400	74	0.19	51800) 1.3
⁶⁵ Zn	3	6.6	2.2	4620	15.4
⁸⁸ Y	8	18	2.25	12600	15.75
¹⁷² Hf/Lu	8	23	2.88	16100	20.13
¹⁸³ Re	10	73	7.3	51100	51.1
¹⁸⁵ Os	20	120	6	84000	42
¹⁹⁵ Au	40	360	9	25200	0 63

SC/RP: Cooling circuit activation in 2004 (CERN-SC-2005-034-RP-TN)

Total Exemption Limit 100 L_E

Target Interventions

- Target removal was performed at the 27.09.2007
- Target visual inspection & photography
- Pit & pool inspection (web camera)
- First dose rate measurements of the target and pit
- Measurement of hole at the beam impact location
- Samples taken from the target to be analyzed
- FLUKA simulations of the target activation, as well as detailed maps for pit and pool
- Target surface inspection using a dedicated custom-built (and developed) laser system
- **Detailed dose rate measurement** of the target and pit (November 2007)
- Extensive study of the target corrosion mechanism

AccApp09 Vienna 4-8 May 2009

S. Andriamonje

Pit lay-out

Target Cooling System (Stations Lay-out) Ventilation System

Cooling Capacity: 7k	N
Water flow:	8 m ³ /h at 1.5 bars
Temperature:	18 C
Instrumentation:	O ₂ , pH, Conductivity
Retention basin:	1000 l
Degassing Device	

Target Area is continuously flushed out		
Filter:	⁷ Be	
Flush:	<150 m³/h	
Volume:	1200 m ³	
Dose to public:	< 1µSv for 1.6×10^{19} p	

2008 Short Commissioning of the new Target

Exceptional authorization from CERN SC/RP to start in 2008 with a <u>reduced cooling</u> circuit and <u>no ventilation</u>.

Conditions:

- The specific activity should not exceed 1% of the exemption limit LE for the concentration (Bq/kg)
- The absolute activity released per month (Bq) should not exceed the exemption limit
- The above are calculate based on the past experience and the corrosion/ erosion test performed at CERN

	Start:	Monday 3 Nov 2008
•	Stop:	13 Nov 2008
•	Duration:	10 days
•	Total number of protons:	2×10 ¹⁷ pot (1% of a years beam)
•	Max. Power accepted:	~3kW
•	Super cycle:	40s – 48s

AccApp09 Vienna 4-8 May 2009

Most of the time was spent on tuning the beam and detectors

We've got the authorization to run with 300 pulses of high intensity

Neutron Fluence

The n_TOF-Ph2 experiments (1)

Capture measurements				
Mo, Ru, Pd stable isotopes	r-process residuals calculation isotopic patterns in SiC grains			
Fe, Ni, Zn, and Se (stable isotopes) ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials			
A≈150 (isotopes varii)	s-process branching points long-lived fission products			
^{234,236} U, ^{231,233} Pa	Th/U nuclear fuel cycle			
235,238U	standards, conventional U/Pu fuel cycle			
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides			

The n_TOF Collaboration

n_TOF-Ph2

(*) approved by CERN Scientific Committee (planned for execution in 2009)

The n_TOF-Ph2 experiments (2)

Fission measurements			
MA	ADS, high-burnup, GEN-IV reactors		
²³⁵ U(n,f) with p(n,p')	new ²³⁵ U(n,f) cross section standard		
²³⁴ U(n,f)	study of vibrational resonances at the fission barrier		
Other measurements			
147 Sm(n, α), 67 Zn(n, α), 99 Ru(n, α) 58 Ni(n,p), other (n,lcp)	p-process studies gas production in structural materials		
AI, V, Cr, Zr, Th, ²³⁸ U(n,lcp)	structural and fuel material for ADS and other advanced nuclear reactors		
He, Ne, Ar, Xe	low-energy nuclear recoils (development of gas detectors for dark matter research)		
n+D ₂	neutron-neutron scattering length		
	The n_TOF Collaboration n_TOF-Ph2		

Accepted Proposals

CERN-INTC-2006-012:

The role of Fe and Ni for s-process nucleosynthesis in the early Universe and for innovative nuclear technologies Number of protons approved: 1.8×10¹⁹

CERN-INTC-2006-006:

Proposed study of the neutron-neutron interaction at the CERN n_TOF facility.

Number of protons accepted: 0.2×10¹⁹

CERN-INTC-2006-016:

Angular distributions in the neutron-induced fission of actinides. Number of protons approved: 0.15×10¹⁹

CERN-INTC-2008-035:

n_TOF: New target commissioning and beam characterization. Number of protons accepted: 2.45×10¹⁸ (start 18 of May 2008)

Conclusions

- Experience gained from the previous target help on the construction of the new target
- Short commissioning in Nov'08, Showed values consistent with simulations
- Work on progress and finished before 18 of May 2009
 - Cooling system
 - Ventilation of primary area
 - Air tight the technical gallery
 - Alignment of proton beam line and neutron line
- Measurements:
 - 4 Accepted proposals, 2 of them will be performed in 2009 Beam Request: ~2.5×10¹⁹ p
 - Expected constant use of 2.0×10¹⁹ p/year
- Future:
 - Borated water
 - Heavy water
 - Disposal of old target