

ONE COMPANY - TOTAL SECURITY

Rapiscan

An OSI Systems Company

Principles and Applications of Neutron Based Inspection Techniques

Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA

Presentation to the

International Topical meeting on Nuclear Research Applications and Utilization of Accelerators May 4th-8th 2009, IAEA, Vienna, Austria

Elemental composition of typical threats & benign materials

Threat/Material determination \iff Elemental composition $\iff \gamma$ spectral signatures

Threat	С	Н	Ν	0	Р	F	CI	S	N/H	N/C
Explosives										
C4	21.9	3.6	34.4	40.1					10	2
TNT	37	2.2	18.5	42.3					8	1
PETN	19	2.4	17.7	60.8					7	1
AN	0	5	35	60					7	
Chem. agents										
Sarin	34.3	7.1		22.9	22.1	13.6			0	0
VX	49.5	9.7	5.2	12	11.6			12	1	0
CA (H-Cyanide)	44.5	3.7	51.8						14	1
HD (Mustrad gas)	30.2	5					44.6		0	0
Phosgene	12.1			16.2			71.7			0
Benign										
Water		11.1		88.9					0	0
Paper	44	6		50					0	0
Plastic	86	14							0	0
Salt							60			0

ONE COMPANY - TOTAL SECURITY

 $\sim 10^{\circ}$

Neutron inelastic scattering cross sections. Reaction provides unique γ signatures

Fission cross sections-cover more than 2 orders of magnitude

Affording thermal, epi-thermal and fast fission

Penetrability of source neutrons

Neutron flux (fission rate) vs. water density for different neutron source energies

Fission Rate (Isotropic & collimated ources)

Neutron attenuation in water (and other hydrogenous substances).

The lower the source energy the higher the attenuation. The flux is lower by several order of magnitude between lower (<100KeV) and higher (>2MeV) neutron energies.

Explosive signature provided by VEDS (TNA component)

ONE COMPANY - TOTAL SECURITY

ALA 1

Signatures: VEDS (TNA) Time Dependent Spectra-Early Thermal n-Capture Time Domain

An OSI Systems Company

Signatures:

VEDS (TNA) Time Dependent Spectra-Activation (long term) Time Domain

Inelastic scattering & signatures

n,n' y-spectra as measured by 4"x4" Nal.

ONE COMPANY - TOTAL SECURITY

PFNA Material Signatures-TOF Nal spectra from (n, n'γ) reaction

A concept of operation of NII:

Neutron based technique clears alarms of high throughput primary inspection

X-ray image w/suspected anomalies

Anomalies cleared or validated by active neutron based NII

14MeV neutron based Vehicle Explosive Detection System (VEDS)

Track mounted dual sided VEDS system inspecting a truck

Differential Die Away Analysis for SNM Detection in Cargo

Differential Die Away Analysis for SNM Detection

Neutron Inspection Products

Rapiscan VEDS Mobile Vehicle Explosive Detection System

Rapiscan VEDS Gantry Vehicle Explosive Detection System

Rapiscan PFNA Air Cargo Inspection System

Summary of techniques, principles & major elements detected

0

#	Technique Name	Probing Radiation	Main Nuclear Reaction	Detected Radiation	Sources	Primary & Secondary Detected Elements				
1	TNA (Thremal neutron analysis)	Thermalized neutrons	(n,γ)	Neutron capture γ- rays/prompt & delayed neutrons and γ rays for SNM ²	²⁵² Cf, also accelerator based sources (ENG ¹)	Cl, N, SNM** H, Metals, P, S				
2	FNA (Fast neutron analysis)	Fast (high energy, usually 14 MeV) neutrons	(n,n'γ)	γ-rays produced from inelastically scattered neutrons	ENG based on (d,T)	O, C (N) (H) Cl, P				
3	FNA/TNA	Pulsed neutron source; fast neutrons during the pulse, thermal neutrons between pulses	$(\mathbf{n},\mathbf{n}^{\prime}\boldsymbol{\gamma}) + (\mathbf{n},\boldsymbol{\gamma})$	During pulse (FNA), after pulse (TNA)	μs pulsed ENG based on (d,T)	N, Cl, SNM H, C, O, P, S				
4	PFNA (ns Pulsed fast neutron analysis)	Nanosecond (ns) pulses of fast neutrons	(n,n'γ)	Like FNA w/TOF ³ /prompt & delayed neutrons and γ rays for SNM	ns pulsed (d,D) accelerator with E _d ~6 MeV	O, C, N, Cl, Others, SNM H, Metals, Si, P, S, Others				
5	API (Associated particles inspection)	14 MeV neutrons in coincidence with the associated α-particles	(n,n'γ)	Like FNA in delayed coincidence with α	(d,T)	O, C, N Metals				
6	NRA (Neutron resonance absorption)	Nanoseconds pulsed fast neutrons (0.5-4 MeV), broad energy spectrum	(n,n)	Elastically and resonantly scattered neutrons	Accelerator based ns pulsed (d,Be) or (d,D) w/angular correlation, with $E_d \ge 4$ MeV	H, O, C, N (Others)				
M	naµísuall systems									

An OSI Systems Company

A1 😽

