#### **Long-Lifetime High-Yield Neutron Generators** using the DD reaction and application of PGNAA

#### Michael Fuller, M. Piestrup, C. Gary, T. Cremer, J. Harris, G. Jones,

- J. H. Vainionpaa, D. L. Williams
- Adelphi Technology, Inc.

#### A. Bell, G. McRae,

- Carleton University

#### D. Faber,

- Heliocentric Technologies
- B. A. Ludewigt, J. W. Kwan, J. Reijonen, K.-N. Leung,
- E.O. Lawrence Berkeley National Laboratory



www.adelphitech.com 650-474-2750 ext 20 michael.fuller@adelphitech.com



#### Long-Life, High-Yield D-D Neutron Generator

# Outline

- Plasma Neutron Generators
- RF Plasma Source
- Neutron Yield
  - Current Designs
  - Efficiency
- Research Applications
- Mining Instrument Application
  - Industry Need
- Prototype Test Results
- Conclusion

# **Axial Generator: Function**



# **RF Plasma Source: Coil Antenna**

Mechanically and thermally stable and rugged





# **Axial Generator DD-108**

• D-D neutron yield of 10<sup>8</sup> n/sec • 1-5 mA of beam current & 80 kV of acceleration voltage **RF-Plasma Source** Secondary electron shroud Titanium coated water-cooled target High voltage, insulator Voltage feed-through with coiled water cooling line

## **Axial Generator DD-108**

### DD-108: Output measured at 10<sup>8</sup> n/s



# **Axial Generator DD-108: Installed**

Ancillary equipment: RF matching, pumps, meters, D2 supply, cooling



# **Axial Generator – DD-109**

- Small apparent spot size
  - high brightness fast neutron source
- Yield 10<sup>9</sup> n/sec



### **DD-109 Neutron Generator**



# **Axial Generator DD-110**

Cooling and moderator function integrated



### **DD-110 Neutron Generator**





## **Integrated Thermal Neutron Sources**

- We want maximum thermal neutron flux for PGAA and NAA
- F. A. Sanchez Analysis 2006 (Sect. 7, IAEA report)
  - Minimized distance to moderator
  - Minimizes moderator material used
- Adelphi Solution
  - Use axial fast neutron source
  - Integrate fast neutron source to moderator
    - Use moderator as part of generator structure

# "Thermal" Generator DD-108T



# **Neutron Yield Efficiency**

 The efficiency of neutron production per mA of beam current as a function of accelerator voltage for two RF plasma powers.



# **Research Applications**

- Neutron Radiography
- SNM Detection
  - Delayed Neutron Response
    - Timed Neutron (Differential Die-Away Technique)
    - Neutron Spectroscopy
  - Delayed Gamma Ray Response
    - Timed Gammas
    - Gamma Spectroscopy
- Explosive Detection
  - Associated Particle and other 2-D Imaging
  - Gamma Ray Compton Camera
  - Fast Neutron Transmission Spectroscopy
  - Fast Neutron Scattering



# **Industrial Research - Spectroscopy**

- Trace-Element Prompt Gamma Neutron Activation Analysis (PGNAA):
  - Deep penetration radiation performs bulk analysis
    - no sample prep. required
  - Elements capture neutrons and re-emit unique  $\gamma$ -ray signature
  - Deconvolution of  $\gamma$ -ray spectrum to obtain elemental composition
  - Neutrons emitted by an electric neutron generator
    - Safe
    - On-off switchable (non radioactive);
- Platform technology:
  - Can measure the content of any sample in any state
- Applications in clean mining (tailings), oil sands and Clean Tech (clean soil).



| Long-Lite, High-Yield D-D Neutron Generator                                                                               |                                                                                                                                                      |                                                                              |                                                                                                                                                |                                                                                                                       |                                                                                                                                           |                                                                                                                         |                                                                                                                                                                       |                                                                                                        |                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 H<br>1 2 <sup>2016</sup><br>1.00794<br>2223-3<br>0.32660.33260<br>82.025                                                | 1 H 1 D Periodic Table of   1.07784 2223-3 20141 Elements for PGAA   2223-4 0.00052 20141 Elements for PGAA                                          |                                                                              |                                                                                                                                                |                                                                                                                       |                                                                                                                                           |                                                                                                                         |                                                                                                                                                                       |                                                                                                        |                                                                                                                                                      |                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 He<br>3 <sup>32004</sup> 4<br>4.002002<br>1.340                                                                          |                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                                         |
| 3 Li<br>6 <sup>75</sup> 7 <sup>824</sup> (b0.88<br>6.941<br>2002-190<br>0.0391/470.66<br>1.37 b<br>11 Na<br>23(20ms.15/t) | 4 Be<br>9(0)1.5491<br>5.0122<br>6310-1600<br>0.00550-00550<br>7.630<br>12 Mg<br>24 <sup>m</sup> 25 <sup>10</sup><br>24 <sup>m</sup> 25 <sup>10</sup> |                                                                              | L                                                                                                                                              |                                                                                                                       |                                                                                                                                           | Z El<br>Are intervention<br>atomic weight<br>E-det integin<br>scattering o                                              | 112 9 = 112 113<br>(J <sub>20</sub> )isanet,B-no)<br>(J <sub>20</sub> )isanet,B-no)<br>(d=3+10 <sup>7</sup> , 9 h)<br>(a:p,fy= (h,o),<br>(h,p), (h,0+(hy)             |                                                                                                        | Det. lim.<br>>1000µg<br>100-1000µg<br>10-100µg<br>1-10µg<br><1µg                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 B<br>10 <sup>20</sup> 11 <sup>20</sup> [20035]<br>10211<br>478-0.015<br>716/2745<br>5.245<br>1.3 Al<br>27(2.211)         | 6 C<br>12 <sup>36</sup><br>19 <sup>11</sup> (85709)<br>12011<br>4945-5000<br>0.00298 02958<br>5551 b<br>14 Si<br>28 <sup>56</sup> 25 <sup>57</sup><br>20 <sup>21</sup> (81520) | 7 N<br>1415 <sup>507</sup> (75)<br>1450574<br>1685-1000<br>0.029691.90<br>11.51 D<br>15 P<br>31(3744) | 8 0 1<br>16 17 <sup>6104</sup><br>15 <sup>6</sup> 1274<br>153994<br>871-90mg<br>2.000190.00019<br>4.252 b<br>16 S<br>32 <sup>4</sup> 23 34 <sup>4</sup><br>35 <sup>20</sup> 505                          | Harris     F       18,599     18,599       1822-2000     20055310,50096       4.018.b     17       CI     35 <sup>m</sup> ps.300001       35 <sup>m</sup> ps.300001     27007 | 10 Ne<br>22 <sup>1</sup> (376)<br>22 <sup>2</sup> (376)<br>2003-800<br>0.0245%.0398<br>2.628 b<br>18 Ar<br>26(p)250) 58<br>40 <sup>22</sup> (5100%)     |
| 22.99977<br>47.2-50<br>0.550,0.530 <i>b</i><br>3.29 b<br>19 K                                                             | 24.305<br>585-600<br>0.0320.0632<br>3.71 b<br>20 Ca                                                                                                  | 21 Sc                                                                        | 22 Ti                                                                                                                                          | 23 V                                                                                                                  | 24 Cr                                                                                                                                     | 25 Mn                                                                                                                   | 26 Fe                                                                                                                                                                 | 27 Co                                                                                                  | 28 Ni                                                                                                                                                | 29 Cu                                                                                                                                                                      | 30 Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.9815<br><u>1779-120</u><br>0.2210.2310<br>1.5030<br>31 Ga                                                               | 28.0855<br>3539-240<br>0.119/0.171 <i>b</i><br>2.167 b<br>32 Ge                                                                                                                | 30.9739<br>637-1000<br>0.079/0.1726<br>3.312b<br>33 As                                                | 32.066<br>841-100<br>0.347/0.534 <i>b</i><br>1.026 b<br>34 Se (                                                                                                                                          | 35.4527<br>1951-6<br>9.91/33.1 <i>b</i><br>16.9 b<br>35 Br                                                                                                                    | 39.948<br>167-80<br>0.530.68 <i>b</i><br>0.663 b                                                                                                        |
| 39 <sup>92</sup> (1.30)(40<br>41 <sup>7</sup> (120)<br>39,0983<br>77 0-40<br>1.38(2.06 <i>b</i><br>1.96 b                 | 40 <sup>87</sup> 42 43 44 <sup>2</sup> 1.5)(<br>45)50 48(90)<br>40.078<br>1943-110<br>0.35230,4315)<br>2.63 b                                        | 45(0.28, 24d)<br>44, 9559<br><u>147</u> -7<br><u>7, 12</u> (27, 20<br>23, 5b | 46 <sup>6</sup> 47 <sup>7</sup> 48 <sup>74</sup> 49 <sup>9</sup><br>50 <sup>9</sup> (5.6m)<br>47 967<br>13d2-9<br>5.18/6.09 <i>b</i><br>4.35 b | 50 <sup>025</sup> 51( <i>3.7nt</i> )<br>50.9415<br><u>1434</u> -11<br><u>4.81</u> /4.960<br>5.10 b                    | 501(260) 52 <sup>14</sup><br>52 <sup>10</sup> 54 <sup>2</sup><br>51,9961<br>635-40<br>1,3873,05 <i>b</i><br>3,49 b                        | 55(26h<br>54,9380<br><u>647-4</u><br><u>13,1</u> /13,30<br>2,180                                                        | 54 <sup>6</sup> (2.7)/ 56 <sup>22</sup><br>57 <sup>2</sup> 58(450)<br>55,845<br>7631–90<br>0.653/2.56 <i>b</i><br>11,62 b                                             | 59( <u>10m</u> .5.3/)<br>58.9322<br>230-8<br>7.18/37.180<br>5.6 b                                      | 58 <sup>36</sup> 60 <sup>36</sup> 61 <sup>11</sup><br>62 <sup>26</sup> 64 <sup>33</sup> (2.5%)<br>58.6934<br>6995-40<br>1.49/4.39 <i>b</i><br>18.5 b | 83 <sup>50</sup> (12m)<br>65 <sup>21</sup> (5m)<br>83:548<br>276-70<br>0.893/3.800<br>9:03 b                                                                               | 64 <sup>44</sup> (2440)65 <sup>27</sup><br>67 <sup>4</sup> 62 <sup>16</sup> (140)70<br>65.29<br>1077-190<br>0.355/1.302<br>4.19 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89 <sup>50</sup> (21m)<br>71 <sup>40</sup> (40ms,14h)<br>69.722<br><u>634</u> -40<br><u>1.65</u> /2.75 <i>b</i><br>6.83 b  | 70 <sup>77</sup> 205(1472 <sup>7</sup> (55)<br>73 <sup>77</sup> 4 <sup>7</sup> (金麗市)<br>76 <sup>7</sup> 25(11)<br>72:51<br>596-70<br>1.1/2.3.0<br>8.60 b                       | 75(1.10)<br>74.3216<br>559–40<br>2.0/4.50<br>5.50 b                                                   | 74039/76 <sup>9</sup> 039 77 <sup>4</sup><br>第 <sup>3</sup> 2100 <sup>4</sup> (506/87)<br>第<br>79:96<br>614-40<br>2.14/12.00<br>9:30 b                                                                   | 79 <sup>51</sup> ( <u>4.4.6</u> ,17 <i>m</i> )<br>81 <sup>44</sup> (6 <i>m</i> ,35/6)<br>79,904<br>245–100<br><u>0,99</u> %,395<br>5,90 b                                     | 7847 (23 42 <sup>6</sup> ) (23<br>8784 (2) 87 (26)<br>83.8<br>862-4<br>20.925.80<br>7.69 b                                                              |
| 37 Rb<br>85 <sup>72</sup> (105 160)<br>955(18m)<br>955-900<br>0.091/0.380<br>6.9 b                                        | 38 Sr<br>94 65 <sup>10</sup><br>87 <sup>7</sup> (2.29 86 <sup>90</sup><br>875<br>838–90<br>1.03/1.30<br>6.25 b                                       | 39 Y<br>39( <u>2.21)</u><br>88.90585<br>6080-120<br>0.76/1.28b<br>7.70 b     | 40 Zr<br>90 <sup>6</sup> 91" 92"<br>91"(544) 96 <sup>7</sup> )721<br>91224<br>924-700<br>0.125%,1850<br>6.45 b                                 | 41 Nb<br>92(585<br>92,90638<br>99-500<br>0.196/1.150<br>6.255 b                                                       | 42 Mo<br>95%77,94° 55%<br>97% 96%959<br>9534<br>778-50<br>2.02°2.48.0<br>5.71 b                                                           | 43 (Tc)<br>{218,99(156)<br>(98,906)<br>172-6<br><u>195</u> /24,35<br>6.3 b                                              | 44 Ru<br>9 <sup>6</sup> 92 <sup>9</sup> 93 <sup>9</sup> 100 <sup>9</sup><br>101 <sup>9</sup> 102 <sup>9</sup> 1247<br>101.07<br>540-70<br>1.5392.750<br>6.6 b         | 45 Rh<br>103/ <u>4.800</u> 4280<br>102.9055<br>181-5<br>22.6/1450<br>4.6 b                             | 46 Pd<br>102 <sup>1</sup> 102 <sup>4</sup> 102 <sup>21</sup><br>108 <sup>21</sup> 102 <sup>21</sup><br>106.42<br>512–30<br>4.0%.9D<br>4.49 b         | 47 Ag<br>107 <sup>3</sup> (20)(24m)<br>109 <sup>47</sup> (25)(25)(25)<br>107.8682<br>199-14<br>7.75/63.30<br>4.99 b                                                        | 48 Cd<br>112" 113" 113" 113" 113"<br>1122 113" 113" 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1122 113"<br>1123 113"<br>1 | 49 In<br>115 <sup>1</sup> (255)728<br>115 <sup>1</sup> (255)728<br>114818<br>273-3<br>121/272b<br>2.62 b                   | 50 Sn<br>112 4 4 5 6 <sup>17</sup> 7 8 <sup>1</sup> 8 <sup>1</sup><br>118 71<br>118 71<br>1294-900<br>0.134/9.540<br>4.892 b                                                   | 51 Sb<br>121 <sup>17</sup> ( <u>600</u> ,2.76)<br>121.76<br><u>664</u> -50<br>2.7/5.130<br>2.90 b     | 52 Te<br><sup>120</sup> 2 <sup>2</sup> 3 <sup>2</sup> 4 <sup>2</sup> 5 <sup>3</sup> 6 <sup>1</sup><br><sup>4<sup>2</sup></sup> 10 <sup>7</sup> (2m)<br>127.6<br>603-50<br>2.5 <sup>3</sup> 4.7<br>4.32 b | 53  <br>127(25m)<br>126.90447<br>134-90<br>1.426.20<br>3.81 b                                                                                                                 | 54 Xe<br>124-6 e <sup>3</sup> -e <sup>2</sup> (38)<br>128 <sup>4</sup> -1 <sup>20</sup> -4 <sup>8</sup> -8 <sup>2</sup><br>1291-29<br>868-20<br>6.7/24b |
| 55 Cs<br>133(2.97),76500<br>132,90545<br>17.6–50<br>2.47/30,30<br>2.90 b                                                  | 56 Ba<br>191 2 4 5<br>197 28<br>197 327<br>627-500<br>0.3091.1 0<br>3.38 b                                                                           | 57 La                                                                        | 72 Hf<br>114 67 4" 67 (25)<br>9" (3.26) 180 <sup>2</sup><br>179.49<br>212-06<br>29.2(1196)<br>10.2 b                                           | 73 Ta<br>180 <sup>551</sup><br>181(16m)1700<br>190.9497<br>270-70<br>2.6/20.6D<br>6.01 b                              | 74 W<br>190182 <sup>24</sup> 183 <sup>41</sup><br>184 <sup>24</sup> 188 <sup>24</sup><br>18334<br>146–190<br><u>3.24</u> 418.40<br>4.60 b | 75 Re<br>185 <sup>57</sup> (370)<br>187 <sup>56</sup> (197),770)<br>195,207<br>208-40<br>8/91,5 b<br>11,5 b             | 76 Os<br>1847000 6 <sup>-17-6<sup>1</sup>-9<sup>1</sup>-9<sup>1</sup><br/>190<sup>-7</sup>(781192<sup>4</sup>)880<br/>190-28<br/>187-90<br/>2.0916.0<br/>14.7 b</sup> | 77 Ir<br>191 <sup>27</sup> (1.5m)<br>193 <sup>21</sup> (1.9m)<br>192:217<br>352-18<br>10.9/425<br>14 b | 78 Pt<br>190 2' 4 <sup>2</sup> 195"<br>6 <sup>31</sup> (20)6 2' (21)10)<br>195.08<br>356-30<br>6.17/10.30<br>11.71 b                                 | 79 Au<br>197(2:6960)<br>196:96655<br><u>412-2:1</u><br>24:96:650<br>7.75b                                                                                                  | 80 Hg<br>186 186 <sup>11</sup> 199 <sup>4</sup><br>200 <sup>42</sup> 201 <sup>45</sup><br>200.59<br>268-0.8<br>251/2840<br>26.8 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81 TI<br>205 <sup>90</sup> (3.69)<br>205 <sup>90</sup> (3.7m, 4m)<br>204.3823<br>348-600<br>0.4/3.44b<br>9.89 b            | 82 Pb<br>207 <sup>12</sup> 205 <sup>21</sup> (2.35<br>207 <sup>22</sup> 206 <sup>22</sup><br>207.2<br>7368–1500<br>0.197/0.154 b<br>11.12b                                     | 83 Bi<br>209(50)<br>208,98008<br>4171-12ma<br>0.0171/9.0338<br>9.156 b                                | 84 (Po) 8<br>(7 <i>02</i> )1209<br>(209)<br>-                                                                                                                                                            | 85 (At)<br>(877)210<br>(210)<br>-                                                                                                                                             | 86 (Rn)<br>(222)<br>(222)                                                                                                                               |
| 87 (Fr)<br>(2201)223<br>(223)<br>-                                                                                        | 88 (Ra)<br>(1600y1226<br>(226)<br>12.8 b<br>19 b                                                                                                     | 5                                                                            | 7 La 5                                                                                                                                         | 8 Ce                                                                                                                  | 59 Pr <mark>6</mark>                                                                                                                      | 30 Nd 6                                                                                                                 | 61 (Pm)                                                                                                                                                               | 62 Sm                                                                                                  | 63 Eu                                                                                                                                                | 64 Gd                                                                                                                                                                      | 65 Tb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66 Dy                                                                                                                      | 67 Ho                                                                                                                                                                          | 68 E                                                                                                  | r <mark>69 T</mark> m                                                                                                                                                                                    | 70 Y                                                                                                                                                                          | b <mark>71 Lu</mark>                                                                                                                                    |
|                                                                                                                           |                                                                                                                                                      |                                                                              | 138 1<br>39 <sup>325</sup> ( <i>t.7a</i> ) 15<br>38.9055<br>1596-200<br>5.94/9.06 <i>b</i><br>9.66 b                                           | 36( <u>34 40</u> ,97)<br>19 140 <sup>19</sup> 142 <sup>11</sup><br>140,115<br>662–600<br>0,24/0,63 <i>D</i><br>2,94 b | 141(199) 14<br>140,90765<br>177–130<br>1.06/11.55<br>2.65 b                                                                               | 27125144145<br>*145(113148*<br>150 <sup>4</sup><br>144.24<br>696-4<br>33.37500<br>16.60                                 | (79)145<br>(144.9127)<br>168.4 b<br>21.3 b                                                                                                                            | 144"147" (18" 189"<br>150"152" 154"<br>150.36<br>334-0.03<br>4790/56225<br>39 b                        | 151 <sup>-5</sup> ( <u>12155m</u> 14y<br>) 153 <sup>-5</sup> (1 <u>5m</u> ,9y)<br>151,965<br>90-0,1<br>1490(4560,5<br>9,2,5                          | 152154 <sup>2</sup> 155 <sup>18</sup><br>156 <sup>28</sup> 157 <sup>19</sup> 158 <sup>38</sup><br>160 <sup>48</sup><br>157 26<br>157 26<br>152-0.022<br>7210487700<br>1800 | 159(720)<br>159.92534<br>154-400<br>1.76/23.40<br>6.84 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1564.60 <sup>4</sup> 1 <sup>9</sup> 2 <sup>8</sup><br>9 <sup>2</sup> 164 725 230<br>162.5<br>184-1.1<br>146/9940<br>90.3 b | 165(26.61)<br>164.93032<br>137-11<br>14.5/64.7 <i>D</i><br>9.42 b                                                                                                              | 1621641667123<br>167 <sup>-3</sup> 1607179 <sup>6</sup> (7)<br>167.26<br>164-9<br>56(1570<br>9.715    | 169(1220)<br>168,93421<br>204–20<br>8,72/100b<br>6,39 b                                                                                                                                                  | 684453 170 <sup>3</sup> -1 <sup>44</sup><br>3 <sup>6</sup> 174 <sup>17</sup> 70m343<br>5 <sup>75</sup><br>173.04<br>515-19<br><u>2</u> 34.80<br>234.0                         | 2 <sup>21</sup> 175 <sup>97</sup> 176 <sup>7</sup> (8.7d)<br>174.976<br>150-13<br>45.276.8b<br>7.2b                                                     |
| ach Piàray 2005                                                                                                           |                                                                                                                                                      | 8                                                                            | 9 (Ac) 9<br>(22)/227 (7<br>(227)                                                                                                               | 0 Th<br>4GH28222770 (<br>23270805<br>472-1400<br>0.9572775<br>13.265                                                  | 91 (Pa) 9<br>334y[231(1.3d) 7<br>231.095<br>200.60<br>10.5 b                                                                              | 2 U 9<br>0449/225 <sup>574</sup><br>569/226 <sup>23</sup> /23m<br>238.0259<br>4069-1300<br>1.3749.57 <i>b</i><br>9.91 b | )3 (Np)<br>239(2380)<br>(229)<br>175.9b<br>175.9b<br>14.5 b                                                                                                           | 94 (Pu)<br>(209)(259(78))<br>(229)<br>1017.3 b<br>7.7 b                                                | 95 (Am)<br>(79)843                                                                                                                                   | 96 (Cm)<br>(1604)1247                                                                                                                                                      | 97 (Bk)<br>(1.4%)(247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98 (Cf)<br>(909)251(2.9/)                                                                                                  | 99 (Es)<br>(4720)252                                                                                                                                                           | 100 (Fm<br>(100d)257                                                                                  | ) 101(Md<br>(550)258                                                                                                                                                                                     | 102(No<br>(58n\$259                                                                                                                                                           | )) 103 (Lr)<br>(3mt280                                                                                                                                  |

## **Base Metal Mining Proposed Solution**

- Real-time results while mining enables
  - On-the-spot ore/waste determination
    - Huge penalty of processing waste instead of ore
      - up to ~\$3M loss per day (hauling, dilution, etc.)
      - Better smelter returns



- Particularly relevant for deep underground or large open pit mines
- Additional benefits
  - In-situ assessment of deleterious elements and environmental contaminants
  - Immediate mill to mine reconciliation/billing
- Optimization of advanced drilling campaigns
  - Optimize resource discovery with finite drill time
    - Very useful for delineation drilling
    - Particularly relevant in the case of "deposits open at depth"
    - Saves on drill commissioning/decommissioning costs (~\$100K+)



# **D-D Neutron Generator & Moderator**

- Yields 10<sup>9</sup> n/s isotropic at 2.45 MeV (mono-energetic)
- Approximately 10<sup>5</sup> n·cm<sup>-2</sup>·s<sup>-1</sup> in the sample
- Provides the ability to throttle, stop or pulse neutron production on command
- Neutron moderator designed to minimize background noise



Neutron Generator encased in moderator

# **Detector and Electronics**

- Detector is coaxial HPGe (~100 cm3 volume)
- Digital Multi-Channel Analyzer (MCA) for signal processing
- Post-Processing
- Algorithms interpret the test spectrum into an elemental composition



Detector and electronics

# **Prototype Performance – Calibration**

- Pure elements are used to calibrate the instrument
- Detection limits for 1000 second measurements are established using the calibration measurements



# **Prototype Performance – Test Samples**

- Customers provide samples for measurement
- Samples previously measured by alternate methods
- PGNA measurements are compared customer
- measurements to assess the instrument's accuracy



Customer samples have a variety of physical properties

# **Prototype Performance – Accuracy**

 Graphs are generated for each element to assess the instrument's accuracy



# **Results – Summary**

| Element            |     | Detection Limit:<br>prototype | Detection Limit:<br>target for final instrument |  |  |  |  |
|--------------------|-----|-------------------------------|-------------------------------------------------|--|--|--|--|
| Aluminum           | Al  | 0.2% (DGNA)                   | 0.02 % (DGNA)                                   |  |  |  |  |
| Cobalt Co          |     | 0.5%                          | 0.05 %                                          |  |  |  |  |
| Copper             | Cu  | 0.6%                          | 0.1 %                                           |  |  |  |  |
| Chromium           | Cr  | 0.9%                          | 0.1%                                            |  |  |  |  |
| Iron               | Fe  | 1.5%                          | 0.1%                                            |  |  |  |  |
| Nickel             | Ni  | 0.5%                          | 0.05 %                                          |  |  |  |  |
| Sulfur             | S   | 0.5%                          | 0.1 %                                           |  |  |  |  |
| Zinc               | Zn  | 3%                            | 0.2 %                                           |  |  |  |  |
| Integration time t |     | 1,000 s                       | 300 s                                           |  |  |  |  |
| Absolute accuracy  | +/- | 15%                           | 5%                                              |  |  |  |  |

# Conclusions

- The Prototype Elemental Analyzer has achieved its target performance level
  - +/- 15% measurement accuracy
  - Detection limits of 0.5% to 1.5% for 1 kg samples
- Performance is consistent for a range of customer samples with varying physical properties
- Prototype performance scaling for the final instrument is on schedule.





