

Opportunities of Basic and Applied Research at MEDAUSTRON

H. Leeb¹, F. Aumayr², G. Badurek¹, M. Benedikt³,
M. Hajek¹, E. Jericha¹, P. Kienle⁴, M. Krammer⁵,
J. Marton⁴, E. Widmann⁴, H.W. Weber¹

¹Atominstitut of the Austrian Universities, TU Wien, Austria, ²Institut für Allgemeine Physik, TU Wien, Austria, ³CERN, Geneva, Switzerland, ⁴Stefan-Meyer-Institut, Österr. Akademie der Wissenschaften, Vienna, Austria, ⁵Institut für Hochenergiephysik, Österr. Akademie der Wissenschaften, Vienna, Austria

H. Leeb Atominstitut, TU Wien, Austria

PRIMARY SCOPE

MEDAUSTRON is a project for a centre for cancer therapy treatment with clinical and non-clinical research facilities.

Grouped around a synchrotron which delivers protons and carbon ions to the irradiation stations in the energy range of hundreds of MeV/nucleon.

Full operation of MedAustron: 1200 patients per year treated

MEDAUSTRON centre – only accelerator of this size in the region Infrastructure and installations should also be used for nonclinical research in medical radiation physics, radiation biology and experimental physics.

med austron White Book

Physics Opportunities at MedAustron

F. Aumayr¹, G. Badurek², M. Benedikt³, M. Hajek²,
E. Jericha¹, P. Kienle⁴, M. Krammer⁵, H. Leeb²,
J. Marton⁴, E. Widmann⁴, H.W. Weber²

¹Institut für Allgemeine Physik, TU Wien
 ²Atominstitut der Österr. Univ., TU Wien
 ³CERN, Genf
 ⁴Stefan-Meyer-Institut der ÖAW
 ⁵Institut für Hochenergiephysik der ÖAW

The MEDAUSTRON facility

Introduction

- Test of particle detectors
- Proton scattering facility proton-nucleus scattering proton-proton scattering nuclear reactions
- Applications
- Education and training
- Summary

	Medical research	Non-clinical research	
protons	Option 1	Option 2	Option 3
beam energy	60-250 MeV	60-800 MeV	60-1180 MeV
beam intensity	1x10 ¹⁰ ppp	<1x10 ¹⁰ ppp	<1x10 ¹⁰ ppp
Extraction duration	0.1-1 s	0.1-1 s	0.1-1 s
Repetition rate	1 Hz	1 Hz	1 Hz
carbon ions			
beam energy	120-400 MeV/u	120-400 MeV/u	120-400 MeV/u
beam intensity	4x10 ⁸ ions pp	<4x10 ⁸ ions pp	<4x10 ⁸ ions pp
Extraction duration	0.1-1 s	0.1-1 s	0.1-1 s
Repetition rate	1 Hz	1 Hz 下	1 Hz

Energy loss described by Bethe-Bloch theory

Source: W.-M. Yao et al., J. Phys. G 33 (2006) 1

H. Leeb Atominstitut, TU Wien, Austria

Tracking detectors:

(energy important, no signal saturation) semiconductor, gaseous, scintillating fibres; MEDAUSTRON well suited

Calorimeters:

(variation of beam energy 60-800 MeV interest for nuclear physics) for high energy physics the maximum energy is too low at MEDAUSTRO

Time-of-flight detectors:

MEDAUSTRON beam may be used for tests of radiation hardness and ageing tests \rightarrow especially PANDA TOF detectors at FAIR

Irradiation studies:

At MEDAUSTRON tests possible up to an irradiation of about 10¹⁴ particles per cm² not suited for tests requiring higher flux

Rate studies:

MEDAUSTRON has capability for tests of electronics of data acquisition system

Energy range of MEDAUSTRON 60-800 MeV from low energy nuclear structure to high energy nuclear physics

Several specific questions – no beam time at dedicated machines

Despite the low intensity delivered, it is very promising to set up a proton scattering facility at MEDAUSTRON for nuclear physics research with a complementary programme to the dedicated machines:

reaction spectroscopy at medium (~300MeV) and high energies Provide a unique machine for nuclear structure research in this energy regime

- nuclear radii
- relativistic optical potentials
- nuclear reactions relevant for nuclear data basis
- proton-proton scattering
- proton reactions in few-body systems

Source: R.M. Lombard, G.D. Alkhazov, O.A. Domchenkov, Nucl. Phys.A 360 (1981)233

equivalence of $r_{\rm BS}$ with $r_{\rm m}$

rms Matter Radius rm [fm]

H. Leeb Atominstitut, TU Wien, Austria

Relativistic optical potentials

Systematic analysis of elastic proton-nucleon scattering allows to extract relativistic optical potentials, essential ingredients for all nuclear reaction calculations \rightarrow no global relativistic optical potential available

Systematic cross section measurements combined with available polarization data would provide reliable relativistic optical potentials

 \rightarrow alternative to determine the nuclear matter radius r_m

Reaction cross sections

measurements of proton-induced reaction cross section from several MeV to GeV provide an invaluable input to nuclear data bases:

- fundamental physics (reaction mechanisms, nuclear models, nuclear poperties with increasing excitation energy)
- feasibility and design concepts of advanced nuclear facilities, e.g. the development of accelerated driven systems (ADS) for destruction of long-lived radioactive waste, weapons materials and energy.
- application in radioprotection, e.g. for aviators, cosmonauts, staff of nuclear facilities, protection measures at fusion reactors and high energy accelerators.
- complete nuclear data basis providing benchmarks for nuclear data files which are based on model calculations due to lack of experimental data
- material properties in particular embrittlement by gas producing reactions, e.g. A(p,α)B, A(p,t), A(p,d), A(p,nα), ...
- radio nuclide production

Reactions at MEDAUSTRON

Energy range fits between low and intermediate energy facilities

Possible experimental programme:

- charged particle production and spectra (p,n_i,c_i)
 (p,p'),(p,yp),(p,xt),(p,³He), ...
- neutron production (p,xn)
- γ -production and spectra (p, γ)

Measured quantities:

cross sections, angular distributions, double differential cross sections and correlations between ejectiles

High particle energies will require individual detector developments \rightarrow potential innovation

Main limitation will be the comparable low intensity.

Spallation materials: W, Pb – neutron multiplicity

Shielding materials: Fe – energy-angle distributions of sec. particles and activation cross sections

Nucleon-nucleon interaction

Proton-proton scattering is an elementary process used to extract the nucleon-nucleon interaction, especially in photoproduction and pion Production interesting information on off-shell effects could be obtained

Beam parameters of MEDAUSTRON are comparable to that of dedicated Facilities, except for the lack of polarization

	$\cos Y$	AGOR	TRIUMF	MedAustron		10+3		** *** ** *** ***		• • • •	•••
town	Jülich	Groningen	Vancouver	Wr.Neustadt		0+4 -			8		
country	Germany	Netherlands	Canada	Austria	- '	10	400		•	•	
energy					<u></u> 1	0+3 -	- -				
range	175 - 2880	200	180 - 500	60-800	lor		1				
MeV			65 - 200		1 20 1	0+2 -	•		•	•	
intensity	10	4	3(6)	1	ss.	0.1				• σ	•••
10 ¹⁰					lő 1	10+1 -	1			 σ_{elastic} 	
polarized	yes	yes	yes	no	<u>a</u>	1	Ē			 Δ σ_{inelastic} 	c
beam					- Ba	' -	there is a lat			ο σ (pp-	→pnπ+)
polarized	no	yes	no	yes]≝ 1	0-1 -	nion production			• σ (pp-	→0π*) →nnπ ⁰)
target										• σ (pp-	→ppγ)
cooled	yes	no	no	no	1	0-2	F F		· · ·		
beam						(0 500	1.000	1.500	2.000	2.50

kinetic energy Tbeam MeV

availability of 800 MeV proton beam energy spread of the beam less than few 100 keV intensity 10^9 - 10^{10} protons/s emittance about 1 π mm mrad spill time ~ 1 s

Absolut determination of beam energy better than few MeV (Schottky noise Fourier Frequency measuring technique allows $\Delta E/E=10^{-4}$) beam resolution also about 10⁻⁴ via slow extraction mode

Improvement of absolute scattering angle measurement to less than 0.01° It requires good emittance of beam $\sim 1\pi$ mm mrad, position sensitive detectors of less than 1mm at distances of about 1 m.

- High energy proton computerized tomographiy (HepCT)
- Radiation damage in high temperature superconductors
- Dosimetry
- Single-hit ion microprobe

Proton Computerised Tomography (pCT)

Mean energy loss dE/dx given by the Bethe-Bloch equation

proton computed tomography

Proton computerized tomography (pCT) is proposed for imaging of electron density distributions (Benton et al. 1973).

Basic idea of pCT: measuring proton loss along the transversed path

Limitation: multiple Coulomb scattering in materials

<u>Proposal:</u> Development of a high energy pCT using the (800 MeV) and low emittance (~1p mm mrad) proton beam of MedAustron. High energy pCT (HepCT) provides a unique imaging tool

- medical applications, e.g. accurate patient positioning and dose control; in therapy it helps in dose planning, decreasing errors
- high resolutionimaging for structured materials made of metals, ceramics, plastics and construction materials with considerable thickness

Several pCT setups up to 250 MeV currently in progress

Measure entrance and exit points accurately (<1mm x 1mm) requires a two dimensional tracking system with resolutions better than 150 μ m

Experience with gas electron multiplier (GEM) based tracking system at SMI

Scheme of triple GEM detector and electron microscope fotograph

Some possible pCT applications: 3D studies	Neutron tomography of a turbine blade of a jet engine.
automotive parts	aerospace parts
electric/electronic devices	archaeologic items

MEDAUSTRON – ideal opportunity to teach, train and educate students with state-of the-art methods and technologies within Austria

fields:

physics, electronics & electrical engineering, computer sciences, mechanical engineering and mechatronics

means:

laboratory courses embedded in the curricula of the University of Vienna, TU Vienna, University of Applied Sciences Wr. Neustadt, ... Master and PhD thesis works

home base:

assembly, extensive tests and possible improvements before transfer to a dedicated facility - significant enhancement in efficiency expected

The potential of MEDAUSTRON for non-clinical research investigated

- Proton beam energy increase to 800 MeV best compromise
 - appropriate performance for experimental physics applications
 - avoids major accelerator modifications
- MEDAUSTRON provides an ideal facility for training in various fields using state-of-the-art technology
- Contribution to the development and test of detector technology (the availability of beam energy 800 MeV is essential)

Physics Research Potential

Nuclear Research

MedAustron with its low intensity cannot compete with state-of-the-art nuclear physics research centers, but variable beam energies up to 800 MeV offers interesting possibilities for proton scattering experiments

- nuclear radii
- systematics of optical potentials
- nuclear data relevant reactions
- proton-proton scattering

The possibility of polarization in a forthcoming upgrade would be extremely valuable - polarized p,d beam, polarized target

Other Physics Application

The high energy beam of MedAustron can be exploited for several applications of high scientific interest:

- proton computerized tomography (pCT)
- dosimetry studies (solid-state nano-dosimetry, cosmic ray simulat.)
- single-hit microprobe
- study radiation damage

THANK YOU FOR YOUR ATTENTION

MedAustron versus nuclear physics facilities

Facility	Particle	Energy	Intensity
City (Country)		MeV/u	10 ¹⁰ pps
GSI	¹² C ⁶⁺	50 - 2000	10
Darmstadt (D)	$^{238}U^{73+}$	50 - 1000	0, 2
	$^{238}U^{73+}$	15, 5	1.5^{\dagger}
COSY	$_{\rm p,d}$	up to 300	< 6250
Jülich (D)	$_{\rm p,d}$	300 - 3600	< 0, 1
GANIL	$^{12}C^{6+}$	up to 96	2000
Caen (F)	$^{64}Ni^{28+}$	up to 60	700
KVI	<i>p</i>	120 - 190	65
Groningen (NL)	$^{12}C^{6+}$	35 - 95	
JYFL	р	up to 70	≥ 1600
Jyväskylä (SU)	р	45	60000
	He,B,C,N,O	$2 - 130(q/A)^2$	> 600
IPN	р	25	600
Orsay (F)	^{12}C	69	94
IFJ	р	20 - 60	6000 - 600
Krakow (PL)	α	40 - 60	1560
NSCL-MSU	16O	150	< 78
East Lansing (US)	up to ²³⁸ U	80	< 0,125
RCNP Osaka	р	100 - 392	< 240
Osaka (J)	$^{4}\mathrm{He}$	185 - 400	< 2
RIBF (RRC)	р	70 - 210	< 875
RIKEN Nishina Center(J)	^{12}C	70 - 135	< 42
HIMAC	⁴ He	100 - 230	< 0, 12
Chiba (J)	^{12}C	100 - 430	< 0, 18
MedAustron	р	60 - 800	< 1
Austria (A)	$^{12}C^{6+}$	70 - 400	< 0,04

The three beam option have been considered together with the possibility of a secondary pion beam

800 MeV proton beam with 10¹⁰ protons pp may lead to 5.45 10⁸ pions pp

Pion production rate at 800 MeV protons

 \triangleleft

H. Leeb Atominstitut, TU Wien, Austria

Black Sphere Approximation

For proton scattering at incident energies about 800 MeV the **black sphere approximation** is applicable for heavy nuclei A>50. → Diffraction of a wave with $\lambda_{Lab} = 2\pi/p_{Lab}$ on a disk of radius *a* in the limit of geometric optics $a/\lambda_{Lab} >> 1$ → Fraunhofer scattering

scattering amplitude

$$f(q) = \frac{ipaJ_1(qa)}{q}$$

black sphere rms radius

$$r_{BS} = \sqrt{\frac{5}{3}} a$$

first diffraction maximum at Θ_M leads to a value of r_{BS}

$$r_m \approx r_{BS} = \frac{3.9780}{2p\sin(\Theta_M/2)}$$

Taking the difference to the proton radius (charge distribution) leads to the neutron radius, which is difficult to determine

H. Leeb Atominstitut, TU Wien, Austria

Possibility of a polarized proton target was considered as an upgrade option

H. Leeb Atominstitut, TU Wien, Austria