INC Model for High-Energy Hadron-Nucleus Reactions

Y.Yariv
 SOREQ NRC, Yavne 81800, Israel

International Topical Meeting on Nuclear Research, Application and Utilization of Accelerators

IAEA, Vienna, Austria
4-8 May, 2009

What is INC?

Answers.com
 intranuclear cascade model
 ```Search```

Answer Tips ${ }^{\text {ma }}$ enabled

intranuclear cascade model

```
On this page:
Select Article \(\quad \square\)
```

Science and Technology Dictionary

,im
 Professional

Library $>\underline{\text { Science }>\text { Science and Technology Dictionary }}$
intranuclear cascade model
(iin•trə'nü•klē•ər kas'kād 'mäd•əl)
(nuclear physics) A model of nuclear collisions that assumes a series of independent nucleon-nucleon collisions between particles that act like billiard balls.

INC Models (seriously)
R.Serber, Phys. Rev. 72, 1114 (1947)
\diamond Particle on Nucleus reaction treated as series of two-body scatterings
«"Realistic" target density and momentum distributions (Fermi sea)
\diamond Approximated Pauli principle
๑"Fast Phase" followed by "slow" target deexcitation
\diamond No "fitting parameters"

Central collision p+208Pb

$\lambda \ll d<\Lambda<R$
$\Lambda / 3 \beta>\approx 1 f m$
$\xi \equiv \Lambda / \lambda / 10$
$\xi>1.0 \Rightarrow E>\approx 200 \mathrm{MeV}$
Y.Yariv, INC Model

Expected limitations

$\diamond \mathrm{E}_{\mathrm{inc}}>\approx 50$ MeV for:

- Total nucleon yields
- Peripheral collisions, e.g. "quasi-elastic",(p,2p)
$\Delta \mathrm{E}_{\mathrm{inc}}>\approx 200 \mathrm{MeV}$ for:
- "Violent reactions" (high multiplicity, high excitation energy)

Significant discrepancies expected for outgoing particles for $\mathrm{E}_{\text {inc }}$ lower than few tens MeV

Continuous Target Density Models

\diamond The target nucleus is represented by continuous density distribution in a potential well (e.g. Woods Saxon) and degenerate "local density" Fermi gas momentum distribution
\diamond Probability per unit path length of a particle to interact with the nucleons of the nucleus

$$
Q=\frac{1}{v_{1}} \int \sigma_{12} v_{12} \frac{\partial \rho_{2}}{\partial \vec{p}_{2}} d \vec{p}_{2} \approx \frac{1}{v_{1}} \sum \sigma_{12} v_{12} \frac{\partial \rho_{2}}{\partial \vec{p}_{2}} \Delta \vec{p}_{2}
$$

\diamond Probability of a particle to interact at a distance between \boldsymbol{a} and a+da is:

$$
d P_{\mathrm{int}}(a)=e^{-Q a} Q d a
$$

Hadron-Hadron Interactions

\diamond On-mass-shell, free cross sections

- Elastic

$$
N+N \Rightarrow N+N
$$

- Inelastic (1п production \& absorption)

$$
N+N \Leftrightarrow \Delta_{33}+N
$$

$$
\Delta_{33} \Leftrightarrow \pi+N
$$

Time-Like Basis MC (1)

- Cascade evolution divided into small "time intervals". The probability of interaction of the projectile in a time interval $\delta \tau$ is $\mathrm{P}(\delta \tau) \approx \rho \sigma \delta \tau$.
\diamond If collision occurs, the types and momenta of the particles after the collision ("participants") are chosen according to isospin and branching ratio considerations. If there is no collision, next time interval is considered

Time-Like Basis MC (2)

\diamond After each interaction the target Fermi Sea is "depleted"
\diamond In each "time interval" all the "participants" are followed. With each interaction the number of particles to be followed in the next time interval increases
\leftrightarrow Event ends when all participants escape or are absorbed

Output

\diamond Total reaction cross-section $\left.\sigma_{R}=\pi R^{2} * \frac{N_{\text {tot }}-N_{\text {Trassp. }} *\left(1-\frac{V_{\text {coul }}(R)}{N_{\text {tot }}}\right)}{E_{K}^{\text {Poj. }}}\right)$
\diamond Outgoing particle statistics \rightarrow "Fast" particle spectra

\leftrightarrow Residual target momenta and excitation energy from In-Out balance or Particle-Hole considerations

Hadron-Hadron Cross Sections (2)

$\diamond \mathbf{N}+\mathbf{N} \rightarrow \mathbf{N}+\Delta$

- Type of outgoing N, Δ determined by Isotopic Spin consideration
Z.Fraenkel, Phys. Rev. 130, 2407 (1963)
- Mass of Δ is chosen from distribution:
$P\left(m_{\Delta}, E_{c m}^{N+N}\right)=$ const. ${ }^{*} \sigma_{\text {tot }}^{\pi^{+}+p}\left(E_{c m}^{N+N}\right) * F\left(m_{\Delta}, E_{c m}^{N+N}\right)$
$m_{\pi}+m_{N}<m_{\Delta}<m_{\pi}+m_{N}+500 \mathrm{MeV}$
$\mathrm{F}=$ two body phase factor for the produced $\mathrm{N}+\Delta$
S.Lindenbaum and R. Sternheimer, Phys. Rev. 105, 1874 (1957); 109, 1723 (1958); 123, 333 (1961)
- $\mathrm{P}\left(\cos _{\mathrm{cm}}\right)=.25+.75^{*}\left(\cos _{\mathrm{cm}}\right)^{2}$

Hadron-Hadron Cross Sections (5)

$\diamond \boldsymbol{\pi}+\mathbf{N} \rightarrow \Delta \rightarrow \boldsymbol{\pi}^{\prime}+\mathbf{N}^{\prime}$ (elastic \& charge exchange)

- Experimental $\mathrm{d} \sigma / \mathrm{d} \omega+$ isospin considerations G.Giacomelli et al., CERN/HERA 69-1 (1969)
- For Δ decaying without interaction proper $\pi+N$ differential cross section
- Isotropic Δ decay after scattering or exchange

Hadron-Hadron Cross Sections (6)

$\diamond \Delta \rightarrow \boldsymbol{\pi}+\mathbf{N}$

- Energy dependant Δ width J.N. Ginocchio, Phys. Rev. C17, 195 (1978)

Density depletion

\diamond After each interaction Fermi sea density, ρ_{i}, is depleted

- Fast rearrangement: ρ_{i} of the "partner type" Fermi sea is uniformly reduced for the whole nucleus
- Slow rearangement: "partner type" hole of radius r is punched in the position of the interaction. No interactions are allowed in the hole with particles of "partner type".

Pauli Blocking

\checkmark Options:

- Full Pauli Blocking: Interaction resulting in nucleon falling below Fermi sea is forbidden
- "Depleted" Pauli Blocking: Reaction resulting in nucleon falling below Fermi sea is allowed with probability of the relative depletion of the Fermi sea

Thank You!

Questions, Remarks?

Y.Yariv, INC Model

