The Nuclear Data Measurement Activities in China

Haihong Xia, Zuying Zhou, Weixiang Yu China Institute of Atomic Energy xiahh@ciae.ac.cn

- Organizations
- Neutron Sources and Facilities
- Measured Nuclear Data
- Future

China Institute of Atomic Energy 中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY

- Founded in 1950, the Birth place of China nuclear science and technology
- Has a staff of 3200
 including 700 senior scientists

Nuclear Physics	Nuclear Techniques Application
Reactor Engineering	Isotope Production
Radiochemistry	Metrology

Nuclear Physics

- Nuclear Physics Theory Lab
- •Heavy Ion Reactions Lab
- •Neutron Physics Lab
- •Nuclear Data Center
- •Tandem Accelerator Lab
- •Neutron Scattering Lab
- Nuclear Applied Research Lab

Neutron Physics Lab

- •Nuclear Data Measurements
- •Physics in Fission Process
- •Nuclear Astrophysics Data
- •High Energy Physics
- •Experimental Study in Few Body System

Neutron Sources and Facilities

Facilities	Neutron Sources	Intensities(n/s)
Reactors		10 ¹⁴
HI-13	8-14 MeV (d+D)	109
(15MV x 2)	4-10 MeV (p+T)	108
	22-42 MeV (d+T)	107
1.7MV x 2	3-6 MeV (d+D)	10 ¹⁰
	14-20 MeV (d+T)	109
	0.07-2.5 MeV (p+T)	10 ¹⁰
	0.03-1.7 MeV (p+Li)	109
Generator	2.5, 14 MeV (dc/Pulsed)	10 ¹¹

Nuclear Data Building

15MW heavy water reactor

Neutron generator

Target and Detector System

•TOF (HI-13)

Flight path: 5-10 m

Three detectors: 4" x 2"; 7" x 4"

•TOF (Generator)

Flight path: 8 m

Three detectors: 7" x 2"

•In beam γ spectrometer

2 NaI (10" x 10") + Pastic ring

HPGe(60%) + BaF ring; BGO

•Off-line HPGe Detectors

•²³⁸U Chamber, 103 layers 5 grams

•T-gas cell, En= 22-42 MeV

In beam γ spectrometer

In beam γ spectrometer

Neutron Spectrum

•DDX

```
<sup>238</sup>U, <sup>209</sup>Bi, Fe, <sup>9</sup>Be, V, <sup>6,7</sup>Li (En=8,10MeV)
```

•(**p**,**n**), (**a**,**n**)

```
<sup>92-100</sup>Mo, <sup>107,109</sup>Ag, Sc, Sn (CIAE-IPPE)
```

•(n,n)

²⁰⁹Bi, C (En=37 MeV) (CIAE-TUNL)

• nd Breakup D(n,np)n (En=25MeV) (CIAE-TUNL)

(CIAE-U.Bonn)

γ production cross sections

Fe, Al, C, O, N, ²³⁸U

Fission

Fission Prompt neutron spectra of ²³⁸U Fission fragments yields for ²³⁵U, ²³⁸U(Thermal-22 MeV) <u>Integral Experiments</u> plat polythene, ⁹Be and Iron(100×100×100mm) neutron leakage spectra measured by TOF simulated by M-C calculation with ENDF/B-6 and CENDL-3.1 library

Excitation Function

```
p, d, \alpha induced activation cross sections
neutron induced cross sections
  carefully done for low energy background
   (d-D self build in; breakup, others)
<sup>48</sup>V, from p+Ti and d+Ti
<sup>95m,g</sup>Tc, <sup>96g</sup>Tc, and <sup>99</sup>Mo from p+Mo, and d+Mo
incident energy 6-22 MeV
^{186}W(n, \gamma)^{187}W, from 0.5 to 1.5 MeV
<sup>6</sup>Li(n,t)<sup>4</sup>He, 1.05, 1.54, 1.85, 2.25, 2.67, 3.67, 4.42MeV
```

DDX of Be

En = 10MeV

To solve the interference in the secondary neutron spectrum from the source(d+D) breakup neutrons

• Normal TOF

>4 MeV

• Abnormal TOF

< 4 MeV

(longer from source to sample

shorter from sample to detectors)

Elastis scattering of ⁹Be (8.17MeV)

Secondary radioactive beam <u>experiments</u>

Summary of produced RNBs

W. Liu, NIMB 204(2003)62

Future Facilities

CARR:8X10¹⁴s⁻¹cm⁻²

- *ISOL*
- Thermal Neutrons

Tandem Upgrading

Artist View of the CSNS

GTAF(Gamma Total Absorption Facility) detector in CIAE

Thanks