

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

YALINA-Booster Conversion Project

Y. Gohar¹, I. Bolshinsky², G. Aliberti¹, F. Kondev¹, D. Smith¹,
A. Talamo¹, Z. Zhong¹, H. Kiyavitskaya³, V. Bournos³,
Y. Fokov³, C. Routkovskaya³, I. Serafimovich³

¹ Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
 ² Idaho National Laboratory, P. O. Box 2528, Idaho Falls, Idaho 83403, USA
 ³ Joint Institute for Power and Nuclear Research-SOSNY, National Academy of Sciences, acad. Krasin, 99. 220109, Minsk, Belarus

International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, AccApp'09

> *Vienna, Austria May 4-8, 2009*

YALINA-Booster Conversion Project

Project Objectives (Phase I)

- Perform experimental and analytical studies to characterize the YALINA-Booster subcritical assembly using different neutron sources. The studies include:
 - Subcriticality levels from different fuel loadings
 - Experimental methods for measuring the subcriticality level
 - Spatial neutron flux distributions and neutron spectra
 - Transmutation rates in different neutron spectra
 - Kinetic parameters
 - Time dependent reaction rates
- Replace the high enriched uranium of the Booster zone with low enriched uranium in two steps while adjusting the subcritical assembly configuration to achieve the same subcriticality level.
- Perform the previous experimental and analytical studies to characterize the new configurations.

YALINA-Booster Studies

- Compositions and densities of the YALINA-Booster materials were determined based on measurements and chemical analyses. Assembly dimensions were checked. The obtained information were used to define YALINA-Booster specifications for the IAEA benchmark activity.
- Detailed calculational models for Monte Carlo and deterministic computer codes have been developed.
- The generated models have been used for performing analytical studies. The obtained results have been compared with the experimental results. The comparison shows a good agreement.
- Further studies are under way to complete the analytical and experimental studies as planned for the two phases of the project.
- The first conversion step for reducing the uranium enrichment of the booster zone was completed successfully and the second step is underway.

YALINA Booster Analyses

- Three detailed models have been generated and tested based on the current YALINA Booster specifications:
 - MCNP/MCNPX/MCB Monte Carlo Model
 - MONK Monte Carlo Model (Continuous energy, Quasicontinuous energy library 13193 groups, and Multigroup library-172 groups).
 - ERANOS/ECCO/VARIANT Deterministic Model (Multigroup library-172 groups)
- Different nuclear data libraries, JEF2.2, JEF3.1, ENDF/B-VI.0,.6,.8, and ENDF/B-VII have been used for the analyses.
- K_{eff}, and K_s analyses; direct and indirect β calculation, and kinetic analyses have been performed.

YALINA-Booster Conversion Study

- In the first step, the 90% enriched fuel is replaced with 36% enriched fuel in the booster zone.
- The number of EK-10 fuel rods is increased to obtain the original multiplication factor.
- The analytical and the experimental work were done in a parametric way while maintaining the symmetrical arrangement of the fuel loading.
- In the second step, the 36% enriched fuel is replaced with 21% enrich fuel in the booster zone.
- The interface zone geometry is changed from square to circular to maintain the same multiplication factor.

ERANOS Deterministic Analyses

- Deterministic calculational models were created for ERANOS (European Reactor Analysis Optimized code System) analyses.
- Cross-section data libraries with a 53 energy group structure have been processed with the ECCO code of ERANOS based on JEF2.2, JEF3.1, and ENDF/B-VI.8 nuclear data files.
- Flux calculations are performed in XYZ with the VARIANT module of ERANOS. For complementary studies, calculations are also performed in RZ geometry with the S_n BISTRO code.
- The VARIANT method is also the basis of the time-dependent module KIN3D of ERANOS used for the kinetic calculations.
- The analyses were performed for YALINA-Booster loaded with 1141 and 902 EK-10 rods.

Deterministic Model of YALINA-Booster with 1141 EK-10 Fuel Rods

ERANOS Analytical & Experimental Results

Effective Multiplication factor and reactivity

Configuration	JEF3.1	ENDF/B-VI.8	Measured
1141	0.973028	0.972233	EC5T, EC6T , EC7T
	-2772 pcm	-2856 pcm	~ -2750 pcm
902	0.932845	0.932305	EC6T
	-7199 pcm	-7261 pcm	~ -7400 pcm

Kinetic Parameters

Configuration	11	41	90	02			
Data Library	JEF3.1	ENDF/B-VI.8	JEF3.1	ENDF/B-VI.8			
β_{eff}	753.3	753.4	761.2	761.4			
Λ_{eff}	50.4	50.3	49.3	49.2			

Source Multiplication Factors of YALINA-Booster

Config-	Source	JEF	-3.1	ENDF/B-VI.8							
uration	Source	$k_{\rm S}$, ρ _S [pcm] ⁽¹⁾	$k_{S}, \ \rho_{S} \ [pcm]^{(2)}$	k _S , ρ _S [pcm] ⁽¹⁾	$k_{S}, \ \rho_{S} \ [pcm]^{(2)}$						
	D-T	0.989047 -1107.5	0.989121 -1099.8	0.988810 -1131.6	0.988886 -1123.8						
1141	D-D	0.981535 -1881.3)	0.981548 -1879.9	0.981131 -1923.2)	0.981140 -1922.2						
	Cf-252	0.980832 -1954.2	0.980844 -1953.0	0.980438 -1995.2	0.980445 -1994.5						
	D-T	0.974738 -2591.6	0.975113 -2552.2	0.973891 -2680.8	0.974267 -2641.2						
902	D-D	0.958254 -4356.5	0.958279 -4353.7	0.958205 -4361.9)	0.958219 -4360.3						
	Cf-252	0.957439 -4445.3	0.957469 -4442.0	0.957411 -4448.3	0.957445 -4444.7						

⁽¹⁾
$$k_s = \frac{\langle F\Phi_s \rangle}{\langle A\Phi_s \rangle - \langle P_{n,xn}\Phi_s \rangle}$$

(2) $k_{\rm S} = \frac{\langle F\Phi_{\rm S} \rangle + \langle P_{\rm n,xn}\Phi_{\rm S} \rangle}{\langle A\Phi_{\rm S} \rangle}$

YALINA-Booster 1141 Configuration Area Ratio Method Correction Factor (Glasstone Approach)

Channel	$\mathbf{A}_{\mathrm{tot}} = \left\langle \boldsymbol{\sigma}_{\mathrm{d}} \widetilde{\boldsymbol{\Phi}} \right\rangle$	$\mathbf{A}_{\mathbf{p}} = \left\langle \boldsymbol{\sigma}_{\mathbf{d}} \widetilde{\boldsymbol{\Phi}}_{\mathbf{p}} \right\rangle$	$\frac{A_{p}}{A_{d}} = \frac{A_{p}}{(A_{tot} - A_{p})}$	$\rho_{calc_chx} = -\frac{A_p}{A_d} \times \hat{\beta}_{eff}$	k_{calc_chx}	$CF_{calc,chx} = \frac{\rho_{calc,ref}}{\rho_{calc,chx}} (*)$
EC1B	9.85301E+10	7.97757E+10	4.25372E+00	-3204	0.968953	0.86513
EC2B	1.27372E+11	1.02295E+11	4.07925E+00	-3073	0.970189	0.90213
EC3B	8.75570E+11	6.94140E+11	3.82594E+00	-2882	0.971988	0.96186
EC4B	1.40509E+11	1.11241E+11	3.80081E+00	-2863	0.972167	0.96822
EC5T	3.66863E+13	2.89297E+13	3.72965E+00	-2809	0.972674	0.98669
EC6T	3.43634E+13	2.66007E+13	3.42673E+00	-2581	0.974837	1.07391
EC7T	2.68736E+13	2.06433E+13	3.31338E+00	-2496	0.975649	1.11065
EC8R	1.75263E+13	1.34172E+13	3.26524E+00	-2460	0.975995	1.12702
EC9R	3.84508E+12	2.93693E+12	3.23394E+00	-2436	0.976219	1.13793

^(x) Estimation of Spatial Correction Factors for Area Ratio Reactivity Measurements.

YALINA-Booster 1141 Configuration Corrected Measured Area Ratio Method Values He-3 (n,p) Detector Responses to a D-D Pulse JEF3.1 Correction Factors

Channel	Measured by Area Ratio	Corrected Values
EC5T	0.97318 (-2756 pcm)	0.97353 (-2719 pcm)
EC6T	0.97513 (-2550 pcm)	0.97335 (-2738 pcm)
EC7T	0.97535 (-2528 pcm)	0.97269 (-2808 pcm)

ERANOS D-D Pulse Simulation of YALINA-Booster 1141 Configuration with JEF 3.1 Nuclear Data

X-Y Cross Section of the MCNP/MCNPX YALINA Booster Model

	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
•••••	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	0000000000000000	0000000000000000	
•••••	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
••••••	000000000000000000	000000000000000000000000000000000000000	
•••••••			
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
•••••••	000000000000000000000000000000000000000	000000000000000000	
• • • • • • • • • • • •	000000000000000000000000000000000000000		***********
• • • • • • • • • • • •			
••••••••			
• • • • • • • • • • • • •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 00 000000	
••••••		000 000000000000	
	000000000000000000000000000000000000000	888 00000000000	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	
• • • • • • • • • • • • • • • • • • • •	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	00000000000000000000	
		0000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000		
		terms to be set as the set of the set	
	0000000000000		
	00000000000		
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	00000000000000	0000000000000	

Y-Z Cross Section of the MCNP/MCNPX YALINA Booster Model at X = 0.87

MONTE Carlo Results for YALINA-Booster 1141 Configuration, ENDF/B-VI.6, MCNPX2.6b

Computer Code	Nuclear Data Files	K _{eff} Criticality Calculation	K _s D-D Neutron source	K _s D-T Neutron source	β [pcm]	Ι _ρ [μs]	Λ [ms]
MCNPX	ENDF/B-6.6	0.97972±4	0.98690	099145	760±8	54±2	56±2
MCNPX	JEFF-3.1	0.98008±9	-	-	728±12	-	-
MCNP5	ENDF/B-6.6	0.98016±9	-	-	766±18	-	-
MONK9a	DICE ENDF/B-6.0	0.97730±10	0.98610±20	0.99060±20	-	48±5	49±5

³He Detector Response Calculated by MCNP Compared to the Experimental Measurements

MCNPX Results & Experimental Measurements for YALINA-Booster 1141 Configuration, ENDF/B-VI.6

MCNPX Results & Experimental Measurements for YALINA-Booster 1141 Configuration, ENDF/B-VI.6

Horizontal Section of MCNPX Geometrical Model of YALINA-Booster Configuration with 21% Enriched Fuel Rods in the Booster Zone Shown Without the Graphite Reflector

		0	0 (0		•	•	•	0	•	•	• •	0	•	•	0	0	0 0	0 0	0 0) (0	0			0		0 0	0			0	0	• •	0	0	00
00		0	00	0	0	0		0	0	0	0	0 0	0	0	0	0	0	0 0	2 0	0 0	0 0	0	0	0		0	0	00	0	00		0	0	0 0	00	01	00
00		0	00		0	0	•	0	0	•	•	0 0	0 0	0	0	0		olc	0 0	0 0	0 0	0	0	0	0 0	0	0		0	0 0		0	0		0	0	
		0	00			•	•	•	0	0	0	0 0	0 0	0	0	0	0.	0 0	2 0	0 0	0 0	0	0	0	0 0	0	0		•			0	0	0 0	0	0	
00		0	0.		0	0	•	0	0	0	0	0 0	0 0	0	0	0	0	00	3 0	ble	0 0	0	0	0	0 0	0	0	0 0	0	0.0		0			0	0	
00		0	0 0	00	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0	0	0	0 0	0	0	0 0	ο.	0 0		0	0	0 0	0	0	00
		0	0.0	00	0	0	0	0	0	0	0	0 0	0 0	0		•	0	0 0		o c	0 0	0	0	0		0	0		0	0 0	0 0	0		• •	0	0	00
00		0	0 0	0 0	0	0	•	0	0	0	0	0 0	0 0	0	0	0	0	0 0	3 0	0 0	0 0	0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0		0	01	
00		0	0	0 0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0		ole		0	0	0		0	0		0	0 0	0 0	0	0		0	0	00
00		0	0 0	0 0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	5 C	0.0	0.0	0	0	0	0 0	0	0	0 0	0	00	0 0	0	0	0 0	0	01	
00		0	0.0	0 0	0	0	0	0	0	0	0	0 0	0 0	0	0	•		0 0	5 6	9	•	•	0	0		0	0		0	0 0	0 0	0	0		0	00	
		0	0 0	0 0	0	0	0	0	o	0	0	0 0	0 0	0	0	0	0	0 0	2 0	o c	0 0	0	0	0	0 0	0	0	0 0	0	0 0	0 0	0	0			01	
00	00	1.0	0.0	1.0	0	-	-	6																					0	0.0		0	0	0.	-	CN/	200
	2.2		~ ~			č	č	č					-																	~ ~				~ `		20	12
			6		2	~	2	~	٠																44							1				2	
	0		~		2	0	2	X	٠	• •		-		•••			• •	**		• •	•	•••		•••			. *	**	×.	0		2	~				
			0			~	0	2	1	1.						:					:			::				11		0						8	
	0		2			2	2	2																						2		2		2		2	
	29		2 1			2	1	2																						25						2	
0.0	00	0	0.0			0	0	2		••		• •	•	• •		•	•	J		• •		• •	•	• •	• •		••	•	0	0	20	0	•	0 0	20	0	
0.0			9 9	12	2	0	-	2						11	84	•	•••				*	•••		: :	11		::	22	9	9	10			9 9	2.0	0	
00	00	20	0 0	20	0	2	2	2	H.						ŧ.								ю				11	22	2	2	20	0		0 9	20	0	0.0
00		0	0.0	20		0		9										•••	••	**	**			1	1				9	J	90	9	•	• •	20	0	2.9
00	0 0	0	0 0	0 0	0	0	0	0	٠	• •		• •		• •	•			1	2			**	•	•	1		• •		0	0	0 0	0	•	0 0	00	0	0 0
00	00	0.0	0.0	20	0	0	0	0		• •		• •		• •				(1					•	••	• •		••	• *	0	0	0 0	0	Ο.	0 0	20	0	20
0.0		0	0.0	0 0	0	0	0	0		• •		• •		• •							-	11		• •	• •		• •	• •	0	0 0	0 0	0	•	0 0	0.0	0	
00	00	0	0 (0 0	0	0	0	0	5						ē.				-	2	:	**		::			::	11	0	0 0	0 0	0	0	0 (0 0	0	0.0
0 0		0	0 0	0 0	0	0	0	0							91			**	::	::	**	::							0	0 0	0 0	0	•	0 (0 0	0 (00
00	00	0	0 0	0 0	0	0	0	O														**							0	0 0	0 0	0	0	0 (00	0	0 0
00		0	0 0			0	•	0	2	••	• •	• •		• •		*9	• •	• •	3	• •		• •		• •	• •		• •		•	0.0	0 0	0	•	0 0	0 0	0	• •
00	00	0	0	0	0	0	0	0			-			: :			11		11		1				11		::	22	0	0 0	0 0	0	0	0 (0 0	0 (0.0
		0		0 0		0	•	0		13			94	61	24				41								22	۰.	0	0 0	0 0		•	0 0	0 0	0	• •
00	0 0	0	0 0	00	0	0	0	0			1						• •												0	0 0	0 0	0	0	0 0	0 0	0	00
00	0 0	0	0.0	0 0	0	0		0	٠	•				• •	• •	• •	••	• •	•			• •		• •	••			• •	0	0 0	0 0	0	•	0 0	0 0	0	00
00		0	0 0	0 0	0	0	0	0		• •		23		•		•	••	**		1		• •		•••	•				0	0 0	0 0	0	0	0 (0.0	0	0 0
		0	0 0	0 0	0	0	0	0		11					44				o	1	-6		-		23		11	11	0	0 0	0 0	0	0	0 0	0 0	0	00
	00	0	0 0	0 0	0	0	0	0								2.	1												0	0 0	0 0	0	0	0 (0 0	0	00
00	0.0		0.0	0.0	0	0	0	o	6	0	0	0.0	2 0	0	0	0	0	0.0		0.6	0.0	0		au		0	0.0	0.0	0	0 (10	0		0.0	1.0	OI	10
00	00	10	6.			6			0							6				2		-							õ						10	0	10
0.0	0		0	10	0	0	0	0	0	0	0			0	0	0	0				10	-	0	0	2 6	0	0	10	0	0		0	0		1	0	10
100	00		6		-	~	ě	ň	1 a	ě.	6				6	č						1	ě	õ		ň	ě.		ĕ	ě.		~	ě		1	1	
					1	~	0	S.	0	ŏ	6	6		č	~	ő	6					1	i de	õ.		1 o	Š.		ň.	õ,		-	č			X	
No.		2	1		1	č	č	×.	1×	š	6			Š	~	ŏ.	š					1	ĕ	ŏ.			õ.		Ĭ.	ě.		- C	5	1	22	1	1
			1			~	1	1		2	~			2	2	č	2						-	8			0	10		0			X				
		3	1		2	2	-	×.	0	6	8			0	ä	š	8						No.				8					2	2		1	X	1
MM						X	2	X	X	~	2			X	X	~	~					2	2	2		10	2						X			H	
NH2	22	2	2		2	~	~	-	K	-	*			2	2	2	~							2		12	2	1		2			2	1	22	X	1
HH.	22					2	2	-	H	×	2			2		2	2							20		19	H		2	23						×.	
	00	20	2	12		2	2	-	2	-	2		10					0.0					2	9		2	25			25	1		2		2	2	20
00	00		0	10		0	0	0		0	0				0	0	0		210		9 Q	0		0			0			00				0		0	

Horizontal Section of MCNPX Geometrical Model of YALINA-Booster Zone with 21% Enriched Fuel Rods Featuring the New Configuration of the Interface Zone

Total Neutron Flux Map of the YALINA-Booster Configuration with 21% enriched uranium oxide fuel in the Booster Zone

Conclusions

- ERANOS Deterministic Analyses were completed successfully for the of YALINA-Booster loaded with 1141 and 902 EK-10 rods.
- The obtained reactivity values for YALINA-Booster 1141, and YALINA-Booster 902 configurations show an excellent agreement with the measurements, difference of 200 pcm.
- The highest k_s values are obtained with the D-T neutron source because of the extra neutrons from the (n, xn) reactions and the higher number of neutrons per fission reaction.
- The calculated detector responses to a D-D neutron pulse with the KIN3D code of ERANOS show a good agreement with the measurements.
- The Bell & Glasstone approach has been used to calculate the spatial correction factors for the measured reactivity values. The corrected values are very close to the calculated value.
- Monte Carlo models were developed and used successfully for analyzing YALINA-Booster.

Conclusions (continued)

- The obtained analytical and the experimental results show good agreement.
- Analyses and experiments of YALINA-Booster with different fuel enrichments are being carried out utilizing the obtained experience from the past analyses.
- The first step for replacing the 90% enriched metallic uranium fuel with 36% enriched uranium oxide fuel was completed successfully where extra 44 EK-10 fuel rods (10% enriched uranium oxide fuel) were added in the thermal zone to maintain the assembly reactive without change.
- The second step for replacing the 36% enriched uranium oxide fuel with 21% enriched uranium oxide fuel required arrangement adjustment for the absorber zone to maintain the reactivity of the assembly without change.
- The project is progressing successfully and the second phase is focusing on ADS physics and using low enriched uranium fuel with new configuration.

