Subcriticality Measurements of Accelerator-Driven System in Kyoto University Critical Assembly

<u>C. H. Pyeon</u>, T. Misawa, J. Y. Lim, S. Shiroya (Kyoto University Research Reactor Institute, Japan)

First Injection of Spallation Neutrons

Neutron multiplication by spallation neutrons generated by protons 2

Proton Beam Characteristics

Fig. Results of scanning data of Gafchromic films varying the distance from target

Reaction rate (In wire in Axial)

 \checkmark Confirm calculation precision by MCNPX

Contents

- ADS IAEA Benchmark problems (KART in KUCA)
- > A unique optical fiber detection system
- Kinetic parameter measurement using optical fiber
 - ✓ Neutron multiplication
 - Neutron decay constant and Subcriticality
- IAEA benchmark problems Phase 2:
 - Subcriticality measurements
 - Pulsed neutron (PN) method
 - Neutron noise (NN) method
 (Feynman-α and Rossi-α methods)
 - ✓ Neutron source multiplication (NSM) method

IAEA Benchmarks at KART (Phase 1 & 2)

Phase 1: Static experiments (14 MeV D-T neutrons)

- Indium (In) wire (Reaction rates) distribution
- Reactivity (Excess reactivity and Subcriticality)
- Neutron spectrum (Reaction rates and Unfolding analyses)

Phase 2: Kinetic experiments (14 MeV D-T neutrons)

- Neutron multiplication analyses (M=(F+S)/S)
- Subcriticality measurement methods
- (Rossi- α , Feynman- α , Pulsed neutrons and
- Neutron source multiplication (NSM) methods)
- Neutron decay constant (Relationship between α and ρ)

KUCA A-core

Fig. KUCA A-core (Reference core)

- KUCA A-core -A solid-moderated and -reflected core

Fig. Image of KUCA A-core and fuel assembly loaded

Neutron guide and Beam duct

Optical Fiber Detection System

♦ Main characteristics

- > Li: Scintillation material (obtained by ⁶Li (n, α) reaction)
- > ZnS: Convertor material
- Size: Compound of (LiF+ZnS -> 1:1) optimized mixture in 0.5 mm thickness and 1 mm diameter

Fig. Remote driving system

Fig. Optical fiber covered by Al tube

Neutron Multiplication (k-source)

Fig. Axial Li reaction rates by optical fiber detection system varying subcriticality

Fig. Neutron multiplication by Area ratio method applied to Li reaction rates

Principle of an attachment at top in optical fiber

- > LiF (ZnS): ⁶Li (n, α) reaction for thermal neutrons => 1/v distribution of X-sec in thermal energy region
- > ThO₂ (ZnS): ²³²Th fission reaction for fast neutrons => Threshold reaction in 9 MeV for neutrons
- > F: Total number of neutrons by nuclear fission reactions
- > S: Total number of neutrons generated by outer source

Neutron Decay Constant

Pulsed neutron method (PNM)

- ✓ Good evaluation of subcriticality at both core and reflector positions
- ✓ Examination of validity of methodology and position dependency

Pulsed Neutron (PN) Method

Neutron Noise (NN) Method

Fig. Top view of KUCA A-core

Table Comparison of measured neutron decay varying Feynman and Rossi- α methods (pulsed period 20 ms)

Subcriticality (%∆k/k)	Reference* α (1/sec)	Feynman** α (1/sec)	Feynman*** α (1/sec)	Rossi (1/sec)
0.50±0.01	266±2	253±1	285±1	263±1
0.99±0.01	369±3	373±2	383±1	368±2
1.58±0.02	494±3	495±3	508±1	500±5
2.07±0.02	598±4	601±4	631±2	599±7

*: Reference a was obtained using pulsed neutron method

**: Stochastic Feynman- α

***: Deterministic Feynman- α

Note that these data were provided by Dr. Y. Kitamura of JAEA

Neutron Source Multiplication (NSM) Method

IAEA Benchmark Problems

Phase 1: Static experiments (14 MeV D-T neutrons)

Reaction rate distribution, Neutron spectrum, Reactivity

Phase 2: Kinetic experiments (14 MeV D-T neutrons)

Neutron multiplication, Subcriticality measurement methods

(Rossi- α , Feynman- α , Pulsed neutrons and

Neutron source multiplication (NSM) methods)

Phase 3: Static and Kinetic experiments (150 MeV protons) Above topics, γ-ray distribution, Power monitoring, etc.

✓ Fuel: HEU, Thorium, NU

- ✓ Reflector: Polyethylene, Graphite, Aluminum, Beryllium
- ✓ Core: Any combinations of Fuel & Reflector

Summary

> Confirming the detection system using a unique optical fiber:

- Multiplication M using reaction rate distribution
 - (vs. one point reactor approximation)
- \checkmark Neutron decay constant α and Subcriticality ρ
 - → Good evaluation of subcriticality
- IAEA benchmark problems (Phase 2):
 Subcriticality using PN, NN and NSM methods, confirming
 - ✓ Detector position dependence
 - ✓ Each measurement technique