
1�   AT/RD-05 

Charged Particle Collisions for Particle Simulation Methods 
 
D.D'Andrea 1, W. Maschek 1, R. Schneider 2 

 
1 Institut für Kern- und Energietechnik -- Karlsruher Institut für Technologie 
2 Institut für Hochleistungsimpuls- und Mikrowellentechnik -- Karlsruher Institut für 
Technologie 
 
Email contact of main author: danilo.dandrea@iket.fzk.de 
 
Abstract.   The modelling of Coulomb collisions is an important item for a deeper understanding of pulsed 
plasma propulsion accelerators. The Fokker-Planck formulation of this problem allows a particle treatment of 
the long range inter- and intra-species interactions in the frame of a Particle-In-Cell, self-consistent approach. 
The particles are advanced in velocity space according to the stochastic differential equation (the probabilistic 
dual of the Fokker-Planck equation) so that the distribution function can be reconstructed and its moments 
evaluated at each time step. In particular, the time evolution of the first and second moment is the object of this 
study since it contains precious information about the so-called time scales. Results concerning the slowing-
down time and deflection time are presented for electron- electron and electron-ion collisions separately and 
together. 
 
1. Introduction 
 
Of the many existing particle accelerators, electric thrusters for space applications represent a 
peculiarity for their simpleness and highly effectiveness. They successfully make use of the 
long lifetime when significant thrust is not needed especially when this includes orbit 
transfers, attitude adjustments, drag compensation for low earth orbits, and ultra fine 
adjustments for specific scientific missions. Ion thrusters can also be used for interplanetary 
and deep space missions where time is not crucial. Continuous thrust over a very long time 
can potentially build up a larger velocity than traditional chemical rockets. Obviously the 
numerical simulation of plasma devices must include a model for the Coulomb collisions 
which mainly determine the shape of the electron energy distribution function which again 
determines to some extent the plasma chemistry. The temporal evolution of the electrons and 
ions distribution function and its moments - as a consequence of the repeated small angle 
encounters - contains the most important information of the physics of the phenomenon. An 
important aspect of the whole collision process is the time needed by collisions to produce 
large variations in the original velocity distribution. It might be important for instance, to 
know how rapidly any initial distribution function changes into a Maxwellian one, because of 
collisions. The time required for it is known as ``relaxation time'', although in literature not 
clearly defined. Starting from the pioneer studies of Chandrasekhar and Spitzer, the intent of 
this paper is to provide an analysis of the slowing-down time and deflection time performed 
by means of self-consistent calculations of electron-electron (e-e) collisions alone and 
coupled with electron-ion collisions (e-X).It follows a short introduction of the governing 
equations and the numerical framework, the results are described in the subsequent section 
and an outlook on the future planned activities completes this work. 
 
2. Mathematical Modelling 
 
To model elastic intra-species, like electron-electron, and inter-species, like electron-ion, 
Coulomb collisions in a plasma, an appropriate start is the Fokker-Planck collision operator 
(see for instance [2]) 
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which is the lowest order approximation of the Boltzmann collision integral and describes the 
temporal evolution of the electron distribution function  due to the mutual interactions of 
the charged particles. The components of the drift vector 

ef
( ) ( )te ,vF  and the diffusion tensor 

 are given by  ( ) ( te ,vD )
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where the sum runs over the types of field particles, µ  is the reduced mass and  is the 
plasma parameter which contains the charge  the mass  of the electron, the vacuum 
permittivity 

( )e
P
σΓ

e m
0ε  and finally the classical Coulomb logarithm ( )Λln  [2]. The key-quantities to 

determine the coefficients in (1) are the Rosenbluth potentials  
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where wvg −=  is the relative velocity between the scattered and the field velocity particle, 
namely the scatterer. For the construction of a particle method it is essential to exploit the 
equivalence of the Fokker-Planck equation (FPE) for the evolution of  with the stochastic 
differential equation. By means of Itô calculus it is possible to write [3] 

ef
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in which a quantitative analogy with the FPE can be immediately recognized through the drift 
vector and the relation between the matrix eF ( )eS  and the diffusion tensor , being 

. V  is in general a stochastic variable which depends on the time and whose 
distribution function is ; it will be later identified with the single charged particle velocity, 
while  is a three dimensional Wiener process. 
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2.1.  Intra-species Collisions 
 
In a self-consistent analysis of (e-e) collisions no apriori knowledge of  is available and 
furthermore no simplyfing approximation is possible, therefore some observations concerning 
the quantities in (3) can be helpful: despite their complicated aspect they are nothing else than 
convolutions of the distribution function with 

ef

g  or its inverse, a formulation that recalls 
Fourier transform technique for the evaluation of these three dimensional integrals for which 
a quadrature formula would be far too expansive. Also the derivatives of the Rosenbluth 
potentials, i.e. directly the drift and diffusion components, can be readly obtained as follows: 
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where  is the Fourier transform of  and ( )kef̂ ef -1F  denotes the inverse Fourier 
transformation of the argument in the brackets.This is the last piece of the puzzle whose 
picture represents the solution of the FPE. The sequence in which all the bricks will be 
mounted is described in the next section.  
 
3. Numerical Framework 
 
The mathematical formalism sketched in the previous section can be nicely organized in a 
Particle-In-Cell (PIC) based numerical solution [4] as schematically illustrated in the block 
diagram below. The analogy with the classical PIC concept is immediately evident. One part 
of the computational cycle is situated in a mesh-free zone (Langevin Solver), while another 
one needs a discretization grid (Rosenbluth Solver). Two interfaces procedures 
(Reconstruction and Interpolation) couples mesh-free and grid space and vice versa and close 
the whole calculation. 
 

 
FIG. 1. Building blocks of the PIC-based approach for the FPE. 

 
In the following, a short description of the single building blocks of the Fokker-Planck solver 
is given; for details see Ref [5]. 
Reconstruction. From the actual location of the charged plasma particles in the three-
dimensional mesh-free velocity space, the distribution function ( )tf e ,v  is resolved on the 
Cartesian velocity grid. For that, the volume-weighting technique is used to compute relative 
weighting coordinates for each charge ``p'' from which individual particle weights  can be 
determined. These particle weights then contain the necessary information to assign each 
particle to the corresponding grid cell of the velocity mesh. Rosenbluth Solver. Afterwards, 
for the grid-based computations a FFT method similar to the Cooley \& Tukey algorithm is 
applied to calculate the Fourier transform 

( )pg

( )tf e ,ˆ k  of the distribution function ( )tf e ,v . 
Subsequent multiplications of ( )tf e ,k  with 21 k 2kkq , etc. and a final inverse 
transformation yields the grid-based Rosenbluth potentials (3) and their derivatives with 
respect to velocity. With these information the components of the drift vector and the 
diffusion matrix (2) can immediately be determined. Bear in mind that the use of Fourier 
approach allows the first principle computation of the relevant quantities arising in Langevin-
type equation (4) which leads to a self-consistent modeling of the collisional relaxation. 
Interpolation. The ``Langevin forces'', which are the deterministic drift and the stochastic 
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diffusion, have to be computed at the actual position of each particle in grid-free velocity 
space. Since interpolation is nothing else than the inverse operation of assignment, the 
particle weights  are once again used to interpolate the Langevin forces at the position of 
particle ``p'' in continuous velocity space. Langevin Solver. Under the action of the velocity-
dependent Langevin forces, each plasma particle is moved in the velocity space according to 
the SDE (4), where appropriate numerical methods are required. On the purpose, weak 
approximations [6]} of equation (4) is used. For instance, the simplest multi-dimensional 
weak Taylor expansion leads to the Euler scheme  
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Here, , with unit vector  and the Wiener increment  is defined according 

to 
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α
α ηtWn ∆=∆ , where  is the time step size and t∆ ( )0,1N=αη  denotes a Gaussian 

distributed random number with mean 0=µ  and variance 1=σ . This step closes the self-
consistent computation cycle, which have to be run through at each time step. The introduced  
PIC-based computation strategy admits a self-consistent description of the collisional 
relaxation process which seems to be very important, for instance, in the context of  the 
thermalization of an electron (ion) beam in an electron (ion) gas (see below). 
 
4. Inter-species Collisions 
 
In the case of electron-ion collision the electron speed is so much larger than the ions one and 
the mass ratio between the two species is so small that a simplifying hypothesis can be 
introduced in the evaluation of the drift and diffusion coefficients. With this in mind a Taylor 
expansion up to the second order in (3) and hand-differentiation yields: 
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Where , Tvvˆˆ−= IH xv  is the thermal velocity of the ions and vvv =ˆ  denotes the unit vector 
of the sines and cosines of the scattering and azimuthal angles. Then  can be immediately 
derived as: 

S
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where the introduced quantity  is usually referred as momentum transfer 
collision frequency. 
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The SDE can now be rearranged as: 
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which is now an equation in the directions of the velocities. On the basis of the zero 
expectation property of the Itô integral and the use of the Itô formula a solution for the first 
and second moment of the components of  can be written as [7]: V̂
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where  is identified as  and the total transversal variance can be expressed as //V xV
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5. Results 
 
The characteristic time in which a system changes to an equilibrium condition from a non-
equilibrium state has an impact on the temporal evolution of the chemistry in the interior of 
the pulsed plasma propulsion accelerators. In this section a sequence of results and 
considerations in this sense are presented: the relaxation dynamics of the (e-e) and (e-
X)collision is discussed separately and then a more realistic simulation in which both 
mechanisms are operating is run. One way to obtain estimations of such parameter is to 
consider the scattering of one particle and try to get information about the time scaling of a 
distribution of particles with the same initial velocity conditions. This classical method 
known as test-particle approach was developed by Chandrasekhar [8] and Spitzer [9], and a 
variation can be found, for instance, in Montgomery & Tidman [2] and Trubnikov [8]. One 
relaxation time investigated by the test-particle method is the so-called slowing down time. 
\textit{slowing down time}. This time scale gives the rate at which collisions decrease the 
mean velocity of the test particles. These particles are initially ``injected`` into the plasma as a 
monochromatic ``beam`` which has only a constant  velocity component and are 
``tracked`` up to the time where they are stopped. Note that it can be shown [2] that the 
slowing down time is only related to the friction force coefficients of the FPE. Another 
relaxation time of interest in the test-particle approach is the so-called deflection time, which 
may be considered as the typical time scale for an initially anisotropic distribution becoming 
isotropic [3]. Per construction this time scale is associated with the transverse velocity 
components of the test particles which are zero initially and is a measure of gradual deflection 
of the test particles by 90 degrees caused by the cumulative effects of collisions. Simple 
considerations reveal that the rate of increase of the transversal velocities is only due to the 
diffusion term of the FPE [2]. In the context of the present work the self-consistent dynamical 
evolution of the velocity distribution is studied, where both friction and diffusion forces are 
similarly important. Clearly, to switch off one of the dynamical aspects seems to be ideal but 
would contradict our self-consistent approach. In order to filter out characteristic times 
required by a whatever distribution function to reach an equilibrium state, because of 
collisions, the following procedure is proposed.The particles in the numerical experiments are 
subdivided in two groups: The first one consists of the background (abbreviated by BG) 
particles (constant number ) which are initially Maxwellian distributed (that is 
Gaussian distributed in each velocity component; 

zV

5103 ⋅=BGN
0=BGµ , 0=BGσ ) , and the second group 
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is the beam particles  (labelled as b). In the numerical experiments discussed below, the latter 
group represent an ideal monochromatic beam that hits initially the background particles with 
velocity only in the z-direction ( ) ( )( )50 ==tV b

z . To get an intuition of the complex non-linear 
dynamics resulting from the self-consistent computations, the simulations will be compared 
with a reference experiment, where the Maxwellian distributed BG-particles are not affected 
by the beam particles. In this sense the distribution function changes only because of the 
beam particles, which are advanced according to (4), where the non-linear velocity-dependent 
friction force and diffusion coefficients are obtained exactly by the background characteristics 
(see [6]). In fact, this experiment can be considered as an interface between the pure test-
particle approach, where the coefficients are held constant for all the particles all the time 
(namely, at the initial values), and a real simulation. Also in the style of the test-particle 
approach, the mean value ZV  and the ``transversal`` variance  of the beam particles are 
used as measurable quantities which are recorded as function of time and seen in Figures 2 
and 3 as full lines.  

2
yσ

 
 
FIG. 2.Velocity mean value of the beam particles as a 
function of time of the self-consistent simulations with 
pr=1/50 (line with circle) and pr=1/10 (line with open 
squares) and the non self-consistent reference 
experiment 

FIG. 3.Temporal evolution of the transversal 
variance. Full line: reference simulation; line with 
filled circles pr=1/50 and line with open squares 
pr=1/10 . 

 
FIG. 4. Variances time values (symbols) and 
comparison with exact curves (full lines) 

FIG. 5.Variances time evolution of the three velocity 
distribution functions during a (e-e) collision process. 
The thermal energy increases at expenses of the initial 
kinetic energy in the x-direction (see also FIG. .6) 
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Moreover, in these Figures the results of two self-consistent simulations (  cycles with 

) are depicted, where the beam to background particle ratios (pr) are fixed to 
pr=1/50 (lines with filled circles) and pr=1/10 (lines with open squares). Finally, we remark 
that in both self-consistent simulations the global velocity distribution functions established 
by the beam and background particles are highly non-Gaussian up to  (not shown 
here).The equations (10) and (11) represent a natural benchmark for the inter-species collision 
case: a beam of electrons entering the ions reservoir with 

3103 ⋅
2105 −⋅=∆t

35≤≈t

( ) ( )Tt 0,0,30 =V  is considered and 
the event dynamics is monitored through the distribution functions and its moments. Figure 4 
plots the exact variances of ( )qe Vf  (full line:  dash-dotted line: ) with respect to time 
for the said initial conditions and the numerical solutions that are in very good agreement. 
Finally the above discussed phenomena are both taken into account for a more realistic 
simulation. The velocity of the electrons is now initialised with three Gaussian with different 
variances, respectively, ,

2
xσ 2

yσ

( ) 10
2 =txσ ( ) 25.20

2 =tyσ  and ( ) 40
2 =tzσ , and the electrons impact 

the ion reservoir with an additional stream velocity ( ) 30 =tVx  in the x- direction. Note that if 
in the same experiment the (e-X) collisions were inactive the mean value of  would 
stay constant at the initial velocity 

( ) 30 =tVx

( ) 30 =tVx  since no mechanism is available to convert the 
initial kinetic energy into the thermal internal energy; i.e to turn ``coherent flow`` into 
``disordered motion``. The result of the coupled intra-inter-species simulation is seen in Fig. 
5.The inter-species collision part provides a mechanism which re-distributes the initial 
velocity uniformly in each direction resulting in the ``decay`` of the mean velocity (see Fig. 
6) while the variances (thermal energy) are to reach a common value. Consequently, in the 
coupled numerical experiment the initial kinetic energy is transformed in thermal energy (due 
to inter-species interaction) and it is clear from Fig. 5 that in this case the distribution in each 
direction will posses a value which is one third of the sum of that achieved for the intra-
species case for the same initial condition plus one third of the square of the initial flow 
velocity. Moreover, it is obvious from Fig. 5 that the coupled calculation is slower than the 
two independent processes: The difference in the time needed by //V  to reach the 
asymptotic final value with respect to the (e-e) case is huge:  a rough estimation would 
indicate  and 100≈ 500≈  time units for the intra- and inter-species respectively. This 
observation may be traced back to the fact that the parameter  in eq. (9) is no longer a 
constant (as it is assumed there) during the simulation. In fact, a comparison of the curves 
seen in Fig. 6 admits the conclusion that  is smaller in the coupled simulation. 

2α

2α
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FIG. 6. Comparison between the mean value decay for the x-direction of the velocity in the (e-X) 

case(full line) and the coupled case (e-e)+ (e-X) (dashed-dotted lines). 
 
Outlook 
 
Inspired by the classical test-particle approach, a first study of the characteristic time 
constants in self-consistent collisional relaxation has been presented. A future intensive 
experimental campaign is planned to get a better understandings of the parameters which can 
have a stronger impact on the characteristic scale. Since it represents the closest 
approximation of the reality, the simultaneous operation of (e-e) and (e-X) mechanism will be 
the object of deeper analysis for example in the case of higher ionized ions. The influence of 
the electromagnetic fields (external and self-generated) will be also examined by coupling the 
present code with a Maxwell solver. Plasmas like polytetrafluoroethylene (commercially 
known as Teflon) or Argon plasmas will also be investigated for their wide applications, the 
former being used as fuel in pulsed plasma thrusters. 
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