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Abstract. The relativistic charged particles’ accelerator beams coherent interaction with
strong laser fields in different resonant schemes is of special interest in view of generation of
intense shortwave coherent radiation in so-called hybrid systems of the conventional Quantum
Generators and Free Electron Lasers. Specifically, as such systems for X-ray–Gamma-ray lasers,
the high brightness fast ion beams or channelled in the crystals ultrarelativistic electron beams
(due to the existence of quantum bound states) may be proposed. In the present work the SASE
(Self-Amplified Spontaneous Emission) regime of semiclassical X-ray laser on the channeling in
a crystal of a high brightness ultrarelativistic electron beam, in which the initial shot noise
on the electron beam is amplified over the course of propagation through a crystal channel, is
investigated.

The creation of X-ray lasers on the relativistic charged particles’ accelerator beams
is a subject of extreme interest at the present time and numerous projects around the
world are focused on the construction and development of a so-called fourth generation
light sources. The current state-of-the-art in light sources is referred to as third gener-
ation light sources that are large-scale synchrotron facilities whose output is incoherent
synchrotron radiation. The requests on fourth generation sources are much higher bright-
ness and peak photon density. Hence, any concepts that can be used to make a coherent
fourth generation source are of prime importance. Regarding the problem of X-ray lasers
there is an actual design currently in progress based on the Free Electron Laser (FEL) in
a magnetic undulator [1, 2]. It is expected that X-ray FEL will operate in the so-called
SASE (Self-Amplified Spontaneous Emission) regime [3] providing coherent radiation of
ultrarelativistic high brightness electron beams in the powerful wigglers. Two interna-
tional projects TESLA and LCLS are being currently implemented for this purpose [4].
The recent experimental advance in accelerator and electromagnetic field technologies ev-
idences the feasibility of construction of such facilities [5]. Nevertheless, because there
are no drivers or mirrors operable at X-ray wavelengths, these FEL systems operating in
SASE regime, in which the initial shot noise on the electron beam is amplified over the
course of propagation through a long wiggler, require the lengths in the order of several
ten-to hundred meters. An incomparable more effective gain of FEL we can expect for
nonlinear schemes of amplification/generation in the single-pass regime in the induced
processes of charged particles’ accelerator beams and strong laser fields coherent interac-
tion, providing incomparable shorter generation lengths [6]. Moreover, these mechanisms
practically may appear more reasonable for X-ray FEL due to smaller set up requirements
(particularly, using electron beams of considerably lower energies).

Besides, the classical SASE amplifiers have one drawback with regard to its application
as a useful source of short wavelength coherent light. This is connected with the fact that
the SASE amplifiers are essentially noise amplifiers having spiky and fluctuating outputs
and, consequently, wide radiation spectrum. Several schemes have been proposed in order
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to avoid the large spectral width associated with SASE. These involve superradiance of
pre-modulated electron beam, self-amplification of coherent spontaneous emission, etc [7].

As the photon wavelength moves into the deep UV and X-ray regions the interaction
becomes quantum mechanical, i.e. quantum recoil becomes comparable to or larger than
the gain bandwidth and quantum effects play essential role. In particular, such quan-
tum investigations for Compton X-ray FEL have been made by us in the regime where
the quantum recoil is much larger than the electron beam energy spread and discrete-
resonant transitions take place, excluding the concurrent process of radiation absorption
as well [8]. The operation of this quantum regime is similar to conventional atomic lasers:
two momentum states are involved in the interaction process and one can expect strong
narrowing of the output radiation spectrum in the quantum SASE regime.

The quantum effects are also essential if one considers the FEL versions where one or
two degrees of freedom of the charged particles are quantized and the resonant enhance-
ment of electron-photon interaction cross section holds. This takes place for the X-ray
laser schemes based on the electron/positron beam channeling radiation in the crystals
[9]. The smallness of free electron-photon interaction cross section in comparison with the
photon-atom one can also be compensated and the quality of the output X-ray radiation
can be enhanced in the hybrid schemes of FEL and conventional atomic laser due to the
existence of bound electron states. It can be achieved by means of fast high-density ion
beam interaction with a strong counter-propagating pump laser field [10], or with a crys-
tal periodic potential [11]. To achieve the efficient output intensity of coherent X-ray on
amplification lengths rather smaller than the lengths of the current classical FEL facilities
in wigglers, the nonlinear quantum schemes of generation with high brightness ultrarel-
ativistic electron beams were proposed and investigated in high gain and SASE regimes
[12].

The existence of quantized-discrete electronic levels substantially enhances the electron-
coupling field interaction coefficient and, consequently, the lasing gain on rather small co-
herent lengths due to the resonant excitation of such semiclassical FEL system by strong
pump fields. Hence, it is of certain interest the induced radiation by relativistic charged
particle beams with discrete 1D or 2D transversal energy levels (one or two degrees of
freedom of the beam are quantized, e.g., at the planar or axial channeling in a crystal),
as a potential source of semiclassical FEL in the x-ray-gamma-ray domains.

In the present work the SASE regime of semiclassical X-ray FEL start up from sponta-
neous channeling radiation of a high brightness ultrarelativistic electron beam in a crystal,
in which the initial shot noise on the electron beam is amplified over the course of propaga-
tion through a crystal channel, is investigated. Apart from a significant factor –ultrashort
amplification lengths in the crystal channel (”micro-undulator”), the spectral intensity of
spontaneous radiation by the channelled ultrarelativistic electrons/positrons well exceeds
the intensities of all other type radiation processes at high frequencies. Thus, we study
the amplification of ultrarelativistic electron beam channeling radiation in a crystal, in
the SASE regime, stimulated by strong counterpropagating pump laser field. Beside the
resonant enhancement of lasing gain due to the 1D or 2D resonant transitions of elec-
trons at the channeling, one can expect purification of the output radiation spectrum in
this semiclassical SASE amplifier as well, compared to the X-ray Compton FEL in SASE
regime [13] which has spiky and fluctuating output.

The consideration is based on the self-consistent set of the Maxwell and relativistic
quantum kinetic equations. In considering scheme the pump wave (optical or strong
infrared laser radiation) due to the Doppler up-shifting resonantly couples two transverse
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electronic levels in the crystal channel, and the necessity of the initial inverse population
of energy levels for lasing (which is obligatory for conventional quantum generators on
atoms) vanishes.

To achieve maximal Doppler shift and optimal conditions of amplification, we will
assume a scheme with a channeled particle beam and counterpropagating pump electro-
magnetic (EM) wave (as well as with a co-propagating probe EM wave). We will consider
a linearly polarized (along OX) pump EM wave with the frequency ω and wave vector k
that is described by the vector potential

A = x̂
A0

2

[
ei(ωt+kz) + c.c.

]
. (1)

We assume the probe wave to be linearly polarized along the same direction as the pump
wave, with the carrier frequency ω′, wave vector k′, and vector potential

Ae = x̂
1

2

[
Ae(t, z)e

i(ω′t−k′z) + c.c.
]
, (2)

where Ae(t, z) is a slowly varying envelope.
For the description of a FEL operating in the crystal, where the transverse degrees of

freedom of the particles are quantized, we will begin from the second quantized Hamilto-
nian, which in the Rotating Frame Approximation can be reduced to the form

Ĥ =
∑
pz

[
E0(pz)â

+
0,pz

â0,pz + E1(pz)â
+
1,pz

â1,pz

]
+ Ĥint (3)

with the interaction Hamiltonian:

Ĥint =
∑
pz

β⊥
2c

[
ieA0e

iωtâ+
0,pz+~kâ1,pz + ieAee

iω′tâ+
0,pz−~k′ â1,pz + h.c.

]
. (4)

The creation and annihilation operators â+
µ,pz

(t) and âµ,pz(t), associated with positive
energy Eµ(pz) solutions of the Dirac equation, satisfy the usual anticommutation rules at
equal times. Here µ, pz are the complete set of quantum numbers µ = {py, n, σ} for the
planar channeling and µ = {m, n, σ} for the axial one, n is the main quantum number
and m is the magnetic quantum number, σ characterizes spin polarization and py, pz are
the components of particle momentum; ψµ,pz are the normalized eigenvectors of channeled
particle corresponding to the given set of quantum numbers. We will assume that probe
and pump waves resonantly couple only two transverse levels, which will be labeled (0)
and (1). It is also assumed that the particle beam is nonpolarized and the probability of
transitions with the spin flip is negligible (this imposes a restriction on the wave frequency:
~ω′ << Eµ(pz)).

Included in Eq. (4) β⊥ is the transition matrix element for the transverse velocity
operator:

β⊥ = Ωnn′xµµ′ , (5)

where Ωnn′ = (E⊥n′ − E⊥n) /~ is the transition frequency between the initial and excited
states of the transversal motion of the particle in the crystal channel. The resonant
frequencies of the probe and pump waves for resonant coupling of the two transverse
levels are defined from the conditions:

ω =
Ω01

1 + n (ω) v
c

, (6)
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ω′ =
Ω01

1− n (ω′) v
c

. (7)

Here v is the electrons’ mean longitudinal velocity in the beam and n ($) is the index of
refraction of a crystal medium (n (ω′) ' 1 for the frequency region under consideration).

The energy spectrum of the planar channeled electron in the potential well U(x) =
−U0/ cosh2(x/b) (U0 -depth of the well, b characterizes crystal) has the form [6]:

E⊥n = − ~2

2b2mγ
[s− n]2 ; n = 0, 1, . . . , [s] , (8)

where s = −1/2 +
√

1/4 + 2b2mγU0/~2 and γ = 1/
√

1− v2/c2 is the Lorentz factor.
For the axial channeled electron with the potential of the atomic chain along the crystal

axis U(ρ) = −α/ρ (α characterizes the concrete crystal, ρ -distance from the crystal axis)
the energy spectrum reads [6]:

ε⊥n = −mγα
2

2~2

1(
n+ 1

2

)2 ; n = 0, 1, 2, . . . . (9)

The selection rules for transitions are determined by the matrix element of dipole
momentum and for the axial channeling are: ∆m = ±1. For the planar channeling, xµµ′

differ from zero between the states having different parities. For the axial channeling
there is degeneracy by the magnetic quantum number and in the case of a wave with
linear polarization both of the states m = ±1 will have a contribution in the resonant
interaction process. Because β⊥ depends on |m| for ∆m = ±1 transitions, so the m = ±1
states are equally populated if the initial populations are also equal.

At the planar channeling for the µ0 = {0, 0} −→ µ = {0, 1} transition we have

β⊥ =
~

2bmγ
(2s− 1)

(
s− 1

2

) 1
2 Γ2

(
s− 1

2

)
Γ2 (s)

, (10)

where Γ (s) is the Euler gamma function.
At the axial channeling for the transition µ0 = {0, 0} −→ µ = {±1, 1} we have

β⊥ =
√

2
α

~

√
3

32
, (11)

where the factor
√

2 is related to the degeneracy for axial channeling.
For the determination of the self-consistent field we need the evolution equation for the

single-particle density matrix ρij(pz, p
′
z) =< â+

j,p′
z
âi,pz >. From the Heisenberg equation

we obtain the following equations for the populations of ground and excited states:

∂ρ00(pz, p
′
z, t)

∂t
+
i

~
[E0(pz)− E0(p′z)] ρ00(pz, p

′
z, t) =

e

2~c
β⊥
[
A0ρ01(pz, p

′
z − ~k, t)e−iωt

+A0ρ10(pz − ~k, p′z, t)eiωt + A∗eρ01(pz, p
′
z + ~k′, t)e−iω′t + Aeρ10(pz + ~k′, p′z, t)eiω

′t
]
,

(12)
∂ρ11(pz, p

′
z, t)

∂t
+
i

~
[E1(pz)− E1(p′z] ρ11(pz, p

′
z, t) = − e

2~c
β⊥
[
A0ρ10(pz, p

′
z + ~k, t)eiωt

+Aeρ10(pz, p
′
z − ~k′, t)eiω′t + A0ρ01(pz + ~k, p′z, t)e−iωt + A∗eρ01(pz − ~k′, p′z, t)e−iω

′t
]
,

(13)
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and for the nondiagonal elements we have:

∂ρ01(pz, p
′
z, t)

∂t
+
i

~
[E0(pz)− E1(p′z)] ρ01(pz, p

′
z, t) = − e

2~c
β⊥
[
A0ρ00(pz, p

′
z + ~k)eiωt

−A0ρ11(pz − ~k, p′z)eiωt + Aeρ00(pz, p
′
z − ~k′)eiω′t − Aeρ11(pz + ~k′, p′z)eiω

′t
]
, (14)

ρ10(pz, p
′
z) = ρ∗01(p′z, pz). (15)

This set of equations should be supplemented by the Maxwell equation, which is reduced
to

∂Ae
∂t

+ c
∂Ae
∂z

= −κAe +
2ce

~ω′
β⊥e

−iω′t

∫
ρ01(pz, pz + ~k′)dpz. (16)

where κ is the linear damping coefficient. Equations (12)–(16) define the FEL dynamics
with the pump EM wave when one or two transverse degrees of freedom of the particles
are quantized.

We will assume that the pump laser field is not too strong (Rabi frequency is small
compared with the resonance detuning) and, consequently, the population of transverse
excited state remains small. The main terms responsible for the wave amplification in
this case are ρ00(pz, pz + ~k′ + ~k, t) and ρ01(pz, pz + ~k′). Hence, from the set of Eqs.
(12)–(15) in the first order by the fields, when

ρij(pz, p
′
z) = ρ

(0)
ij (pz, p

′
z) + ρ

(1)
ij (pz, p

′
z),

and keeping only the resonant terms we obtain the self-consistent set of equations which
determines the evolution and dynamics of the considered FEL:

∂J(z, t, pz)

∂t
+ v

∂J(z, t, pz)

∂z
− i∆c (pz) J(z, t, pz) =

e4β4
⊥A

2
0

8~3ω2c3δ2
AeN (pz) , (17)

∂Ae(z, t)

∂t
+ c

∂Ae(z, t)

∂z
= −κ′Ae(z, t) +

4πc

ω′

∫
J(pz, z, t)dpz, (18)

where N (pz) is defined via initial momentum distribution function F0 (pz):

N (pz) = F0 (pz)− F0 (pz − ~k′ − ~k) (19)

and represents population inversion in momentum space, and

J ≡ eβ⊥
2π~

ρ
(1)
01 (pz − ~k′ − ~k, pz − ~k).

For the initially cold electron beam with the density N0 and a mean momentum p:

F0 (pz) = N0δ(pz − p). (20)

In Eqs. (17) and (18)

∆c (pz) =
1

~
[E0(pz) + ~ω − E0(pz − ~k′ − ~k)− ~ω′] (21)

is the resonance detuning for the Compton scattering, δ = |ω + kv − Ω01| /ω – is the
relative resonant detuning of the pump wave coupling of the two transverse levels, and
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κ′ is the modified linear damping coefficient because of concurrent process of the wave
absorption by electrons.

By the Fourier transformation for slowly varying envelopes of the probe wave and
electric current density

Ae(z, t) =
1

2π

∞∫
−∞

A$(z)ei$td$, J(z, t, pz) =
1

2π

∞∫
−∞

J$(z, pz)e
i$td$, (22)

Eqs. (17) and (18) are reduced to the equations:

∂J$(z, pz)

∂z
− iΘ$ (pz) J$(z, pz) =

e2β4
⊥

8~c3v

(
mc2

~ω

)2
ξ2

0

δ2
A$(z)N (pz) , (23)

∂A$(z)

∂z
+

(
i
$

c
+

κ′

c

)
A$(z) =

4π

ω′

∫
J$(z, pz)dpz, (24)

where Θ$ (pz) = (∆c (pz)−$) /v and ξ0 = eA0/mc
2 is the relativistic invariant parameter

of the pump wave intensity. The solution of Eq. (23) can be written as:

J$(z, pz) = J$(0, pz)e
iΘ$(pz)z +

e2β4
⊥

8~c3v

(
mc2

~ω

)2
ξ2

0

δ2

z∫
0

eiΘ$(pz)(z−z′)A$(z′)N (pz) dz
′.

(25)
Here it is assumed that

J$(0, pz) = J$δ(pz − p), (26)

where J$ characterizes the shot noise in the electron beam or modulation depth for the
initially modulated beam. Substituting Eq. (25) into Eq. (24), for the initial cold electron
beam (20) we obtain an integro-differential equation for the phase transformed amplitude

Ã$(z) = A$(z)e−iΘ$(p)z of the amplifying wave field:

∂Ã$(z)

∂z
−
(
i

(
1− v

c

)
$

v
− κ′

c

)
Ã$(z) =

4π

ω′
J$

+ i
2πe2β4

⊥
~c3v2γ

mc2

~ω
ξ2

0

δ2
N0

z∫
0

(z − z′) Ã$(z′)dz′, (27)

Without an initial seed the solution of Eq.(27) is given as:

Ã$(z) = −i 2

ω′

∮
J$ηe

ηz

(η − η1) (η − η2) (η − η3)
dη, (28)

where η1,2,3 are the solutions of the characteristic equation

η3 −
(
i

(
1− v

c

)
$

v
− κ′

c

)
$

v
η2 = i

2πe2β4
⊥

~c3v2γ

mc2

~ω
ξ2

0

δ2
N0. (29)

The average spectral power is defined as:

dP$(x)

d$
=

Seω
′2

8π2cτe

〈∣∣∣Ã$−ω′(x)
∣∣∣2〉 , (30)
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where Se and τe are the electron beam cross-sectional area and pulse duration, respectively.
Hence, from Eqs. (28)–(30) for the average spectral intensity we have:

dP$(x)

d$
=
Se

〈∣∣J$−ω′
∣∣2〉

6cτeG2
exp

[
−($ − ω′)2

2∆2(x)

]
e2Gx, (31)

where

G =

√
3

2

[
2πe2β4

⊥
~c3v2γ

mc2

~ω
ξ2

0

δ2
N0

]1/3

(32)

is the exponential growth rate in high gain regime [6]. In Eq. (31) it was assumed that
G >> κ′/c (high gain regime). The spectral width in the SASE regime is defined as
follows:

∆(x) =

√
3G

x

v

1− v
c

. (33)

The shot noise power in the SASE regime can be calculated as in case of Compton

FEL [13]. In considering case of X-ray laser on the channeled electrons, we will have:〈∣∣J$∣∣2〉 =
e2N0β

4
⊥

4c3Se

(
mc2

~ω

)2
ξ2

0

δ2
τe, (34)

and with the help of Eq. (31) for the average spectral intensity of the semiclassical X-ray
SASE amplifier on the channeled electron beam we obtain the following final formula:

dP$(x)

d$
=
e2N0

24G2

β4
⊥
c4

(
mc2

~ω

)2
ξ2

0

δ2
exp

[
−($ − ω′)2

2∆2(x)

]
e2Gx. (35)

Comparing Eq. (35) with the SASE power of Compton FEL it is easy to see that for the
same pump wave and electron beam parameters in case of the channeled electron beam

the start-up intensity and the gain are enhanced by factor η = (β2
⊥E0/c

2δ~ω)
2/3

>> 1.
For the fundamental transitions of electrons in the monocrystals at the planar and

axial channeling β⊥/c ∼ 10−3 and the resonance can be achieved by optical pump lasers:
~ω ' ~Ω/2 ∼ 2 eV. In this case the wave lengths of amplifying radiation for mildly
relativistic electron beams (γ ∼ 10÷30) are: λ ∼ 10÷1 A. The enhancement factor η for
resonance detuning δ ∼ 10−2 (which is defined by the dechanneling effects) will be 100.
In this aspect the scheme of X-ray laser on the ion beams will have rather high yields due
to the incomparably small resonance width.

This work was supported by International Science and Technology Center (ISTC)
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