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Abstract. Basic assumptions of the semi-classical INC model are "revisited" in order to examine their 
applicability limits at low energies. The various implementations of the INC model in use in transport codes are  
described. 

 

1. Introduction 

The recent activities in production of Rare Isotope Beams 
and Spallation Sources led to revival of interest in reliable, 

predictive, simulation of collisions of hadron-nucleus and 

nucleus-nucleus in the energy range of few tens MeV to few 

GeV per particle to be embedded in transport codes (e.g. 

MCNPX, GEANT). Owing to the complexity of the 

quantum-mechanical many-body problems, the processes are 

often approximately described by Intra-Nuclear Cascade 

(INC) models followed by de-excitation (sometime two-step) 

models. INC reproduces successfully wide variety of 

experimental data of hadron induced reactions, using a small 

number of adjustable parameters, most with clear physical 

meaning. INC models have been embedded in the MCNPX 
transport code, filling the high-energy gap in existing 

experimental cross-section libraries, which are limited to 

incident energies of 150 MeV or, for some isotopes, 20MeV. 

For calculations of residua there is a need to use models 

already above 20MeV. Understanding of the limitations of 

INC at low energies is important for evaluation of reliability 

of transport calculations used in wide variety of applications. 

The INC models treat the interaction of incoming projectile 

with the nucleus as a series of independent collisions using 
on-mass-shell free particle-nucleon cross sections. For 

energies <~2-3 Gev pion production and absorption modes 

are included in via the 3,3  resonance (pion-nucleon isobar) 
formation in nucleon-nucleon scattering  

.3,3

33,321

N

NNN






            

The colliding particles are treated as classical point-like 

objects moving between collisions on well defined 

trajectories in the target potential well. The collision 

processes are treated as classical, energy and momentum 

conserving, scatterings. Collisions violating the Pauli 

Principle are not allowed – this is the single significant 

“quantum” property of the model. 

2. Basic assumptions of INC   

In order to determine the applicability of the INC models at 

low energies we shall “revisit” their basic assumptions [1-3]: 

The reactions are “deep inelastic” - the energy transferred 

into internal energy of the target is large in comparison with 

the binding energy of nucleons in the target - the many body 
scattering can be approximately formulated in terms of on-

shell single-particle scattering probabilities. 

The “reduced” de Broglie wavelength, , is much smaller 
than the inter-nucleon distance, d. In language of quantum 

mechanics [4] - the wave-packets representing the particles 

have good enough definition of position, energy and 

momentum to be followed on classical trajectories. 

 is much smaller than the mean-free-path between 

collisions,  - the scattered wave reaches approximately its 
asymptotic value before the next scattering, classical 

treatment of scattering becomes reasonable. 

The radius of the target nucleus, R, is large with respect to . 
There will be many scatterings inside the nucleus and the 

interference terms between different scattered waves will 
tend to cancel out. 

 is larger than d, and the time between interactions, Δt, is 
much longer than the time of an interaction, T - the scattering 

from different nucleons in the nucleus can be assumed to be 

approximately independent of each other 

Summarizing, we have: 

<<d<<R                             (4a) 

/βc > T  10-23 sec   =>  /3β > 1 fm      (4b) 

Fig. 1 shows the behaviour of the relevant quantities for 

proton on 208Pb reaction as a function of incident proton 

energy, E. Calculating  we took into account that proton 

entering the nucleus gains 40 MeV kinetic energy. 

                        
22)40(/ pmE   ,               (5) 

where mp is the proton mass. The mean free path, , was 
calculated using the Isabel INC code [5] (which includes the 
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Pauli Principle) for central collisions: 

                        )/(/2 tottransp NNLnR ,                (6) 

where R=6.63 fm, Ntransp is the number of  “transparencies” 

(events when the proton traversed the diameter of the nucleus 

without interacting) and Ntot is the total number of events. 

For comparison also shown is 1/ρσ, with ρ=.16 fm-3 being the 

central nucleon density and σ the average proton-nucleon 

cross section (in fm2). This is an estimate of the mean-free-

path without the Pauli Principle effect. 

Fig. 1. Central collision proton on 208Pb:, , ξ=//10, 1/ρσ 

and /3 as a function of incident proton energy.  

The effect of Pauli Principle is very important. It is 

especially pronounced at Einc < 40 MeV causing  to rise 
even though the nucleon-nucleon cross section is strongly 

increasing. In collisions of high energy particle with the 

Fermi Sea, the momentum transfer is small, and Pauli 

Principle limits the interaction to small fraction of the Fermi 

Sea close to its surface, thus increasing the mean free path.  

From eq. (4a) with d2 fm, requiring, very conservatively, 

that d,>5, INC is applicable only for Einc>60 MeV. 

Requiring d,>10, moves the applicability of INC to 
Einc>200 MeV. No additional restrictions follow from. (4b).  

Most of the collisions are not central. Isabel calculations 

show that in the energies of few tens to few hundreds MeV 

about 60% of the collisions leading to inelastic reactions 

occur at impact parameters at which the nuclear density is 

less than a half of the central density. However, in the region 

of low nuclear density the degenerate Fermi gas potential is 
low, so the particle gains less kinetic energy entering the 

nucleus. 50 MeV proton has =0.6 fm and can not be 

“localized” on nuclear periphery. On the other hand, proton 

of 250 MeV has =0.25 fm and starts to be sensitive to the 
details of nuclear surface. Still, the lower density of the 

surface extends the applicability range of INC to lower 

energies. 

It is clear that the applicability range of INC depends 

strongly on the specific reaction property to be calculated 

and the desired accuracy. 

Thus, considering the total nucleon yields from nucleon 

induced reactions one may use INC starting from just a few 

tens of MeV. Using the original Serber’s arguments [1], the 

incident particle will loose in each collision 10-20 MeV. 

Particle with energies of  <30 MeV will be absorbed in the 
target nucleus (their probability to interact with the target 

nucleons is large, and they will  “thermalize”) unless they are 

on far periphery of the nucleus. The ”thermalized” by INC 

nucleus has the right excitation energy and momentum (since 

INC conserves energy and momentum) and may be properly 

treated by the de-excitation models. In the peripheral 

collisions the number of emitted particles is expected to be 

correct in the low energy regime, being determined by 

energy conservation and the ability of particles to escape the 
nucleus. 

INC may be justified for low energies (Einc >50 MeV) 
considering reactions which take place primarily on nuclear 

periphery (e.g. “quasi-elastic”, “low multiplicity”). Here, 

however, the results may strongly depend on the target 

periphery modelling. We may expect discrepancies, 

especially when looking in forward direction, due to 

violation of assumption IV. For  “quasi elastic” reactions we 

may expect distortion of  forward angle cross sections due to 

interference with the elastic channel, which is not accounted 

for in INC. 

Considering “violent” (high multiplicity, high excitation 

energy) events, which involve the inner parts of the target 

nucleus the reliability of INC is expected to degrade for 

energies below 100-200MeV, though it may be used, with 

caution, according to the original Serber’s argument. [1].       

Until now we have considered the energy limitations on the 

incident particle. However, an energetic projectile will give 
little momentum transfer to its Fermi Sea collision partners, 

and create low energy “participants”.  Inside the nucleus 

those should be “absorbed” contributing their energy to the 

excitation of the “remnant” target, on nuclear periphery they 

may some chance to escape. The target periphery is modelled 

in all the INC implementations, but each has a different way 

to deal with the low energy “participants” chosen 

considering agreement with the experimental data rather than 

from basic physical considerations.  

High energy cluster (, d, 3He…) production is out of the 
scope of INC models. In order to calculate those “extra 
prescriptions” are used. In the “coalescence” model [12,13] 

the vicinity (configuration, momentum or phase space) of 

escaping particle is searched for potential particles to share 

its energy and form a cluster. An alternative “kick-out” 

process [2] assumes existence of “virtual” clusters in the 

nucleus which elastically scatter with the cascading particles 

and then, taking into account their survival probability, 

escape the nucleus.    
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3. Implementations of INC   

The variety of INC implementations involves Monte Carlo 

(MC) sampling methods [14] and may be divided into three 

classes: “Space-Like MC” (e.g. refs. [2, 3, 6-8]), “Time-Like 

MC” (e.g. refs. [5, 9]) and “Nucleon Dynamics” (refs. [10, 

11]). A brief description of the three approaches is given 
emphasizing the treatment of the low-energy “participants”.  

3.1. Space-Like and Time-Like MC  

The target nucleus density distribution is represented by a 

continuous distribution, e.g. Fermi distribution: 

]/)exp(1/[)( 0 acrr    ,      (8) 

A step–function distribution is used to approximate the 

nuclear charge distribution. The nucleus is divided into 

several (usually 8 or 16) concentric regions, each of constant 

density.  The ratio of proton to neutron density is assumed to 

be Z/(A-Z) in all the regions. 

The nucleon distribution in the target is assumed to be that of 

a degenerate Fermi gas in a potential well.  

3/222 )3)(2/( iF mE
i

 ,  (9) 

where the subscript i  stands for either protons or neutrons, m 

is the nucleon mass, and i is the density of protons and 
neutrons, respectively. 

Due to the variation of the Fermi energy, the nuclear 

potentials of the protons and neutrons differ in the various 

density regions. Conservation of energy and momentum 

requires that the kinetic energy of the particles and their 

direction change as they cross density region boundary 

(refraction). If the impact angle at the region boundary is 

greater that the critical angle the particle is reflected. The 

Coulomb interactions between the target nucleus and the 
incident or emitted charged particle should be considered.  

 

Consider a single bombarding particle entering the target 

nucleus. The Lorentz invariant probability per unit path 

length of the particle to interact with the nucleons of the 

nucleus is: 
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where v1 is the laboratory velocity of the bombarding 

particle, 12 , v12  are the cross section and relative velocity 
of the incident particle and the particles with momentum p2  

and density 2 . The mean free path of the bombarding 

particle is  and the probability of the particle to interact at 
the distance between a and a+da is given by: 

 QdaeadP Qa)(int       (11) 

The calculation may now proceed in two ways: 

In “Space-Like MC” method (e.g. refs. [2, 3, 6-8]) the 

collision site is determined by a correlation between a 

random number and the probability to interact at a distance 

between a and a+a obtained by partial integration of Eq. 
(11). The collision partner is chosen from the distribution 

given by Eq. (10). The types of the particles after the 

collision (“participants”)  are chosen by isospin and 

branching ratio considerations, and their momenta chosen 

using relativistic kinematics. The collision is allowed only if 

the outgoing particles obey Pauli principle. 

After the first interaction, one of the “participants” is 
followed and its possible next collision site is determined 

again by integration of Eq. (11). The process continues until 

the particle “dies” - leaves the target nucleus or its energy 

falls below certain “energy-cutoff”. The other “participants” 

are then treated in the same way, one after another. 

The process ends when all the “participants” die. The 

particles leaving the target contribute to the high energy part 

of the spectrum, whereas the particles which fall below 

“energy cutoff” and the holes in the Fermi sea form the 

excitation energy of the residual target. 

The “energy cutoff” is generally chosen close to EF+EB for 

neutrons and EF+EB+EC for protons, EF, EB, EC being 

respectively Fermi, binding and Coulomb barrier energies. 

The reason for the “energy cut-off” is that the low energy 

particles are not fulfilling eq. (4a) and should be taken care 

of by the de-excitation models. 

In “Time-Like MC” (e.g. refs. [5, 9]) a convenient method 
of calculation is to divide the Fermi sphere of momentum 

into n parts of equal volume and calculate the mean cross 

section, 1,2i, and the mean velocity, v1,2i, for each 
subvolume. If Q is calculated in the rest system of the 

nucleus, the momentum distribution is the “undistorted” 

Fermi gas distribution for each subvolume 
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The probability that a collision takes place in a time interval 

=a/v1 is calculated by integrating Eq. (11) 
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Each term of the product of the right hand side of Eq. (12) is 
formally equivalent to the probability of no collision between 

the incident particle and a beam of particles of momentum pi 

and density  occurring in a time interval /n. In other words, 
the probability of collision of a “participant” in the time 

interval a may be calculated by dividing the interval  into n 

equal parts and calculating for each interval =/n the 
probability of collision between the cascade particle and a 

hypothetical nucleon gas having a density  and nucleon 
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momentum pi. For each interval  a different momentum pi 
is chosen out of the undistorted momentum distribution in a 

completely arbitrary sequence. A test is made to see if the 

collision occurs in that step by the comparison of a random 

number to the quantity 





ii
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      (14) 

The initial τ is chosen to be /νn, ν being the incident 

particle laboratory velocity,   is calculated for nucleon 
density in the centre of the nucleus using the total cross 

sections of the incoming particle with a stationary protons 
and neutrons  and n=20-30.   

Like in Space-Like MC the interaction between the incoming 

particle and a partner from the Fermi sea occurs the types of 

the particles after the collision, “participants”, are chosen by 

isospin and branching ratio considerations, and their 

momenta chosen using relativistic kinematics. The collision 

is allowed only if the outgoing particles obey Pauli principle. 

Then, the time interval is updated and the cascading for each 

of the “participants” continues in the next time interval.  

Like in the Space-Like MC, cascade process stops when all 

the “participants” leave the target volume or fall below a 

certain “energy cut-off”. 

In “Space-Like MC” first the incoming particle is followed, 

then each of the particles with which the incoming particle 

had interacted, are calculated one after another. On the other 
hand, in “Time-Like MC” at first only the incoming particle 

is followed, but, after the first allowed interaction, both the 

incoming particle and its collision partner are followed in 

each time interval, and with each allowed interaction the 

number of particles to be followed in the subsequent interval 

increases. The advantage of the Time-Like MC method is 

that it makes it possible to take into account effects of 

correlation between two close cascade particles and to 

consider local changes in nuclear density (and, possibly, 

nuclear potential) due to previous interactions. 

The Time-Like MC code ISABEL [5] takes into account the 

depletion of the density in the Fermi sea as the cascade 

develops. Since the detailed nature of the density 

rearrangement is unknown, two extreme prescriptions are 

applied: 

Fast rearrangement. After each collision with a target 

partner, the density distribution i of the “partner type” in the 
target is instantaneously and uniformly reduced for the whole 

nucleus. In addition “distance restriction” is usually applied – 

any given particle is not allowed to interact within a distance 

smaller than some rmin,i from its last interaction.  

Slow rearrangement. After each collision a hole of radius 

rmin is punched in the density distribution configuration 

space around the position of the interaction. No more 

interactions are allowed in this hole. The holes may be either 

isospin dependant or isospin independent, i.e. we may punch 

them for protons and neutrons independently, with possibly 

different radia. 

The depletion of the Fermi seas affects the Pauli blocking. 

Two options for dealing with Pauli blocking are included in 

ISABEL [5]: 

Full Pauli blocking – After each interaction cascade 

nucleons are tested for Pauli principle violation. If cascade 

nucleon energy is lower than the target Fermi energy - the 

interaction is forbidden. 

Partial Pauli blocking – After each interaction proton and 
neutron Fermi sea depletion factors (ratio of actual to 

original number of particles in the Fermi sea) are calculated. 

If the energy of a cascade proton (neutron) generated in an 

interaction is lower than the Fermi energy, a random number 

is compared to the corresponding depletion factor, and only 

if it is smaller – the reaction is forbidden. Intuitively, as we 

deplete the Fermi sea, cascade particle are allowed to fill the 

“empty” states below the Fermi energy.  

3.2. Nucleon Dynamics 

In the Nucleon Dynamics implementation of INC (refs. [10, 

11]), the target nucleus consists of discrete nucleons 

distributed following Fermi density distribution and 

degenerate Fermi gas momentum distributions in a potential 

well. The incident particle and target constituents are moving 

on classical trajectories in the potential well and scatter 

whenever their relative distance is less than ((Ecm)/), 

(Ecm) being the free space cross section and Ecm their centre 

of mass energy. Pauli principle violation is not permitted. 
Particles may reflect of the potential well walls or reaching 

the surface with high enough energy escape the target. 

In this approach there is a need to set a restriction on the 

interaction range or, equivalently, Ecm
min - limiting value of 

Ecm, below which particles do not scatter. This ensures that 

low energy particles reaching (or created at) target periphery 

will be able to escape rather than interact with nuclear 

interior. Ecm
min of 1925 MeV corresponding to relative lab 

energy of 100 MeV (range restriction of 1.3 fm) gives 
generally good results. It is in line with requirements III,V of 

chapter 2. The physical argument behind it is that the long 

range (or small momentum transfer) interactions are 
accounted for by the average nuclear potential.   

 The process stops at a time when properties of the reaction 

“stabilize” [10] or, alternatively, when all the “participants” 

left in the target are below certain “energy cut-off” (similar 

to that used in the Time-Like MC approach).  

4. Examples 

In the following examples the “Time-Like Basis Cascading”   

is represented by the code Isabel [5] and the “Nucleon 

Dynamics” by INCL4.4 [15]. Both are appended with the 

ABLA de-excitation code [16].  



5 Y. Yariv: Intra-nuclear cascade model  

Fig. 2. Neutron double differential cross section for 

p(208Pb,nX) reaction  at 1.2 GeV.  

Fig. 2 shows an example of results INC approach at high 

energies. Here INCL and Isabel give generally very similar 

results, and the double differential cross sections are well 
reproduced. As expected, the biggest discrepancy appears at 

energies of few tens MeV. This discrepancy grows toward 

backward angles, where the contribution of scattering of a 

particle of a massive “collective object” is contributing. 

 

 

Fig. 3. Proton d/dE for (a) n(208Pb,pX) at 96 MeV, 
 (b) n(209Bi,pX) at 63 MeV. 

Fig. 3 shows that for projectiles of incident energy in the 

range of 50-100 MeV the deviation between the models and 
experimental cross sections may reach factors of  2-5.  

The calculations are very sensitive to details, such as the 

momentum distribution of target nucleons on the border of 

the target, implementation of the Pauli principle and energy 

cut-offs.  

 The difference between the models reflects the different 

method to treat the low energy interactions.  At low energies 

INCL gives generally higher d/dE than Isabel. This is 

probably due to the  cmEmin cut in INCL allowing the low 

energy particles   to escape. These particles are captured in 

Isabel. Considering d/ddE  in Fig.4: at forward angles, 
sensitive to the peripheral scattering, Isabel is closer to 

experiment, INCL being too high probably due to the 
cmEmin cut; at backward direction Isabel is underestimating the 

flux probably due to its extra absorption or lack of 

contribution of scattering of   massive “collective object”.  

It should be mentioned that neither INCL nor Isabel include 

“refraction”, which was “discredited” for high energy 
calculations [2,9], but may improve the results for low 

energies (or even at high energies when using an energy 

dependent potential [20]).  
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