International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators
|
|
SM/EB-23
Cost Assessment of e-Beam Wastewater Treatment B. Han, J.K. Kim, and Y. Kim EB TECH Co. Ltd, Daejeon, Republic of Korea Corresponding Author: bshan@eb-tech.com Electron beam treatment of wastewater leads to purification by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom. Sometimes such reactions are accompanied by the other processes, and the synergistic effect upon the use of combined methods such as electron beam with biological treatment, adsorption and others improves the effect of electron beam treatment of the wastewater purification. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. The key to the successful implementation of electron beam process in environmental protection depends on how to manage the economics in its application. To compete with other processes in economic evaluation, the electron beam system should be operated with cost-effective manners. To result in complete decomposition of the pollutants, sufficiently high absorbed doses are required. However, in real conditions of rather high content of pollutants in wastewater, high absorbed doses are not economically acceptable, and it is better to utilize the partial decomposition of pollutant as well as transformations of pollutant molecules that result in improving subsequent purification stages. To apply electron beam process to the treatment of industrial wastewater and disinfection of effluent from municipal wastewater plant, we accomplished the cost assessment together with the laboratory irradiation experiments. Cost assessments of industrial e-beam treatment plant for treating textile dyeing wastewater were carried out for the treatment capacity of 10 000 m3 per day. The total construction cost for this plant was USD 4M and the operation cost was not more than USD 1M per year and it was about USD 0.3 per each m3 of wastewater. Another study on the disinfection plant designed for the flow rate of 100 000 m3 effluent per day showed the overall cost for plant construction as approximately USD 4M, and the operation cost as around USD 1M per year. It is approximately USD 0.12/m3 for construction and USD 0.03/m3/yr for operation of above plant, and is quite applicable when compared to other advanced oxidation techniques such as Ozonation, UV techniques etc.
|