Steps towards a large-scale I&C modernization at the Paks NPP to support the planned plant service time extension

T. Túri, B. Katics, J. Végh, E. Holló, I. Varga

e-mail: vej@sunserv.kfki.hu

IAEA - Second International Symposium on Nuclear Power Plant Life Management (PLiM)
Shanghai, China, 15-18 October, 2007
Presentation overview

- Introduction to Paks NPP
- Completed modernization projects: RPS, plant computers, radiation monitoring
- I&C modifications for power uprating: core monitoring, pressure control
- Preparations to replace traditional I&C
- Scope, schedule of I&C reconstruction
Paks NPP in brief

- Four VVER-440/213 units (1982-1987)
- Present total capacity = 1890 MWe
- Production in 2006 = 13.5 TWh (≈37.6%)
- Safety enhancements (1996-2002)
- Power uprating to 108% (2006-2009)
- Plant service time extension (30 ⇒ 50 y)
Safety system refurbishment

- Motivation and functional improvements:
 - Compliance with requirements (single-failure, fault tolerance, fail-safe features, seismic qualification)
 - Higher level of automation, less operator actions
 - Full-scope diversity, testability and self-diagnostics

- Full reconstruction between 1999-2002
- Result: triple-redundant, fully digital RPS
- Tools: Teleperm XS, Space, ProfiSim
- Extensive use of simulator for V&V tests
Architecture of the new safety system
Hungarian Academy of Sciences
KFKI Atomic Energy Research Institute

Animated RPS logic diagram as displayed in the window of the ProfiSim tool
Process computer system (PCS) I.

- **Most important Paks PCS functions:**
 - Data acquisition from the technology (+ RPS GW)
 - Signal processing & display, data storage
 - Serving other plant systems with processed data
 - No active control functions, only monitoring

- **Full reconstruction between 1998-2003**
- **Parallel work with RPS modernization**
- **Unit 1-4, simulator + Plant Info Centre**
- **New items: CSF monitoring + EOP display**
Process computer system (PCS) II.

- **Architecture of the unified PCS:**
 - Redundant 100 Mbps network (Fast Ethernet)
 - Redundant Scada servers, distributed processing
 - Supervisor syst. (self-diagnostics + reconfiguration)
 - Unified HMI for the CR operators and O&M personnel
 - HTML-based (WEB) services for external PCS users

- **Unified hardware and software tools:**
 - Professional, PC-compatible servers (rack mounted)
 - Win-NT 4.0, iFIX Scada shell, MS SQL Server 2000
 - Multi-level access control and data protection
Hungarian Academy of Sciences
KFKI Atomic Energy Research Institute

Architecture of the new process computer at Unit 1
Main display format of the new PCS
Hungarian Academy of Sciences
KFKI Atomic Energy Research Institute

Paks NPP I&C modernization
Radiation monitoring systems

- **1st step: environmental monitoring system**
 - Full system reconstruction between 2000-2004
 - 9 monitoring stations (γ, aerosol, noble gas, iodine) renewed + 11 new γ monitoring stations installed
 - 3 water monitoring posts + 2 ventilation stacks
 - Industrial field network + central Scada processing

- **2nd step: internal radiation monitoring**
 - Full system reconstruction between 2006-2010
 - New dosimetry control room with large display panel
 - Scada components with limited soft-control
Power uprating project

- **Most important plant modifications:**
 - New fuel (3.82% enrichment, profiled, 12.3 mm lattice pitch)
 - Decreased hydroaccumulator pressure (59 → 35 bar)
 - New, more stable primary pressure control
 - New HP turbine inlet nozzle, modified turbine control
 - Replacement of high-pressure preheaters
 - Several minor enhancements on the secondary side
 - Modernized generator cooling
 - New, reconstructed core monitoring system
VERONA core surveillance system

- **Main objectives and improvements**
 - Increase system capacity to support power uprating
 - Replacement of the obsolete hardware and network
 - Full SW modernization and porting to Windows
 - New, more accurate reactor physics calculations
 - Integration of the standard Paks core design code
 - Modernization of the human-machine interface
 - Modern SW tools: SQL, OPC, Scada-based HMI

- **Full reconstruction between 2005-2008**
- **Status:** U1,3,4 + simulator = O.K. U2 = **2008**
Architecture of the new VERONA system

Operative displays (iFix View Client)
Remote displays (Remote Desktop Connection)

RPH1 server
RPH2 server

VDP1 server
VDP2 server

EXD server (iFix Client + Terminal Services)

VERONA Expert System

Fast Ethernet network

Paks NPP I&C modernization

Hungarian Academy of Sciences
KFKI Atomic Energy Research Institute
Hungarian Academy of Sciences
KFKI Atomic Energy Research Institute

Main display format of the new system
History of reaching first 104% then 108% power at Unit 4 (2006)

Paks NPP I&C modernization
Primary pressure controller

- Problems with old controller:
 - Insufficient long-term stability
 - Rough discrete characteristics for heaters and spray
 - Power uprating required a more precise control

- Solution = installation of a new controller:
 - Built from functionally + spatially distributed PLCs
 - Industrial Ethernet for communication + field buses
 - Continuous analogue control (122.75-123.25 bar)
 - Highly stable primary pressure control ensured
Scheme of the new pressure controller
Characteristic of the new controller

Paks NPP I&C modernization
Comparison of the behaviour of the old and new pressure controllers
Present I&C situation

- **Safety I&C systems:**
 - Fully reconstructed, present state is satisfactory

- **Traditional (non-safety) I&C systems:**
 - Approaching their expected service time
 - Modernization is needed for service time extension

- **Plant information & supervision systems:**
 - Most of them was (or will be) reconstructed
 - Their present state is (or will be) satisfactory
Preparations and studies

- Development of the I&C functional model
 - Definition of appropriate I&C functional groups
 - Elaboration of a formal methodology to describe I&C
 - Development of a plant I&C database (U1 completed)

- I&C pilot project = “tasting the pudding”
 - Complete re-engineering of a system (make-up wtr)
 - Testing “the I&C engineer is the programmer” idea
 - Using, testing various tools (ProfiSim, Space etc.)
 - Selection of the final design and implementation approach and applicable tools
Scope and schedule of the I&C works

- Paks-specific guide (based on IEC TR 62096)
- Major steps identified for the Paks case:
 - Establishment of the I&C project framework
 - Preparative activity (e.g. requirements specification)
 - Design phase
 - Manufacturing phase
 - Installation phase

- Proposed time schedule
 - Preparations and project launch: between 2007-2011
 - Site installations at the units: between 2012-2015