Vibration Assessment Method and Engineering Applications to Small Bore Piping in Nuclear Power Plant

Fei Xue, Lei Lin, Wenxin Ti, Nianwen Lu

Second International Symposium on Nuclear Power Plant Life Management
Shanghai, 2007
Contents

- Introduction of SNPI
- Piping Vibration Assessment Method and Engineering Applications to Small Bore Piping in Nuclear Power Plant
Introduction of SNPI
Structure of SNPI
Major Research Fields

Main Research Fields

- Aging and Life Study of Plant Component
- Equipment Manufacturing QC Surveillance
- Nuclear Safety Review and Surveillance
- Environment Impact Assessment
- NPP Site Selection and Evaluation
- Non-Destructive Evaluation (PSI/ISI)
- Plant I&C Engineering and Development
- Plant Thermal Engineering and Chemistry
- Plant Welding and Maintenance
Laboratory (Metallic Aging)

Aging Laboratory

- Raw Material Performance
- Material Fatigue Performance
- Material Corrosion Performance
- Material Erosion Performance

Examination Facility

Fatigue Crack Growth Measurement System
Plant Ageing and Life Study

- Metallic equipments, for example
 - RPV
 - SG
 - Primary loop pump
 - Pressurizer
 - RVI
 -

- Metallic pipes, for example
 - Primary loop pipe
 - Auxiliary pipe of Primary loop pipe
 - Main feedwater pipe
 - Small bore line
 -

- Aging mechanisms
 - Thermal Aging Embrittlement
 - Thermal Fatigue
 - Vibratory Fatigue
 - FAC (Flow Accelerated Corrosion)
 - Irradiation Embrittlement
 - SCC
 -

SNPI — Suzhou Nuclear Power Research Institute
Piping Vibration Assessment Method and Engineering Applications to Small Bore Piping in Nuclear Power Plant
Project Background

- **Vibratory Fatigue Phenomena:**
 - 1991, leak from two small branch tube socket welds in unit 2 of Safety Injection system in Belleville Nuclear Power Plant, which leads to concern of small bore pipe vibratory fatigue.
 - Small bore pipe vibratory fatigue cracks also found in other NPPs in the world.
 - Since 1993, more than 11 vibratory fatigue cracks were found in Daya Bay and LingAo Nuclear Power Plants.
Project Background

- Period safety review requirement
 - In the first 10 years safety review of Daya Bay Nuclear Power Plant, vibration assessment for small bore pipes was required as one of the ‘special project’.
 - 2004, vibration assessment for NI small bore pipes was performed.
 - 2005, SNPI began the vibration assessment for CI small bore pipes of Daya Bay, unit 1. (Finished)
 - 2006~2007, vibration assessment for CI small bore pipes of Daya Bay, unit 2 were finished.
Cause of small bore pipe vibratory fatigue

- **Failure mode** ---- Low stress, high cycle fatigue.
- **Excitation mode** ----
 - Pressure pulsation, cavitation, flashing caused by pump;
 - Socket welds ---- the geometry size, discontinuity, and residual stress;
 - Design error ---- Inappropriate supports lead to resonant of piping system;
Assessment criterion

- Vibration monitoring and assessment criterion:

 - ASME OM-S/G part 3-2000

 - VMG3: Evaluated by visual inspection

 - VMG2: Evaluated by peak velocity and displacement

 - VMG1: Evaluated by vibratory stress

 - EDF method (Sébastien Caillaud, Didier Briand, 2003)

 - Effective velocity assessment method
Peak Velocity criterion

- Peak velocity (Vp) assessment method – ASME OM part 3

\[V_{allow} = \frac{\alpha C_1 C_4}{C_3 C_5} \frac{0.8 \sigma_{al}}{C_2 K_2} \]

- Screening value: Vps=12.7mm/s
- If Vt>12.7mm/s, the allowable peak velocity Vpa should be calculated using the above equation.
- If Vt>Vpa, the vibration stress should be tested and compared with the allowable stress.
- Monitoring program or modification measures been performed.
Effective velocity criterion

- Effective velocity (Ve) assessment method – EDF

\[V_{\text{rms}} = \frac{C_1 C_4}{C_0 C_3} \times \frac{\lambda}{C_2 K_2} \times 0.8S_A (mm/s) \]

- Screening value: Ves = 12 mm/s
- If Vt > 12 mm/s, the allowable effective velocity Vea should be calculated using the above equation.
- If Vt > Vea, the vibration stress should be tested and compared with the allowable stress.
- Monitoring programme or modification measures been performed.
Application of velocity assessment method

- Assessment programme:
 → ASME OM Part 3
- Assessment criteria:
 → Effective velocity criteria
- Target:
 → Daya Bay Nuclear Power Plant, CI of unit 1
- Condition:
 → Performed during the operating time.
- Material:
 → Carbon steel; Stainless steel
Application of velocity assessment method

- Vibration testing system:
 - Wavebook 512 data acquisition system
 - B&W accelerators
 - TS7350 filter (Yangzhou Taisi)
 - Low noise cable
 - PCB charge amplifier
 - Analysis software: DasyLab5.6
Application of velocity assessment method
Signal Processing Module
Evaluation results

Table 1: Assessment procedure for 2100 small bore pipes

<table>
<thead>
<tr>
<th>Project name</th>
<th>Pipe numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of small bore pipes</td>
<td>2100</td>
</tr>
<tr>
<td>Concerned pipes-by functional analysis</td>
<td>926</td>
</tr>
<tr>
<td>Pipes needing vibration measurement</td>
<td>326</td>
</tr>
<tr>
<td>Pipes having peak velocity over 12.7 mm/s</td>
<td>67</td>
</tr>
<tr>
<td>Pipes having effective velocity over 12 mm/s</td>
<td>15</td>
</tr>
<tr>
<td>Pipes having effective velocity over allowable value</td>
<td>8</td>
</tr>
</tbody>
</table>
Evaluation results

Table 2.8: Small bore pipes having effective velocities over allowable values

<table>
<thead>
<tr>
<th>Number Of Piping</th>
<th>Functional role</th>
<th>V_{rms} (mm/s)</th>
<th>$V_{rms\ allow}$ (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE01</td>
<td>DRAIN-TO-LIQUID-WASTE-COLLECTION-SYSTEM</td>
<td>50.37</td>
<td>4.96</td>
</tr>
<tr>
<td>PIPE02</td>
<td>DRAIN-TO-LIQUID-WASTE-COLLECTION-SYSTEM</td>
<td>38.11</td>
<td>27.52</td>
</tr>
<tr>
<td>PIPE03</td>
<td>DRAIN-TO-LIQUID-WASTE-COLLECTION-SYSTEM</td>
<td>55.46</td>
<td>25.01</td>
</tr>
<tr>
<td>PIPE04</td>
<td>DRAIN-TO-LIQUID-WASTE-COLLECTION-SYSTEM</td>
<td>16.9</td>
<td>13.34</td>
</tr>
<tr>
<td>PIPE05</td>
<td>MAIN-STEAM-TO-FEED-WATER-PUMP-TURBINE</td>
<td>23.71</td>
<td>9.23</td>
</tr>
<tr>
<td>PIPE06</td>
<td>DRAIN-TO-TURBINE-BYPASS-SYSTEM</td>
<td>18.74</td>
<td>13.74</td>
</tr>
<tr>
<td>PIPE07</td>
<td>DRAIN-TO-TURBINE-BYPASS-SYSTEM</td>
<td>14.85</td>
<td>12.61</td>
</tr>
<tr>
<td>PIPE08</td>
<td>SITE-DISPLAY-AND-MAIN-CONTROL-RECORD</td>
<td>22.28</td>
<td>18.19</td>
</tr>
</tbody>
</table>

- 25% pipes have allowable effective velocities lower than the screening value (12mm/s)
Conclusion

- Peak velocity criterion is more conservative than effective velocity criterion.
- Considering the numerical integral error and stead state vibration condition, effective velocity is more representative than peak velocity for stead state vibration.
- Effective velocity criterion is not conservative for all pipes. Important pipes with high level vibration may be missed during the screening process.
Future Work

- Dynamic stress measurement and assessment;
- Piping vibration mitigation measures research and practice;
- Coupled multi-physics analysis considering FSI and thermal stress;
- Technical supports on establishing piping vibration assessment standard for Chinese Nuclear Power Plants;
Thanks for Your Attention ！