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Non-thermal electrons in tokamaks

Non-thermal electrons are observed in previous
experiments in tokamaks

e in plasma with low

density 0.6
e at the initial stage p—
of the discharge , 04|
. l/q
e during powerful
auxiliary heating, 0.2}
e during/after major
disruptions ol . . .
0 1 2

n.R/B; (10"m2T-1)
High-density OH plasma is considered in present experiments
Effect of standard runaway formation can be neglected



N7 Extensive experimental and theoretical studies have
Identified physics basis of runaway formation, loss and wall
Interaction in both present and reactor scale tokamaks...”
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Pl Analysis have indicated, however, that primary electron

7 : : 7
acceleration can be connected with strong electric fields (E up
to 50 V/m) induced during magnetic reconnection
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MHD modes :
e are considering generally as a source of magnetic turbulence and

loss mechanism of the runaway electrons
e can In fact provide seed population of non-thermal beams with

subsequent formation of the strong runaway avalanches




Non-thermal electrons and disruptions

Acceleration of electrons to suprathermal energies,
E ~>100keV, Is a typical feature of plasma disruptions
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RADIATIVE DENSITY LIMIT DISRUPTION

OHMICALLY HEATED PLASMA

IN T-10
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Standard hard x-ray burst are observed 5ms AFTER the energy
guench during runaway interaction with the “wall”
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Il Structure of the bursts during runaway wall interaction
“Can be identified using standard X-ray imaging systems
with orthogonal view of the plasma column __XRAY
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ldentification of the non-thermal electrons in-flight
IS a complicated task

“Classical” hard x-ray bursts during density limit disruptiun
observed with conventional x-ray arrays

Hard x-ray burst (0.5-2.0MeV) - runaway electrons
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Objectives of present experimental studies:

Analysis of formation and loss of the non-thermal
electron beams during disruption instability in the T-10
tokamak

The following gquestions are addressed in the experiments
- What is the structure of the internal MHD perturbations at the

onset of the non-thermal spikes?

- What is the origin of the primary non-thermal x-ray bursts
observed during the first energy quench?

- What is the structure of the secondary x-ray bursts?

- What determines stability of the runaway beam?
- Characterisation of the runaway - wall interaction?

Do we have adeguate diagnostics for reliable identification of the localized
suprathermal electrons beams in a tokamak plasma?
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X-Tay gas detectors] Internal structures of the MHD modes are
D) (G identified in T-10 tokamak using soft x-ray

tomographic imaging systems placed at two
toroidal locations

e Reliable tomographic
; reconstruction of the MHD
——D " modes (up to m=2)
A .« Limited energy range
IMITER ~ E <15keV

Si surface barrier tomographic arrays
(20+19+19 detectors)
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Tangential x-ray array
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Il CdTe detectors with orthogonal view of the plasma
column are placed at various locations around the torus

7

array of 16 detectors was
placed temporally at the
interferometer waveguides
(E,>40keV)

array of 10 detectors
vertical view @ = +90°
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vertical view
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Il CdTe detectors with orthogonal view of the plasma

Y column are insensitive to the non-thermal electrons with
X-ray emission in limited forward cone along the
electron lines of flight

S.VON GOELER et al.
Nucl. Fusion, 1985, 1515
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Intensity-patterns-are
plotted: for-photon
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160 for original data see [S.VonGoeler, et al.,

200kev_mw | Nucl. Fusion 25, (1985) 1515]
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X-ray measurements In direction tangential to the plasma
column can provide enhanced sensitivity to the non-thermal
electrons




CdTe detectors with tangential view of the plasma column
are placed inside the T-10 vacuum vessel

Tangential x-ray array

positioning
system

In-vessel array
3 Siand 1 CdTe
detectors

Tangential view (simulation)



Tangential x-ray array
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T-10 tokamak (R=1.5,a=0.3m)
stangential x-ray array XRP (1),
estandard x-ray tomographic
arrays XRA (2), XRB (3), XRC
(4),

eX-ray matrix array XRM (5),
*X-ray gas detector XWD (6),
osets of CdTe detectors (7).
*Nal(TI) monitor (8) and

*Ge PHA system (9).

Magnetic
prabes
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Structure of the internal MHD perturbations at the onset of
the non-thermal spikes

Origin of the primary non-thermal x-ray bursts observed
during the first energy quench

Structure of the secondary x-ray bursts
Stability of the runaway beam
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N7  Energy quench at

the density limit is
proceeded by series . . .
of sawteeth ' T-10 26087

The sawteeth are (
accompanied with
spikes (“rib”)
superimposed with
the m=1 mode

The spikes are observed at
low and high field side of
the torus

Observed previously in TFTR, DHID
E.Fredrickson , PP98

7420 7425 L(ms)751.0 7515 t(ms)



1] .
Y The non-thermal x-ray spikes are observed more

clearly using tangentially viewing x-ray array

| T-10 tangential x-ray array

m=1,n=1
mode

The spikes can be connected with generation of
the non-thermal electrons during magnetic
reconnection

0.3

725 Time (ms)




~Conto T

ontour plot of the maximum non-thermal electron density
(N,1max) Calculated in plasma with various amplitude of the
Induced electric field (E,,..,) and magnetic field
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U Coupling of the internal m=1,n=1 mode with the
m=2,n=1 perturbations is observed just prior to the
energy guench
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O Position of the X-points of magnetic islands are
Identified from comparison of the x-ray images with
data of fast magnetic probes
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“Classical” hard x-ray bursts during density limit disruption
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“Classical” hard x-ray burs¥” "y

Narrow spots at the
limiter can indicate
filament-like structure of
the beams - possibly
connected with MHD

modes?
see, also JET disruptions

[Gill,2000]
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The x-ray bursts are
observed at specific

phase of the 2/1 MHD

mode
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SUMMARY
STAGE-1

The pre-disruptive plasma is characterized by joint rotation of
the coupled m=1,n=1 and m=2,n=1 MHD perturbations.

Non-thermal x-ray spikes are observed around X-points of the
m=1,n=1 and m=2,n=1 magnetic islands just prior to the energy
quench.

First non-thermal x-ray spike during an energy quench can be
connected with interaction of the MHD-Induced localized
beams with the limiter.
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Standard hard x-ray burst are observed 5ms AFTER the energy
guench during runaway interaction with the “wall”
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Nonthermal x-ray bursts after an energy quench are
observed using tangentially viewing x-ray array
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FIG. 12. Time evolution of plasma
parameters after an energy quench
during density limit disruption in
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Intensity, I,(xwda35) Xx-ray intensity
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Nonthermal x-ray bursts after an energy quench are
characterised by multiple frequencies
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X-ray spikes after an energy guench
can be localised around the same area
as one of the m=1 helical perturbations

t, ms
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m=1 helical
perturbations




e Small-scale quasi-
coherent oscillations
(f~15-80kHz) are
observed prior to the
density limit disruption
using tangential view Xx-
ray array

e Analysis indicated
possible connection of
the oscillations with
beams of the non-
thermal electrons induce
during growth of the
MHD modes
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During the energy quench the quasi-coherent perturbations are
transformed to intensive bursts of the non-thermal x-ray
radiation with amplitude modulation in the same frequency
range as one just prior to the disruption.
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Experiments with the current ramp-up just prior to the disruption:
No strong modification in the bursts behaviour
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Il Amplitude of the non-thermal x-ray spikes at the first minor
S disruption can be reduced up to 5-15 times in plasma with
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SUMMARY STAGE I

During the energy quench the quasi-coherent perturbations are
transformed to intensive bursts of the non-thermal x-ray
radiation with amplitude modulation in the same frequency
range as one just prior to the disruption.

The x-ray bursts observed just after the energy quench are
confined within the plasma core.

Strong increase of the longitudinal electric field prior to the
disruption does not change considerably dynamic of the
bursts. This indicates indirectly that bursts can not be
connected with standard “equilibrium” runaway beams in the
plasma core.

New diagnostics are required for future analysis.
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New tangential X-Ray Detector Array
Diagnostic system -measurements
of the nonthermal x-ray radiation
and small-scale MHD modes In
the TCV tokamak
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T-10 XEMERrA probe:

1. Tangential X-ray with adjustable line-of-sight
2. Reciprocating Electric (Langmuir ) probe

3. Fast reciprocating Magnetic probe
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