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Introduction

Burning plasmas are self-sustained by alpha-particle heating

AEs induce 
the enhanced transport of alpha-particles
from the core region

- A performance of a fusion reactor
is degraded

- First walls are damaged by lost
alpha-particles

Understanding of the alpha particle transport in the presence 
of AEs is one of the urgent research issues for ITER

However, a high alpha particle pressure 
gradient destabilized

Alfvén eigenmodes (AEs)

TAEモード の励起

高速α粒子

ねじれアルヴェン波

核融合プラズマ 高速α粒子
の損失

Fusion plasma Loss of 
α-particle

Excitation of AE

Fast α-particle

Shear Alfven wave
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Recent studies of AEs on JT-60U

In JT-60U, AE experiments have been performed using
Co-injected Negative-ion-based Neutral Beam (NNB)

(ENNB : 340 ~ 400keV, PNNB :2 ~ 5MW)
in several kinds of magnetic shear configurations

in Reversed shear (Weak Shear) plasma,
• Reversed-Shear induced Alfvén Eigenmodes (RSAEs), 
• Transition from RSAEs to TAEs

(M. Takechi, et al, POP 12(2005),082509 )

in Weak shear plasma with large βh
• Fast FS modes, 
• Abrupt Large-amplitude Events (ALEs)

(K. Shinohara, et al.,Nucl. Fusion 41(2001) p603)               
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Transition3.0 ->  qmin -> 2.5 2.5 ->  qmin -> 2.0

RSAEs (Alfvén cascades) and its transition to TAEs
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Large frequency sweeping AE can 
be explained by RSAE

• Large frequency sweeping AE was observed during NNBI in RS plasma
• High frequency RSAE and low frequency RSAE merge and change to 
TAE when qmin decreases.
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the full wave code (TASK/WM) [1]
- eigenfrequency, damping rate, eigenfunction

RSAE frequency changes rapidly as qmin changes.
RSAE more unstable than TAE.
AE in transition from RSAE to TAE is most unstable.

TASK/WM predicted AE transition 
from RSAE to TAE is most unstable

[1] A. Fukuyama et al, in proceeding of 6TH IAEA Technical Committee Meeting on Energetic Particles 
in Magnetic Confinement Systems (12~14 October 1999, Naka)

Eigenfrequency Damping rate
RSAE

RSAE

RSAE

RSAE

time

stable
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To investigate dependence of AE amplitude on q-profile, starting 
time of NNB injection into RS plasmas was changed at various qmin

The results are consistent with the prediction by TASK/WM 

n=1 AE is observed
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• Issues

AE with large frequency sweeping and its frequency saturation 
can be explained as RSAE (AC) and its transition to TAE

• TASK/WM predicted AE during transition RSAE to TAE is most 
unstable
• It is confirmed experimentally that n=1 AE amplitude is maximum 
during transition phase RSAEs to TAEs

Confinement degradation of energetic ions in the presence 
of RSAE and TAE has not been evaluated yet.

Purpose of present studies

Diagnostics for investigation of energetic ion transport
• total neutron emission rate
• neutron emission profile measurement
• charge-exchange neutral particle flux



JT-60U

Neutron Profile
Monitor

Objectives :  
-measure radial profile of  
neutron emission rate

investigate energetic ion transport from change in neutron 
emission profile and enhanced neutral particle fluxes

Objectives :  
-measure fast neutral particle 
flux and energy distribution

JT-60U

T-NBI

N-NBI

P-NBI

P-NBI

P-NBI

P-NBI

P-NBI

T-NBIP-1

P-9
P-10

P-13

P-14

P-16
P-17 P-18

P-8
P-7

P-5

P-4

P-2

Neutral  Particle
Analyzer (NDD)

6 channel Neutron monitor CX-Neutral Particle  Analyzer
(Natural Diamond Detector) 

Diagnostics for investigation 
of energetic ion transport
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polyethylene

-for neutron shielding
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Structure of Stilbene neutron detector

Collaboration with TRINITI Lab.

JT-60U
System of neutron emission profile measurement 

6 channel line-integrated 
neutron signals

M. Ishikawa, et al. Rev. Sci. Instr. 73 (2002)4273
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System of neutral particle flux and spectrum 
measurement with Natural Diamond Detector (NDD) 

～100V

L=0.2mm

Semi-conductor
(Natural Diamond)

Electrode
(graphite)

neutral
particle

hole

electron

NDD is a solid-state detector

NDD produces a number of 
electron-hole pair corresponding 
to kinetic energy of incident 
natural particles

flux and energy
distribution

The system has been installed in 
parallel port to investigate behavior of 
co-injected beam ions,e.g. NNB ion

M. Ishikawa, et al. Rev. Sci. Instr. 75 (2004)3643
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Recent studies of energetic ion transport using 
• neutron emission profile measurement 
• CX-neutral particle flux and spectrum measurement
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Abrupt Large-amplitude 
Events (ALEs) were exited,
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AE experiments with NNB in WS plasmas
to investigate effect of RSAE on energetic ions 
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E43978, IP=1.0 MA,  BT=1.7 T
PNNB~ 3.9 MW, ENNB~367 keV

- Frequency sweeping and then 
saturation of frequency is observed 
during NNB injection.

-These instabilities are stabilized 
at t ~ 5.5 s

duration time of NNBI ~ 2.2 s

w/o
AE

Observation of two phases of with AEs (RSAEs, TAEs) 
and w/o AEs in Weak Shear Plasma

q = 1.5 exist in outer region
There is TAE gap
but, βh and dβh/dr is small

AEs are stable
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Change in total neutron emission rate suggest 
confinement degradation of energetic ions

• During RSAEs, TAEs (t ~ 4.5 – 5.5 s)  
An increase of total neutron 
emission rate (Sn) was suppressed

• After TAEs are stabilized (t ~ 5.5 s)  
The rate of the increase of Sn is 
enhanced rapidly.

• During another RSAEs (t ~ 5.9 – 6.5 s)  
Sn decrease

suggests confinement 
degradation of energetic 
ions due to AEs
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Bulk plasma is changed due to observed AEs
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Each parameter of bulk plasma,
ne(r), Te (r), Ti (r) all increase 
after TAE was stabilized at t ~ 5.5s.

Is the change in Sn attributed to the changes 
in density and temperature of bulk plasma ?

evaluation of change
in energetic ions 
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Confinement degradation of energetic ions
due to AEs is observed

Measured neutron emission 
rate is larger than calculated 
one (classical) during RSAE 
and TAE. 

Neutron emission rate is calculated with OFMC code 
assuming as follows

• Energetic ion profile in the calculation are classical
• Neutron emission is only beam-thermal neutron

After TAE was destabilized, 
measured neutron rate is 
close to calculated one.  
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Neutron reduction is largest in
transition phase from RSAE to TAE

reduction late of neutron emission is evaluated from the 
ratio of calculated neutron yield to measured one. 

Reduction rate of neutron 
emission rate is largest in 
the transition phase from 
RSAE to TAE.

(∆Sn/Sn)Max ~ 45 %

Our interest is how confinement of energetic ions is degraded 

The prediction of TASK/WM 
supports this result0
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measurement increase after AEs was stabilized
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In order to investigate energetic ion 
transport, analysis of change in energy 
distribution of energetic ions is needed 
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Change in neutral particle flux suggests 
energetic ion transport from core to outer region

Neutral particle flux change after 
neutron emission rate changed   
Time lag (∆t)  ~   100 ms

time scale of transport and /or       
slowing down ?

Energetic ions are neutralized through 
charge exchange reactions with D0 or 
C5+ in outer region of the plasma

∆t

energetic ion transport from 
core region to outer region
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Summary

In order to investigate the confinement degradation of energetic
ions in the presence of RSAE and TAE, AE experiments with NNB 
were conducted in WS plasmas,  by measuring

• Energetic ions behavior in the presence of AEs was evaluated
Confinement degradation of energetic ions was observed

The evaluation with OFMC code indicated the degradation 
was maximum in transition phase from RSAE to TAE

Changes in neutral particle flux suggested AEs induced 
energetic ion transports from core region to outer region.

• total neutron emission rate 
• neutron emission profile
• charge exchange neutral particle flux

Neutron emission is suppressed all over the plasma region 
due to AEs
analysis of change in energy distribution of energetic ions is needed 
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Slow FS modes can be explain by RSAE model
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Case of weak shear plasma with qmin ~ 2.0 -> 1.0 

RSAE model can apply to AEs in weak shear plasma
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