IAEA Analytical Quality in Nuclear Applications Series No. 25

Worldwide Laboratory Comparison on the Determination of Radionuclides in IAEA-446 Baltic Sea Seaweed (*Fucus vesiculosus*)

WORLDWIDE LABORATORY COMPARISON ON THE DETERMINATION OF RADIONUCLIDES IN IAEA-446 BALTIC SEA SEAWEED (*Fucus vesiculosus*) The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN ALBANIA ALGERIA ANGOLA ARGENTINA ARMENIA AUSTRALIA AUSTRIA AZERBAIJAN BAHRAIN BANGLADESH BELARUS BELGIUM BELIZE BENIN BOLIVIA BOSNIA AND HERZEGOVINA BOTSWANA BRAZIL BULGARIA BURKINA FASO BURUNDI CAMBODIA CAMEROON CANADA CENTRAL AFRICAN REPUBLIC CHAD CHILE CHINA COLOMBIA CONGO COSTA RICA CÔTE D'IVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC DEMOCRATIC REPUBLIC OF THE CONGO DENMARK DOMINICA DOMINICAN REPUBLIC ECUADOR EGYPT EL SALVADOR ERITREA **ESTONIA** ETHIOPIA FIJI FINLAND FRANCE GABON GEORGIA GERMANY GHANA GREECE

GUATEMALA HAITI HOLY SEE HONDURAS HUNGARY ICELAND INDIA **INDONESIA** IRAN, ISLAMIC REPUBLIC OF IRAO IRELAND ISRAEL ITALY JAMAICA JAPAN IORDAN **KAZAKHSTAN** KENYA KOREA, REPUBLIC OF KUWAIT KYRGYZSTAN LAO PEOPLE'S DEMOCRATIC REPUBLIC LATVIA LEBANON LESOTHO LIBERIA LIBYA LIECHTENSTEIN LITHUANIA LUXEMBOURG MADAGASCAR MALAWI MALAYSIA MALI MALTA MARSHALL ISLANDS MAURITANIA MAURITIUS MEXICO MONACO MONGOLIA MONTENEGRO MOROCCO MOZAMBIQUE MYANMAR NAMIBIA NEPAL NETHERLANDS NEW ZEALAND NICARAGUA NIGER NIGERIA NORWAY OMAN PAKISTAN PALAU

PANAMA PAPUA NEW GUINEA PARAGUAY PERU PHILIPPINES POLAND PORTUGAL QATAR REPUBLIC OF MOLDOVA ROMANIA RUSSIAN FEDERATION RWANDA SAUDI ARABIA SENEGAL SERBIA SEYCHELLES SIERRA LEONE SINGAPORE SLOVAKIA **SLOVENIA** SOUTH AFRICA **SPAIN** SRI LANKA **SUDAN SWAZILAND SWEDEN** SWITZERLAND SYRIAN ARAB REPUBLIC TAJIKISTAN THAILAND THE FORMER YUGOSLAV REPUBLIC OF MACEDONIA TOGO TRINIDAD AND TOBAGO TUNISIA TURKEY UGANDA UKRAINE UNITED ARAB EMIRATES UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND UNITED REPUBLIC OF TANZANIA UNITED STATES OF AMERICA URUGUAY UZBEKISTAN VENEZUELA VIETNAM YEMEN ZAMBIA ZIMBABWE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

IAEA Analytical Quality in Nuclear Applications No. IAEA/AQ/25

WORLDWIDE LABORATORY COMPARISON ON THE DETERMINATION OF RADIONUCLIDES IN IAEA-446 BALTIC SEA SEAWEED (*Fucus vesiculosus*)

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2013

COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: sales.publications@iaea.org http://www.iaea.org/books

For further information on this publication, please contact:

IAEA Environment Laboratories, Monaco Radiometrics Laboratory International Atomic Energy Agency 4a Quai Antoine 1er, MC 98000 Principality of Monaco

> © IAEA, 2013 Printed by the IAEA in Austria July 2013

WORLDWIDE LABORATORY COMPARISON ON THE DETERMINATION OF RADIONUCLIDES IN IAEA-446 BALTIC SEA SEAWEED (*Fucus vesiculosus*) IAEA, VIENNA, 2013 IAEA/AQ/25 ISSN 2074–7659 © IAEA, 2013 Printed by the IAEA in Austria July 2013

FOREWORD

The Radiometrics Laboratory of the IAEA Environment Laboratories in Monaco has been providing quality products and services for the past forty years, including the organization of interlaboratory comparisons, the production of reference and certified reference materials and the provision of training. More than 45 reference materials have been produced, including a wide range of marine sample matrices and radionuclide concentrations.

As part of these activities, a new interlaboratory comparison was organized to provide participating laboratories with the opportunity to test the performance of their analytical methods on a seaweed sample with elevated radionuclide levels due to the effects of the Chernobyl accident on the Baltic Sea region. The material used in the analysis of anthropogenic and natural radionuclides in seaweed was the bladder wrack (*Fucus vesiculosus*). It is expected that the sample, after successful certification, will be issued as a certified reference material for analysing radionuclides in seaweed.

The participating laboratories were informed that the IAEA publication would contain a list of the laboratories and the results and descriptions of the interlaboratory comparisons, but that the results would not be attributed to individual laboratories.

The IAEA officers responsible for this publication were Mai Khanh Pham and H. Nies of the IAEA Environment Laboratories.

EDITORIAL NOTE

This report has been prepared from the original material as submitted for publication and has not been edited by the editorial staff of the IAEA. The views expressed do not necessarily reflect those of the IAEA or the governments of its Member States.

It does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

CONTENTS

1.	INTR	ODUCTION	. 1
2.	SCO	PE OF THE INTERLABORATORY COMPARISON	. 1
3.	DESC	CRIPTION OF THE MATERIAL	. 2
4.	HOM	IOGENEITY TESTS	. 2
5.	SAM	PLE DISPATCH AND DATA RETURN	. 3
6.	EVA	LUATION OF RESULTS	. 4
	6.5.	Data treatmentStatistical evaluationExplanation of tables6.3.1.Laboratory code6.3.2.Method code6.3.3.Number of results6.3.4.Massic activityExplanation of figuresCriteria for assigning certified values	. 4 . 4 . 5 . 5 . 5 . 5 . 6
7.	RESU	JLTS AND DISCUSSION	
	7.1.	Anthropogenic radionuclides $7.1.1.$ 90 Sr. $7.1.2.$ 99 Tc. $7.1.3.$ 137 Cs. $7.1.4.$ Plutonium isotopes	. 6 . 6 . 7
	7.2.	Natural radionuclides $7.2.1.$ ${}^{40}K$. 7 . 7 . 8 . 8 . 8 . 9
	7.3.	Less frequently reported radionuclides	10 10 10 10 11
8. C	ONCI	LUSIONS	11
APPI	ENDL	X I: Data report — Tables	13
APPI	ENDL	X II: Data evaluation — Graphs	33
APPI	ENDL	X III: z-scores — Graphs	53
REFI	EREN	CES	62
		LEDGEMENTS	
LIST	OF P	ARTICIPATING LABORATORIES	63
CON	TRIB	UTORS TO DRAFTING AND REVIEW	67

1. INTRODUCTION

The accurate and precise determination of radionuclide concentrations in marine samples is an important aspect of marine radioactivity assessment and the use of radionuclides in studies of oceanographic processes. To address the problem of data quality, the IAEA Environment Laboratories (IAEA-EL) in Monaco regularly conduct inter-laboratory comparisons on radionuclides in marine samples as an integral part of the sub-programme IAEA Reference Products for Science and Trade [1-2].

In collaboration with HELCOM-MORS (Helsinki Commission's Project for Monitoring Radioactive Substances in the Baltic Sea), the Risø National Laboratory, Denmark (Risø) collected seaweed from the Baltic Sea in July 2006. Nine laboratories from HELCOM-MORS from 7 countries and 11 laboratories from 9 OSPAR contracting parties (some of them belonging to both organizations) participated in the exercise to test their performance in analysing radionuclides in seaweed. The results obtained from a total of 29 laboratories including expert laboratories and the Radiometrics Laboratory of the IAEA Environment Laboratories in Monaco (IAEA-EL-RML) will allow the IAEA-EL-RML to produce a new certified reference material.

As the sample was collected in the Baltic Sea, elevated levels of anthropogenic radionuclides were expected due to the influence of the historical Chernobyl accident to the Baltic Sea region. Participants were informed that the expected activities for anthropogenic radionuclides would be in the ranges:

Gamma-emitters	1–15 kBq kg ⁻¹
Beta-emitters	0.1–1 Bq kg ⁻¹
Transuranics	0.01–0.05 Bq kg ⁻¹

This report describes the results on anthropogenic and natural radionuclide determinations in seaweed obtained from 29 laboratories including IAEA-EL-RML.

2. SCOPE OF THE INTERLABORATORY COMPARISON

This inter-laboratory comparison was organized to provide the participating laboratories with the possibility to test the performance of their analytical methods on a seaweed sample with elevated radionuclide levels due to the influence of the historical Chernobyl accident to the Baltic Sea region.

The inter-laboratory comparison material was designed for the analysis of anthropogenic and natural radionuclides. Participating laboratories were requested to determine as many radionuclides as possible among the following: ⁴⁰K, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, ¹³⁷Cs, ²¹⁰Pb, ²¹⁰Po, ²²⁶Ra, ²²⁸Ra, U, Th, Pu isotopes, etc. Any additional measurements were welcome and would be

1

included in the report as information values, unless sufficient data are available to justify statistical evaluation. The participating laboratories were chosen to allow both radiometric (gamma spectrometry, alpha spectrometry, beta counting...) and mass spectrometry measurement techniques (ICMPS, TIMS, AMS, etc.) analyses.

It is expected that the sample, after successful certification, will be issued as a certified reference material for radionuclides in seaweed.

3. DESCRIPTION OF THE MATERIAL

A total of 718 kg wet mass of seaweed, which is bladder wrack with the Latin name *Fucus vesiculosus* was collected from a coastline in the western part of the Baltic Sea $(54^{\circ}57' \text{ N}, 11^{\circ}59' \text{ E})$ between 11 and 27 July 2006 by the Risø National Laboratory, Denmark. The seaweed was first dried in open air and subsequently in heating cabinets at 85°C leaving a total dry mass of 105 kg. The sample was then ground into powder, sieved through a 250 µm mesh, homogenized by mixing in a nitrogen atmosphere, bottled in polyethylene sealed bottles (100g units) and coded as IAEA-446 (for a total of 900 bottles). All bottles were sterilized at 10 kGy (⁶⁰Co) in an irradiation facility (Isotron, France). The moisture content of the sample was found to be approximately 5.5%. As the results were reported on a dry mass basis, the moisture content of the samples should be determined prior to use by drying at 60°C in an oven until a constant mass is obtained and the results corrected accordingly.

4. HOMOGENEITY TESTS

Sample homogeneity was checked by the determination of ¹³⁷Cs, ⁴⁰K, ⁹⁰Sr, ²¹⁰Po, ²¹⁴Bi, ²²⁶Ra, ²²⁸Th, ²³⁰Th, ²³²Th and ²³⁹⁺²⁴⁰Pu activities (by using high-resolution low-background gamma spectrometry, low-level beta proportional counter and alpha spectrometry). The first homogeneity test between bottles was done for 10×3 aliquots chosen at random at different masses of samples (between 10 g and 20 g, between 50 g and 60 g for gamma spectrometry, beta counting, and alpha spectrometry, except a small volume of 0.5 g for ²¹⁰Po analysis by alpha spectrometry). The second test within bottles was done for another 10×3 aliquots at 5 g to 10 g of sample for gamma emitters and Pu isotopes analysis by alpha spectrometry and 0.2 g of material for U isotopes determination using ICP-MS, respectively. Homogeneity was tested by using one-way analysis of variance. The coefficient variation was below 15%-20% for all radionuclides determined (some examples are shown in Table 1, Appendix I), depending on their activity range. The "between samples" variances showed no significant differences from the "within sample" variances for the radionuclides tested. Results were identical within statistical uncertainties. On the basis of the homogeneity tests (Figs. 1, 2 and 3, Appendix II for ¹³⁷Cs, ²¹⁴Bi, and ²³⁹⁺²⁴⁰Pu, for instance), the material can be considered homogeneous for the radionuclides tested at the mass used.

An additional homogeneity test for major and trace elements (P, S, Cl, K, Ca, Fe, Ni, Cu, Zn, As, Br, Sr, I, Ba and Pb) for 4 g of seaweed sample was done by XFR. The coefficient of variation was below 10% for XRF determined elements.

5. SAMPLE DISPATCH AND DATA RETURN

Each participant received 100 g of the seaweed sample. For each radionuclide analysed, the following information was requested:

- Average mass of sample
- The moisture content of the samples should be determined prior to use by drying at 60 $^{\circ}$ C in an oven until a constant mass is obtained
- Number of analyses
- Massic activity calculated in net values (i.e. corrected for blank, background etc.) and expressed in Bq $kg^{\text{-1}}$
- Estimate of the total uncertainty (counting and other uncertainties)
- Description of chemical procedures and counting equipment
- Reference standard solutions used
- Chemical recoveries, counting time, half-life

The massic activities should be reported as net values (i.e. after correction for blank, background, etc.) calculated on a dry-mass basis and expressed in Bq kg⁻¹. Results that are not statistically significant should be reported as "less than" values. At least three independent analyses should be carried out and results should be reported for each analysis separately with their mean value and their combine uncertainties on the tables provided.

The reference date for reporting activities was 1 August 2006.

The samples were distributed to 40 laboratories in November 2010. The deadline for reporting data was set for 30 June 2011. A reminder was sent to participants, who did not submit the results in time. A total of 28 laboratories sent their reports. The list of reported radionuclides is given in Table 2, Appendix I.

Laboratories were informed that, after the completion of the exercise, an IAEA report describing the results of the inter-laboratory comparison would be issued, including their identities, but that the results would not be associated to each laboratory identity.

The list of contributing laboratories may be found at the end of the report.

6. EVALUATION OF RESULTS

6.1. Data treatment

The submitted results are shown under their laboratory code numbers in Tables 3 to 18, Appendix I. Laboratory means were calculated when necessary from individual results and are given either as arithmetic means with corresponding uncertainties when more than two results were reported, or as weighted means with weighted uncertainties in the case of only two results reported. All values have been rounded off to the most significant figure.

6.2. Statistical evaluation

Calculations are based on the assumption of non-parametric distribution of data to which distribution-free statistics are applicable. The "less than" values are segregated from the results and the remaining values are checked for the presence of outliers using a box and whisker plot test and Tukey's outlier method. Outliers are identified in the tables with an asterisk. Median values are calculated from all results passing the outlier test. These values are considered to be the most reliable estimates of the true values. Confidence intervals were taken from a non-parametric sample population. They represent a two-sided interval representing 95% confidence limits. The estimated expanded uncertainty for mean value was calculated according to the *Evaluation of measurement data – Guide to the expression of uncertainty in measurement*, (GUM with minor corrections) JCGM 100:2008 (2008) [4]. The weighted mean values and their uncertainties were calculated taking into account the uncertainties of measurements reported by individual laboratories.

Massic activities for 27 radionuclides were reported and results are shown in Table 2, Appendix I with the number of reporting laboratories for each radionuclide. The number of reported "less than" values are shown in parentheses. The results for the most frequently measured radionuclides can be found in Tables 3 to 17, Appendix I and Figures 4 to 19, Appendix II, while the less frequently measured radionuclides are presented in Table 18, Appendix I. The certified values and information values obtained after statistical treatment are presented in Table 19, Appendix I.

Following the recommendations for assessment of laboratory performance of the International Union of Pure and Applied Chemistry (IUPAC) [5] and the International Organization for Standardization (ISO) [6], the z-score methodology was used for the evaluation of the interlaboratory results. The performance of a laboratory was considered to be acceptable if the difference between the robust mean of the laboratory and the assigned value is less than or equal to two. The warnings are for the values with z-score lying between 2 and 3. The analysis is regarded as being out of control when |z| > 3.

6.3. Explanation of tables

6.3.1. Laboratory code

Each laboratory was assigned an individual code number to ensure anonymity.

6.3.2. Method code

The analytical techniques employed by participants are specified with following codes:

Alpha spectrometry

Code	Method						
А	Treatment,	evaporation/precipitation,	ion	exchange	and	electro	deposition
	followed by	alpha spectrometry					

Beta counting

Code	Method
В	Precipitation (oxalate, hydroxide), scavenging, beta counting of Y-oxalate
	followed by beta counting (low level proportional gas counter)
D1	LSC (Liquid Spintillation Counting)

B1 LSC (Liquid Scintillation Counting)

Gamma spectrometry

Code Method

G High resolution gamma-ray-spectrometry using HP-Ge detectors

Mass spectrometry

Code ICPMS	Method Treatment, ion exchange, electro deposition, leaching, ICP-MS (Inductively Coupled Plasma Mass Spectrometry)

AMS Leaching, treatment, AMS (Accelerator Mass Spectrometry)

6.3.3. Number of results

The number of determinations corresponds to the number of individual results from which the laboratory mean was calculated. When no mention was made in a participant's report as to the number of measurements made, it was assumed to be one.

6.3.4. Massic activity

The activity corresponds to the arithmetical or weighted mean computed from all the individual results obtained from the participants with the corresponding standard deviation or weighted uncertainty. They are calculated as massic activities for each radionuclide respectively and expressed in the derived SI unit Bq kg⁻¹.

6.4. Explanation of figures

The figures (Figs. 4 to 19, Appendix II) present the data with the corresponding standard deviation or weighted uncertainty in order of ascending massic activity. Also shown are:

(i) The distribution medians (full lines) and corresponding confidence intervals (dashed horizontal lines)

(ii) The limits for accepted laboratory mean (vertical lines).

(iii) The warning points in yellow (and not included in the assigned values).

The performance of laboratories in terms of accuracy was expressed by *z*-scores, which were calculated for each radionuclide. Figures 20 to 35 in Appendix III present the *z*-scores for accepted values only. The distributions of *z*-scores are symmetric which indicates that the overall performance of the laboratories was satisfactory.

6.5. Criteria for assigning certified values

Median values and confidence intervals (95% significance level) were calculated as estimations of true massic activities. The median values of the data within the confidence interval were considered as the certified values when:

- 1. At least five laboratory means were available, calculated from at least three different laboratories.
- 2. The relative uncertainty of the median did not exceed \pm 5% for activities higher than 100 Bq kg⁻¹, \pm 10% for activities between 1 and 100 Bq kg⁻¹ and \pm 20% for activities lower than 1 Bq kg⁻¹.

An activity value was classified as an information value when it satisfies condition 1, but not condition 2.

Evidence on metrological traceability to the SI Units was provided by all laboratories in their individual reports.

7. RESULTS AND DISCUSSION

7.1. Anthropogenic radionuclides

Results of the determination of ⁹⁰Sr, ⁹⁹Tc, ¹³⁷Cs, ²³⁹⁺²⁴⁰Pu, ²³⁹Pu and ²⁴⁰Pu reported by participants are presented in Tables 4–6 and 16–17, Appendix I, and Figures 5–7, 17–19, Appendix II.

7.1.1. ⁹⁰Sr

Thirteen laboratories reported data for 90 Sr (Table 4, Appendix I and Fig. 5, Appendix II). One did not pass the outlier test. The data showed good homogeneity. The *z*-score (Fig. 21, Appendix III) is below 1.92, indicating a good performance. The median, given as the information value, is 5.1 Bq kg⁻¹ (95% confidence interval is 4.5–5.3 Bq kg⁻¹).

7.1.2. ⁹⁹Tc

Data were reported from six laboratories (Table 5, Appendix I and Fig. 6, Appendix II). All the data sets, except one, passed the outlier test and showed good homogeneity. The *z*-score values are below 2 (Fig. 22, Appendix III). The median, given as the information value, is 14.8 Bq kg^{-1} (95% confidence interval is $13.8-20.2 \text{ Bq kg}^{-1}$).

7.1.3. ¹³⁷Cs

Data were reported from twenty five laboratories (Table 6, Appendix I and Fig. 7, Appendix II); two of them were not accepted. The laboratories mainly used direct gamma spectrometry for the ¹³⁷Cs determination. The data is homogenous within two standard deviations of the distribution mean. The *z*-score values are below 2, indicating a good performance (Fig. 23, Appendix III). The median, given as the certified value, is 18.8 Bq kg⁻¹ (95% confidence interval is 18.2–19.2 Bq kg⁻¹).

7.1.4. Plutonium isotopes

The majority of participants used a conventional method based on sample treatment, ionexchange separation followed by electro deposition and alpha spectrometry. Some laboratories could determine separately ²³⁹Pu and ²⁴⁰Pu by using ICP-MS and AMS, prior to radiochemical separation of plutonium isotopes.

7.1.4.1. ²³⁸Pu

Nine data sets were reported (Table 16, Appendix I), but five of them could only be reported as LLD (Lower Limit of Detection), with results ranging from 0.019 to 0.056 Bq kg⁻¹.

7.1.4.2. ²³⁹⁺²⁴⁰Pu

Twenty data sets were reported (Table 16, Appendix I and Fig. 17, Appendix II), five failed the outlier test, two of them being warned. The data are homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.6, revealing a good performance (Fig. 33, Appendix III). The median, given as the certified value, is 0.024 Bq kg^{-1} (95% confidence interval is $0.022-0.026 \text{ Bq kg}^{-1}$).

7.1.4.3. ²³⁹Pu and ²⁴⁰Pu

Five laboratories could determine separately ²³⁹Pu and ²⁴⁰Pu activity concentrations using mass spectrometry (ICP-MS and AMS). The results are presented in Table 17, Appendix I and Figs. 18 and 19, Appendix II. The data are homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.78 and 1.88, respectively (Figs. 34 and 35, Appendix III). The median, given as the information value, is 0.014 Bq kg⁻¹ (95% confidence interval is 0.012–0.015 Bq kg⁻¹) for ²³⁹Pu and 0.010 Bq kg⁻¹ (95% confidence interval is 0.009–0.014 Bq kg⁻¹) for ²⁴⁰Pu, respectively. It is worth noticing that the sum of the ²³⁹Pu and ²⁴⁰Pu activity concentrations is in agreement with the ²³⁹⁺²⁴⁰Pu value determined by alpha spectrometry technique (see above).

7.2. Natural radionuclides 7.2.1 ⁴⁰K

Data were reported from twenty-five laboratories (Table 3, Appendix I and Fig. 4, Appendix II). All results passed the outlier test, except one laboratory. The data showed good homogeneity. Results are between two standard deviations from the distribution mean.

The *z*-score values are below 1.95, showing a good performance by the laboratories (Fig. 20, Appendix III). The median, given as the certified value, is 660 Bq kg⁻¹ (95% confidence interval is 626–671 Bq kg⁻¹).

7.2.2 ²¹⁰Pb (²¹⁰Po)

Data were reported from sixteen laboratories (Table 7, Appendix I and Fig. 8, Appendix II). Two did not pass the outlier test, one was warning. ²¹⁰Pb and ²¹⁰Po were considered as in equilibrium at the inter-laboratory comparison period (2011), when ten half-lives of ²¹⁰Po have passed, compared to the sampling time (2006) and the ²¹⁰Pb values were decay corrected back to the reference date at 1 August 2006. Half of the participants used alpha spectrometry with prior radiochemical purification of ²¹⁰Po, using electro deposition on a silver disk. The rest used direct gamma spectrometry to measure ²¹⁰Pb at 46.5 keV. The data showed good homogeneity. Results are between two standard deviations from the distribution mean. The *z*-score values are below 1.69, showing a good performance by the laboratories (Fig. 24, Appendix III). The median, given as the information value, is 10.9 Bq kg⁻¹ (95% confidence interval is 10.2–12.0 Bq kg⁻¹).

7.2.3 Radium isotopes

7.2.3.1 ²²⁶Ra

Data were reported from sixteen laboratories (Table 8, Appendix I and Fig. 9, Appendix II). All results except two passed the outlier test, one was warning. While most of the laboratories used direct gamma spectrometry to determine ²²⁶Ra activity at 186 keV or through their daughters ²¹⁴Bi and ²¹⁴Pb peaks at 609 and 352 keV, respectively; only one laboratory used LSC (Liquid Scintillation Counting) technique. The data showed good homogeneity. Results are between two standard deviations from the distribution mean. The *z*-score values are below1.82, showing a good performance by the laboratories (Fig. 25, Appendix III). The median, given as the information value, is 17.0 Bq kg⁻¹ (95% confidence interval is 14.2–18.9 Bq kg⁻¹).

7.2.3.2 ²²⁸Ra

Thirteen laboratories reported data for ²²⁸Ra (Table 9, Appendix I and Fig. 10, Appendix II). All results passed the outlier test, except one laboratory. All laboratories used direct gamma spectrometry to determine ²²⁸Ra activity through their daughters either ²²⁸Ac at 911 keV or ²²⁸Th at 238 keV or 583 keV. The equilibrium between ²²⁸Ra and ²²⁸Th is observed (see below the ²²⁸Th results). The data showed good homogeneity. Results are between two standard deviations from the distribution mean. The *z*-score values are below 1.94, showing a good performance by the laboratories (Fig. 26, Appendix III). The median, given as the certified value, is 15.4 Bq kg⁻¹ (95% confidence interval is 15.0–16.7 Bq kg⁻¹).

7.2.4 Thorium isotopes

7.2.4.1 ²²⁸Th

Out of thirteen data sets reported (Table 10, Appendix I and Fig. 11, Appendix II), two failed the test for outliers. Half of the participants used a conventional method based on sample treatment, ion-exchange separation followed by electro deposition and alpha spectrometry. The rest used direct gamma spectrometry to determine ²²⁸Th at two peaks 238 keV and 583 keV where the branching ratios are important (43.5% and 30.6%, respectively). The data is homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.93 (Fig. 27, Appendix III). The median, given as the information value, is 15.0 Bq kg⁻¹ (95% confidence interval is 12.6–15.5 Bq kg⁻¹).

7.2.4.2 ²³⁰Th

Out of eleven data sets reported (Table 11, Appendix I and Fig. 12, Appendix II), one did not pass the test for outliers, two of them were warning. All participants used a conventional method based on sample treatment, ion-exchange separation followed by electro deposition and alpha spectrometry. The data is homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.82 (Fig. 28, Appendix III).

The median, given as the information value, is 0.36 Bq kg⁻¹ (95% confidence interval is 0.22– 0.38 Bq kg⁻¹).

7.2.4.3 ²³²Th

Fourteen data sets were reported (Table 12, Appendix 4 and Fig.13, Appendix II). Four data sets were analysed by gamma spectrometry, and ten other used a conventional method based on sample treatment, ion-exchange separation followed by electro-deposition and alpha spectrometry. The former reported the higher level of activity, ranging from 13.4 to 25.4 Bq kg⁻¹. The latter reported the range of activity from 0.26 to 7.3 Bq kg⁻¹. Taking into account the large difference of activity concentrations between the two methods, data evaluation was done separately for alpha and gamma spectrometry. The data obtained from gamma spectrometry were not evaluated due to the limited number of data (4, see 6.5). There is a possible disequilibrium between ²³²Th and its daughters ²⁰⁸Tl, ²¹²Pb/²¹²Bi, ²²⁸Th, ²²⁸Ac and ²²⁸Ra; the participant should then report their results for these daughters but not for ²³²Th.

Out of ten data sets that used alpha spectrometry technique, one did not pass the outlier test. The accepted data is homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 2.0 (Fig. 29, Appendix III). The median, given as the information value, is 0.38 Bg kg^{-1} (95% confidence interval is $0.30-0.46 \text{ Bg kg}^{-1}$).

7.2.5 Uranium isotopes

7.2.5.1 ²³⁴U

Out of fifteen data sets reported (Table 13, Appendix I and Fig. 14, Appendix II), three were warning and one rejected by the test for outliers. Most participants used a conventional method based on sample treatment, ion-exchange separation followed by electro deposition and alpha spectrometry. Two laboratories could determine their activities using ICP-MS method, with prior radiochemical separation of the uranium isotopes. The data are homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.6, showing a good performance by the laboratories (Fig. 30, Appendix III). The median, given as the certified value, is 10.5 Bq kg⁻¹ (95% confidence interval is 10.0–11.0 Bq kg⁻¹).

7.2.5.2 ²³⁵U

Out of fourteen data sets reported (Table 14, Appendix I and Fig. 15, Appendix II), only one data set was rejected by outliers test. Most participants used a conventional method based on sample treatment, ion-exchange separation followed by electro deposition and alpha spectrometry. Two laboratories could determine their activities using ICP-MS method, with prior radiochemical separation of the uranium isotopes. The data are homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.8 (Fig. 31, Appendix III). The median, given as the information value, is 0.44 Bq kg⁻¹ (95% confidence interval is 0.27-0.52 Bq kg⁻¹).

7.2.5.3 ²³⁸U

Out of nineteen data sets reported (Table 15, Appendix I and Fig. 16, Appendix II), one data set was rejected by outliers test and four were warned. Most participants used a conventional method based on sample treatment, ion-exchange separation followed by electro deposition and alpha spectrometry. Two laboratories could determine their activities using ICP-MS method, with prior radiochemical separation of uranium isotopes. Four laboratories used a direct gamma spectrometry technique. There is apparently disequilibrium between ²³⁸U and ²²⁶Ra (and descendants such as their daughters ²¹⁴Pb and ²¹⁴Bi) resulting in a large difference between the two assigned values (see above for ²²⁶Ra). The data is homogeneous within two standard deviations of the distribution mean. The *z*-score values are below 1.98, (Fig. 32, Appendix III). The median, given as the information value, is 9.34 Bq kg⁻¹ (95% confidence interval is 8.98–10.96 Bq kg⁻¹).

7.3. Less frequently reported radionuclides

The results for the less frequently reported radionuclides are listed in Table 18, Appendix I.

7.3.1.¹²⁹I

Two results were reported, using AMS technique, ranging from 0.1 to 0.13 Bq kg⁻¹.

7.3.2.²⁰⁸Tl

Four laboratories reported results for ²⁰⁸Tl. The data were rather inconsistent and ranged from 4.5 to 15.3 Bq kg⁻¹. As mentioned above (see for ²³²Th), there is probably a disequilibrium between ²³²Th and its daughters ²⁰⁸Tl, ²¹²Pb/²¹²Bi, ²²⁸Th, ²²⁸Ac, and ²²⁸Ra and the precision of ²⁰⁸Tl branching ratio used for ²⁰⁸Tl activity concentration at 583 keV peak is probably interfered due to the presence of both ²²⁸Th (and descendants, 30.6%) and ²⁰⁸Tl (85.1%).

7.3.3. ²¹²Bi, ²¹²Pb, ²²⁴Ra and ²²⁸Ac

Two laboratories reported ²¹²Bi results ranging from 19.2 to 20.1 Bq kg⁻¹. Four laboratories reported ²¹²Pb results ranging from 15.0 to 17.8 Bq kg⁻¹. Two laboratories reported ²²⁴Ra results ranging from 11.8 to 18.5 Bq kg⁻¹. Three laboratories reported ²²⁸Ac results ranging from 12.5 to 15.4 Bq kg⁻¹. These data were determined by using gamma spectrometry and are about the same levels as ²²⁸Th and ²²⁸Ra activity concentrations (see above for ²²⁸Th and ²²⁸Ra, respectively) showing that ²²⁸Ra and its daughters ²²⁸Ac, ²²⁸Th, ²²⁴Ra, ²¹²Bi and ²¹²Pb are in equilibrium (but not with their original precursor ²³²Th, see above).

7.3.4. ²¹⁴Bi, ²¹⁴Pb and ²³⁴Th

Four laboratories reported ²¹⁴Bi and ²¹⁴Pb results ranging from 13.6 to 20.6 Bq kg⁻¹ and from 13.4 to 21.7 Bq kg⁻¹, respectively. Only one laboratory reported a ²³⁴Th value (16.9 \pm 0.7 Bq kg⁻¹). These data were determined by using gamma spectrometry and are in the same range with ²²⁶Ra activity concentrations (see above for 7.2.3.1 ²²⁶Ra) showing that the ²²⁶Ra and its progeny ²¹⁴Bi and ²¹⁴Pb are in equilibrium (but not with its original precursor ²³⁸U, see above).

7.3.5. ²³⁶U

Two results were reported, using ICP-MS technique, ranging from 3.4 to 59 mBq kg⁻¹.

7.3.6.²⁴¹Am

Five laboratories determined 241 Am by alpha spectrometry with prior radiochemical purification from rare earth elements, one reported a "less than" value. The four other values were not consistent, ranging from 0.0073 to 3 Bq kg⁻¹.

8. CONCLUSIONS

In this inter-laboratory comparison, 29 laboratories including IAEA-RML reported concentrations of natural and anthropogenic radionuclides in a seaweed sample from the Baltic Sea (IAEA-446). The median concentrations for the sets of individual data were chosen as the most reliable estimates of the true values and are reported as certified and information values.

A summary of the certified and information values with confidence intervals for the most frequently reported anthropogenic and natural radionuclides may be found in the summary table below as well as in Table 19, Appendix I.

SUMMARY TABLE: CERTIFIED AND INFORMATION VALUES FOR THE IAEA-446 REFERENCE MATERIAL.

Radionuclide	Median	Confidence interval $(\alpha = 0.05)$	Mean	Expanded uncertainty $(k=2)^{\&}$	Number of results*
	Certified value				
40 K	660	626 - 671	658	20	24
¹³⁷ Cs	18.8	18.2 - 19.2	18.8	0.5	23
²²⁸ Ra	15.4	15.0 - 16.7	15.6	0.5	12
²³⁴ U	10.5	10.0 - 11.0	10.5	0.3	11
²³⁹⁺²⁴⁰ Pu	0.024	0.022 - 0.026	0.024	0.001	13
	Information value				
⁹⁰ Sr	5.1	4.5 - 5.3	5.0	0.2	12
⁹⁹ Tc	14.8	13.8 - 20.2	16.0	2.4	5
210 Pb(210 Po) ^{\$}	10.9	10.2 - 12.0	11.1	0.5	13
²²⁶ Ra	17.0	14.2 - 18.9	16.8	1.6	13
²²⁸ Th	15.0	12.6 - 15.5	14.6	1.1	11
²³⁰ Th	0.36	0.22 - 0.38	0.37	0.07	8
²³² Th	0.38	0.30 - 0.46	0.39	0.06	9
²³⁵ U	0.44	0.27 - 0.52	0.41	0.07	13
²³⁸ U	9.34	8.98 - 10.96	9.79	0.48	14
²³⁹ Pu	0.014	0.012 - 0.015	0.0135	0.001	5
²⁴⁰ Pu	0.010	0.009 - 0.014	0.011	0.002	5

(Reference date: 1 August 2006, unit: Bq kg⁻¹)

[&] Expanded uncertainty for the mean value was calculated according to the "Evaluation of measurement data – Guide to the expression of uncertainty in measurement", JGCM 100:2008 (GUM with minor corrections), (2008) [4]

* Number of accepted laboratory means which were used to calculate the certification and information values and the confidence intervals ^{\$ 210}Pb and ²¹⁰Pb were considered as in equilibrium, and the ²¹⁰Pb is corrected for reference date at 1 August 2006

APPENDIX I Data report – Tables

Sample	¹³⁷ Cs	⁴⁰ K	²¹⁰ Po	²¹⁴ Bi	²³⁹⁺²⁴⁰ Pu
1	0.93	0.93	0.82	0.95	0.84
2	0.94	0.94	0.88	0.95	0.90
3	0.95	0.94	0.93	0.95	0.91
4	0.96	0.96	0.99	0.96	0.93
5	0.99	0.97	1.00	0.97	0.94
6	0.99	0.98	1.00	0.97	0.94
7	1.00	0.98	1.02	0.97	0.97
8	1.00	0.98	1.02	0.99	1.01
9	1.00	0.99	1.02	0.99	1.02
10	1.01	0.99	1.03	1.00	1.02
11	1.01	1.00	1.05	1.01	1.04
12	1.01	1.01	1.06	1.01	1.06
13	1.01	1.01	1.07	1.01	1.06
14	1.01	1.01	1.10	1.02	1.07
15	1.01	1.02		1.03	1.11
16	1.02	1.04		1.03	1.17
17	1.02	1.05		1.04	
18	1.04	1.06		1.05	
19	1.04	1.06		1.06	
20	1.06	1.09		1.07	
<i>A</i> inimum	0.93	0.93	0.82	0.95	0.84
Aaximum	1.06	1.09	1.10	1.07	1.17
Iean	1.00	1.00	1.00	1.00	1.00
/ledian	1.00	0.98	1.00	0.98	1.00
std. Dev.	0.02	0.03	0.07	0.03	0.09
Coef. Var. (%)	2	3	7	3	9

TABLE 1. HOMOGENEITY TESTS AS NORMALIZED ACTIVITY FORRADIONUCLIDES IN IAEA-446(*).

(*) Normalized activity = x/X (individual/mean values): initially expressed in this manner to assure confidentiality of results

Radionuclide	Number of all results	Radionuclide	Number of all results
⁴⁰ K	107	²²⁸ Ac	5
⁹⁰ Sr	38(1)	²²⁸ Th	43
⁹⁹ Tc	16	²³⁰ Th	34
¹²⁹ I	18	²³² Th	40
¹³⁷ Cs	107	²³⁴ U	44
²⁰⁸ Tl	12	²³⁵ U	40
²¹⁰ Pb(²¹⁰ Po)	62	²³⁶ U	15
²¹² Pb	9	²³⁸ U	58
²¹² Bi	7	²³⁸ Pu	44(6)
²¹⁴ Pb	29	²³⁹ Pu	17
²¹⁴ Bi	29	²⁴⁰ Pu	17
²²⁴ Ra	7	²³⁹⁺²⁴⁰ Pu	79(1)
²²⁶ Ra	54	²⁴¹ Am	22
²²⁸ Ra	48		

TABLE 2. RADIONUCLIDES REPORTED FOR IAEA-446.

Note: "Less than" values are shown in parentheses

TABLE 3. RESULTS FOR ⁴⁰K IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	${}^{40}K^{\#}$
$ \begin{array}{c} 1\\3\\4\\5\\6\\7\\7b\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\21\\22\\23\\24\\27\\28\end{array} $	G G G G G G G G G G G G G G G G G G G	$ \begin{array}{c} 4\\ 4\\ 1\\ 7\\ 3\\ 3\\ 4\\ 1\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 1\\ 1\\ 1\\ 9\\ 40\\ 1 \end{array} $	$\begin{array}{c} 85\\ \text{no information}\\ 56.5\\ 69.81\\ 38\\ 23.92\\ 28.46\\ 100\\ 96.5\\ 46.8; 85.8\\ 101.6\\ 83.6\\ 43.62\\ 27\\ 14; 100\\ 45-50\\ 72\\ 30.8\\ 95.1\\ 88.46\\ 73\\ 62.56\\ 97\\ 8.77-19.54; 60\\ 100\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Number of r Number of a Median Mean Weighted me Confidence i	eported lab. means ccepted lab. means ean (uncertainty) interval ($\alpha = 0.05$) ncertainty ($k = 2$)	3 S		25 24 660 658 657 (16) 626 - 671 20

(Reference date: 1 August 2006, unit: Bq kg⁻¹)

For Tables 3-17:

Uncertainties at 2σ

* Result rejected by the test for outliers

TABLE 4. RESULTS FOR ⁹⁰Sr IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	⁹⁰ Sr
1	В	2	0.5	4.5 ± 2.1
6	В	1	19	4.6 ± 1.0
7	В	6	9.568	5.1 ± 0.3
9	В	2	18.1; 20.0	5.3 ± 0.6
10	В	3	9.4; 18.7	5.26 ± 0.31
11	В	4	20	5.12 ± 0.28
14	В	3	40.27-40.65	5.24 ± 0.42
15	В	2	47	5.4 ± 0.8
16	В	3	9.33	4.48 ± 1.08
19	В	3	16-20	5.24 ± 0.17
21	В	1	4.59	4.4 ± 1.6
24	В	3	20	$4.19 \pm 0.26!$
27	В	5	10	5.1 ± 0.3
Number of a Median Mean	eported lab. mean accepted lab. mean			$ \begin{array}{c} 13\\ 12\\ 5.1\\ 5.0\\ 5.0(01) \end{array} $
	ean (uncertainty)		5.0 (0.1)	
	interval ($\alpha = 0.05$) neertainty ($k = 2$))		4.5 – 5.3 0.2

(Reference date: 1August 2006, unit: Bq kg⁻¹)

For Tables 4-17: ! Results are warning, with z-scores between 2 and 3

TABLE 5. RESULTS FOR 99 Tc IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	⁹⁹ Tc	
1	B1	2	0.5	69 ± 24	4*
3	B1	3	no information	20.2 ± 2	.1
13	B1	1	10.38	13.8 ± 1	.3
14	B1	3	9.67-9.69	14 ± 1	
15	B1	6	5; 10	14.8 ± 0	.8
18	B1	1	10	17 ± 2	
Number of a Median Mean Weighted m Confidence	reported lab. mean accepted lab. mean mean (uncertainty) interval ($\alpha = 0.05$) ncertainty ($k = 2$)	S		$ \begin{array}{r} 6 \\ 5 \\ 14.8 \\ 16.0 \\ 14.9 (0.8) \\ 13.8 - 20.2 \\ 2.4 \\ \end{array} $	

TABLE 6. RESULTS FOR ¹³⁷Cs IN IAEA-446.

		1
(Reference date:	l August 2006,	, unit: Bq kg ⁻¹)

Lab code	Method code	No. of results	Mass (g)	1:	³⁷ Cs	
1	G	4	85	21.5	±	1.0*
3	G	4	no information	22.1	\pm	0.6*
4	G	1	56.5	19.5	±	1.4
5	G	7	69.81	19.2	±	1.5
6	G	3	38	16.4	±	1.2
7	G	3	23.92	21.3	±	1.1
7b	G	4	28.46	18.8	±	0.8
8	G	1	100	16.9	±	0.9
9	G	3	96.5	18.1	±	0.3
10	G	3	46.8; 85.8	20.1	±	0.7
11	G	2	101.6	18.6	±	1.9
12	G	3	83.6	19.3	±	1.3
13	G	1	43.62	19.0	±	0.9
14	G	3	27	18.0	±	1.0
15	G	2	14; 100	19.5	±	1.6
16	G	3	45-50	17.1	±	3.1
17	G	3	72	18.2	±	1.2
18	G	2	30.8	18.6	±	1.2
19	G	2	95.1	18.4	±	0.4
21	G	1	88.46	17.5	±	1.5
22	G	1	73	21.0	±	1.3
23	G	1	62.56	19.5	±	0.6
24	G	9	97	19.0	\pm	0.5
27	G	40	8.77-19.54; 60	18.5	±	0.2
28	G	1	100	18.9	±	0.6
Number of reported lab. means Number of accepted lab. means Aedian Mean Veighted mean (uncertainty)					25 23 18.8 18.8 .8 (0	5
	iterval ($\alpha = 0.05$)			18.	2 - 1	19.2
	certainty $(k=2)$				0.5	

TABLE 7. RESULTS FOR ²¹⁰Pb(²¹⁰Po) IN IAEA-446.

Lab code Method code		No. of results	Mass (g)	²¹⁰ Pb(²¹⁰ Po) ^{\$}	
1	G	4	85	12.4 ± 1.8	
	А	3	0.3	12.0 ± 0.6	
2 3	А	3	no information	$15.5 \pm 0.7*$	
5	А	9	1.81-1.86	10.0 ± 1.3	
8	А	1	1.039	10.6 ± 2.5	
9	G	3	96.5	$13.8 \pm 1.4!$	
11	G	1	101.6	10.9 ± 3.1	
12	А	3	5.1	10.4 ± 0.7	
14	А	3	4.96-5.06	10.0 ± 0.8	
15	G	1	14	9.8 ± 1.0	
16	G	2	17.5; 50	12.0 ± 4.6	
17	G	3	72	10.2 ± 1.4	
22	А	1	2	$16.6 \pm 1.5^*$	
23	А	2	1.996; 2.662	11.0 ± 0.4	
24	G	9	97	12.2 ± 1.1	
27	А	14	0.35-0.53	11.7 ± 0.2	
	eported lab. means ccepted lab. means			16 13	
/Iedian	1			10.9	
/lean				11.1	
Veighted me	an			11.3 (0.2)	
	nterval ($\alpha = 0.05$)			10.2 - 12.0	
	certainty $(k = 2)$			0.5	

(Reference date: 1 August 2006, unit: Bq kg⁻¹)

 $^{\$\,210}\text{Pb}$ and ^{210}Po were considered to be in equilibrium, and the ^{210}Pb values are corrected for reference date at 1 August 2006

TABLE 8. RESULTS FOR ²²⁶Ra IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²²⁶ Ra	
1	G	4	85	$30.0 \pm 4.3^*$	
4	G	1	56.5	17.0 ± 3.4	
8	G	1	100	12.2 ± 2.5	
9	G	3	96.5	21.2 ± 0.5	
10	B1	3	4.68	16.2 ± 0.7	
11	G	1	101.6	$25.6 \pm 7.7!$	
13	G	1	43.62	20.1 ± 1.6	
15	G	2	14; 100	17.0 ± 2.0	
16	G	1	50	16.1 ± 3.0	
17	G	3	72	18.8 ± 1.5	
18	G	1	30.8	14.2 ± 1.4	
19	G	2	95.1	13.0 ± 0.5	
22	G	1	73	16.0 ± 1.5	
23	G	1	62.56	$32.5 \pm 1.8^*$	
24	G	9	97	17.6 ± 1.4	
27	G	20	8.77-19.54; 60	18.9 ± 0.2	
Number of reported lab. means Number of accepted lab. means			16 13		
Median	copied lab. means			17.0	
Mean			16.8		
	an (uncertainty)			18.2 (0.6)	
	nterval ($\alpha = 0.05$)			14.2 - 18.9	
	certainty $(k=2)$			14.2 - 18.9	

TABLE 9. RESULTS FOR ²²⁸Ra IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²²⁸ Ra
1	G	4	85	15.4 ± 1.2
4	G	1	56.5	15.0 ± 3.0
9	G	3	96.5	16.4 ± 0.5
13	G	1	43.62	14.6 ± 1.5
15	G	2	14; 100	17.0 ± 3.0
16	G	3	17.5-50	$24.3 \pm 5.0^*$
17	G	3	72	15.4 ± 0.6
18	G	2	30.8	16.5 ± 1.3
19	G	2	95.1	14.6 ± 0.7
22	G	1	73	15.0 ± 2.4
23	G	1	62.56	16.7 ± 2.0
24	G	9	97	15.3 ± 0.5
27	G	20	8.77-19.54; 60	15.7 ± 0.2
umber of a	eported lab. means ecepted lab. means			13 12
Median			15.4	
lean	<i>.</i>			15.6
-	ean (uncertainty)			15.7 (0.2)
	nterval ($\alpha = 0.05$)			15.0 - 16.7
	certainty $(k=2)$			0.5

TABLE 10. RESULTS FOR ²²⁸Th IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²²⁸ Th
3	А	3	no information	17.5 ± 0.3
8	А	2	0.98	12.2 ± 2.5
9	А	2	4.33; 4.75	12.6 ± 1.3
12	А	3	2.1	14.7 ± 0.7
13	G	1	43.62	$98.4 \pm 7.6*$
14	А	3	29.6-29.8	15.0 ± 1.0
16	G	1	50	$21.6 \pm 10.5!$
17	G	3	72	15.5 ± 0.4
18	G	2	30.8	15.0 ± 1.1
19	А	3	1.9	15.2 ± 0.6
23	G	1	62.56	15.4 ± 0.9
24	G	9	97	16.0 ± 0.5
27	А	10	15; 50	11.6 ± 0.4
	ported lab. means accepted lab. means			13 11 15.0
/lean				14.6
	an (uncertainty)			15.2 (0.7)
-	nterval ($\alpha = 0.05$)			12.6 - 15.5
	certainty $(k = 2)$			1.1

TABLE 11. RESULTS FOR ²³⁰Th IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²³⁰ Th	
2	А	3	5	0.54 ± 0.06	
2 3	А	3	no information	0.22 ± 0.01	
8	А	2	0.98	$22.6 \pm 4.2*$	
9	А	2	4.33; 4.75	$1.17 \pm 0.12!$	
12	А	3	2.1	0.33 ± 0.07	
14	А	3	29.6-29.8	0.36 ± 0.04	
15	А	1	20	0.48 ± 0.10	
19	А	3	1.9	0.38 ± 0.04	
22	А	1	2	$1.17 \pm 0.41!$	
23	А	3	3.3-5.1	0.28 ± 0.01	
27	А	10	15; 50	0.35 ± 0.01	
	eported lab. means ccepted lab. means			11 8	
Median				0.36	
Mean				0.37	
Weighted mean (uncertainty)				0.29 (0.02)	
-	interval ($\alpha = 0.05$)			0.22 - 0.38	
	ncertainty $(k = 2)$			0.07	

TABLE 12. RESULTS FOR ²³²Th IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²³² Th	²³² Th
2	А	3	5	0.38 ± 0.04	
3	A	3	no information	0.320 ± 0.002	
8	А	2	0.98	$7.3 \pm 1.5^*$	
9	G	3	96.5		16.5 ± 0.5
9b	А	3 2	4.33; 4.75	0.57 ± 0.06	
11	G	2	101.6		25.4 ± 2.3
12	А	3	2.1	0.41 ± 0.10	
13	G	1	43.62		14.6 ± 1.5
14	А	3	29.6-29.8	0.46 ± 0.05	
15	А	1	20	0.38 ± 0.04	
19	А	3	1.9	0.42 \pm 0.04	
23	А	3	3.3-5.1	0.26 ± 0.01	
27	А	10	15; 50	0.295 ± 0.012	
28	G	1	100		13.4 ± 0.5
Number of Median Mean Weighted r Confidence	reported lab. mea accepted lab. mea mean (uncertainty e interval ($\alpha = 0.0$ uncertainty ($k = 2$)	ans) 5)		$ \begin{array}{r} 10\\ 9\\ 0.38\\ 0.39\\ 0.32\ (0.004)\\ 0.29-0.46\\ 0.06\\ \end{array} $	

TABLE 13. RESULTS FOR ²³⁴U IN IAEA-446.

Lab code	Method code	No. of results	Mass (g)	²³⁴ U
1	А	4	0.5	11.0 ± 1.8
2	А	3	5	11.3 ± 0.3
3	А	3	no information	10.1 ± 0.4
8	А	2	0.25	$37.5 \pm 1.6^*$
9	А	2	4.62; 5.02	10.5 ± 1.1
12	А	3	2.1	10.5 ± 0.6
14	А	3	29.6-29.8	10.0 ± 0.6
15	А	1	20	11.0 ± 2.0
18	А	1	no information	$16.3 \pm 2.0!$
19	А	3	1.9	10.0 ± 0.6
21	А	1	9.19	11.0 ± 0.3
22	А	1	2	$8.4 \pm 0.5!$
23	А	2	2.08; 2.09	10.5 ± 0.3
26	ICP-MS	5	0.2	$13.3 \pm 0.9!$
27	ICP-MS	10	0.2	9.85 ± 0.96
	ported lab. means ccepted lab. means			15 11
Median	copied ido. medils			10.5
Mean				10.5
	an (uncertainty)			10.6 (0.1)
	nterval ($\alpha = 0.05$)			10.0 - 11.0
	certainty $(k = 2)$			0.3

TABLE 14. RESULTS FOR ²³⁵U IN IAEA-446.

Lab code Method code		code Method code No. of results		²³⁵ U		
2	А	3	5	0.44 ±	0.05	
3	А	3	no information	$0.27 \pm$	0.05	
8	А	2	0.25	$1.68 \pm$	0.07*	
9	А	2	4.62; 5.02	0.49 \pm	0.05	
12	Α	3	2.1	$0.45 \pm$	0.10	
14	Α	3	29.6-29.8	$0.28 \pm$	0.03	
15	А	1	20		0.1	
18	А	1	no information		0.3	
19	А	3	1.9		0.11	
21	А	1	9.19		0.03	
22	А	1	2		0.13	
23	А	2	2.08; 2.09		0.04	
26	ICP-MS	5	0.2		0.040	
27	ICP-MS	10	0.2	0.482 ±	0.047	
	eported lab. means ccepted lab. means			14 13		
Median	····			0.44		
Mean				0.41		
Weighted m	ean (uncertainty)			0.36 (0.03	3)	
	interval ($\alpha = 0.05$)			0.27 - 0.5		
	ncertainty $(k=2)$			0.07		

TABLE 15. RESULTS FOR ²³⁸U IN IAEA-446.

ab code	Method code	No. of results	Mass (g)	²³⁸ U
1	А	4	0.5	9.0 ± 0.9
2	А	3	5	9.5 ± 0.3
3	А	3	no information	9.0 ± 0.3
4	G	1	56.5	$16.5 \pm 7.3!$
8	А	2	0.25	$36.4 \pm 1.5^*$
9	А	2	4.62; 5.02	9.2 ± 1.0
12	А	3	2.1	9.0 ± 0.5
14	А	3	29.6-29.8	8.9 ± 0.6
15	А	1	20	9.7 ± 1.0
17	G	3	72	11.3 ± 2.2
18	А	1	no information	$13.2 \pm 1.7!$
19	А	3	1.9	8.6 ± 0.5
21	А	1	9.19	11.0 ± 0.3
22	А	1	2	$6.4 \pm 0.4!$
23	А	2	2.08; 2.09	9.1 ± 0.2
24	G	9	97	11.0 ± 1.0
26	ICP-MS	5	0.2	11.6 ± 0.83
27	ICP-MS	10	0.2	10.4 ± 1.0
28	G	1	100	$15.6 \pm 0.6!$
	eported lab. means accepted lab. means			19 14
Median				9.34
Mean			9.79	
Weighted mean (uncertainty)				9.46 (0.21)
	interval ($\alpha = 0.05$)			8.98 - 10.96
	ncertainty $(k = 2)$			0.48

(Reference date: 1 August 2006, unit: Bq kg⁻¹)

TABLE 16. RESULTS FOR ²³⁸Pu AND ²³⁹⁺²⁴⁰Pu IN IAEA-446.

(Reference date: 1 August 2006; unit: Bq kg⁻¹)

Lab. code	Method code	No. of results	Mass (g)	²³⁸ Pu [#]	²³⁹⁺²⁴⁰ Pu
1	А	4	0.5		$0.51 \pm 0.19^*$
3	А	3	no information		0.021 ± 0.003
8	А	2	9.48; 15.22	<0.023; 0.012	0.024 ± 0.01
9	А	2	9.82; 10.1	0.056 ± 0.006	$0.0170 \pm 0.0025!$
10	А	3	9.4; 18.7		$0.05 \pm 0.01*$
11	А	3	20	< 0.0065	0.022 ± 0.01
12	А	3	10.1		$0.035 \pm 0.014!$
12b	ICP-MS	3	10		0.0248 ± 0.0015
13	А	2	5.67; 6.5	<0.0142; <0.0149	$0.838 \pm 0.012*$
14	А	3	40.27-40.65		0.0232 ± 0.0021
15	ICP-MS	2	20		0.0207 ± 0.0054
18	А	1	no information		0.022 ± 0.006
21	A	1	9.19	< 0.05	$0.054 \pm 0.013*$
22	A	1	4		$0.0886 \pm 0.0226*$
23	А	3	3.3-5.7	< 0.01	0.0274 ± 0.0045
24	Α	3	14.3	0.0019 ± 0.0009	0.025 ± 0.0038
25	AMS	3	10		0.0241 ± 0.0023
27	А	18	50	0.0023 ± 0.0005	0.0265 ± 0.0037
27b	Α	10	5-20	0.009 ± 0.0002	0.0259 ± 0.0023
27c	ICP-MS	9	10-20		0.0261 ± 0.0022
Number of	f reported lab. me	ans			20
Number of accepted lab. means					13
Median					0.024
Mean					0.024
Weighted mean (uncertainty)					0.0246 (0.0005)
Confidence interval ($\alpha = 0.05$)					0.022 - 0.026
Expanded uncertainty $(k = 2)$					

TABLE 17. RESULTS FOR ²³⁹Pu AND ²⁴⁰Pu IN IAEA-446.

Lab. code	Method code	No. of results	Mass (g)	²³⁹ Pu	²⁴⁰ Pu	
12	ICP-MS	3	10	0.0146 ± 0.0007	0.0102 ± 0.0013	
15	ICP-MS	2	20	0.0119 ± 0.0012	0.0088 ± 0.0021	
25	AMS	3	10	0.0147 ± 0.0006	0.0094 ± 0.0008	
27d	ICP-MS	9	10-20	0.0144 ± 0.001	0.0115 ± 0.0007	
27f	ICP-MS	3	10-20	0.0117 ± 0.001	0.0143 ± 0.0006	
Number of	reported lab.	means		5	5	
Number of	accepted lab.	means		5	5	
Median				0.014	0.010	
Mean				0.013	0.011	
Weighted mean (uncertainty)				0.0140 (0.0006)	0.012 (0.001)	
Confidence interval ($\alpha = 0.05$)				0.012 - 0.015	0.009 - 0.014	
Expanded uncertainty $(k = 2)$				0.001	0.002	

(Reference date: 1 August 2006; unit: Bq kg⁻¹)

TABLE 18. RESULTS FOR THE LESS FREQUENTLY MEASURED RADIONUCLIDES REPORTED IN IAEA-446.

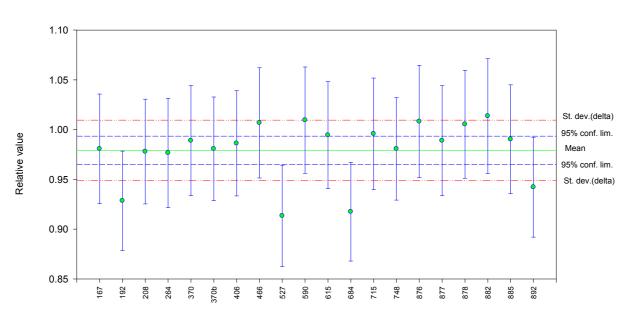
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Activity (Bq kg ⁻¹)	Mass (g)	No. of results	Method code	Lab. code	Isotope
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					¹²⁹ I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.100 - 0.001	0.5	0	7 11010	23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.9 ± 0.5	85	4	G		²⁰⁸ Tl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.3 ± 0.6		3			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5 ± 0.2					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 ± 0.5					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.6 ± 0.4	100	1	G	28	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.2 ± 3.2	85	4	G	1	²¹² Bi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.1 ± 1.4					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.1 ± 1.3					²¹² Pb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.8 ± 0.3					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.0 ± 1.3					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.3 ± 1.0	100	1	G	28	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.0 ± 1.1	95	4	G	1	²¹⁴ D ;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.0 ± 1.1 20.6 ± 0.5					DI -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.7 ± 1.3					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.7 ± 0.2 18.9 ± 0.2					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.6 ± 0.5					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.2 ± 1.2	85	4	G	1	²¹⁴ Pb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.2 ± 1.2 21.7 ± 0.5					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.4 ± 1.2					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.0 ± 0.2					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.2 ± 1.1					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.5 ± 5.1	85	4	G	1	²²⁴ R a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.8 ± 0.9		3	G		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.4 ± 1.2	95	4	G	1	²²⁸ A a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.4 ± 1.2 12.6 ± 1.5					-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0 ± 1.3 12.5 ± 1.2					-
²³⁶ U 26 ICP-MS 5 0.2 0.4 27 ICP-MS 10 0.2 0						224
- 27 ICP-MS 10 0.2 0	16.9 ± 0.7	96.5	3	G	9	²³⁴ Th
- 27 ICP-MS 10 0.2 0	0.0034 ± 0.0002	0.2	5	ICP-MS	26	²³⁶ U
	0.059 ± 0.006					-
241 Am 1 A 4 0.5	3.0 ± 0.6	0.5	4	А	1	²⁴¹ Am
	0.020 ± 0.018					-
	< 0.12					-
	0.034 ± 0.008					-
	0.0073 ± 0.0004	-				-

(Reference date: 1 August 2006, unit: Bq kg⁻¹)

Radionuclide	Median	Confidence	Mean	Expanded	Number
		interval $(\alpha = 0.05)$		uncertainty $(k=2)^{\&}$	of results*
	Certified value				
⁴⁰ K	660	626 - 671	658	20	24
¹³⁷ Cs	18.8	18.2 - 19.2	18.8	0.5	23
²²⁸ Ra	15.4	15.0 - 16.7	15.6	0.5	12
²³⁴ U	10.5	10.0 - 11.0	10.5	0.3	11
²³⁹⁺²⁴⁰ Pu	0.024	0.022 - 0.026	0.024	0.001	13
	Information				
	value				
⁹⁰ Sr	5.1	4.5 - 5.3	5.0	0.2	12
⁹⁹ Tc	14.8	13.8 - 20.2	16.0	2.4	5
²¹⁰ Pb(²¹⁰ Po) ^{\$}	10.9	10.2 - 12.0	11.1	0.5	13
²²⁶ Ra	17.0	14.2 - 18.9	16.8	1.6	13
²²⁸ Th	15.0	12.6 - 15.5	14.6	1.1	11
²³⁰ Th	0.36	0.22 - 0.38	0.37	0.07	8
²³² Th	0.38	0.30 - 0.46	0.39	0.06	9
²³⁵ U	0.44	0.27 - 0.52	0.41	0.07	13
²³⁸ U	9.34	8.98 - 10.96	9.79	0.48	14
²³⁹ Pu	0.014	0.012 - 0.015	0.0135	0.0010	5
²⁴⁰ Pu	0.010	0.009 - 0.014	0.011	0.002	5

TABLE 19. SUMMARY OF CERTIFIED AND INFORMATION VALUES FOR IAEA-446

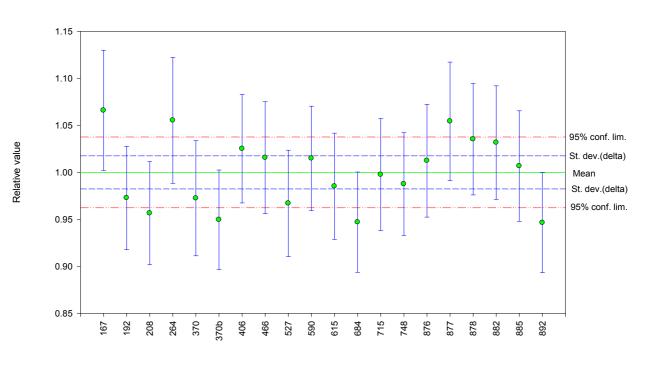
(Reference date: 1 August 2006, unit: Bq kg⁻¹)


* Expanded uncertainty for mean value was calculated according to the "Evaluation of measurement data –

Guide to the expression of uncertainty in measurement", JGCM 100:2008 (GUM with minor corrections), (2008) [4]

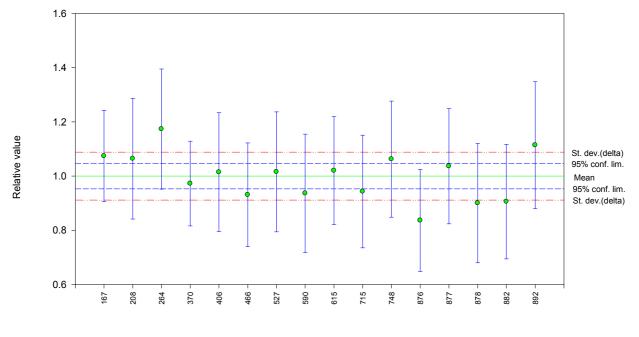
* Number of accepted laboratory means which were used to calculate the certification and information values and the confidence intervals ^{\$ 210}Pb and ²¹⁰Pb were considered to be in equilibrium and the ²¹⁰Pb is corrected to a reference date of 1 August

2006


APPENDIX II Data evaluation – Graphs

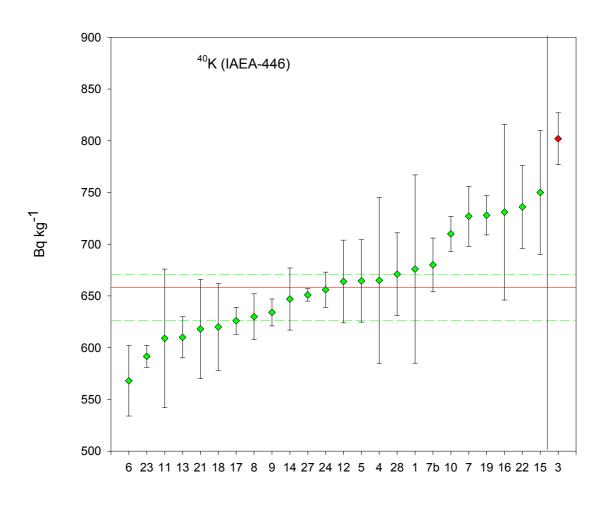
IAEA-446, test of homogeneity $^{137}\mathrm{Cs}$

Sample number


FIG.1. Homogeneity test for ¹³⁷Cs in IAEA-446.

IAEA-446, test of homogeneity ²¹⁴Bi

Sample number


FIG.2. Homogeneity test for ²¹⁴Bi in IAEA-446.



IAEA-446, second test of homogeneity $$^{239+240}\mbox{Pu}$$

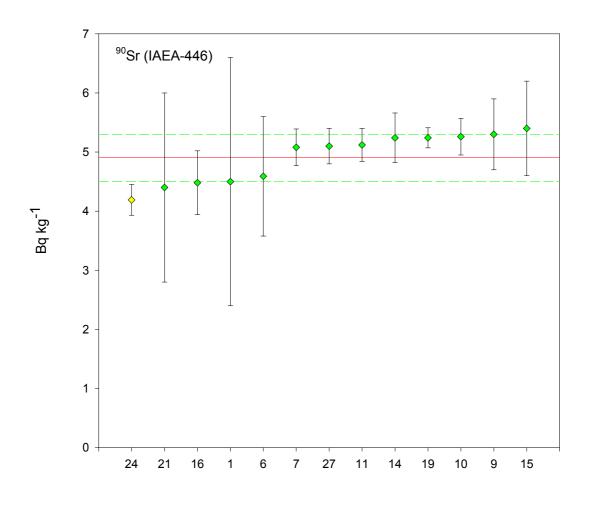
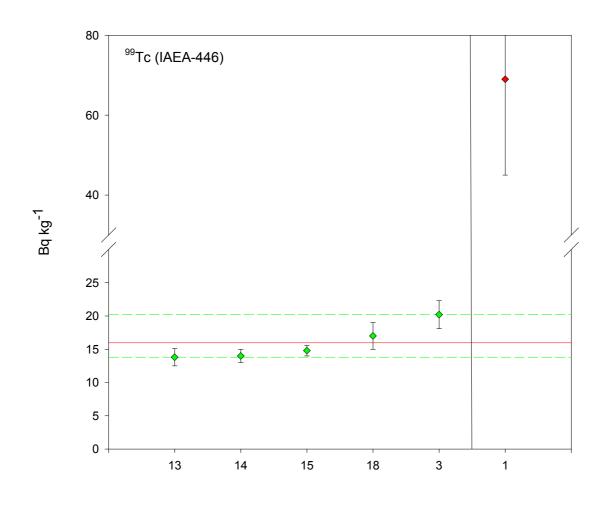

Sample number

FIG.3. Homogeneity test for ²³⁹⁺²⁴⁰Pu in IAEA-446.



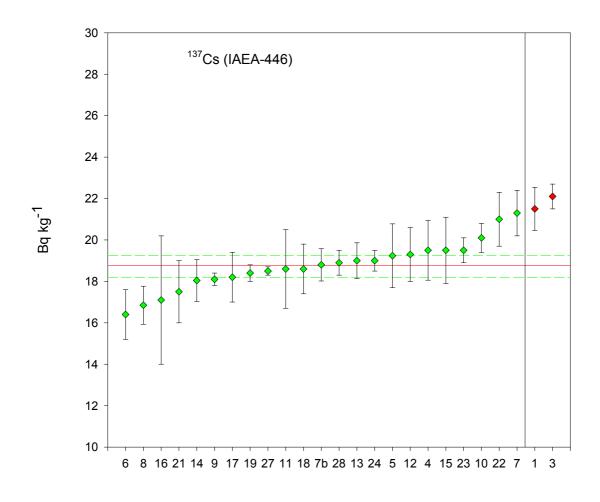
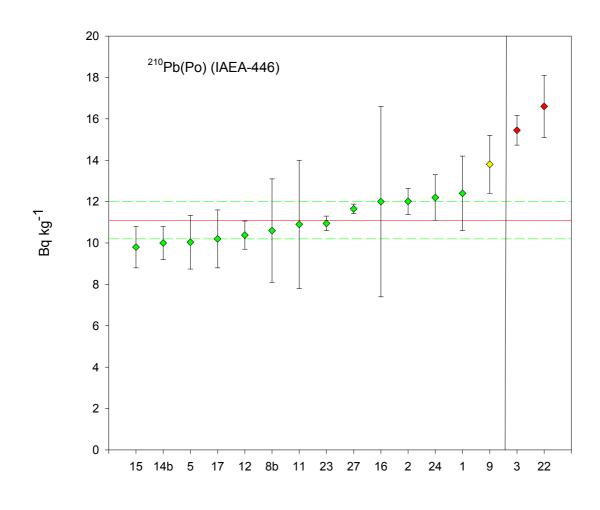
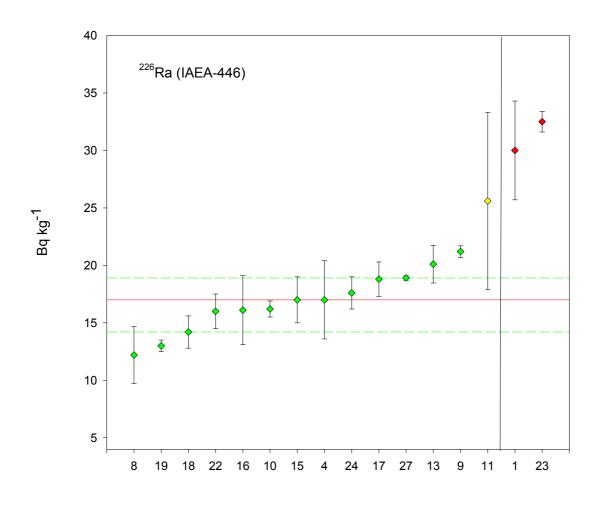
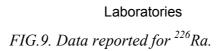
Note: Figs 4–19: yellow points are warning, red points are outliers, which are not included in the certification process.

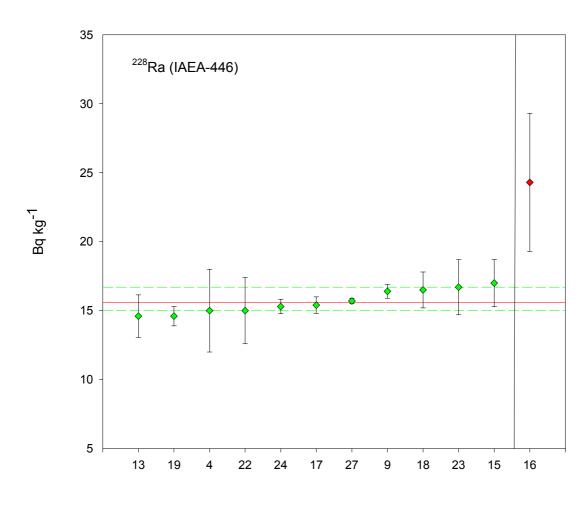
Laboratories

FIG.5. Data reported for ⁹⁰Sr.

Laboratories

FIG.6. Data reported for ⁹⁹Tc.


FIG.7. Data reported for ¹³⁷Cs.

Laboratories *FIG.8. Data reported for ²¹⁰Pb (²¹⁰Po).*

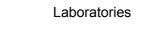
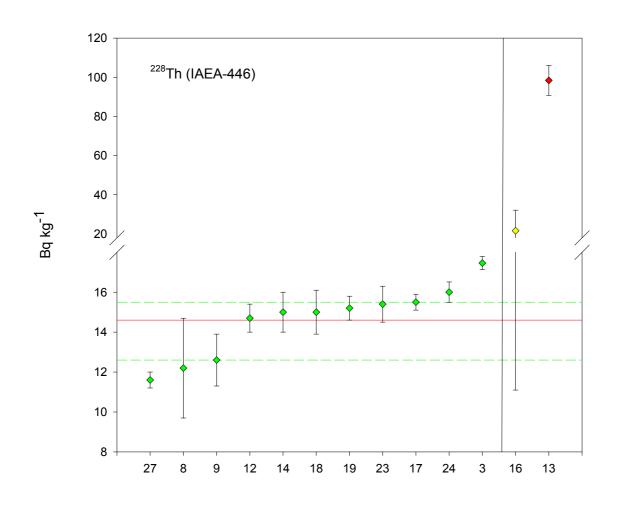
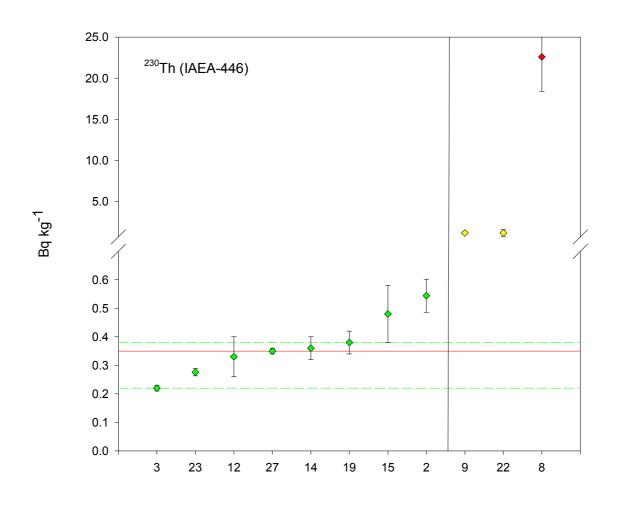




FIG.10. Data reported for ²²⁸Ra.

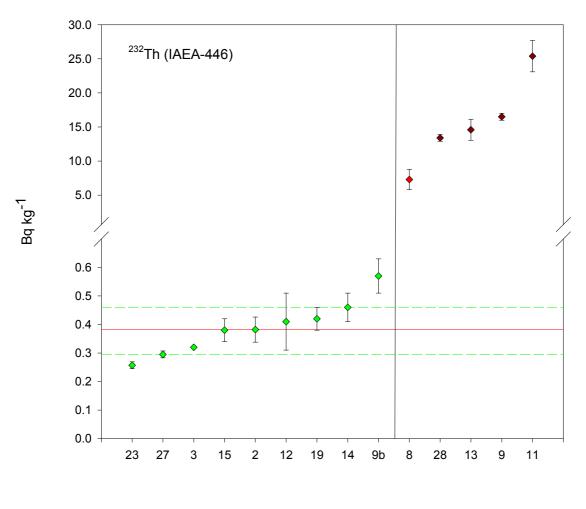
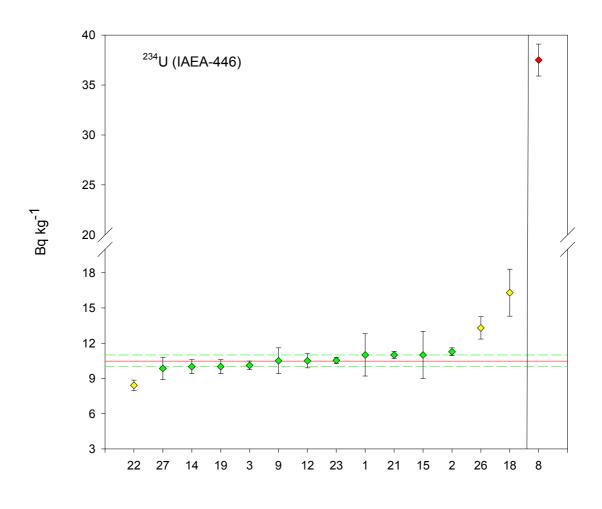
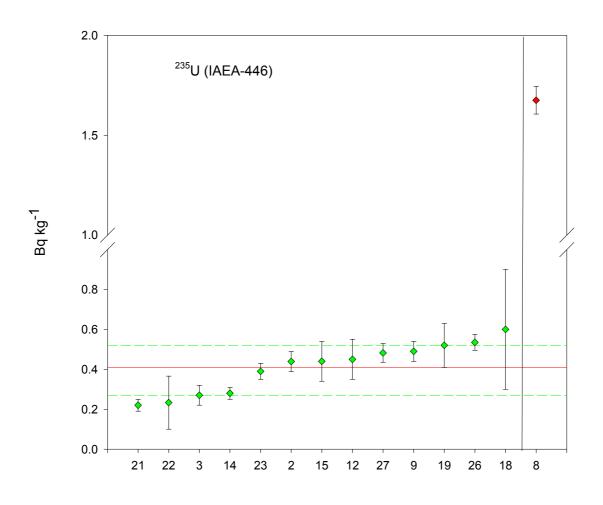

Laboratories

FIG.11. Data reported for ²²⁸Th.

Laboratories


FIG.12. Data reported for ²³⁰Th.

Laboratories



Note: dark points determined by gamma spectrometry, which are not included in the data evaluation (see above 7.2.4)

Laboratories

FIG.14. Data reported for ²³⁴U.

Laboratories

FIG.15. Data reported for ²³⁵U.

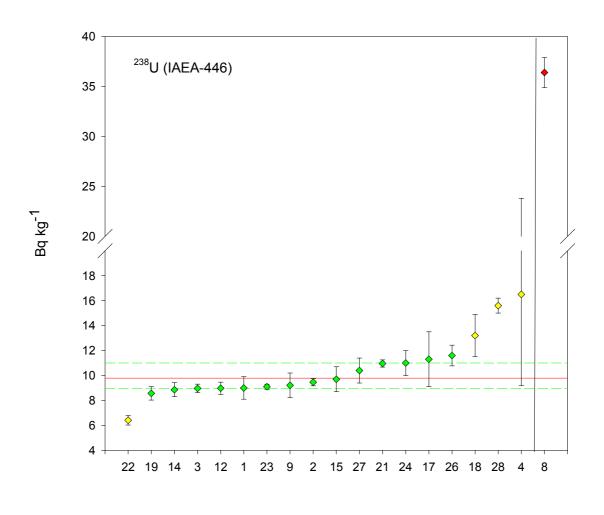
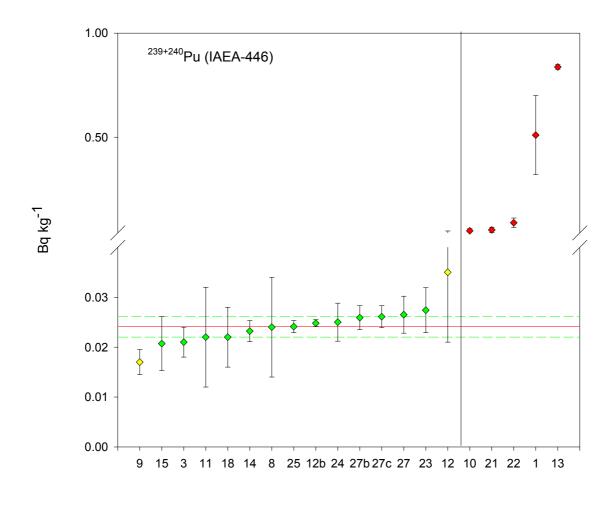
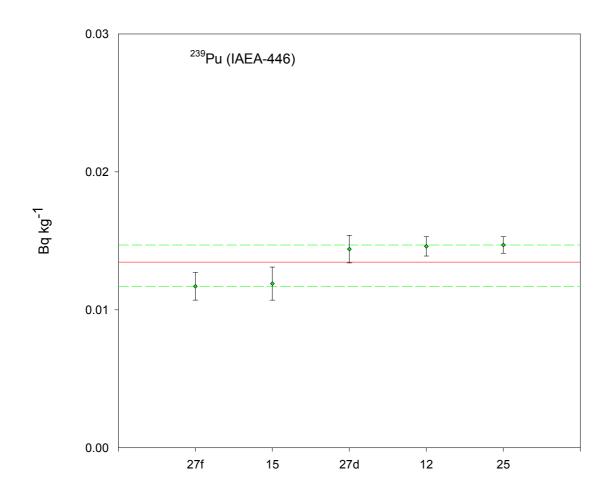
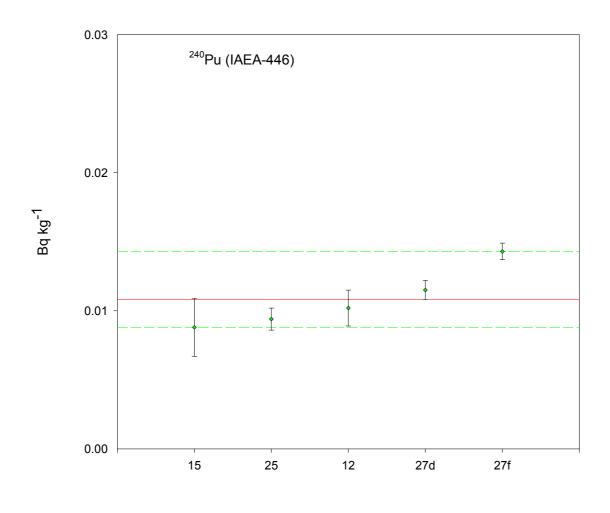
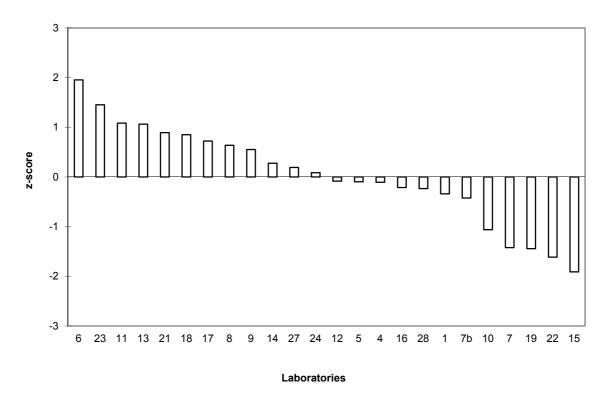
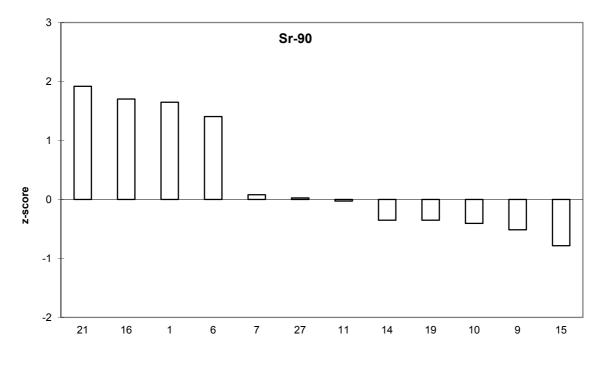




FIG.16. Data reported for ²³⁸U.

Laboratories

FIG.18. Data reported for ²³⁹Pu.


FIG.19. Data reported for ²⁴⁰Pu.

APPENDIX III z-scores – Graphs

⁴⁰K

FIG.20. z-score values for 40 *K.*

Laboratories

FIG.21. z-score values for ⁹⁰Sr.

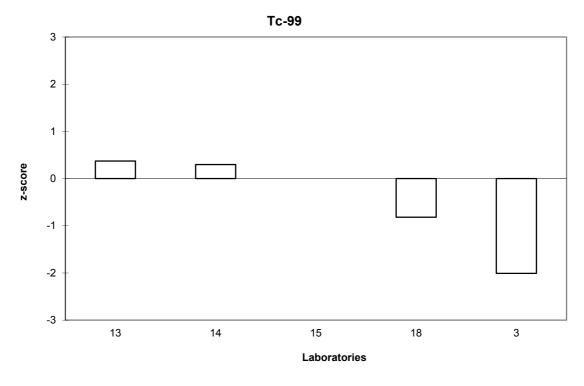


FIG.22. z-score values for ⁹⁹Tc.

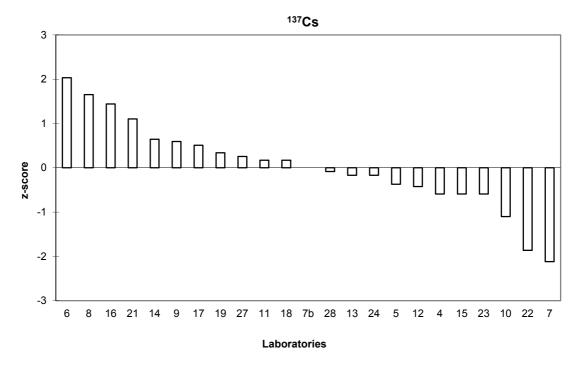


FIG.23. z-score values of ^{137}Cs .

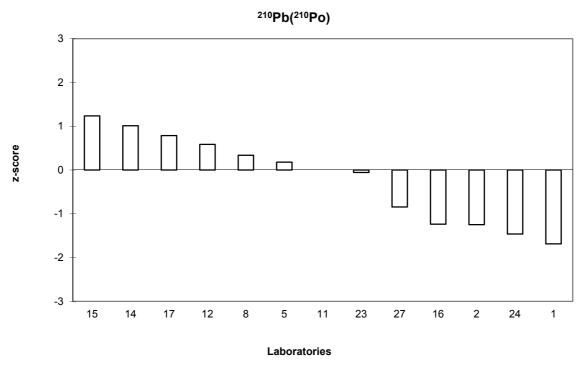


FIG.24. z-score values of ²¹⁰Pb (²¹⁰Po).

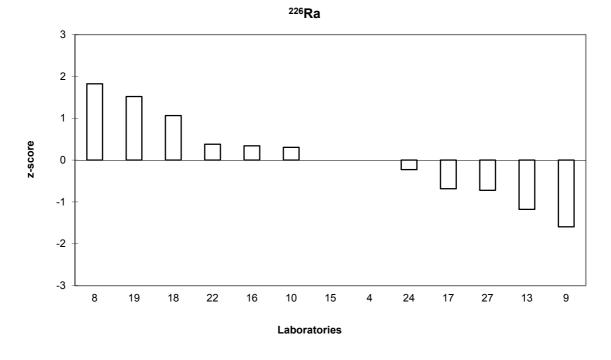
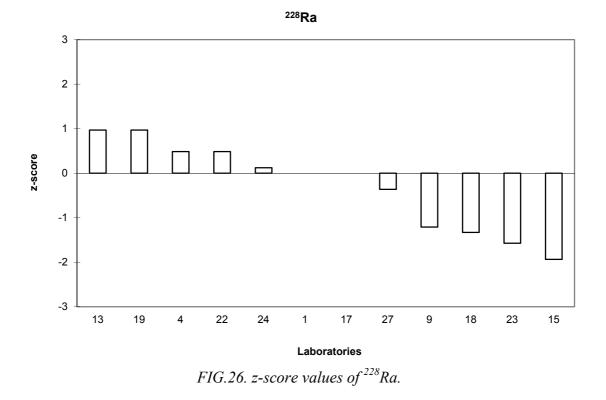



FIG.25. z-score values of ²²⁶Ra.

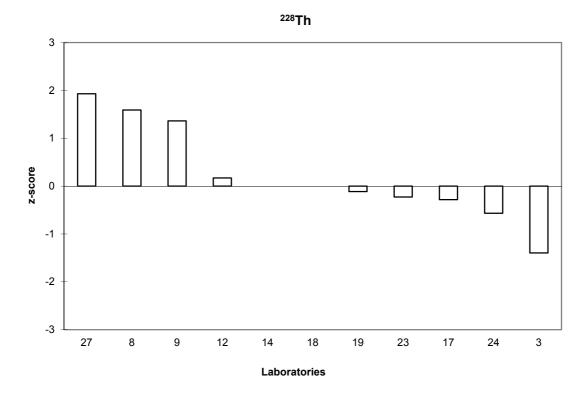


FIG.27. z-score values of ²²⁸Th.

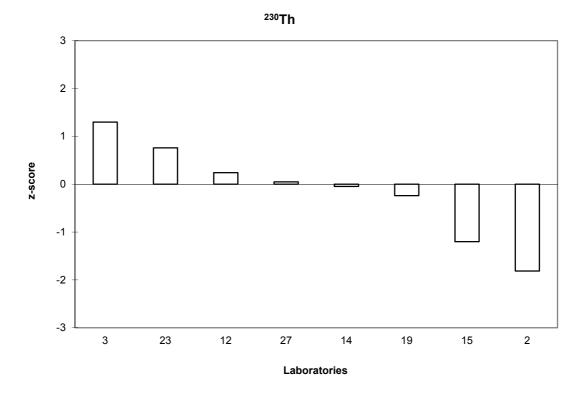
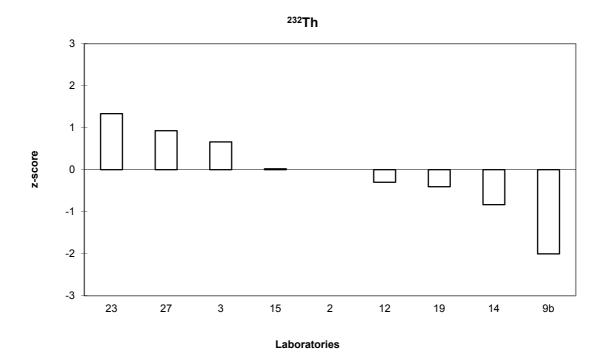
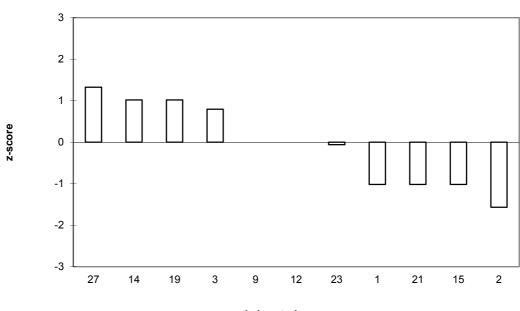




FIG.28. z-score values of ²³⁰Th.

*FIG.29. z-score values of*²³²*Th.*

²³⁴U

Fig. 30. z-score values of ^{234}U .

²³⁵U

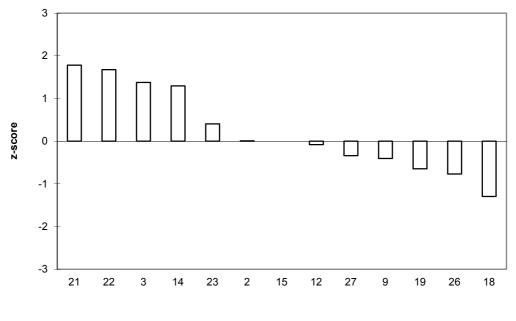


FIG.31. z-score values of ^{235}U .

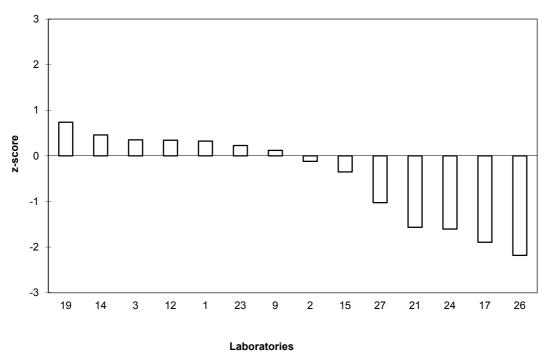


FIG.32. z-score values of ²³⁸U.

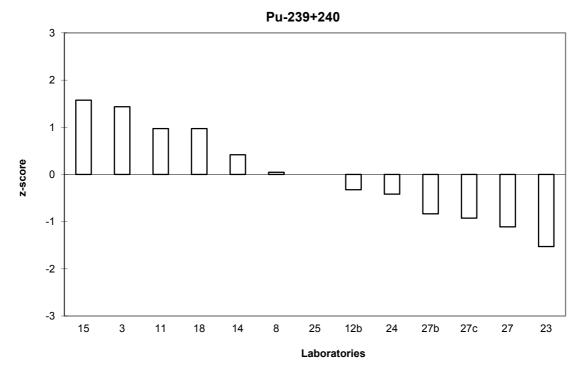


FIG.33. z-score values of ²³⁹⁺²⁴⁰Pu.

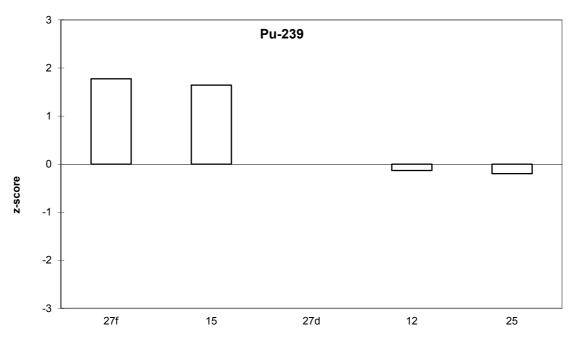


FIG.34. z-score values of ²³⁹Pu.

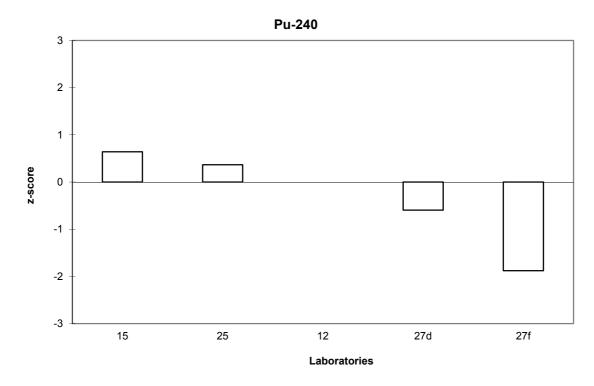


FIG.35. z-score values of ²⁴⁰Pu.

REFERENCES

- [1] POVINEC, P.P., PHAM, M.K., *IAEA reference materials for quality assurance of marine radioactivity measurements*, J. Radioanal. Nucl. Chem. **248** 1 (2001) 211–216.
- [2] SANCHEZ-CABEZA, J.-A., PHAM, M.K, POVINEC, P.P., *IAEA programme on the quality of marine radioactivity data*, J. Environ. Rad. **99** (2008) 1680–1686.
- [3] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, ISO Guide 35, Reference materials – General and statistical principles for certification, ISO, Geneva (2006).
- [4] JOINT COMMITTEE FOR GUIDES IN METROLOGY (JCGM), Evaluation of measurement data – Guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections, JCGM 100 (2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM 100 2008 E.pdf
- [5] THOMPSON, M., WOOD, R., The international harmonized protocol for the proficiency testing of analytical chemistry laboratories, (IUPAC Technical Report), J. Pure Appl. Chem. 78 1 (2006) 145–196.
- [6] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, ISO Guide 17043, Conformity assessment General requirements for proficiency testing, ISO, Geneva (2010).

ACKNOWLEDGEMENTS

The International Atomic Energy Agency is grateful to the participants and laboratories taking part in this interlaboratory comparison and contributing their time and facilities to the present work. Special thanks are given to the Risø National Laboratory (Risø, Denmark) for providing the Baltic seaweed sample.

The International Atomic Energy Agency is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories.

LIST OF PARTICIPATING LABORATORIES¹

CHINA

Zhou, W.	Institute of Earth Environment, Chinese Academy of Sciences No. 10 Fenghui South Road, High-Tech Zone, Xi'an, 710075 China
DENMARK	
Nielsen, S.P.	The Radiation Research Department Risø National Laboratory 4000 Roskilde Denmark
FINLAND	
Vartti, V-P.	Radiation and Nuclear Safety Authority – STUK Research and Environmental Surveillance Radionuclide Analytics Laippatie 4 / P.O. BOX 14 00881 Helsinki Finland
GERMANY	
Aldave De Las Heras, L. / Hrnecek, E.	European Commission-JRC Institute for Transuranium Elements Postfach 2340 76125 Karlsruhe Germany
Degering, D.	Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V. Postfach 510119 01314 Dresden Germany
Ilchmann, C.	Senatsverwaltung für Gesundheit Umwelt und Verbraucherschutz Strahlenmessstelle II A 14 - Rubensstr. 111 D-12157 Berlin Germany
Kanisch, G.	Johann Heinrich von Thünen-Institut Institut für Fischereiökologie Marckmannstraße 129b, Haus 4 20539 Hamburg Germany

¹ Only those laboratories who reported their results were listed in the list of participating laboratories

Rieth, U.	Landesmessstelle für Radioaktivität Freie und Hansestadt Hamburg Behörde für Gesundheit und Verbraucherschutz Institut für Hygiene und Umwelt Marckmannstraße 129 20539 Hamburg Germany
Schikowski, J.	Georg-August-Universität Physikalische Chemie Tammannstr. 6 37077 Göttingen Germany
IRELAND	
Wong, J.	Radiological Protection Institute of Ireland 3 Clonskeagh Square Clonskeagh Road Dublin 14 Ireland
JAPAN	
Morimoto, T.	Japan Chemical Analysis Centre 295-3 Sanno-cho Inage-ku Chiba-shi, Chiba 263-0002 Japan
LITHUANIA	
Šilobritienė, B.V.	Environmental Research Department Environmental Protection Agency Rudnios str. 6 – 501, Vilnius LT-09300 Lithuania
MOROCCO	
Benmansour, M.	CNESTEN B.P 1382, R.P 10001, Rabat Morocco
NETHERLANDS, The	
Engeler, C.	Rijkswaterstaat Centre for Water Management Zuiderwagenplein 2 NL-8224 AD Lelystad The Netherlands

NORWAY

Gwynn, J.	Norwegian Radiation Protection Authority The Fram Centre Tromsø 9007 Norway
Mauring, A.	Norwegian Radiation Protection Authority Grini Næringspark 13 N-1361 Osteras Norway
Moller, B.	Norwegian Radiation Protection Authority N-9925 Svanvik Norway
POLAND	
Suplinska, M.	Central Laboratory for Radiological Protection Konwaliowa 7 03-194 Warsaw Poland
Zalewska, T.	Institute of Meteorology and Water Management, Maritime Branch Waszyngtona 42 81-342 Gdynia Poland
PORTUGAL	
Carvalho, F.F.	Instituto Tecnológico e Nuclear Departamento de Protecção Segurança Radiológic – E.N. 10 2686 - 953 Sacavém Portugal
SLOVAKIA	
Povinec, P.P.	Faculty of Mathematics, Physics and Informatics Comenius University SK-84248 Bratislava Slovakia
SPAIN	
Chamizo, E.	Centro Nacional de Aceleradores Isla de la Cartuja 41092 Sevilla Spain
Gascó, C.	CIEMAT (RAyVR) Edificio 70 Planta 2 Despacho 11 Avda de la Complutense 4028040 Madrid Spain

Ibanez, F.L.	Dtr. dpt. Ingeniería Nuclear y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería de Bilbao ald Urquijo s/n48013 Bilbao Spain
Llauradó, M. / Tent, J.	Laboratori de Radiologia Ambiental Facultat de Química-Universitat de Barcelona Martí i Franquès, 1-11 08028 Barcelona Spain
SWEDEN	
Del Risco Norrlid, L.	Emergency Preparedness and Response Swedish Radiation Safety Authority Solna strandväg 96 SE-171 16 Stockholm Sweden
Pettersson, H.	Radiation Physics Dept. Linköping University Hospital 581 85 Linköping Sweden
Samuelsson, C.	Dept. of Medical Radiation Physics Clinical Sciences, Lund Lund University University Hospital, SE 221 85 Lund Sweden
UNITED KINGDOM	
Smedley, P.	Cefas Lowestoft Laboratory Pakefield Road Lowestoft, Suffolk NR33 0HT United Kingdom
IAEA	
Pham, M.K. / Vasileva, E.	IAEA-Environment Laboratories 4a, Quai Antoine 1er 98000 Monaco Monaco

CONTRIBUTORS TO DRAFTING AND REVIEW

The following persons, all from the IAEA, contributed to the draft and review of this report:

Mai Khanh Pham	International Atomic Energy Agency
H. Nies	International Atomic Energy Agency
J. Le Normand	International Atomic Energy Agency

Where to order IAEA publications

In the following countries IAEA publications may be purchased from the sources listed below, or from major local booksellers. Payment may be made in local currency or with UNESCO coupons.

AUSTRALIA

DA Information Services, 648 Whitehorse Road, MITCHAM 3132 Telephone: +61 3 9210 7777 • Fax: +61 3 9210 7788 Email: service@dadirect.com.au • Web site: http://www.dadirect.com.au

BELGIUM

Jean de Lannoy, avenue du Roi 202, B-1190 Brussels Telephone: +32 2 538 43 08 • Fax: +32 2 538 08 41 Email: jean.de.lannoy@infoboard.be • Web site: http://www.jean-de-lannoy.be

CANADA

Bernan Associates, 4501 Forbes Blvd, Suite 200, Lanham, MD 20706-4346, USA Telephone: 1-800-865-3457 • Fax: 1-800-865-3450 Email: customercare@bernan.com • Web site: http://www.bernan.com

Renouf Publishing Company Ltd., 1-5369 Canotek Rd., Ottawa, Ontario, K1J 9J3 Telephone: +613 745 2665 • Fax: +613 745 7660 Email: order.dept@renoufbooks.com • Web site: http://www.renoufbooks.com

CHINA

IAEA Publications in Chinese: China Nuclear Energy Industry Corporation, Translation Section, P.O. Box 2103, Beijing

CZECH REPUBLIC

Suweco CZ, S.R.O., Klecakova 347, 180 21 Praha 9 Telephone: +420 26603 5364 • Fax: +420 28482 1646 Email: nakup@suweco.cz • Web site: http://www.suweco.cz

FINLAND

Akateeminen Kirjakauppa, PO BOX 128 (Keskuskatu 1), FIN-00101 Helsinki Telephone: +358 9 121 41 • Fax: +358 9 121 4450 Email: akatilaus@akateeminen.com • Web site: http://www.akateeminen.com

FRANCE

Form-Edit, 5, rue Janssen, P.O. Box 25, F-75921 Paris Cedex 19 Telephone: +33 1 42 01 49 49 • Fax: +33 1 42 01 90 90 Email: formedit@formedit.fr • Web site: http://www. formedit.fr

Lavoisier SAS, 145 rue de Provigny, 94236 Cachan Cedex Telephone: + 33 1 47 40 67 02 • Fax +33 1 47 40 67 02 Email: romuald.verrier@lavoisier.fr • Web site: http://www.lavoisier.fr

GERMANY

UNO-Verlag, Vertriebs- und Verlags GmbH, Am Hofgarten 10, D-53113 Bonn Telephone: + 49 228 94 90 20 • Fax: +49 228 94 90 20 or +49 228 94 90 222 Email: bestellung@uno-verlag.de • Web site: http://www.uno-verlag.de

HUNGARY

Librotrade Ltd., Book Import, P.O. Box 126, H-1656 Budapest Telephone: +36 1 257 7777 • Fax: +36 1 257 7472 • Email: books@librotrade.hu

INDIA

Allied Publishers Group, 1st Floor, Dubash House, 15, J. N. Heredia Marg, Ballard Estate, Mumbai 400 001, Telephone: +91 22 22617926/27 • Fax: +91 22 22617928 Email: alliedpl@vsnl.com • Web site: http://www.alliedpublishers.com

Bookwell, 2/72, Nirankari Colony, Delhi 110009 Telephone: +91 11 23268786, +91 11 23257264 • Fax: +91 11 23281315 Email: bookwell@vsnl.net

ITALY

Libreria Scientifica Dott. Lucio di Biasio "AEIOU", Via Coronelli 6, I-20146 Milan Telephone: +39 02 48 95 45 52 or 48 95 45 62 • Fax: +39 02 48 95 45 48 Email: info@libreriaaeiou.eu • Website: www.libreriaaeiou.eu

JAPAN

Maruzen Company Ltd, 1-9-18, Kaigan, Minato-ku, Tokyo, 105-0022 Telephone: +81 3 6367 6079 • Fax: +81 3 6367 6207 Email: journal@maruzen.co.jp • Web site: http://www.maruzen.co.jp

REPUBLIC OF KOREA

KINS Inc., Information Business Dept. Samho Bldg. 2nd Floor, 275-1 Yang Jae-dong SeoCho-G, Seoul 137-130 Telephone: +02 589 1740 • Fax: +02 589 1746 • Web site: http://www.kins.re.kr

NETHERLANDS

De Lindeboom Internationale Publicaties B.V., M.A. de Ruyterstraat 20A, NL-7482 BZ Haaksbergen Telephone: +31 (0) 53 5740004 • Fax: +31 (0) 53 5729296 Email: books@delindeboom.com • Web site: http://www.delindeboom.com

Martinus Nijhoff International, Koraalrood 50, P.O. Box 1853, 2700 CZ Zoetermeer Telephone: +31 793 684 400 • Fax: +31 793 615 698 Email: info@nijhoff.nl • Web site: http://www.nijhoff.nl

Swets and Zeitlinger b.v., P.O. Box 830, 2160 SZ Lisse Telephone: +31 252 435 111 • Fax: +31 252 415 888 Email: infoho@swets.nl • Web site: http://www.swets.nl

NEW ZEALAND

DA Information Services, 648 Whitehorse Road, MITCHAM 3132, Australia Telephone: +61 3 9210 7777 • Fax: +61 3 9210 7788 Email: service@dadirect.com.au • Web site: http://www.dadirect.com.au

SLOVENIA

Cankarjeva Zalozba d.d., Kopitarjeva 2, SI-1512 Ljubljana Telephone: +386 1 432 31 44 • Fax: +386 1 230 14 35 Email: import.books@cankarjeva-z.si • Web site: http://www.cankarjeva-z.si/uvoz

SPAIN

Díaz de Santos, S.A., c/ Juan Bravo, 3A, E-28006 Madrid Telephone: +34 91 781 94 80 • Fax: +34 91 575 55 63 Email: compras@diazdesantos.es, carmela@diazdesantos.es, barcelona@diazdesantos.es, julio@diazdesantos.es Web site: http://www.diazdesantos.es

UNITED KINGDOM

The Stationery Office Ltd, International Sales Agency, PO Box 29, Norwich, NR3 1 GN Telephone (orders): +44 870 600 5552 • (enquiries): +44 207 873 8372 • Fax: +44 207 873 8203 Email (orders): book.orders@tso.co.uk • (enquiries): book.enquiries@tso.co.uk • Web site: http://www.tso.co.uk

On-line orders DELTA Int. Book Wholesalers Ltd., 39 Alexandra Road, Addlestone, Surrey, KT15 2PQ Email: info@profbooks.com • Web site: http://www.profbooks.com

Books on the Environment Earthprint Ltd., P.O. Box 119, Stevenage SG1 4TP Telephone: +44 1438748111 • Fax: +44 1438748844 Email: orders@earthprint.com • Web site: http://www.earthprint.com

UNITED NATIONS

Dept. 1004, Room DC2-0853, First Avenue at 46th Street, New York, N.Y. 10017, USA (UN) Telephone: +800 253-9646 or +212 963-8302 • Fax: +212 963-3489 Email: publications@un.org • Web site: http://www.un.org

UNITED STATES OF AMERICA

Bernan Associates, 4501 Forbes Blvd., Suite 200, Lanham, MD 20706-4346 Telephone: 1-800-865-3457 • Fax: 1-800-865-3450 Email: customercare@bernan.com · Web site: http://www.bernan.com

Renouf Publishing Company Ltd., 812 Proctor Ave., Ogdensburg, NY, 13669 Telephone: +888 551 7470 (toll-free) • Fax: +888 568 8546 (toll-free) Email: order.dept@renoufbooks.com • Web site: http://www.renoufbooks.com

Orders and requests for information may also be addressed directly to:

Marketing and Sales Unit, International Atomic Energy Agency Vienna International Centre, PO Box 100, 1400 Vienna, Austria Telephone: +43 1 2600 22529 (or 22530) • Fax: +43 1 2600 29302 Email: sales.publications@iaea.org • Web site: http://www.iaea.org/books

13-24861

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISSN 2074– 7659