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FOREWORD 

The IAEA supports Member States in the area of advanced fast reactor technology development 
by providing a central point for information exchange and collaborative research programmes. 
The IAEA’s activities in this field are mainly carried out within the framework of the Technical 
Working Group on Fast Reactors (TWG-FR). The TWG-FR assists in defining and carrying 
out the IAEA’s activities in the field of fast reactor research and technology development, 
promotes the exchange of information on national and multinational programmes and fosters 
new developments and experience. The main goals of the TWG-FR are to identify and review 
problems of importance and to stimulate and facilitate cooperation, development and practical 
application of fast reactor and subcritical hybrid system technology. To implement the activities 
recommended by the TWG-FR, the IAEA proposes and establishes coordinated research 
projects aimed at improving Member State capabilities in fast reactor design and analysis. The 
projects are important instruments for organizing international research work to achieve 
specific research objectives consistent with the IAEA’s programmatic goals.  
With the ongoing interest in innovative sodium cooled fast reactors and the large number of 
activities carried out for their development, and in order to fulfil its role in promoting efficient 
collaboration between organizations involved in sodium fast cooled reactor programmes at the 
national and international levels, in 2013 the IAEA established the CRP entitled Sodium 
Properties and Safe Operation of Experimental Facilities in Support of the Development and 
Deployment of Sodium Cooled Fast Reactors (NAPRO). The overall objective of the project 
was to support research programmes on sodium cooled fast reactors in IAEA Member States 
by providing a consistent set of data on sodium physical and chemical properties and thermal 
hydraulic correlations, defining design rules and best practices for sodium experimental 
facilities and providing guidelines for the safe handling of sodium. The work was divided into 
three areas: collection and assessment of consistent sodium thermophysical property data, heat 
transfer and pressure drop correlations; guidelines and best practices for sodium facility design 
and operation; and safety of sodium experimental facilities. The results of the NAPRO project 
are presented in two IAEA publications. 
The present publication is the technical report of the NAPRO project focusing on the collection 
of heat transfer and pressure drop (friction factor) correlations for sodium cooled systems. The 
work was carried out through the collection and review of the correlations available in the open 
literature, the identification of data gaps and the development of recommendations for 
experimental programmes to support further research for closing these data gaps. The handbook 
collects all correlations that can be used as a common basis for the development, design, 
modelling, simulation and analysis of the advanced sodium cooled fast reactors and sodium 
experimental facilities.  
Eleven organizations representing ten IAEA Member States participated in the NAPRO project 
and contributed to the drafting of this handbook. The IAEA expresses its appreciation to all 
project participants for their dedicated efforts leading to this publication, and in particular to 
S. Perez-Martin and E. Bubelis (Germany) for coordinating the project and compiling the draft 
publication. The final technical review of this manuscript was performed by V. Slobodchuk 
(Russian Federation). The IAEA officers responsible for this publication were V. Kriventsev, 
M. Khoroshev, J. Mahanes and S. Monti of the Division of Nuclear Power. 
 



EDITORIAL NOTE

This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial 
staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the 
IAEA or its Member States.

Guidance and recommendations provided here in relation to identified good practices represent expert opinion but are not made on the 
basis of a consensus of all Member States.

Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. 
This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal 
status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to 
infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. 

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this 
publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.



CONTENTS 

 

1 INTRODUCTION ............................................................................................................... 1 

1.1 BACKGROUND ........................................................................................................ 1 

1.2 OBJECTIVE ............................................................................................................... 3 

1.3 SCOPE ........................................................................................................................ 3 

1.4 STRUCTURE ............................................................................................................. 4 

1.5 USERS ........................................................................................................................ 4 

2 CONVECTIVE HEAT TRANSFER, PRESSURE LOSS AND NON DIMENSIONAL 

NUMBERS .......................................................................................................................... 5 

2.1 NON DIMENSIONAL NUMBERS ........................................................................... 5 

2.2 CONVECTIVE HEAT TRANSFER COEFFICIENT ............................................... 9 

2.3 PRESSURE LOSS AND FRICTION FACTOR ...................................................... 10 

2.4 CRITICAL REYNOLDS NUMBER ........................................................................ 10 

2.5 CRITICAL PECLET NUMBER .............................................................................. 11 

3 HEAT TRANSFER CORRELATIONS ............................................................................ 12 

3.1 TURBULENT PRANDTL NUMBER ..................................................................... 12 

3.2 FORCED CONVECTION ........................................................................................ 24 

3.2.1 Flow in circular pipes ......................................................................................... 24 

3.2.2 Flow between parallel plates, in flat ducts and in rectangular ducts .................. 43 

3.2.3 Flow in concentric annular ducts ....................................................................... 49 

3.2.4 Flow in noncircular ducts ................................................................................... 60 

3.2.5 Cross flow around circular tubes and cylinders ................................................. 63 

3.2.6 Flow in the shell side of heat exchangers ........................................................... 69 

3.2.7 Entrance region effects ....................................................................................... 70 

3.2.8 Axial flow in triangular rod array ...................................................................... 75 

3.2.9 Axial flow in square rod bundles ....................................................................... 95 

3.2.10 Heat transfer and temperature fields in peripheral zones of  hexagonal fuel 

assembly .......................................................................................................... 100 

3.2.11 Cross flow across rod bundles .......................................................................... 104 

3.3 NATURAL CONVECTION................................................................................... 107 

3.3.1 Flow on heated vertical plates .......................................................................... 108 

3.3.2 Flow over horizontal plates and around cylinders ........................................... 116 

3.3.3 Flow over inclined plate ................................................................................... 122 

3.3.4 Heat transfer in special cases ........................................................................... 123 

3.4 TWO PHASE SODIUM FLOW ............................................................................. 124 

3.5 MODELLING OF HEAT TRANSFER IN FUEL PINS ........................................ 134 

3.6 HEAT TRANSFER CORRELATIONS USED IN SYSTEM CODES ................. 137 



 

 

4 FRICTION FACTORS AND PRESSURE DROP CORRELATIONS .......................... 138 

4.1 SINGLE PHASE FRICTION FACTOR AND PRESSURE DROP 

CORRELATIONS .................................................................................................. 138 

4.1.1 Flow in straight pipes ....................................................................................... 138 

4.1.2 Flow in curved and helical pipes ...................................................................... 157 

4.1.3 Flow in bundles with smooth pins.................................................................... 175 

4.1.4 Flow in wire-wrapped rod bundles ................................................................... 181 

4.1.5 Flow in grid-spaced rod bundles ...................................................................... 200 

4.1.6 Transverse flow in a rod bundle ....................................................................... 203 

4.1.7 Inclined flow in a rod bundle ........................................................................... 204 

4.2 TWO PHASE FRICTION FACTORS AND  

PRESSURE DROP CORRELATIONS .................................................................. 205 

4.2.1 Flow in straight pipes ....................................................................................... 206 

4.2.2 Flow in helical and curved pipes ...................................................................... 231 

4.2.3 Flow in rod bundles .......................................................................................... 242 

4.2.4 Interfacial friction correlations ......................................................................... 243 

4.3 FRICTION FACTOR CORRELATIONS USED IN THE SYSTEM CODES ...... 244 

5 RECOMMENDATIONS FOR CHOOSING A CORRELATION AND RESEARCH 

GAPS IDENTIFIED ........................................................................................................ 245 

6 CONCLUSIONS ............................................................................................................. 247 

REFERENCES ....................................................................................................................... 249 

LIST OF ABBREVIATIONS ................................................................................................ 273 

CONTRIBUTORS TO DRAFTING AND REVIEW ........................................................... 275 

 

 



1 

 

1 INTRODUCTION 

1.1 BACKGROUND 

The International Atomic Energy Agency (IAEA) established a Coordinated Research Project 

(CRP) in 2013 on “Sodium properties and safe operation of experimental facilities in support 

of the development and deployment of sodium cooled fast reactors” (NAPRO) in order to 

promote an efficient collaboration between organizations involved in sodium cooled fast reactor 

(SFR) programmes at the national and international levels. This research programme was 

carried out in the time period of 2013 to 2018. Eleven organizations representing ten IAEA 

Member States participated in the NAPRO CRP while eight organizations contributed to the 

drafting of this handbook.  

The overall objective of the CRP was to support the Member States’ SFR research programmes 

by providing a consistent set of sodium property data, to specify property uncertainties and to 

recommend correlations to be used as a common basis for the design, development, modelling 

and simulation of advanced SFRs.  

This work required an extensive understanding and evaluation of the existing available data, 

the identification of data gaps and the development of recommendations for experimental 

programmes needed to close these data gaps.  

The NAPRO CRP participating organizations are listed in Table 1 and the three main work 

packages (WP) in Table 2. Each work package was broken into many sub-WPs and Tasks, 

which are summarized in Section 1.3. This handbook documents the final product of WP1, 

which was focused on the collection, assessment and dissemination of consistent sodium 

datasets. In particular, the handbook includes the CRP’s review of sodium heat transfer and 

pressure drop correlations. 

TABLE 1. IAEA NAPRO CRP PARTICIPATING ORGANIZATIONS AND COUNTRIES 

 Organization Name Country 

1 National Atomic Energy Commission (CNEA) Argentina 

2 China Institute for Atomic Energy (CIAE) China 

3 
Commissariat à l'énergie Atomique et aux Énergies Alternatives 

(CEA) 
France 

4 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Germany 

5 Karlsruhe Institute of Technology (KIT) Germany 

6 Indira Gandhi Centre for Atomic Research (IGCAR) India 

7 Japan Atomic Energy Agency (JAEA) Japan 

8 Korea Atomic Energy Research Institute (KAERI) Republic of Korea 

9 Nuclear Research and Consultancy Group (NRG) Netherlands 

10 Institute for Physics and Power Engineering (IPPE) Russian Federation 

11 Argonne National Laboratory (ANL) 
United States of 

America 



2 

 

TABLE 2. IAEA NAPRO CRP WORK PACKAGES 

Work 

Package 

Number 

Description Output 

WP1 

Collection, expert assessment and 

dissemination of  

WP1.1 Consistent sodium thermo-physical 

property data; 

WP1.2 Heat transfer and pressure drop 

correlations; and 

WP1.3 Chemical properties and compatibility 

Two handbooks – the IAEA 

document on sodium physical 

and chemical properties and 

this publication on thermal-

hydraulics correlations which 

could represent the common 

reference for all the Member 

States with an active sodium 

technology programme 

WP2 

Development of guidelines and best practices 

for sodium facility design and operation, 

including fill and drain, purification, out-

gassing prior to filling, sodium storage, 

component handling, drying of sodium piping 

after repair, etc. 

Nuclear Energy Series on 

guidelines and best practices for 

sodium facility design and 

operation 

WP3 

Development of guidelines and best practices 

for sodium facility safety, including 

prevention and mitigation of sodium leaks, 

prevention and detection of sodium fires, 

assessment of sodium impact in the 

environment after accidental release, 

hydrogen hazards in cleaning facilities, etc. 

Nuclear Energy Series on 

guidelines and best practices for 

sodium facility safety 

 

The NAPRO CRP was a collaborative enterprise. The eleven official worldwide participants 

brought diverse experiences and interests in the area of sodium cooled fast reactor research and 

development. In particular, all participants had sodium experiment capabilities or have plans to 

bring new experiments online. Thus, all participants were motivated to combine their collective 

knowledge into a comprehensive database on sodium properties for the benefit of the entire 

international community.  

During this CRP a large literature review has been performed. The analysis portion of this 

handbook includes 389 publications (References [1]-[389]). The complete publication list is 

presented in Chapter 0. 

During the four years of the NAPRO CRP, four Research Coordination Meetings (RCMs) were 

organized and attended by participating organizations. The objectives of these meetings were 

as follows:  

⎯ 1st NAPRO CRP RCM – Vienna, November 11-13, 2013: this was the kick-off 

meeting for the whole project in which general goals and tasks were defined and single 

task leaders identified.  

⎯ 2nd NAPRO CRP RCM – Vienna, May 26-28, 2014: at the second meeting elements 

of the methodology were refined and finalized. In addition, the property list and tasks 

assignment were updated and templates for the analysis distributed. 
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⎯ 3rd NAPRO CRP RCM – Cadarache, October 5-9, 2015: the third meeting focused on 

discussing preliminary analysis results, as well as issues encountered and identified 

areas for improvement.  

⎯ 4th NAPRO CRP RCM – Vienna, June 12-14, 2017: the final RCM meeting focused 

on a review of the analysis results and on detailed discussions of the draft handbook, 

action items to complete the handbook, and strategies for their organization. 

 

In between RCMs, participants communicated via email and the online collaborative 

workspace, Sharepoint. These efforts included collection of the reference list, analysis of the 

various properties, drafting of property summaries and compilation of this handbook. 

Over the years, several publications have documented the structure of the CRP, its methodology 

as well as progress and preliminary results related to Work Package 1. In particular, the specific 

CRP research objectives, participating organizations and overall organization in Work 

Packages and specific Tasks are summarized in [1]. In addition, in [2] the implemented 

methodology for WP1 is described.  

1.2 OBJECTIVE 

The key objective of the development of two Sodium Coolant Handbooks on i) ”Physical and 

Chemical Properties” and ii) “Thermal-Hydraulic Correlations” was to improve the 

thermodynamic consistency of property equations and collect most of available correlations on 

friction factors and heat transfer for the sodium facilities and reactors. The exchange of data 

and information among international partners was demonstrated to be effective and it is 

anticipated that spirit of collaboration will continue beyond the conclusion of this CRP.  

Despite the fact that sodium properties and related thermal-hydraulics correlations are 

commonly considered as ‘established’, inconsistencies and gaps have been identified by the 

IAEA NAPRO CRP working group. The collected data and the identified gaps and 

inconsistencies are particularly relevant for both computation and experimental applications. 

To support further development of best-estimate and high-fidelity/physics-based simulation 

codes an accurate, complete, consistent, precise and reliable sodium data set is essential. 

Reactor safety experiments are expected to require the same or better level of uncertainty 

quantification by regulatory bodies as for current light-water reactor technologies; therefore, 

gaps in sodium data on physical properties, as well as pressure drop and heat transfer 

correlations will need to be resolved. In addition, for condition such as natural circulation which 

is an important component of advanced reactor safety, thermodynamic properties and 

correlations uncertainties have significant impact on safety analysis. 

1.3 SCOPE 

This handbook on sodium coolant thermal-hydraulic correlations summarizes the results of the 

work performed by WP1.2 of the NAPRO CRP. The WP1.2 under the leadership of the 

Karlsruhe Institute of Technology (KIT) was focused on the collection of heat transfer and 

pressure drop (friction factor) correlations for sodium cooled systems. A big effort has been 

made to review the open literature and to collect all information publicly available about such 

thermal-hydraulic correlations including handbooks and journal papers from the fifties to recent 

books and proceeding contributions. By doing this extensive revision few inconsistencies were 

found as well as typos in publications referring to previous works. For each inconsistency found 

a footnote or a clarification text is included in the corresponding correlation section. 

A brief revision of heat transfer and pressure drop equations, as well as the non-dimensional 

numbers commonly used is presented in Chapter 2. 
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Chapter 3 consists of six sections, describing the heat transfer correlations for various flow 

conditions and geometries found in sodium cooled systems. 

Chapter 0 consists of three sections, describing friction factor/pressure drop correlations for 

both single-phase and two-phase flow conditions for sodium cooled systems.  

As the list of correlations collected is very large, it is out of scope of this handbook to perform 

any assessments of correlations for the different conditions and geometries of sodium systems. 

Chapter 5, nevertheless, provides recommendations for choosing one or another correlation for 

an analyst working on a specific case, as well as echoes publications assessing correlations 

against experimental data. It also includes the identified phenomena which should be further 

investigated experimentally found in the course of this work.  

Chapter 6 presents the conclusions of this document and finally, Chapter 0 provides the list of 

references [1]-[389] used for all correlations collected in this handbook. 

1.4 STRUCTURE 

The NAPRO CRP WP1 was divided into three work packages and corresponding tasks as 

detailed in Table 2. 

Participation in WP1 was very collaborative with all participants providing data, references, 

analysis, and reviews. Overall coordination of NAPRO WP1 was led by Argonne National 

Laboratory (ANL; USA) along with WP1.1. WP1.2 was coordinated by Karlsruhe Institute of 

Technology (KIT; Germany). WP1.3 was coordinated by Indira Gandhi Centre for Atomic 

Research (IGCAR; India) and Institute for Physics and Power Engineering (IPPE, Russian 

Federation). The approach and findings documented in this handbook were written by all 

participants and coordinated by each work package leader.  

Given the considerable amount of data and information collected during the NAPRO CRP, it 

was also decided to split the handbook into two volumes: 

⎯ Sodium Coolant Handbook: Physical and Chemical Properties; and 

⎯ Sodium Coolant Handbook: Thermal-Hydraulic Correlations.  

 

1.5  USERS  

The handbook represents a useful tool for the governmental, public and private sector 

organizations responsible for the development and/or deployment of innovative fast neutron 

systems, including designers, manufacturers, vendors, research institutions, academia and other 

organizations directly involved in technology development programmes on fast neutron 

systems and, more generally, on advanced nuclear energy systems. 

The handbook also represents an important tool for the education and training of young 

engineers and scientists in the field of liquid metal coolants technology.  
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2 CONVECTIVE HEAT TRANSFER, PRESSURE LOSS AND NON 

DIMENSIONAL NUMBERS 

The correlations presented in this report in most cases use non-dimensional numbers 

characterizing the fluid conditions, as well as other fluid variables and geometrical parameters 

of the cooling system. It is therefore necessary to introduce the definitions and the nomenclature 

used in the current work. 

Following the definition of the non-dimensional numbers, the basic equations for calculating 

heat transfer between the wall and the fluid, as well as the pressure drop due to friction with the 

wall surface are presented as well. 

The values of the Reynolds and Peclet numbers at which the transition between laminar and 

turbulent regime occurs, namely the critical values, are used in some heat transfer correlations. 

Therefore, the two final sections present the estimated 𝑅𝑒 and 𝑃𝑒 critical values as found in the 

open literature. 

2.1 NON DIMENSIONAL NUMBERS 

The definition of the non-dimensional numbers used in the various heat transfer and pressure 

drop correlations are presented hereafter. 

 

Reynolds number 

 𝑅𝑒 =
𝑢𝐷ℎ

𝜈
=

𝜌𝑢𝐷ℎ

𝜇
 (1) 

where 𝜌 is the density, 𝑢 is the velocity, 𝐷ℎ is the equivalent hydraulic diameter, and 𝜇 and 𝜈 

are the dynamic and kinematic viscosity, respectively. In general, the hydraulic diameter is 

estimated as proportional to the ratio of the total flow area to the wetted perimeter of the conduit: 

𝐷ℎ =
4 𝐹𝑙𝑜𝑤 𝐴𝑟𝑒𝑎

𝑊𝑒𝑡𝑡𝑒𝑑 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
   

In case of the circular pipe 𝐷ℎ is equal to the internal pipe of the pipe. 

Turbulent flow is characterized by high Reynolds number (𝑅𝑒 ≥ 2300 for pipe flow). In liquid 

metal fast reactor (LMFR) cores, typical Reynolds numbers are of the order of 50000, that is 

fully turbulent flow regime.  

 

Prandtl number 

 𝑃𝑟 =
𝜈 

𝑎
=

𝑐𝑝𝜇 

𝜆
 (2) 

where 𝑐𝑝 is the heat capacity, 𝜇 the dynamic viscosity, and 𝜆 and 𝑎 the thermal conductivity 

and diffusivity, respectively. 

For liquid metals the Prandtl number is very small (generally, in the range of 0.01 −  0.001) 

meaning that conductive heat transfer dominates over the momentum transfer. The low Prandtl 

number is due to the high thermal conductivity of metals. The Prandtl number for sodium at a 

typical mid-core temperature of 500°𝐶 is 0.0042 [3]. The molecular Prandtl numbers of NaK, 

mercury and lead bismuth eutectic (LBE) are similar – between 0.01 and 0.03 [4]. Figure 1 

and Fig. 2 show the Prandtl number for the saturated liquid sodium and superheated sodium 

vapour at atmospheric pressure as a function of temperature respectively as recommended in a 
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companion NAPRO CRP publication “Sodium Coolant Handbook: Physical and Chemical 

Properties” [5]. 

Liquid Sodium 

 

FIG. 1. Prandtl number for the saturated liquid sodium as a function of temperature  

and uncertainties [5]. 

 

Sodium Vapour 

 

FIG. 2. Prandtl number for superheated sodium vapour at atmospheric pressure as a function of 

temperature [5]. 
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For turbulent heat transfer modelling, a turbulent Prandtl number is defined as ratio of the 

momentum to heat transfer turbulent eddy diffusivity: 

 𝑃𝑟𝑡 =
𝜀𝑀

𝜀𝐻
=

𝑛𝑡 

𝑎𝑡
 (3) 

where 𝜀𝐻  is the eddy diffusivity for the heat transfer, 𝜀𝑀  is the eddy diffusivity for the 

momentum, 𝑛𝑡 is the turbulent eddy viscosity and 𝑎𝑡 is the turbulent thermal diffusivity. 

 

Peclet number 

 𝑃𝑒 = 𝑅𝑒𝑃𝑟 =
𝑢𝐷ℎ

𝑎
=

𝜌𝑐𝑝𝑢𝐷ℎ

𝜆
 (4) 

The turbulent Peclet number used in some correlations is defined as: 

 𝑃𝑒𝑡 = 𝑃𝑟
𝜀𝑀

𝜈
  (5) 

where 𝜀𝑀 is the eddy diffusivity for the momentum and 𝑛 is the eddy viscosity. 

 

Nusselt number 

 𝑁𝑢 =
ℎ 𝑙

𝜆
 (6) 

where ℎ  is the heat transfer coefficient, 𝑙  is the characteristic length and 𝜆  the thermal 

conductivity. 

Nusselt number plays an important role in the heat transfer calculations under forced convection 

conditions, therefore it is used in correlations assessing operation of the reactors cooled by 

liquid metals. 

 

Grashof number 

 𝐺𝑟 =
𝑏𝑔𝑙3𝐷𝑇

𝜈2
 (7) 

where 𝛽 is the volumetric thermal expansion coefficient, 𝑔 is the gravitational acceleration, 

𝑙  is the characteristic length, 𝑇 is the temperature difference between the wall surface and 

bulk fluid, and 𝜈 is the kinematic viscosity. 

Similarly to the Nusselt number, Grashof number plays an important role in the heat transfer 

calculations under natural convection conditions, therefore it is used in correlations assessing 

the intrinsic behaviour of the decay heat removal systems of the liquid metal cooled reactors. 

 

Rayleigh number 

 𝑅𝑎 = 𝐺𝑟 𝑃𝑟 (8) 

Following the analogy to forced convection, Rayleigh number is equivalent to the Peclet 

number but for natural convection conditions. 
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Boussinesq number 

 𝐵𝑜 = 𝐺𝑟 𝑃𝑟2 (9) 

Boussinesq number reflects the type of correlation found experimentally for natural circulation 

in liquid metal flow where the heat transfer is found to be dependent on Grashof number and 

Prandtl number to the power 2, contrary to ordinary fluids where the Nusselt number for natural 

convection is a function of the Rayleigh number 𝑅𝑎 = 𝐺𝑟𝑃𝑟. 

  

Dean number 

The friction factor correlation for helical coil and curved tubes is found to depend on the Dean 

number that is defined as 

 𝐷𝑒 = 𝑅𝑒√𝑑
𝐷⁄   (10) 

where 𝐷 is the diameter of the coil and 𝑑 is the diameter of the pipe. 

 

TABLE 3. NON-DIMENSIONAL NUMBERS 

Symbol Non-dimensional number Definition 

Re Reynolds number 𝑅𝑒 =
𝑢𝐷ℎ

𝜈
=

𝜌𝑢𝐷ℎ

𝜇
 

Pr Prandtl number 𝑃𝑟 =
𝜈 

𝑎
=

𝑐𝑝𝜇 

𝜆
 

Prt Turbulent Prandtl number 𝑃𝑟𝑡 =
𝜀𝑀

𝜀𝐻
=

n𝑡 

a𝑡
 

Pe Peclet number 𝑃𝑒 = 𝑅𝑒𝑃𝑟 =
𝑢𝐷ℎ

𝑎
=

𝜌𝑐𝑝𝑢𝐷ℎ

𝜆
 

Pet Turbulent Peclet number 𝑃𝑒𝑡 = 𝑃𝑟
𝜀𝑀

𝜈
  

Nu Nusselt number 𝑁𝑢 =
ℎ 𝑙

𝜆
 

Gr Grashof number 𝐺𝑟 =
𝑏𝑔𝑙3𝐷𝑇

𝜈2
 

Ra Rayleigh number 𝑅𝑎 = 𝐺𝑟 𝑃𝑟 

Bo Boussinesq number 𝐵𝑜 = 𝐺𝑟 𝑃𝑟2 

De Dean number 
𝐷𝑒 = 𝑅𝑒√𝑑

𝐷⁄  
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TABLE 4. PARAMETERS USED IN NON-DIMENSIONAL NUMBERS 

Symbol Parameter Definition/Units 

𝜌 density 𝑘𝑔/𝑚3 

u velocity 𝑚/𝑠 

𝐷ℎ hydraulic diameter 
4 𝐹𝑙𝑜𝑤 𝐴𝑟𝑒𝑎

𝑊𝑒𝑡𝑡𝑒𝑑 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
,𝑚 

 𝜇 dynamic viscosity 𝑃𝑎 × 𝑠 =  
𝑁 × 𝑠

𝑚2
  =   

𝑘𝑔

𝑚 × 𝑠
 

𝜈 kinematic viscosity 𝜇 𝜌⁄ ,   𝑚2 𝑠⁄   

𝜈𝑡 turbulent viscosity 𝑚2 𝑠⁄  

𝜆 thermal conductivity 
𝑊

𝑚 𝐾
 

𝛼 thermal diffusivity 𝑚2 𝑠⁄  

𝛼𝑡 turbulent thermal diffusivity 𝑚2 𝑠⁄  

𝑇𝑤 temperature at heated wall 𝐾 

𝑇𝑓 bulk fluid temperature 𝐾 

q heat flux 
𝑊

𝑚2
 

h heat transfer coefficient 
|

𝑞

𝑇𝑤 − 𝑇𝑓
| ,

𝑊

𝑚2𝐾
 

𝑏 fluid expansion coefficient 1 𝐾⁄  

𝑔 gravity constant 𝑚 𝑠2⁄  

𝑙 representative length 𝑚 

𝜀𝐻 
Eddy diffusivity of heat 

transfer 
𝑚2 𝑠⁄  

𝜀𝑀 
Eddy diffusivity for the 

momentum 
𝑚2 𝑠⁄  

𝑓 Darcy friction factor − 

P Rod bundle pitch 𝑚 

D Pipe diameter 𝑚 

 

2.2 CONVECTIVE HEAT TRANSFER COEFFICIENT 

Heat transfer between a solid surface and a fluid requires a temperature difference between the 

wall and the coolant [6]. The rate of heat transfer 𝑄 per unit area 𝐴 is given by: 

 𝑞 =
𝑄

𝐴
= ℎ(𝑇𝑤 − 𝑇𝑐) (11) 
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where ℎ is the heat transfer coefficient, 𝑇𝑤 is the wall temperature and 𝑇𝑐 is the bulk coolant 

temperature. The convective heat transfer properties of fluids are related to their Prandtl number 

𝑃𝑟 (Eq. (2)). 

In order to calculate the temperature drop (𝑇𝑤 − 𝑇𝑐) or to determine the heat flux per unit area 

𝑞, to be expected with a given value of (𝑇𝑤 − 𝑇𝑐), it is required to determine the heat transfer 

coefficient ℎ. Thus, there are analytical equations and non-dimensional heat transfer coefficient 

(Nusselt number) based on experimental results that yield ℎ as a function of flow conditions in 

most common cooling system geometries [6]. 

 

2.3 PRESSURE LOSS AND FRICTION FACTOR  

As for the flow characteristics, liquid metals and non-metals fluids behave similarly, therefore 

conventional formulas and techniques of calculation can be used for liquid metal piping 

systems. The frictional pressure drop across a straight length of conduit can then be calculated 

as: 

 ∆𝑝 = 𝑓
𝐿

𝐷

𝜌𝑢2

2
 (12) 

where 𝑓 is the Darcy-Weisbach friction factor, which is a function of the Reynolds number and 

geometrical parameters, normally non-dimensional ones (e.g. relative roughness 
𝜀

𝐷
, pitch-to-

diameter ratio 
𝑃

𝐷
); 𝐿 is the length of conduit; 𝐷 is the inside pipe diameter or hydraulic diameter 

of the duct; 𝜌 is the fluid density and 𝑢 is the bulk fluid velocity 𝑢 =
𝑄

𝐴⁄  , where 𝑄 is the total 

volumetric flow rate, and 𝐴 is the duct area. 

In this document, the Darcy-Weisbach or Moody friction factor 𝑓 is used. It should not be 

confused with the Fanning friction factor which is one-fourth of the above mentioned friction 

factors (𝑓𝐷𝑎𝑟𝑐𝑦 = 𝑓𝑀𝑜𝑜𝑑𝑦 = 4𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔). 

 

2.4 CRITICAL REYNOLDS NUMBER 

The critical Reynolds number is the estimated value for the transition from laminar to turbulent 

flow. It depends on the flow geometry (e.g. straight or curved pipes, rod bundles, etc.). For flow 

in a pipe, experimental observations show that for the fully developed flow, the critical 

Reynolds number is about 2300. According to Cheng and Todreas [7] transition from laminar 

to turbulent flow occurs over a wide range of Reynolds numbers in rod bundles (Fig. 3) The 

authors presented simple correlations for the onset and completion of transition flow over wire-

wrapped rod bundles in triangular arrays as: 

 𝑅𝑒𝑐𝑟𝑖𝑡 = 300 ∙ 101.7(
𝑃

𝐷
−1) for onset of transition (13) 

 𝑅𝑒𝑐𝑟𝑖𝑡 = 1000 ∙ 100.7(
𝑃

𝐷
−1) for completion of transition (14) 

where 𝑃 is the pitch between adjacent rod centerlines and 𝐷 is the outer diameter of the rod. As 

for other geometries, the available correlations might include the critical 𝑅𝑒 values separating 

laminar and turbulent regimes. 
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Hydraulic diameter: 𝐷ℎ =
4 𝐹𝑙𝑜𝑤 𝐴𝑟𝑒𝑎

𝑊𝑒𝑡𝑡𝑒𝑑 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
= {

𝐷 [
4

𝜋
(

𝑃

𝐷
)
2
− 1] for square array

𝐷 [
2√3

𝜋
(

𝑃

𝐷
)
2
− 1] for triangular array

 

FIG. 3. Triangular and square rod array allocations 

 

2.5 CRITICAL PECLET NUMBER 

Estimated critical Peclet numbers for different geometries and Prandtl numbers can be found in 

Table 5 [8]. 

TABLE 5. CRITICAL PECLET NUMBERS 

𝑃𝑟 

𝑃𝑒𝑐𝑟𝑖𝑡 

Tubes Annuli 

Rod bundle 

𝑃

𝐷
= 1.375 

Rod bundle 

𝑃

𝐷
= 1.700 

Rod bundle 

𝑃

𝐷
= 2.200 

0.005 117 270 460 622 770 

0.01 131 300 530 720 890 

0.02 144 330 582 800 1000 

0.03 150 345 603 840 1056 
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3 HEAT TRANSFER CORRELATIONS 

The first nuclear reactor producing electricity was the sodium-potassium cooled fast reactor 

EBR-I in 1951. Experimenters and physicists have worked together since 1930s on specific 

correlations for heat transfer in liquid metal. Liquid sodium has particular properties, which 

make it a good coolant candidate for fast reactors. 

Sodium thermal behaviour is quite different from water thermal behaviour, hence the need for 

specific correlations to describe sodium heat transfer in thermal-hydraulic codes. Sodium 

allows more efficient heat removal thanks to its high heat capacity, thermal conductivity and 

higher boiling temperature. While the Prandtl number is quite high for water (𝑃𝑟 ≥ 1), it is 

very low for liquid metals (𝑃𝑟 << 1)  which means that thermal diffusivity dominates 

momentum diffusivity. 

At boiling inception, large changes in heat removal properties can be expected. Sodium boiling 

is quite different from high-pressure water boiling. First of all, the saturation temperature is far 

higher than for water. Then, sodium vapour density is very small: its high liquid to vapour 

density ratio leads to a very specific two-phase flow behaviour. 

The heat transfer coefficient between the outer surface of the pipe or plate and the bulk of the 

fluid can be calculated by using empirical correlations which correlate Nusselt number with 

both the Reynolds and the Prandtl numbers. 

The collection of correlations is focused on turbulent flow regime (not laminar, except for the 

natural circulation) and fully developed flow (not thermal and/or velocity developing regions). 

This is due to the fact that sodium in SFR systems flows in turbulent regime (𝑅𝑒 ~50000). 

As liquid metals behave as ordinary fluids in laminar heat transfer, the reader is referred to other 

publications (e.g. Handbook of Single-Phase Convective Heat Transfer [9]) for additional 

laminar flow correlations. 

To obtain high accuracy, different geometries have been studied (circular tubes, flat plates, 

concentric annuli, horizontal or vertical rod bundles, etc.) under different conditions (natural 

convection, forced convection, with or without impurities, boiling, etc.) that could be 

encountered also in sodium cooled fast reactors. 

The effects of magnetic fields in sodium flow, or bends and fittings are not considered in this 

document. The reader is then referred to other publications, e.g. [9] Ch. 9 “Convective Heat 

Transfer with Electric and Magnetic Fields” and Ch. 10 “Convective heat transfer in bends 

and fittings”. 

Chapter 3 consists of six sections, describing turbulent Prandtl number correlations and heat 

transfer correlations for: forced convection, natural convection and two-phase sodium flow. 

Then one section presents the modelling of heat transfer in fuel rods and the last section is 

devoted to the heat transfer correlations used in the system codes for the safety analysis of 

sodium cooled reactor systems. 

 

3.1 TURBULENT PRANDTL NUMBER 

The ratio of the eddy diffusivity of heat transfer (𝜀𝐻) to that for momentum (𝜀𝑀) affects heat 

transfer in liquid metals [4] [10] [11] [12]. The turbulent Prandtl number is defined as: 

 
𝑃𝑟𝑡 =

𝜀𝑀

𝜀𝐻
=

1

𝑦
=

𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑒𝑑𝑑𝑦 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑛𝑡  

 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑎𝑡
=

𝑛𝑡  

𝑙𝑡
𝑟𝑐𝑝

 
(15) 
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𝑦 symbol utilized in some former publications refers to the diffusivity ratio although nowadays 

𝑃𝑟𝑡 is more frequent. 

The Turbulent Prandtl number can be estimated using empirical correlations, solutions from 

analytical equations, or combinations of both. The simplest way is purely empirical 

correlations, where 𝑃𝑟𝑡 is mainly fitted to various experimental data [13]. The analytic solutions 

give important information on the near-wall behaviour of the heat flux; however, they are not 

suited for numerical simulation tools. 

A selection of empirical correlations are presented hereafter, but for other methods and 

assessment of correlations, more information can be found in ( [13] Ch. 10) [14] [15] [16]. 

It should be noted that a particular turbulent Prandtl number expression was often derived 

together with a particular turbulent heat transfer correlation or set of correlations. Developing 

a heat transfer correlation based upon data was carried out using them together. For consistency 

it is then recommended to use the turbulent Prandtl number and the heat transfer correlation 

from the same source. 

 

3.1.1 Dwyer (1963) 

In 1963, O.E. Dwyer derived theoretically an expression for the turbulent Prandtl number [10]: 

 
1

𝑃𝑟𝑡
= 𝑦 = 1 −

(
𝑎
𝑃𝑟) − 𝑐

(
𝜀𝑀

𝑛 )
𝑚  (16) 

where a, c, and m are constants, which were tentatively set at 0.2, 2 and 0.9, respectively, for 

liquid metal flow in pipes, annuli, parallel plates and staggered rod bundles [17]. These 

constants were evaluated from the experimental data available at that time and Dwyer proposed 

the following semi-empirical equation: 

 

1

𝑃𝑟𝑡
= 𝑦 = 1 −

1.82

𝑃𝑟 (
𝜀𝑀

𝑛 )
𝑚𝑎𝑥

1.4  
(17) 

where (
𝜀𝑀

𝑛
)
𝑚𝑎𝑥

 is the maximum value of 
𝜀𝑀

𝑛
 in the channel cross-section. It is a unique function 

of the Reynolds number 𝑅𝑒 and the channel geometry. Since 𝑦 cannot fall below zero, when 

the previous equation yields negative value, it should be taken as zero. 

FIG. 4 presents the values of (
𝜀𝑀

𝑛
)
𝑚𝑎𝑥

 for fully developed turbulent flow in circular tubes, 

annuli and rod bundles with equilateral triangular spacing as a function of the Reynolds number. 
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FIG. 4. Values of (
𝜀𝑀

𝜈⁄ )
𝑚𝑎𝑥

 as a function of Reynolds number (data from  [11]) 

(
ε𝑀

𝜈⁄ )
𝑚𝑎𝑥

 can be also calculated for circular pipes from the relation ( [9] Ch. 4): 

 (
𝜀𝑀

𝜈
)
𝑚𝑎𝑥

= 0.037 𝑅𝑒 √
𝑓

4
 (18) 

where 𝑓 is the Darcy friction factor (see Section 4.1.1 for friction factor correlations for straight 

circular pipes). 

 

3.1.2 Aoki (1963) 

In 1963 S. Aoki tried to modify Deissler's equation assuming that the heat transmission from 

the eddy travelling along two layers could be approximated by convective heat transfer from a 

spherical eddy. He represented the average ratio of eddy diffusivities by the following 

expression specific for liquid metal flows [10] [13] [18]: 

 
1

𝑃𝑟𝑡
= 0.014 𝑅𝑒0.45𝑃𝑟0.2 (1 − 𝑒

−
1

0.014𝑅𝑒0.45𝑃𝑟0.2) (19) 

 

3.1.3 Kokorev (1963) 

In 1963 L.S. Kokorev proposed the following turbulent Prandtl number correlation [19]: 

 𝑃𝑟𝑡 =
1 + 0.8𝑐1(1 − 𝑓)

1 + 𝑐2
𝑛
𝜀𝑀

 (20) 
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where 𝑓  is the friction factor, 𝑛  is the kinematic viscosity, 𝑐1 =  1 , с2 =  0.5 , and 𝜀𝑀  is 

proposed to be evaluated using Reichardt correlation [20] (Eq. (27)). 

 

3.1.4 Subbotin et al. (1963) 

In 1963 V.I Subbotin et al. proposed the following relation of non-similarity factors for 

turbulent transfer of heat and momentum [21]: 

 𝜀 =
(𝜀𝐻)𝑚𝑎𝑥

(𝜀𝑀)𝑚𝑎𝑥
 (21) 

Although a full similarity between turbulent transfer of heat and momentum on all cross-

sections of a flow is not presented, a comparison of the maximum values of 
𝜀𝐻

𝑞⁄  and 
𝜀𝑀

𝑛⁄  

obtained by the following formulas shows that the relationship between factors of turbulent 

transfer of heat and momentum depends on 𝑅𝑒 number: 

 (
𝜀𝐻

𝑞
)
𝑚𝑎𝑥

= 7.5 ∙ 10−5𝑅𝑒 (22) 

According to Prandtl: 

 (
𝜀𝑀

𝑛
)
𝑚𝑎𝑥

= 1 ∙ 10−2𝑅𝑒0.875 (23) 

According to Reichardt [20]: 

 (
𝜀𝑀

𝑛
)
𝑚𝑎𝑥

= 0.75 ∙ 10−2𝑅𝑒0.875 (24) 

For heat transfer in liquid metals (𝑃𝑟 <<  1) a non-dimensional area parameter 𝑥 is defined as 

𝑥 = 0.5 − 0.9. Therefore, weighted mean value of 𝜀 ̅depends on 𝑅𝑒 number calculated for the 

given area: 

 𝜀̅ =
∫ 𝜀𝑥 𝑑𝑥

0.9

0.5

∫ 𝑥 𝑑𝑥
0.9

0.5

 (25) 

As 𝜀 ̅also depends on the law of the velocity distribution, using Prandtl formula yields: 

 𝜀̅ = 0.205𝑅𝑒
1

8, (26) 

that is similar to Reichardt formula 

 𝜀̅ = 0.254𝑅𝑒
1
8 (27) 

The comparison is shown in Fig. 5. 
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FIG. 5. An average value of 𝜀 ̅at. radius (𝑥 = 0.5 − 0.9) versus Rеynolds number: 

           solid line: data from [21] (1 and 2 for a velocity distribution by Reichardt 

and Prandtl formulas accordingly) 

       dashed line: data from [22] 

dash-dotted line: data from [23] 

Though there are the discrepancies in the experimental data, a general trend is that 𝜀 value 

depends linearly on the 𝑅𝑒 number. For the high values of the 𝑅𝑒 number, the 𝜀 value becomes 

higher than one. It indicates that the turbulent heat transfer exceeds the turbulent momentum 

transfer. 

 

3.1.5 Kunz-Yerazunis (1969) 

In 1969 H.R. Kunz and S. Yerazunis derived a relation for the turbulent Prandtl number [10] 

[24]: 

 1

𝑃𝑟𝑡
= 1.5 𝑒

−
0.90

 [
𝜀𝑀
𝛼

]
0.64

 (28) 

Where 𝛼 =
𝑙

𝐶𝑝𝜌
 is the thermal diffusivity. 

 

3.1.6 Notter-Kunz-Yerazunis (1969) 

R. Notter (1969) and H.R. Kunz and S. Yerazunis (1969) adopted the following equation for 

liquid metal flows in circular ducts, accepting deviations of ±0.5%  from the experiments 

considered [13] [24] [25]: 

 𝑃𝑟𝑡 =
2

3
𝑒

[0.9 (
𝑛𝑡 
𝑛

)
0.64

]
 (29) 

where 𝑛 is the kinematic viscosity and 𝑛𝑡 is the turbulent kinematic viscosity. 

 

3.1.7 Bobkov et al. (1970) 

In 1970 V.P. Bobkov et al. obtained the following formula for the turbulent Prandtl number on 

the basis of the uniformity model and statistical characteristics of velocity and temperature 

pulsations [26] [27]: 

 𝑃𝑟𝑡 = 0.69 (
𝑢0

𝑢
)

1
2
[1 − 𝑒−0.62∙10−4𝑅𝑒𝑃𝑟

1
3] (30) 
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where 𝑢0 is the mean of velocity on the channel symmetry line (maximum speed lines) and 𝑢 

is the mean flow velocity. 

 

3.1.8 Quarmby-Quirk (1972, 1974) 

A. Quarmby and R. Quirk (1972, 1974) concluded that, in view of the scatter of the 

experimental measurements, it was impossible to isolate the dependence of 𝑃𝑟𝑡 on 𝑃𝑟 and 𝑅𝑒 

[13] [28] [29]. Nevertheless, they found an important radial dependence and formulated it in 

the following equation for their particular experiment: 

 𝑃𝑟𝑡 = (1 + 400−
𝑦
𝑅)

−1

 (31) 

where y is the distance to the wall and R is the pipe radius. This yields 𝑃𝑟𝑡 = 0.5 at the wall 

(which is considerably too low for liquid metal flows) and 𝑃𝑟𝑡 ≈ 1 at the centreline (which is 

acceptable for 𝑅𝑒 ≥ 5 ⋅ 104). 

 

3.1.9 Reynolds (1974) 

A.J. Reynolds reviewed and assessed more than 30 studies in the open literature on turbulent 

Prandtl number and divided them into several groups according to their approaches, i.e. from 

highly analytical derivation to purely empirical methods [14]. He pointed out that empirical 

models show clearly higher accuracy, although the highly analytical models lead to better 

phenomenological understanding. Therefore, for practical application he recommended 

empirical models [4]. The correlation he proposed in 1974 for liquid metal flows is the 

following: 

 𝑃𝑟𝑡 = (1 + 100𝑃𝑒−0.5) [
1

1 + 120 𝑅𝑒−0.5
− 0.15] (32) 

F. Gori et al. (1979) carried out a numerical prediction of heat transfer to low Prandtl number 

fluids in circular tubes where they employed a one-equation turbulence model in the near wall 

region and a two-equation turbulence model in the core region [4] [30]. As different expressions 

were selected for the turbulent Prandtl number, the calculated temperature profiles were 

compared with experimental data concluding that the models of Aoki (Section 3.1.2) and 

Reynolds (Section 3.1.9) are the best ones for 𝑅𝑒 ≤ 170000. 

 

3.1.10 Hubbard (1975) 

In 1975 F.R. Hubbard used the graphical function proposed by O.E. Dwyer and fitted it to the 

expression [31] [32]: 

 
1

𝑃𝑟𝑡
= 1 −

0.942 (𝑃 𝐷⁄ )
1.4

𝑃𝑟(𝑅𝑒
1000⁄ )

1.281 (33) 

where 𝑃 𝐷⁄  is the pitch-to-diameter ratio. 
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3.1.11 Jischa-Rieke (1979) 

M. Jischa and H.B. Rieke (1979) concluded that the dependence of 𝑃𝑟𝑡 on the radial distance 

from the wall and 𝑅𝑒 is of second-order importance and that the following simple expression 

provides a reasonable estimation for all 𝑃𝑟 values [33] [34]. 

 𝑃𝑟𝑡 = 0.85 + 
0.015

𝑃𝑟
 (34) 

 

3.1.12 Yakhot et al. (1986) 

Based on a renormalization group analysis, V. Yakhot et al. proposed the following equation 

[13] [35] [36]: 

 

[
𝑃𝑟𝑒𝑓𝑓

−1 − 1.1793

𝑃𝑟−1 − 1.1793
]

0.65

[
𝑃𝑟𝑒𝑓𝑓

−1 − 2.1793

𝑃𝑟−1 − 2.1793
]

0.35

=
1

1 +
𝑛𝑡

𝑛

 

𝑃𝑟𝑒𝑓𝑓 =
1 +

𝑛𝑡

𝑛
𝑛𝑡

𝑛
𝑃𝑟𝑡

+
1
𝑃𝑟

 

(35) 

where 𝑛 is the kinematic viscosity and 𝑛𝑡 is the turbulent kinematic viscosity. 

 

3.1.13 Kays-Crawford (1993) 

W.M. Kays and M.E. Crawford (1993) developed a prediction model for 𝑃𝑟𝑡, later extended by 

B. Weigand et al. (1997), based on the thermal molecular conduction from an eddy moving 

through the mixing length [13] [37] [38]: 

 

𝑃𝑟𝑡 = {
1

2𝑃𝑟𝑡∞
+ 𝑐𝑃𝑒𝑡√

1

𝑃𝑟𝑡∞
− (𝑐𝑃𝑒𝑡)

2 [1 − 𝑒
−

1

𝑐𝑃𝑒𝑡√𝑃𝑟𝑡∞]}

−1

 

𝑃𝑒𝑡 = 𝑃𝑟𝑡 (
𝜈𝑡

𝜈
) 

(36) 

It is valid for all molecular Prandtl numbers. It contains two empirical constants (c and 𝑃𝑟𝑡) 
which should be determined from the available experimental data. 𝑃𝑟𝑡∞ is the value of 𝑃𝑟𝑡 far 

away from the wall and 𝐶 = 0.3 is a constant prescribing the spatial distribution of 𝑃𝑟𝑡 vs. 𝑃𝑒𝑡. 

The drawback of this correlation is that one should know apriori the global Reynolds number, 

which is not known for complex geometries. 

 

3.1.14 Kays (1994) 

An asymptotic curve for the Yakhot’s expression (Eq. 35) was given by W. Kays (1994) [16]. 

It looks similar to the one previously suggested by Reynolds (1975) [14] but in Reynolds case 

𝑃𝑟𝑡  is an average throughout the whole boundary layer [13]. The recommended turbulent 

Prandtl number is: 
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 𝑃𝑟𝑡 = 0.85 + 
0.7

𝑃𝑒𝑡
 (37) 

This correlation is often used in CFD calculations. 

 

3.1.15 Lin et al. (2000) 

In 2000 B.S. Lin et al. modified the renormalization group analysis assuming a quasi-normal 

approximation for the statistical correlation between the velocity and temperature fields [39]. 

This leads to derivation of the 𝑃𝑟𝑡  as a function of the 𝑃𝑒𝑡 , which in turn depends on the 

turbulent eddy diffusivity t. The functional relationship is comparable to that of Yakhot [36] 

presented in 3.1.12 but it also contains the spectral properties of both oscillating fields [13]: 

 

[
𝑃𝑟𝑒𝑓𝑓

−1 − 1

𝑃𝑟−1 − 1
]

2
3

[
𝑃𝑟𝑒𝑓𝑓

−1 + 2

𝑃𝑟−1 + 2
]

1
3

=
1

1 +
𝑛𝑡

𝑛

 

where  

𝑃𝑟𝑒𝑓𝑓 =
1 +

𝑛𝑡

𝑛
𝑛𝑡

𝑛
𝑃𝑟𝑡

+
1
𝑃𝑟

 

(38) 

The similarity of both equations (35) and (38) is due to the fact that they have similar 

mathematical structures and are derived entirely from approaches other than the 

renormalization group analysis of turbulence. 

 

3.1.16 Cheng-Tak (2006) 

In 2006 X. Cheng and N.I. Tak [4] proposed the following correlation based on the fact that the 

Lyon model for heat transfer (Section 3.2.1.2) agrees well with the computational fluid 

dynamics (CFD) analysis for all the values of turbulent Prandtl number. This recommended 

correlation was derived in combination with Lyon correlation: 

 

𝑃𝑟𝑡 = {

4.12 𝑃𝑒 ≤ 1000
0.01 𝑃𝑒

[0.018𝑃𝑒0.8 − (7.0 − 𝐴)]1.25
1000 < 𝑃𝑒 £ 6000

 

where 

A = {
4.5 𝑃𝑒 ≤ 1000

5.4 − 0.0009𝑃𝑒 1000 ≤ 𝑃𝑒 ≤ 2000
3.6 𝑃𝑒 ≥ 2000

 

(39) 

Authors [4] noted that this equation may not be valid in other LBE flow conditions that are not 

considered in their analysis (e.g., different geometries, developing flows, etc.), since the 

equation is derived specifically based on experimental data and calculations with the CFX code 

for fully developed LBE turbulent flows in tube geometries with constant heat flux. 
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3.1.17 Taler (2016) 

In 2006 D. Taler studied the heat transfer in turbulent tube flow of liquid metals using three 

turbulent Prandtl models [40]. The first one was a modified Aoki’s formula for the turbulent 

Prandtl number adjusting the parameters by the least squares method to the experimental data 

of N. Sheriff and D.J. O'Kane 1981 [41] obtained for liquid sodium. He proposed two similar 

relationships: 

 𝑃𝑟𝑡 = [𝑎 𝑅𝑒0.45𝑃𝑟0.2 {1 − 𝑒
−

1
𝑎𝑅𝑒0.45𝑃𝑟0.2} ]

−1

 (40) 

 𝑃𝑟𝑡 = [𝑏 𝑅𝑒0.45𝑃𝑟0.2 {1 − 𝑒
−

1
𝑐𝑅𝑒0.45𝑃𝑟0.2} ]

−1

 (41) 

 

𝑎 = 0.01592 

𝑏 = 0.01171 

𝑐 = 0.00712 

(42) 

The second model used by D. Taler is based on the Kays, Crawford (2005) [42], and Weigand 

(1997) [38] model: 

 𝑃𝑟𝑡 = {
1

2𝑃𝑟𝑡∞
+ 𝑑𝑃𝑒𝑡√

1

𝑃𝑟𝑡∞
− (𝑑𝑃𝑒𝑡)

2 [1 − 𝑒
−

1

𝑑𝑃𝑒𝑡√𝑃𝑟𝑡∞]}

−1

 (43) 

where the turbulent Peclet number 𝑃𝑒𝑡 is given by: 

 𝑃𝑒𝑡 = 𝑃𝑟
𝜀𝑀

𝜈
  (44) 

and 𝑃𝑟𝑡∞ represents turbulent Prandtl number given by Jischa and Rieke [33] [43]: 

 𝑃𝑟𝑡∞ = 𝑃𝑟𝑡𝑠 +
𝑒

𝑃𝑟𝑅𝑒0.888
 (45) 

The other constants of the model are: 

 𝑑 = 0.3, 𝑃𝑟𝑡𝑠 = 0.85, 𝑒 = 182.4 (46) 

𝑃𝑟𝑡𝑠 represents a turbulent Prandtl number for high Reynolds numbers when the second term 

in Eq. 45 becomes negligible. Instead of 𝑃𝑟𝑡𝑠 = 0.9 as proposed in the original expression [33] 

[43], 𝑃𝑟𝑡𝑠 = 0.85 was adopted according to the recent studies [16] [38] [42]. 

The third model is a simple relationship: 

 𝑃𝑟𝑡 = 0.85 +
𝑓

𝑃𝑒𝑡
= 0.85 +

𝑓

 
𝜀𝑀

𝑛 𝑃𝑟
 (47) 

where Taler assumed 𝑓 = 1.46 instead of 𝑓 = 2.0, as suggested by [16], as it provided better 

calculated Nusselt numbers compared to the experimental data. 

 

3.1.18 Summary of correlations for the turbulent Prandtl number 

The whole list of correlations collected for the turbulent Prandtl number is included in Table 6. 
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TABLE 6. SUMMARY OF CORRELATIONS FOR THE TURBULENT PRANDTL 

NUMBER 

Dwyer (1963) 

[10][17] 

1

𝑃𝑟𝑡
= 𝑦 = 1 −

1.82

𝑃𝑟 (
𝜀𝑀

𝑛 )
𝑚𝑎𝑥

1.4  

Aoki (1963) 

[10] [13] [18] 

1

𝑃𝑟𝑡
= 0.014 𝑅𝑒0.45𝑃𝑟0.2 (1 − 𝑒

−
1

0.014𝑅𝑒0.45𝑃𝑟0.2) 

Kokorev (1963) 

[19] 

𝑃𝑟𝑡 =
1+0.8𝑐1(1−𝑓)

1+𝑐2
𝑛

𝜀𝑀

  with 𝑐1 = 1, с2 = 0.5 

Subbotin et al. (1963) 

[21]  

𝜀 =
(𝜀𝐻)𝑚𝑎𝑥

(𝜀𝑀)𝑚𝑎𝑥
 

(
𝜀𝐻

𝑞
)

𝑚𝑎𝑥

= 7.5 ∙ 10−5𝑅𝑒 

𝜀̅ = 0.205𝑅𝑒
1
8 

Kunz-Yerazunis (1969) 

[10] [24] 

1

𝑃𝑟𝑡
= 1.5 𝑒

− 
0.90

 [
𝜀𝑀
𝛼

]
0.64

 

Notter-Kunz-Yerazunis 

(1969)  

[13] [24] [25] 

𝑃𝑟𝑡 =
2

3
𝑒

[0.9 (
𝑛𝑡 
𝑛

)
0.64

]
 

Bobkov et al. (1970) 

[26] [27] 
𝑃𝑟𝑡 = 0.69 (

𝑢0

𝑢
)

1
2
[1 − 𝑒−0.62∙10−4𝑅𝑒𝑃𝑟

1
3] 

Quarmby-Quirk (1972, 

1974) 

[13] [28] [29] 

𝑃𝑟𝑡 = (1 + 400−
𝑦
𝑅)

−1

 

Reynolds (1974) 

[4] 
𝑃𝑟𝑡 = (1 + 100𝑃𝑒−0.5) [

1

1 + 120 𝑅𝑒−0.5
− 0.15] 

Hubbard (1975) 

[31] [32] 

1

𝑃𝑟𝑡
= 1 −

0.942 (
𝑃
𝐷)

1.4

𝑃𝑟 (
𝑅𝑒

1000)
1.281 

Jischa-Rieke (1979) 

[33] [34] 
𝑃𝑟𝑡 = 0.85 + 

0.015

𝑃𝑟
 

Yakhot et al. (1986) 

[13] [35] [36] 

[
𝑃𝑟𝑒𝑓𝑓

−1 − 1.1793

𝑃𝑟−1 − 1.1793
]

0.65

[
𝑃𝑟𝑒𝑓𝑓

−1 − 2.1793

𝑃𝑟−1 − 2.1793
]

0.35

=
1

1 +
𝑛𝑡

𝑛

 

𝑃𝑟𝑒𝑓𝑓 =
1 + 

𝑛𝑡
𝑛⁄

𝑛𝑡
𝑛⁄

𝑃𝑟𝑡
+ 

1
𝑃𝑟
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TABLE 6. SUMMARY OF CORRELATIONS FOR THE TURBULENT PRANDTL 

NUMBER 

Kays-Crawford (1993) 

[13] [37] [38] 

𝑃𝑟𝑡 = {
1

2𝑃𝑟𝑡∞
+ 𝑐𝑃𝑒𝑡√

1

𝑃𝑟𝑡∞
− (𝑐𝑃𝑒𝑡)

2 [1 − 𝑒
−

1

𝑐𝑃𝑒𝑡√𝑃𝑟𝑡∞]}

−1

 

𝑃𝑒𝑡 =  𝑃𝑟
𝑛𝑡

𝑛
 

Kays (1994) 

[13] [16] 
𝑃𝑟𝑡 = 0.85 + 

0.7

𝑃𝑒𝑡
 

Lin et al. (2000) 

[13] [39] 

[
𝑃𝑟𝑒𝑓𝑓

−1 − 1

𝑃𝑟−1 − 1
]

2
3

[
𝑃𝑟𝑒𝑓𝑓

−1 + 2

𝑃𝑟−1 + 2
]

1
3

=
1

1 +
𝑛𝑡

𝑛

 

𝑃𝑟𝑒𝑓𝑓 =
1 + 

𝑛𝑡
𝑛⁄

𝑛𝑡
𝑛⁄

𝑃𝑟𝑡
+ 

1
𝑃𝑟

 

Cheng-Tak (2006) 

[4] 

𝑃𝑟𝑡 = {

4.12 𝑃𝑒 ≤ 1000

0.01 𝑃𝑒

[0.018𝑃𝑒0.8 − (7.0 − 𝐴)]1.25
1000 < 𝑃𝑒 £ 6000

 

A = {

4.5 𝑃𝑒 ≤ 1000

5.4 − 0.0009𝑃𝑒 1000 ≤ 𝑃𝑒 ≤ 2000

3.6 𝑃𝑒 ≥ 2000
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TABLE 6. SUMMARY OF CORRELATIONS FOR THE TURBULENT PRANDTL 

NUMBER 

Taler (2016) 

[40] 

1st correlation: 

𝑃𝑟𝑡 = [𝑎 𝑅𝑒0.45𝑃𝑟0.2 {1 − 𝑒
−

1

𝑎𝑅𝑒0.45𝑃𝑟0.2} ]
−1

, or 

𝑃𝑟𝑡 = [𝑏 𝑅𝑒0.45𝑃𝑟0.2 {1 − 𝑒
−

1
𝑐𝑅𝑒0.45𝑃𝑟0.2} ]

−1

 

𝑎 = 0.01592 

𝑏 = 0.01171 

𝑐 = 0.00712 

2nd correlation: 

𝑃𝑟𝑡 = {
1

2𝑃𝑟𝑡∞
+ 𝑑𝑃𝑒𝑡√

1

𝑃𝑟𝑡∞
− (𝑑𝑃𝑒𝑡)

2 [1 − 𝑒
−

1

𝑑𝑃𝑒𝑡√𝑃𝑟𝑡∞]}

−1

  

𝑃𝑟𝑡∞ = 𝑃𝑟𝑡𝑠 + 
𝑒

𝑃𝑟𝑅𝑒0.888
 

𝑃𝑒𝑡 =  𝑃𝑟
𝜀𝑀

𝑛
 

𝑑 = 0.3, 𝑃𝑟𝑡𝑠 = 0.85, 𝑒 = 182.4 

3rd correlation: 

𝑃𝑟𝑡 = 0.85 +
𝑓

𝑃𝑒𝑡
,  𝑓 = 1.46 
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3.2 FORCED CONVECTION 

3.2.1 Flow in circular pipes 

Most of the correlations available in the open literature for heat transfer in circular tubes have 

the form: 

 𝑁𝑢 = 𝑎 + 𝑏𝑅𝑒𝑐𝑃𝑟𝑑 (48) 

where 𝑎, 𝑏, 𝑐 and 𝑑 are constants. A constant term of a represents the contribution of molecular 

conduction corresponding to laminar conditions with 𝑃𝑒 →  0, while the second term 𝑏𝑅𝑒𝑐𝑃𝑟𝑑 

represents the eddy conduction contribution [11]. 

The geometry of the heat transfer in circular pipes is shown in Fig. 6, where D –pipe diameter, 

Tw – wall temperature, Tf – bulk fluid temperature, q – heat flux. 

 

 

FIG. 6. Flow and heat transfer in circular pipes 

 

3.2.1.1 Dittus-Boelter (1930) 

In 1930, F.W. Dittus and L.M.K. Boelter published a correlation [44] to predict convective heat 

transfer in single-phase vapour conditions for pipes with length-to-diameter ratio 
𝐿

𝐷
≥ 60. It 

takes the form [45]: 

 𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟𝑛, 𝑛 = 0.4 (heating), 𝑛 = 0.33 (cooling) (49) 

It is valid for turbulent flows (𝑅𝑒 ≥ 105 ), thus satisfying 0.6 ≤ 𝑃𝑟 ≤ 160 . The expected 

accuracy of this correlation is ±15%. According to the applicability range, this correlation is 

not suitable for liquid sodium, however some computational tools use this correlation to 

estimate sodium vapour heat transfer since sodium vapour is characterized by Prandtl number 

values greater than 0.6 [46]. 
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3.2.1.2 Lyon (1949) 

In 1949, R.N. Lyon investigated Nusselt number for low Prandtl number fluids for circular tube 

geometry in forced convection situation [9] [47] [48] [49] [50]. A general equation was derived 

by considering the following hypothesis: steady state, system independent of angular 

displacement, uniform heat flux, total conductivity not a function of distance parallel to tube 

axis, no end effects, heat transfer only by molecular conduction, eddy conduction and forced 

convection, molecular conductivity at right angles to the flow of fluid unaffected by eddying of 

the fluid, by the velocity of the fluid or by the gradient of this velocity, and constant physical 

properties of the fluid for turbulent flow. He also assumed that the ratio between the eddy 

diffusivities of heat and momentum is constant, what he called𝑦 =
ε𝐻

ε𝑀
=

1

𝑃𝑟𝑡
, which is by 

definition the inverse of the turbulent Prandtl number. The resulting expression is entirely 

rigorous for the ideal system chosen (ordinary differential equation treatment) and applies 

equally well to viscous or turbulent flow and for all Prandtl numbers. 

As he wanted to obtain a simple relationship, he proposed the following approximation for 

liquid metal heat transfer in tubes considering the experimental data from Nikuradse: 

 𝑁𝑢 = 7 + 0.025 (
𝑃𝑒

𝑃𝑟𝑡
)

0.8

 (50) 

This correlation is valid for smooth circular duct with 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤ 𝑅𝑒 ≤ 5 ∙ 106. 

The predictions are within +32.8% and −6.5% of the Notter-Sleicher correlation, which is 

considered as the reference correlation in the Handbook of Single Phase Convective Heat 

Transfer from 1987 [9] (also suggested in the Heat Exchanger Design Handbook edited by 

Borishanskii in 1983 [51]). Lyon correlation is well-known and often served as a reference for 

other liquid metal single-phase heat transfer correlation developers. 

 

3.2.1.3 Seban-Shimazaki (1951) 

In 1951, R.A. Seban and T.T. Shimazaki proposed a correlation for liquid metal flow in a 

smooth circular tube with uniform wall temperature boundary condition based on the work done 

by Lyon in 1949 ([9] Ch. 4) [52]. The same correlation is also recommended in [51] by 

Borishanskii and reviewed in [45] by Todreas-Kazimi: 

 𝑁𝑢 = 5 + 0.025𝑃𝑒0.8 (51) 

It is valid for 0 ≤ 𝑃𝑟 ≤ 0.1, 104 ≤ 𝑅𝑒 ≤ 5 · 106 and 102 ≤ 𝑃𝑒 ≤ 2 · 104. 

 

3.2.1.4 Deissler (1952) 

In 1952 R.G. Deissler proposed the following equation for heat transfer with uniform heat flux 

in tubes [10] [53]: 

 𝑁𝑢 = 6.3 + 0.000222𝑃𝑒1.3 (52) 

 

3.2.1.5 Stromquist (1953) 

In 1953, W.K. Stromquist studied the effect of wetting on heat transfer characteristics of 

mercury over a large range of Peclet number [54]. He concluded that there is no inherent 

property of a non-wetted liquid metal system that causes low heat transfer coefficients as 

compared to a wetted system. However, he showed that for flow conditions at high Peclet 
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number, measured heat transfer coefficients show a fluctuation behaviour in both non-wetted 

and wetted systems with a rough heat transfer surface. Based on a separate study using glass 

tubes, Stromquist found that detachment of mercury from the tube wall was observed at many 

locations. These zones could appear or disappear according to local conditions. Conditions, at 

which the detachment was observed, correspond well to that causing heat transfer fluctuation. 

Stable test conditions were only obtained at Peclet numbers lower than 4 · 103. These stable 

test data obtained are well correlated by the following equation [4]: 

 𝑁𝑢 = 3.6 + 0.018 𝑃𝑒0.8, 88 ≤ 𝑃𝑒 ≤ 4 · 103 (53) 

It is valid for uniform heat flux conditions. 

 

3.2.1.6 Lubarsky-Kaufman (1955) 

The experimental results of various investigators until 1955 of liquid metal heat transfer 

characteristics were examined by B. Lubarsky and S.J. Kaufman [55] [56] [57]. They also 

revaluated experimental data using assumptions and methods as consistent as possible and 

compared with theoretical results. They suggested an empirical relation for fully developed heat 

transfer in tubes for turbulent flow conditions as: 

 𝑁𝑢 = 0.625 𝑃𝑒0.4 (54) 

It is valid for uniform heat flux conditions in a smooth circular duct in the range 0 ≤ 𝑃𝑟 ≤ 0.1, 

104 ≤ 𝑅𝑒 ≤ 105 and 2 · 102 ≤ 𝑃𝑒 ≤ 9 · 103 ( [9] Ch. 4) [55]. 

 

3.2.1.7 Hartnett-Irvine (1957) 

Average Nusselt numbers for flow in channels can be estimated using J.P. Hartnett and T.F. 

Irvine correlation (1957) as follows [9] [58]: 

 𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 (55) 

where 𝑁𝑢𝑠𝑙𝑢𝑔 is the Nusselt number for slug flow and 𝑃𝑒 is the Peclet number. This equation 

is valid when free convection effects are negligible with clean surfaces and no gas entrainment. 

For a smooth circular duct, 𝑁𝑢𝑠𝑙𝑢𝑔  assumes the value of 5.8 in case of constant wall 

temperature, and 8.0 in case of constant heat input per unit length and constant wall temperature 

around the periphery of the duct at a given axial position. It is valid for a smooth circular duct 

in the range 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤ 𝑅𝑒 ≤ 5 ∙ 106  ( [9] Ch. 4). 

 

3.2.1.8 Schleicher-Tribus (1957) 

In 1957, C.A. Schleicher and M. Tribus proposed a set of Nusselt equations for heat transfer to 

liquid metal in a smooth circular duct ( [9] Ch. 4) [59]. They are valid for 0 ≤ 𝑃𝑟 ≤ 0.1 and 

104 ≤ 𝑅𝑒 ≤ 5 · 106: 

 𝑁𝑢 = 4.8 + 0.015𝑅𝑒0.91𝑃𝑟1.21 (56) 

for axially and circumferentially uniform wall temperature. Its prediction is within +19.5% 

and −33.4% of the Notter-Sleicher correlation. 
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 𝑁𝑢 = 6.3 + 0.016𝑅𝑒0.91𝑃𝑟1.21 (57) 

valid for axially and circumferentially uniform wall heat flux. Its prediction is within +26.3% 

and −32.5% of the Notter-Sleicher correlation. 

 

3.2.1.9 Lykoudis-Touloukian (1958) 

In 1958 Lykoudis and Touloukian [10] [60] recommended the following correlation for uniform 

heat flux in round pipes: 

 𝑁𝑢 = 7.0 + 0.30 𝑃𝑒0.3 (58) 

 

3.2.1.10 Kutateladze et al. (1959) 

In 1959 S. Kutateladze et al. proposed the following correlations for uniform heat flux [13] 

[61]: 

 𝑁𝑢 = 3.3 + 0.014 𝑃𝑒0.8 (59) 

 𝑁𝑢 = 5.0 + 0.0021 𝑃𝑒0.8 (60) 

 𝑁𝑢 = 5.9 + 0.015 𝑃𝑒0.8 (61) 

The third one was developed specifically for sodium while the other two are considered as 

lower limits for the Nusselt number. 

 

3.2.1.11 Buleev (1959) 

In 1959 N.I. Buleev estimated the eddy diffusivity ratio 𝑦 to calculate heat transfer coefficients 

over the ranges 0.01 ≤ 𝑃𝑟 ≤ 10  and 5 ∙ 103 ≤ 𝑅𝑒 ≤ 106 . The following correlation and 

coefficients were obtained for the case of uniform heat flux [11] [62] [63] [64] [65]: 

 𝑁𝑢 = 𝐴 + 4.16 (
𝑅𝑒

1000
)
𝑚

𝑃𝑟𝑛 (62) 

 

𝐴 = 2.5 + 1.3 log [1 +
1

𝑃𝑟
] 

𝑚 = 0.865 − 0.051 log [1 +
1

𝑃𝑟
] 

𝑛 = 0.66 for 0.01 ≤ 𝑃𝑟 ≤ 1 

𝑛 = 0.44 for 1 ≤ 𝑃𝑟 ≤ 10 

(63) 

For larger Reynolds numbers the above correlation agrees with the Lyon Eq. (50) and for small 

Reynolds numbers is enough smoothly extrapolated to the theoretical value of 𝑁𝑢 = 4.36. 

 

3.2.1.12 Ibragimov et al. (1960) 

In 1960, M.K. Ibragimov et al. published the experimental results of heat transfer for turbulent 

flow of mercury and LBE (lead bismuth eutectic) in a tube [66]. The experimental results were 
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compared with the previous correlation shown above with the conclusion that this correlation 

satisfactorily fits the experimental results. 

 𝑁𝑢 = 4.5 + 0.014𝑃𝑒0.8 (64) 

It is used in the case of constant wall heat flux. The variation of the parameters during the tests 

were as follows. 

For mercury tests 𝑃𝑟 = (22 − 27) ∙ 10−3, 𝑅𝑒 = (40 − 400) ∙ 103, 𝑃𝑒 = (1 − 10) ∙ 103, 
𝑁𝑢 = 7 − 27. 

For LBE tests 𝑃𝑟 = (20 − 27) ∙ 10−3, 𝑅𝑒 = (8 − 290) ∙ 103, 𝑃𝑒 = (0.2 − 5.8) ∙ 103, 
𝑁𝑢 = 6 − 19. 

 

3.2.1.13 Rohsenow-Cohen (1960) 

In 1960, W.M. Rohsenow and L.S. Cohen proposed the following correlation [67] [68] 

applicable for liquid metal in the Prandtl range of 5 · 10−3 ≤ 𝑃𝑟 ≤ 5 · 10−2 

 𝑁𝑢 = 6.7 + 0.0041(𝑅𝑒 ∙ 𝑃𝑟)0.793𝑒41.8∙𝑃𝑟 (65) 

This correlation is valid for 𝑅𝑒 ≥ 104 and applies to the case of uniform heat flux along the 

tube. 

 

3.2.1.14 Azer-Chao (1961) 

In 1961, N.Z. Azer and B.T. Chao investigated Nusselt number and temperature profiles for 

low Prandtl number fluids (liquid metals) of constant properties flowing in a smooth pipe with 

constant wall temperature ( [9] Ch. 4) [69]. They proposed the following correlation for the 

estimation of the Nusselt number: 

 𝑁𝑢 = 5 + 0.05 𝑃𝑒0.77𝑃𝑟0.25 (66) 

It is valid for smooth circular duct with uniform wall temperature in the range 0 ≤ 𝑃𝑟 ≤ 0.1 

and 104 ≤ 𝑅𝑒 ≤ 5 ∙ 106. This correlation fits the data with a maximum deviation of less than 

11% for 𝑃𝑟 ≤ 0.1 and 𝑃𝑒 ≤ 1.5 · 104 (the usual range of turbulent liquid metal heat transfer 

encountered in practice). 

 

3.2.1.15 Subbotin et al. (1962) 

In 1962, V.I. Subbotin et al. published the experimental results of heat transfer for the 

transitional and turbulent flows of liquid sodium in four tubes made of different materials: 

copper, St-10, nickel and 1Kh18N9T steel [70]. Two methods were used to calculate the heat 

transfer coefficients: processing of the measured temperature distributions in the stream along 

the radius of the tube (first method) and treatment of the temperature distributions in the wall 

along the length of the heat exchange section and in the liquid at the mixing chambers (second 

method) [70]. The variation of the parameters during the tests was as follows: 𝑃𝑒 = 40 − 1150, 

𝑅𝑒 = 5850 − 178000, 𝑃𝑟 = 0.0057 − 0.0075. The correlation recommended for constant 

heat flux [11] was: 

 𝑁𝑢 = 5 + 0.025𝑃𝑒0.8 (67) 

In 1966 O.E. Dwyer recommended Subbotin et al. correlation on the basis of its simplicity and 

apparent accuracy, for estimating heat transfer coefficients for all liquid metals where the 
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system is clean, the wall heat flux is uniform, the velocity and temperature profiles are fully 

developed, and the flow is turbulent [65]. 

In 2001, P.L. Kirillov and P.A. Ushakov, published a journal paper about heat transfer to the 

liquid metals in round tubes where they recommended the same correlation for the range 𝑃𝑒 ≤
2 ∙ 104 and 3 ∙ 103 ≤ 𝑅𝑒 ≤ 106 [71]. 

This correlation has the same expression as the one proposed by Seban-Shimazaki in 1951 (see 

Section 3.2.1.3). The difference is that Seban-Shimazaki recommended it for uniform wall 

temperature conditions, while Subbotin et al. recommended it for uniform heat flux. 

 

3.2.1.16 Kirillov (1962) 

The most reliable data about the heat removal in liquid metals (heat transfer) can be obtained 

only by means of measurement of temperature fields in a liquid metal. Other methods, in which 

the heat release surface temperature is used, are not always exact because of the surface effects 

originated on a boundary line between a wall and a liquid metal. These effects are not 

investigated in all details. A number of the works ( [72] [73] [74] [75] [76] [77] [78] [79]) about 

measurement of temperature in turbulent flows of liquid metals (mercury, NaK alloy, Pb-Bi 

alloy, sodium) is known. On the basis of these data, it is possible to carry out some 

generalization. 

When fluid passes a flat plate, the flow velocity distribution, processed as function 𝑢+ = 𝑓(𝑦+) 

follows a universal profile that does not depend on Reynolds number, pipe diameter, viscosity, 

etc. The velocity distribution in a circular pipe close enough coincides with this universal 

profile. Between distributions of velocity and temperature on flow cross-section there is a 

similitude according to the hydrodynamic theory of heat exchange [80]. In [81] temperature 

distribution in coordinates Т+ = 𝑓(𝑦+) is defined, that has given a family of curves with a 

Prandtl number as parameter. Naturally, there arises a question, how much universal is the 

temperature profile in coordinates Т+ = 𝑓(𝑦++). 

𝑦+: non-dimensional coordinate 

 𝑦+ = 𝑦
𝑣∗

𝜈
 (68) 

Where 𝑣∗is the dynamic velocity: 

 𝑣∗ = √
𝜏0

𝜌
= �̅�√

𝑓

8
 (69) 

 

and 𝜈 is the kinematic viscosity, 𝜏0 is tangential stress on a wall, �̅� is average linear velocity of 

a flow and 𝑓 is the friction factor. 

Experimental data of works [75] [76] [77] [78] [79] on measurement of temperature distribution 

in turbulent flows of sodium, mercury and lead bismuth eutectic in non-dimensional coordinates 

Т+ = 𝑓(𝑦++) provide 

  𝑦++ = 𝑦
𝑣∗

𝑎
 (70) 

The so-called «friction temperature», put into practice by H.B. Squir in 1951 [81], is chosen as 

a temperature scale:  
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 𝑇∗ =
𝑞0

𝜌𝐶𝑝𝑣∗
 (71) 

where 𝑞0  is heat flux on a wall, which matches temperature pulsations in the flow. Thus, 

experimental data on heat exchange in liquid metals can be analysed, based on analogy between 

transfer of momentum and heat, using the following non-dimensional variable quantities: 

𝑢+ =
𝑢
𝑣∗ , 𝑇+ = 𝑇 𝑇∗⁄ , 𝑦+ = 𝑦

𝑣∗

𝜈
 and 𝑦++ = 𝑦

𝑣∗

𝑎
. In these coordinates data stratifications 

depending on a Prandtl number were not observed though its value changed within 

0.06– 0.027 . Universal profile of the temperature distribution, obtained on the basis of 

experimental data, is presented by following dependences which do not demand explanations: 

  𝑇+ = 𝑦++    𝑓𝑜𝑟 0 ≤ 𝑦++ ≤ 1 (72) 

 

 𝑇+ = 1.87 𝑙𝑛(𝑦++ + 1) + 0.65𝑦++ − 0.36     𝑓𝑜𝑟 1 ≤ 𝑦++ ≤ 11.7 (73) 

 

  𝑇+ = 2.5 𝑙𝑛 𝑦++ − 1      𝑓𝑜𝑟 𝑦++ > 11.7 (74) 

 

The Eq. (73) is selected so as to provide a correlation between  𝑇+ values and 
𝜕𝑇+

𝜕𝑦++
 derivatives 

on boundary lines of 𝑦++ = 1  and 𝑦++ = 11.7 . Eq. (74) is a result of experimental data 

averaging [75] [76] [77] [78] [79]. 

On the basis of experimental data on temperature measurements in a turbulent flow of liquid 

metal the dependence 𝑁𝑢 = 𝑓(𝑃𝑒∗), where 𝑃𝑒∗ is a modified Peclet number defined as 

 𝑃𝑒∗ =
𝑣∗𝑑

𝑎
= 𝑃𝑒√

𝑓

8
 (75) 

where 𝑣∗  is the dynamic velocity or ‘friction velocity’ chosen as a velocity scale, d is the 

hydraulic diameter and a is the thermal diffusivity. The order of value 𝑣∗ coincides with the 

value of a velocity pulsation of a flow. 

Here the value of 𝑓 is calculated by Filonenko formula 𝑓 = (1.82 log 𝑅𝑒 –1.64)−2 Eq. (324). 

After processing of experimental data by a least squares method the following formula for 

calculation of Nusselt number is obtained (at Ре∗ < 1000) [82]: 

 𝑁𝑢 = 4.36 + 0.343𝑃𝑒0.8 (76) 

The error in the formula (76) is ±2% and it provides a smooth transition to the laminar flow at 

𝑁𝑢 = 4.36. There is a good agreement between this correlation and the experimental data 

(sodium [77], NaK alloy [75], Рb-Bi alloy [76], mercury [72] [73] [76]). 

 

3.2.1.17 Baker-Sesonske (1962) 

In 1962, R.A. Baker and A. Sesonske proposed the following correlation for flow in pipes with 

uniform heat flux [10] [83]: 
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 𝑁𝑢 = 6.05 + 0.0074𝑃𝑒0.95 (77) 

 

3.2.1.18 Subbotin et al. (1963) 

In 1963 data from V.I. Subbotin et al. [63] on experimental research of heat transfer using 

mercury in nickel and stainless-steel pipes, and a sodium-potassium alloy in a copper pipe are 

approximated by the following formula: 

 𝑁𝑢 ≈ 4.3 + 0.025𝑃𝑒0.8 (78) 

which is recommended for practical calculations over the range of 0.02 ≤ 𝑃𝑟 ≤ 0.03 and 20 ≤
Ре ≤ 10000 for pure heat transfer surfaces, provided the maintenance of oxides is in liquid 

metal at lower level than a limit of their solubility. 

 

3.2.1.19 Dwyer (1963) 

The correlation presented by O.E. Dwyer in 1963 for smooth circular duct is as follows1 [8]( 

[9] Ch. 4): 

 𝑁𝑢 = 7 + 0.025 [𝑅𝑒 𝑃𝑟 −
1.82 𝑅𝑒

(
𝜀𝑚

𝜈⁄ )
𝑚𝑎𝑥

1.4 ]

0.8

 (79) 

It is valid for smooth circular duct with uniform heat flux and 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤ 𝑅𝑒 ≤
5 ∙ 106 . The predictions are within +31.4% and −6.5% of the Notter-Sleicher correlation. 

This expression corresponds to Lyon correlation (Section 3.2.1.2), using the expression for the 

turbulent Prandtl number as proposed by Dwyer (Section 3.1.1). 

 

3.2.1.20 Subbotin et al. (1963) 

The calculation of Lyon integral by V.I. Subbotin et al. [21] using the Reichardt velocity profile 

and 
𝜀𝐻

𝑞
 relationships not dependent on Prandtl number, allowed to obtain the uniform formula 

for Nusselt number in a wide range of change of Prandtl and Peclet numbers: 

 𝑁𝑢 = 𝑁𝑢0 + 𝐴𝑅𝑒𝑛𝑃𝑟𝑚 (80) 

where 

 𝑁𝑢0 = 7.24 −
9.5

log 𝑅𝑒
 (81) 

𝐴 = 0.0155, 𝑛 = 0.82, 𝑚 = 0.58– 0.18 · tanh(0.81 log 𝑃𝑟). 

It is valid for 104 < 𝑅𝑒 < 7 ∙ 105, 0.005 < 𝑃𝑟 < 10 and uniform heat flux conditions. 

 

 

1 In [9] Ch. 4 there is an error where 
𝜀𝑀

𝜈⁄  is elevated to the power of 0.14 instead of 1.4 
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3.2.1.21 Kokorev (1963) 

In 1963 L.S. Kokorev carried out experiments measuring heat transfer in circular pipes, thus 

providing the following correlation [19]: 

 𝑁𝑢 = 5.5 + 0.025𝑃𝑒0.8 (82) 

It is valid for 20 < 𝑃𝑒 < 4000. 

 

3.2.1.22 Skupinski et al. (1965) 

In 1965, E. Skupinski et al. [84] [85] reported the heat transfer behaviour of sodium-potassium 

alloys flowing in horizontal circular tubes with an error band of ±15% of the experimental 

data. 

 𝑁𝑢 = 4.82 + 0.0185𝑃𝑒0.827 for 58 ≤ 𝑃𝑒 ≤ 1.31 · 104 (83) 

It is valid for smooth circular duct with uniform heat flux in the range 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤
𝑅𝑒 ≤ 5 ∙ 106 ( [9] Ch. 4).  

This correlation was used in the design of Phenix reactor intermediate heat exchangers. 

Skupinski correlation is commonly used to model liquid sodium single-phase forced convection 

heat transfer in tubes and rod bundles.  

 

3.2.1.23 Notter-Sleicher (1972) 

In 1972, R.H. Notter and C.A. Sleicher proposed a set of Nusselt equations describing heat 

transfer to liquid metal in a pipe. These equations are solved numerically for the range 104 ≤
𝑅𝑒 ≤ 106 and 0.004 ≤ 𝑃𝑟 ≤ 104 ( [9] Ch. 4). Heat transfer rates are predicted for both the 

entry and fully developed coolant flow regions in a pipe. The numerical predictions are 

described as follows [86] [87]: 

 𝑁𝑢 = 4.8 + 0.0156 𝑃𝑒0.85 𝑃𝑟0.08 (84) 

valid for uniform wall temperature condition, and 

 𝑁𝑢 = 6.3 + 0.0167 𝑃𝑒0.85 𝑃𝑟0.08 (85) 

valid for uniform heat flux wall condition. 

Nusselt numbers obtained by these equations are within ±5% uncertainty as related to the 

experimental data. A third correlation proposed was: 

 𝑁𝑢 = 5 + 0.016 𝑅𝑒𝑎 𝑃𝑟𝑏 (86) 

valid for uniform heat flux or uniform temperature wall condition, where 𝑎 = 0.88–
0.24

(4+𝑃𝑟)
 and 

𝑏 = 0.33 + 0.5𝑒−0.6𝑃𝑟 . Nusselt numbers obtained by this equation are within ±10% 

uncertainty as related to the experimental data. 

 

3.2.1.24 Sleicher et al. (1973) 

In 1973, C.A. Sleicher et al. investigated experimentally local heat transfer coefficients and 

fully developed temperature profiles in NaK eutectic mixture in a pipe at different boundary 

conditions, i.e. uniform heat flux and uniform wall temperature. Reynolds numbers ranged from 
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2.6 ∙ 104 ≤ 𝑅𝑒 ≤ 3.02 ∙ 105 and flow was fully developed. Consistency of data was affirmed 

by three independent heat rate measurements. Eddy diffusivity profiles were used to calculate 

Nusselt numbers in pipes at uniform heat flux. Results for liquid metals were correlated as 

follows for local and average Nusselt numbers [88]: 

 𝑁𝑢(𝑥) = 𝑁𝑢∞  (1 + 
2

𝑥
𝐷⁄
),  𝑥 𝐷⁄ ≥ 4 (87) 

 𝑁𝑢𝑎𝑣𝑒 = 𝑁𝑢∞  (1 + 
8

𝐿
𝐷⁄

+ 
2

𝐿
𝐷⁄
 ln

𝐿
𝐷⁄

4
),  𝐿 𝐷⁄ ≥ 4 (88) 

where 𝑥 is the axial coordinate, 𝐿 is the length of the pipe and 𝐷 is the pipe diameter as shown 

in Fig. 7. 

  

FIG. 7. Pipe geometry for evaluating local Nusselt number 

For uniform wall temperature: 

 𝑁𝑢∞ = 4.8 + 0.0156 𝑃𝑒0.85 𝑃𝑟0.08, 0.004 ≤ 𝑃𝑟 ≤ 0.1 (89) 

and for uniform wall heat flux: 

 𝑁𝑢∞ = 6.3 + 0.0167 𝑃𝑒0.85 𝑃𝑟0.08, 0.004 ≤ 𝑃𝑟 ≤ 0.1 (90) 

According to these equations heat transfer coefficients for uniform wall temperature are smaller 

than for uniform heat flux conditions. 

3.2.1.25 Aoki (1973) 

In 1973, having analysed the work performed and the correlations proposed by Lyon 1949, 

Dwyer 1963, Deissler 1952, Lykoudis 1958, Baker and Sesonske 1962, Lubarsky and 

Kaufmann 1955, S. Aoki proposed a Nusselt correlation for heat transfer in a circular tube for 

the turbulent flow of liquid metal2 [10] [89]: 

 𝑁𝑢 = 6.0 + 0.025 [0.014𝑅𝑒1.45𝑃𝑟1.2 {1 − 𝑒
− 

71.8
𝑅𝑒0.45𝑃𝑟0.2}]

0.8

 (91) 

S. Aoki showed that Lyon’s equation deviated considerably from experimental data. He 

therefore reduced the value of the molecular conduction term down to 6 and used his turbulent 

Prandtl number already presented in Section 3.1.2, Eq. (19). It is valid for constant wall heat 

flux, the same as Lyon’s correlation. 

 

 

2 In Ref. [10], Aoki’s correlation (Eq. 14 in the same reference, p. 573) contains an error in the exponent, as 

𝑅𝑒0.45𝑃𝑟0.2 should be in the denominator of the exponent, according to Eq. (19). 
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3.2.1.26 Dwyer (1976) 

In 1976 O.E. Dwyer being author of Chapter 2 of Volume 2 of Na-NaK Handbook edited by 

Foust [11] reviewed the correlations published so far and recommended the following one for 

the case of uniform wall temperature: 

 𝑁𝑢 = 4.0 + 0.025𝑃𝑒0.8 (92) 

 

3.2.1.27 Chen-Chiou (1981) 

C.J. Chen and J.S Chiou (1981) correlations for smooth circular duct in the fully developed 

flow region are as follows [9] [90]. 

In case of uniform wall temperature: 

 𝑁𝑢 = 4.5 + 0.0156 𝑅𝑒0.85𝑃𝑟0.86 (93) 

In case of uniform heat flux: 

 𝑁𝑢 = 5.6 + 0.0165 𝑅𝑒0.85𝑃𝑟0.86 (94) 

For 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤ 𝑅𝑒 ≤ 5 ∙  106 , the predictions of Eq. (93) are within +36.1% 

and −1.8% of the Notter-Sleicher correlation, the predictions of Eq. (94) are within +33.9% 

and −7.1% of the Notter-Sleicher correlation. 

As the physical properties vary from fluid to fluid at different temperature ranges, it is 

impossible to describe the variation of fluid flow or heat transfer characteristics due to 

temperature change by a single relationship and to expect that the relationship will be valid for 

all fluids under all conditions. Instead, one has to calculate each property under the prescribed 

conditions. For design convenience, C.J. Chen and J.S Chiou recommended simple formulas 

that approximate the variation of heat transfer coefficients. The Nusselt number was presented 

in the form of: 

 
𝑁𝑢

𝑁𝑢0
= (

𝑇𝑏

𝑇𝑖
)
𝑛

 (95) 

where the subscript zero refers to the values calculated under the assumption of constant 

physical properties, 𝑇𝑏 represents the bulk temperature, 𝑇𝑖 is the inlet temperature, while 𝑇𝑓 =
1

2
(𝑇𝑏 + 𝑇𝑤) is the film temperature, 𝑇𝑤 is the wall temperature. The values of the parameter n 

depend on the heat transfer conditions. For liquid sodium under constant heat flux: 

 𝑛 = exp(5.9 ∙ 10−3𝑇𝑏 − 6.91) 1000 𝐾 ≥ 𝑇𝑏 ≥ 600 𝐾 (heating) (96) 

 𝑛 = 0 600 𝐾 ≥ 𝑇𝑏 ≥ 370 𝐾 (heating) (97) 

 𝑛 = 0.25 (cooling) (98) 

⎯ While for liquid sodium under constant wall temperature: 

 𝑛 = 0.08 + 2.2 ∙ 10−4𝑇𝑏 1000 𝐾 ≥ 𝑇𝑏 ≥ 600 𝐾 (heating) (99) 

 𝑛 = 0.08 600 𝐾 ≥ 𝑇𝑏 ≥ 370 𝐾 (heating) (100) 

 𝑛 = 0.16 (cooling) (101) 
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This correlation is valid for smooth circular duct in the range 0 ≤ 𝑃𝑟 ≤ 0.1 and 104 ≤ 𝑅𝑒 ≤
5 ∙ 106 ( [9] Ch. 4). 

C.J. Chen and J.S Chiou also made an extensive study on thermal entrance effects for liquid 

metal flows (see section 3.2.7.4). 

 

3.2.1.28 Lee (1983) 

In 1983, S.L. Lee investigated liquid metals Nusselt number for pipe geometry in turbulent 

forced convection situation with uniform wall flux ( [9] Ch. 4) [91]. His theoretical analysis is 

based on the following hypothesis: circular pipe of infinite length, flow is turbulent and fully 

developed, fluid temperature is uniform at infinite distance, pipe wall is heated with a constant 

wall flux, flow is steady, Newtonian and incompressible fluids, physical properties are constant, 

while viscosity dissipation, free convection and tube wall thermal resistance are negligible. In 

this investigation, a modified form of the Azer-Chao model [92] was adopted. S.L. Lee 

proposed the following expression: 

 𝑁𝑢 = 3.01𝑅𝑒0.0833 (102) 

This correlation is valid for 5 ≤ 𝑃𝑒 ≤ 1000 , 0.001 ≤ 𝑃𝑟 ≤ 0.02 , with 𝑅𝑒 ≥ 4000 . The 

author did a comparison with Johnson’s data (mercury and lead bismuth) [93] [94] and with 

Notter-Sleicher’s predictions being within +24.7%  and −44.3%  of the Notter-Sleicher 

correlation [86]. 

 

3.2.1.29 Borishanski (1983) 

In the Heat Exchanger Design Handbook [51], V.M. Borishanski (1983) reported that the 

general correlations reported by R.H. Lyon (1949), as well as R.A. Seban and T.T. Shimazaki 

(1951) are applicable only when the impurity in the liquid metals are below the oxygen 

solubility limit at the operating temperature. If the impurities are above the limit, heat transfer 

coefficient greatly reduces because of increased resistance to heat transfer at the wall – fluid 

boundary. The minimum value of the Nusselt number when heating of a liquid metal 

contaminated with impurities may be given by the following equation reported in [95]. 

 𝑁𝑢 = 4.3 + 0.0021𝑃𝑒 (103) 

It is valid for 102 ≤ 𝑃𝑒 ≤ 104. 

 

3.2.1.30 Reed (1987) 

In 1987, C. Reed as author of Chapter 8 of the Handbook of Single-Phase Convective Heat 

Transfer [9] recommended the following correlation for flow in pipes in the case of uniform 

wall temperature [13]: 

 𝑁𝑢 = 3.3 + 0.02 𝑃𝑒0.8 (104) 

This correlation is valid for 𝑃𝑒 ≥ 102 and 
𝐿

𝐷ℎ
≥ 60, where L is the pipe length and 𝐷ℎ is the 

pipe hydraulic diameter. This correlation corresponds to the best fit of data by Sleicher et al. 

1973 [88] and Gilliland et al. 1951 [96] as it retains the simple, classical dependence on 𝑃𝑒0.8. 
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3.2.1.31 Buleev et al. (1989) 

Results of the calculations of Nusselt number for flows of various liquids in a wide range of 

Prandtl number, including liquid metal coolants, in a circular pipe under uniform heat flux 

conditions on a pipe wall in the interval of 3 ∙ 103 < 𝑅𝑒 <  3 ∙ 106  are presented by the 

following interpolation formula [97]: 

 𝑁𝑢 = 𝐴 + 3.90 (
𝑅𝑒

1000
)
𝑚

 𝑃𝑟𝑛 (105) 

where 

 

𝐴 = 2.5 + 1.3 log (1 +
1

𝑃𝑟
) 

𝑚 = 0.918 − 0.05 log (1 +
10

𝑃𝑟
) 

𝑛 = 0.65 − 0.107 log (1 +
10

𝑃𝑟
) 

(106) 

 

3.2.1.32 Siman- Tov et al. (1997) 

In 1997, M. Siman-Tov et al. proposed a correlation for flow in pipes in the case of uniform 

heat flux [13] [98]: 

 𝑁𝑢 = 0.685 𝑃𝑒0.3726 (107) 

 

3.2.1.33 Tricoli (1999) 

In 1999, V. Tricoli proposed a description of the heat transfer in pipes based on a surface 

renewal concept [13] [99]. He assumed that, for incompressible high Peclet and low Prandtl 

numbers flows, the ratio of local temperature gradients at the wall for uniform wall temperature 

to that of uniform heat flux remains constant:  

 
𝑁𝑢|𝑇𝑤 𝑐𝑜𝑛𝑠𝑡

𝑁𝑢|𝑞𝑤 𝑐𝑜𝑛𝑠𝑡
′

=
𝜋2

12
= 0.822 (108) 

where 𝑁𝑢|𝑇𝑤 𝑐𝑜𝑛𝑠𝑡 refers to the case with uniform wall temperature and 𝑁𝑢|𝑞𝑤 𝑐𝑜𝑛𝑠𝑡
′  to the case 

with uniform heat flux. This means that Nusselt number for uniform wall temperature 

conditions is about 18% smaller than in the case of uniform heat flux. 

 

3.2.1.34 ENIN (2001) 

In 2001 P.L. Kirillov and P.A. Ushakov analysed heat transfer to the liquid metals in round 

tubes, thus reviewing existing Nusselt correlations. They presented the formula recommended 

by scientist from the Krzhizhanovskii Institute ENIN for LBE flows [71]: 

 𝑁𝑢 = 𝐴 + 0.014 𝑃𝑒0.8 (109) 

where 𝐴 = 3 when there are oxide films on the wall, and 𝐴 = 4.5– 5 for clean surfaces. 
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3.2.1.35 TsKTI (2001) 

In the same publication as the correlation just mentioned above [71], P.L. Kirillov and 

P.A. Ushakov also present the following expression derived on the basis of the data obtained at 

the Polzunov Institute TsKTI: 

 𝑁𝑢 = 5 + 0.0021 𝑃𝑒 (110) 

where it was observed that higher values of the heat transfer coefficients were achieved for pure 

liquid metal conditions. 

 

3.2.1.36 Cheng-Tak (2006) 

X. Cheng and N.I. Tak [4] performed a survey of existing correlations for liquid metal heat 

transfer in pipe flow, and suggested a new correlation evaluated for LBE flows: 

 𝑁𝑢 = 𝐴 + 0.018𝑃𝑒0.80 (111) 

 A = {
4.5 𝑃𝑒 ≤ 1000

5.4 − 0.0009𝑃𝑒 1000 ≤ 𝑃𝑒 ≤ 2000
3.6 𝑃𝑒 ≥ 2000

  

 

3.2.1.37 Mochizuki (2010) 

As the Seban-Shimazaki (1951) correlation can be used only when the Peclet number is larger 

than ~30, H. Mochizuki in 2010 [100] proposed a new set of correlations that are applicable 

also for the low Peclet number conditions. The final form of the proposed empirical correlations 

is as follows: 

 𝑁𝑢 = 𝑚𝑖𝑛(𝑁𝑢1, 𝑁𝑢2), (112) 

 𝑁𝑢1 = 5 + 0.025𝑃𝑒0.8 (Seban-Shimazaki, 1951), (113) 

 𝑁𝑢2 = 5 ∙ 10−3𝑃𝑒1.74, (114) 

which is valid for 𝑃𝑒 < 55. The above Nusselt number correlations were validated by the 

evaluation of the test data coming from the intermediate heat exchangers of the 50 MW steam 

generator facility of the experimental fast reactor Joyo and the prototype fast breeder reactor 

Monju. 

 

3.2.1.38 Summary of heat transfer correlations for flow in circular pipes 

Error! Reference source not found. presents the list of heat transfer correlations collected for 

flow in circular pipes. 
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TABLE 7. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CIRCULAR PIPES 

Dittus-Boelter (1930) 

[44] [45] 

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟𝑛 

𝑛 = 0.4 (heating), 𝑛 = 0.33 (cooling) 

length-to-diameter ratio 𝐿 𝐷⁄ ≥ 60,   𝑅𝑒 ≥ 105, 

 0.6 ≤ 𝑃𝑟 ≤ 160   

Lyon (1949) 

[9] [47] [48] [50] 

𝑁𝑢 = 7 + 0.025 (
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 

0 ≤ 𝑃𝑟 ≤ 0.1,  104 ≤ 𝑅𝑒 ≤ 5 · 106,  uniform heat flux 

Seban-Shimazaki (1951) 

[9] [52] 

𝑁𝑢 = 5 + 0.025𝑃𝑒0.8 

0 ≤ 𝑃𝑟 ≤ 0.1,  104 ≤  𝑅𝑒 ≤ 5 · 106,   102 ≤ 𝑃𝑒 ≤ 2 · 104 

uniform wall temperature 

Deissler (1952) 

[10] [53] 

𝑁𝑢 = 6.3 + 0.000222𝑃𝑒1.3 

uniform heat flux 

Stromquist (1953) 

[4] [54] 

𝑁𝑢 = 3.6 + 0.018 𝑃𝑒0.8, 

88 ≤ 𝑃𝑒 ≤ 4 · 103 , uniform heat flux 

Lubarsky-Kaufman 

(1955) 

[9] [55] [56] [57] 

𝑁𝑢 = 0.625 𝑃𝑒0.4 

uniform heat flux,   0 ≤ 𝑃𝑟 ≤ 0.1, 104 ≤ 𝑅𝑒 ≤ 105 

2 · 102 ≤ 𝑃𝑒 ≤ 9 · 103 

Hartnett-Irvine (1957) 

[9] [58] 

𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 

𝑁𝑢𝑠𝑙𝑢𝑔 = 5.8 for constant wall temperature 

𝑁𝑢𝑠𝑙𝑢𝑔 = 8.0 for constant heat flux 

0 ≤ 𝑃𝑟 ≤ 0.1,  104 ≤ 𝑅𝑒 ≤ 5 · 106 

for clean surfaces and no gas entrainment 

Schleicher-Tribus (1957) 

[9] [59] 

uniform wall temperature: 

𝑁𝑢 = 4.8 + 0.015𝑅𝑒0.91𝑃𝑟1.21 

uniform wall heat flux: 

𝑁𝑢 = 6.3 + 0.016𝑅𝑒0.91𝑃𝑟1.21 

both valid for  0 ≤ 𝑃𝑟 ≤ 0.1,  104 ≤ 𝑅𝑒 ≤ 5 · 106 

Lykoudis-Touloukian 

(1958) 

[10] [60] 

𝑁𝑢 = 7.0 + 0.30 𝑃𝑒0.3 

uniform heat flux 
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TABLE 7. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CIRCULAR PIPES 

Kutateladze et al. (1959) 

[13] [61] 

𝑁𝑢 = 5.9 + 0.015 𝑃𝑒0.8 

uniform heat flux 

Buleev (1959) 

[11] [62] [63] [64] [65] 
 

𝑁𝑢 = 𝐴 + 4.16 (
𝑅𝑒

1000
)
𝑚

𝑃𝑟𝑛 

𝐴 = 2.5 + 1.3 log [1 +
1

𝑃𝑟
] 

𝑚 = 0.865 − 0.051 log [1 +
1

𝑃𝑟
] 

𝑛 = 0.66     for 0.01 ≤ 𝑃𝑟 ≤ 1 

𝑛 = 0.44     for 1 ≤ 𝑃𝑟 ≤ 10 

0.01 ≤ 𝑃𝑟 ≤ 10,  5 ∙ 103 ≤ 𝑅𝑒 ≤ 106,  uniform heat flux 

Ibragimov et al. (1960) 

[66] 

𝑁𝑢 = 4.5 + 0.014𝑃𝑒0.8 

uniform wall heat flux 

Rohsenow-Cohen (1960) 

[67] [68] 

𝑁𝑢 = 6.7 + 0.0041(𝑅𝑒 ∙ 𝑃𝑟)0.793𝑒41.8∙𝑃𝑟 

5 · 10−3 ≤ 𝑃𝑟 ≤ 5 · 10−2,   𝑅𝑒 ≥ 104,  uniform heat flux 

Azer-Chao (1961) 

[9] [69] 

𝑁𝑢 = 5 + 0.05 𝑃𝑒0.77𝑃𝑟0.25 

0 ≤ 𝑃𝑟 ≤ 0.1,  104 ≤ 𝑅𝑒 ≤ 5 · 106, uniform wall temperature 

Subbotin et al. (1962) 

[70] 

𝑁𝑢 = 5 + 0.025𝑃𝑒0.8 

𝑃𝑒 ≤ 2 ∙ 104, 3 · 103 ≤ 𝑅𝑒 ≤ 106,  unifirm heat flux 

Kirillov (1962) 

[82] 

𝑁𝑢 = 4.36 + 0.343𝑃𝑒∗0.8 

𝑃𝑒∗ =
𝑣∗𝑑

𝑎
= 𝑃𝑒√

𝑓

8
 

Ре∗ < 1000 

Baker-Sesonske (1962) 

[10] [83] 

𝑁𝑢 = 6.05 + 0.0074𝑃𝑒0.95 

uniform heat flux 

Subbotin et al. (1963) 

[63] 

𝑁𝑢 ≈ 4.3 + 0.025𝑃𝑒0.8 

0.02 ≤ 𝑃𝑟 ≤ 0.03, 20 ≤ Ре ≤ 10000 

Dwyer (1963) 

[8] [9] 

Nu = 7 + 0.025  [𝑅𝑒 Pr−
1.82 𝑅𝑒

(
ε𝑚

ν )
𝑚𝑎𝑥

1.4 ]

0.8

 

uniform heat flux, 0 ≤ 𝑃𝑟 ≤ 0.1, 104 ≤ 𝑅𝑒 ≤ 5 ∙ 106 
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TABLE 7. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CIRCULAR PIPES 

Subbotin et al. (1963) 

[21] 

𝑁𝑢 = 𝑁𝑢0 + 𝐴𝑅𝑒𝑛𝑃𝑟𝑚 

𝑁𝑢0 = 7.24 −
9.5

log𝑅𝑒
 

𝐴 = 0.0155, 𝑛 = 0.82, 

𝑚 = 0.58– 0.18 · tanh(0.81 log 𝑃𝑟). 

104 < 𝑅𝑒 < 7 · 105, 0.005 < 𝑃𝑟 < 10,  uniform heat flux 

Kokorev (1963) 

[19] 

𝑁𝑢 = 5.5 + 0.025𝑃𝑒0.8 

20 < 𝑃𝑒 < 4000 

Skupinski et al. (1965) 

[9] [84] [85] 

𝑁𝑢 = 4.82 + 0.0185𝑃𝑒0.827 

58 ≤ 𝑃𝑒 ≤ 1.31 · 104,  0 ≤ 𝑃𝑟 ≤ 0.1, 104 ≤ 𝑅𝑒 ≤ 5 · 106 

uniform heat flux 

Notter-Sleicher (1972) 

[9] [86] [87] 

uniform wall temperature 

𝑁𝑢 = 4.8 + 0.0156 𝑃𝑒0.85 𝑃𝑟0.08 

uniform heat flux 

𝑁𝑢 = 6.3 + 0.0167 𝑃𝑒0.85 𝑃𝑟0.08 

uniform heat flux or uniform temperature wall: 

𝑁𝑢 = 5 + 0.016 𝑅𝑒𝑎 𝑃𝑟𝑏 

𝑎 = 0.88–
0.24

(4+𝑃𝑟)
, 𝑏 = 0.33 + 0.5𝑒−0.6𝑃𝑟 

All three above are valid for 

104 ≤ 𝑅𝑒 ≤ 106, 0.004 ≤ 𝑃𝑟 ≤ 104 

Sleicher et al. (1973) 

[88] 

𝑁𝑢(𝑥) = 𝑁𝑢∞  (1 + 
2

𝑥
𝐷⁄
), 𝑥 𝐷⁄ ≥ 4 

𝑁𝑢𝑎𝑣𝑒 = 𝑁𝑢∞  (1 + 
8

𝐿
𝐷⁄

+ 
2

𝐿
𝐷⁄
 ln

𝐿
𝐷⁄

4
), 𝐿 𝐷⁄ ≥ 4 

uniform wall temperature: 

𝑁𝑢∞ = 4.8 + 0.0156 𝑃𝑒0.85 𝑃𝑟0.08,  0.004 ≤ 𝑃𝑟 ≤ 0.1 

uniform wall heat flux: 

𝑁𝑢∞ = 6.3 + 0.0167 𝑃𝑒0.85 𝑃𝑟0.08,  0.004 ≤ 𝑃𝑟 ≤ 0.1 

2.6 ∙ 104 ≤ 𝑅𝑒 ≤ 3.02 ∙ 105 

Aoki (1973) 

[10] [89] 

𝑁𝑢 = 6.0 + 0.025 [0.014𝑅𝑒1.45𝑃𝑟1.2 {1 −
𝑒−71.8

𝑅𝑒0.45𝑃𝑟0.2
}]

0.8

 

uniform wall heat flux 
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TABLE 7. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CIRCULAR PIPES 

Dwyer (1976) 

[11] 

𝑁𝑢 = 4.0 + 0.025𝑃𝑒0.8 

uniform wall temperature 

Chen-Chiou (1981) 

[9] [90] 

uniform wall temperature 

𝑁𝑢 = 4.5 + 0.0156 𝑅𝑒0.85𝑃𝑟0.86 

uniform heat flux 

𝑁𝑢 = 5.6 + 0.0165 𝑅𝑒0.85𝑃𝑟0.86 

For temperature dependency: 

𝑁𝑢

𝑁𝑢0
= (

𝑇𝑏

𝑇𝑖
)
𝑛

 

uniform heat flux: 

𝑛 = exp(5.9 ∙ 10−3𝑇𝑏 − 6.91) 1000 𝐾 ≥ 𝑇𝑏 ≥ 600 𝐾 heating 

𝑛 = 0 600 𝐾 ≥ 𝑇𝑏 ≥ 370 𝐾 heating 

𝑛 = 0.25 cooling 

uniform wall temperature 

𝑛 = 0.08 + 2.2 ∙ 10−4𝑇𝑏 1000 𝐾 ≥ 𝑇𝑏 ≥ 600 𝐾 heating 

𝑛 = 0.08 600 𝐾 ≥ 𝑇𝑏 ≥ 370 𝐾 heating 

𝑛 = 0.16 cooling 

0 ≤ 𝑃𝑟 ≤ 0.1, 104 ≤ 𝑅𝑒 ≤ 5 ∙ 106 

Lee (1983) 

[9] [91] 

𝑁𝑢 = 3.01𝑅𝑒0.0833 

5 ≤ 𝑃𝑒 ≤ 1000, 0.001 ≤ 𝑃𝑟 ≤ 0.02, 𝑅𝑒 ≥ 4000, uniform 

wall flux 

Borishanski (1983) 

[51] [95] 

𝑁𝑢 = 4.3 + 0.0021𝑃𝑒  

102 ≤ 𝑃𝑒 ≤ 104 

impurities in liquid metals are below the oxygen solubility limit 

Reed (1987) 

[9] [13] 

𝑁𝑢 = 3.3 + 0.02 𝑃𝑒0.8 

for 𝑃𝑒 ≥ 102,  
𝐿

𝐷ℎ
≥ 60,   uniform wall temperature 
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TABLE 7. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CIRCULAR PIPES 

Buleev et al. (1989) 

[97] 

𝑁𝑢 = 𝐴 + 3.90 (
𝑅𝑒

1000
)
𝑚

 𝑃𝑟𝑛 

𝐴 = 2.5 + 1.3 log (1 +
1

𝑃𝑟
) 

𝑚 = 0.918 − 0.05 log (1 +
10

𝑃𝑟
) 

𝑛 = 0.65 − 0.107 log (1 +
10

𝑃𝑟
) 

uniform heat flux, 3 ∙ 103 < 𝑅𝑒 <  3 ∙ 106 

Siman-Tov et al. (1997) 

[13] [98] 

𝑁𝑢 = 0.685 𝑃𝑒0.3726 

uniform heat flux 

Tricoli (1999) 

[13] [99] 

𝑁𝑢]𝑇𝑤 𝑐𝑜𝑛𝑠𝑡.

𝑁𝑢]𝑞𝑤 𝑐𝑜𝑛𝑠𝑡.
′

=
𝜋2

12
= 0.822 

ENIN (2001) 

[71] 

𝑁𝑢 = 𝐴 + 0.014 𝑃𝑒0.8 

𝐴 = 3 for oxide films on wall 

𝐴 = 4.5– 5 for clean wall 

TsKTI (2001) 

[71] 
𝑁𝑢 = 5 + 0.0021 𝑃𝑒,  for pure liquid metals 

Cheng-Tak (2006) 

[4] 

𝑁𝑢 = 𝐴 + 0.018𝑃𝑒0.80 

A = {
4.5 𝑃𝑒 ≤ 1000

5.4 − 0.0009𝑃𝑒 1000 ≤ 𝑃𝑒 ≤ 2000
3.6 𝑃𝑒 ≥ 2000

 

Mochizuki (2010) 

[100] 

𝑁𝑢 = 𝑚𝑖𝑛(𝑁𝑢1, 𝑁𝑢2) 

𝑁𝑢1 = 5 + 0.025𝑃𝑒0.8 (Seban-Shimazaki, 1951) 

𝑁𝑢2 = 5 ∙ 10−3𝑃𝑒1.74 

𝑃𝑒 < 55 

 

Several widely used heat transfer correlations for Nusselt number versus Peclet number for the 

pipe flows are presented in Fig. 8. When required in correlation, the Prandtl number is assumed 

𝑃𝑟 = 4.5 ∙ 10−3 at sodium temperature 𝑇 ≈ 700 𝐾, and turbulent Prandtl number 𝑃𝑟𝑡 = 1.5. 
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FIG. 8. Comparison of common Nusselt correlations for heat transfer in a pipe 

 

3.2.2 Flow between parallel plates, in flat ducts and in rectangular ducts 

Heat transfer in the flow between parallel plates (see Fig. 9) depends on several factors, such 

as single-wall (unilateral) or bilateral (both walls) heating, boundary conditions and others 

considered below. 

 

FIG. 9. Unilateral or bilateral heat transfer between parallel walls 

 

3.2.2.1 Seban (1950) 

The case of liquid metal heat transfer with constant properties flowing turbulently between 

parallel walls having uniform temperatures was considered on an analytical basis by R.A. Seban 

in 1950 [101]. Only conditions for fully developed flow from the hydrodynamic and thermal 

standpoint were considered. It was shown that the existence of solutions for the case of one 

adiabatic wall enables the specification of the temperature distribution and heat transfer 

coefficients for cases in which the walls have any uniform temperature value. The effect of 

inequality in the wall temperatures was shown to be small for Prandtl numbers greater than 

unity, but significant for fluids of low Prandtl number, such as liquid metals. For the case of 
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unilateral heat transfer, constant temperature at one wall only (the other being adiabatic), the 

Nusselt number correlation was proposed as follows: 

 𝑁𝑢 = 5.8 + 0.020 𝑃𝑒0.8 (115) 

This equation is valid for 102 ≤ 𝑃𝑒 ≤ 105, and 0.01 ≤ 𝑃𝑟 ≤ 1.0, with an accuracy of ± 5%. 
For constant heat flux through both walls, a graphic correction factor for the heat transfer 

coefficient was also proposed by R.A. Seban [45]. 

 

3.2.2.2 Hartnett-Irvine (1957) 

The first detailed analytical study of heat transfer coefficients for liquid metal flows in non-

circular ducts was presented by Hartnett and Irvine in 1957 ( [9] Ch. 4) [13] [58]. In their 

analysis, they presented a generic correlation following the functional dependence as: 

 𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 (116) 

They considered that only the direct contribution from molecular conduction is directly related 

to both the duct geometry and the thermal boundary conditions, while the other coefficients 

remain constant. This is expressed in terms of the Nusselt number corresponding to a slug flow 

(𝑁𝑢𝑠𝑙𝑢𝑔), in addition to a correction factor (2/3) for the actual velocity profile. 

They recommended values of 𝑁𝑢𝑠𝑙𝑢𝑔 for several common duct geometries and wall conditions 

(constant temperature or heat flux). They recommended the values 𝑁𝑢𝑠𝑙𝑢𝑔 =
𝜋2

2
= 4.93 and 

𝑁𝑢𝑠𝑙𝑢𝑔 = 7.03  for a uniform wall temperature and uniform wall heat flux on both walls, 

respectively for squared ducts (𝑎 = 𝑏). For rectangular ducts (𝑎 ≠ 𝑏), values of 𝑁𝑢𝑠𝑙𝑢𝑔  are 

plotted in Fig. 10: 

 

FIG. 10. Slug Nusselt number for rectangular ducts 
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3.2.2.3 Buleev (1959) 

Some empirical correlations are developed to calculate 𝑁𝑢 for liquid metals turbulent flows 

(𝑃𝑟 ≤ 0.03) in a smooth flat duct. For unilateral (single-wall) heat flux, the following equation 

was proposed by N.I. Buleev (1959) [9] [62]: 

 Nu = 5.1 + 0.02 𝑃𝑒0.8 (117) 

In case of the bilateral heat flux (both walls are heated) with fully-established turbulent flow 

when both heat fluxes are equal, Buleev proposed the empirical equation for liquid metals [11] 

[64]: 

 𝑁𝑢 = 9 + (1.41 − ln 100 𝑃𝑟) (0.1 + 0.02 𝑃𝑒)0.8 (118) 

At 𝑃𝑟 = 0.01, the correlation yields: 

 𝑁𝑢 = 9.14 + 0.0281𝑃𝑒0.8 (119) 

while for 𝑃𝑟 = 0.02, it is: 

 𝑁𝑢 = 9.13 + 0.0266𝑃𝑒0.8 (120) 

These two last equations agree within less than 5% discrepancy at a Peclet number as high as 

104. 

 

3.2.2.4 Kays (1963) 

In 1963 W.M. Kays presented a comprehensive analysis of turbulent heat transfer results for 

arbitrarily prescribed heat fluxes at both walls [13] [102]. Based on this analysis, the fully 

developed Nusselt number for the constant wall heat flux under arbitrary heat flux ratio on the 

two surfaces can be represented by: 

 𝑁𝑢 =
𝑁𝑢0

1 − 𝛾𝜑
 (121) 

where 𝛾  is the ratio of the prescribed heat fluxes at the two duct walls, 𝑁𝑢0  is the value 

corresponding to 𝛾 = 0, and 𝑗 is a correction factor. In that context, 𝛾 = 0 represents the case 

with one wall heated and the other one insulated, for 𝛾 = 1 both are heated with the same heat 

flux and 𝛾 = −1 one wall is heated and the other is cooled at the same rate. The parameters 

𝑁𝑢0 and 𝑗 were obtained by means of numerical integration for different values of the Reynolds 

number (see Table 8). 

TABLE 8. PARAMETERS OF KAYS’ CORRELATION FOR SMOOTH FLAT DUCT 

WITH UNIFORM HEAT FLUX 

𝑃𝑟 
𝑅𝑒 = 104 𝑅𝑒 = 3 · 104 𝑅𝑒 = 105 𝑅𝑒 = 3 · 105 𝑅𝑒 = 106 

𝑁𝑢0 𝑗 𝑁𝑢0 𝑗 𝑁𝑢0 𝑗 𝑁𝑢0 𝑗 𝑁𝑢0 𝑗 

0 5.70 0.428 5.78 0.445 5.80 0.456 5.80 0.460 5.80 0.468 

0.001 5.70 0.428 5.78 0.445 5.80 0.456 5.88 0.460 6.23 0.460 

0.003 5.70 0.428 5.80 0.445 5.90 0.450 6.32 0.450 8.62 0.422 

0.01 5.80 0.428 5.92 0.445 6.70 0.440 9.80 0.407 21.5 0.333 

0.03 6.10 0.428 6.90 0.428 11.0 0.390 23.0 0.330 61.2 0.255 
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This analysis was in principle developed and validated for 𝑃𝑟 = 0.7 (typical for air and other 

gases). Asymptotic solutions were also proposed for wider ranges of Reynolds and Prandtl 

numbers and, in the liquid metal range. It is the only description available for predicting the 

heat transfer performance under generic asymmetric thermal boundary conditions. 

 

3.2.2.5 Duchatelle-Vautrey (1964) 

L. Duchatelle and L. Vautrey presented in 1964 experimental results for liquid metal heat 

transfer between parallel plates with unilateral uniform heat flux conditions (heat flux through 

one wall, adiabatic at the other wall). These results are well represented by the empirical 

expression [9] [65] [103]: 

 𝑁𝑢 = 5.85 + 0.000341 𝑃𝑒1.29 𝑓𝑜𝑟 𝑃𝑒 < 1200 (122) 

The authors also proposed the following correlation for flow in a smooth flat duct with 

unilateral heat transfer [9]: 

 
𝑁𝑢 = 5.14 + 0.0127 𝑃𝑒0.8 𝑓𝑜𝑟 200 < 𝑃𝑒 < 1200 

𝑁𝑢 = 6.1  𝑓𝑜𝑟 𝑃𝑒 < 200 
(123) 

 

3.2.2.6 Dwyer (1965) 

For unilateral heat transfer (single heated plate), the following equation, proposed by 

O.E. Dwyer in 1965, is recommended3 [9] [65] [104]: 

 𝑁𝑢 = 5.60 + 0.01905 (
𝑃𝑒

𝑃𝑟𝑡
)
0.775

 for 100 ≤
𝑃𝑒

𝑃𝑟𝑡
≤ 104 (124) 

where, as the author said, 
1

𝑃𝑟𝑡
 can be evaluated with the equation recommended by Dwyer (see 

Section 3.1.1). 

For bilateral heat transfer (heat flux on both parallel plates) under uniform and equal heat flux 

conditions, the following equation proposed by O.E. Dwyer (1965), is recommended4 [9]: 

 𝑁𝑢 = 9.49 + 0.0596 (
𝑃𝑒

𝑃𝑟𝑡
)
0.688

 (125) 

In 1976 the author concluded that unilateral heat transfer from the outer wall of a narrow 

concentric annulus (e.g., 
𝑟2

𝑟1
≤ 2.0) is, for all practical purposes, the same as unilateral heat 

transfer with parallel plates [11]. 

 

 

3 In [9] (Ch. 4) this correlation is presented with 𝑃𝑒 in power of 0.8 instead to 0.775. 

4 In [9] (Ch. 4 pp. 4.66 Eq. 4.102) this correlation is presented with the factor of the second Peclet term as 0.00596 

instead of 0.0596. 
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3.2.2.7 Dwyer (1966) 

In 1966 O.E. Dwyer presented in [65] an equation representing the calculated Nusselt number 

published by Harrison and Menke in 1949 [105], where they used the velocity distribution data 

of Nikuradse from 1932 [106]: 

 𝑁𝑢 = 4.73 + 0.02768 (
𝑃𝑒

𝑃𝑟𝑡
)
0.736

 (126) 

 

3.2.2.8 Summary of heat transfer correlations for flow between parallel plates, in flat ducts 

and in rectangular ducts 

Table 9 presents the list of heat transfer correlations collected for flow between parallel plates, 

in flat ducts and in rectangular ducts. 
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TABLE 9. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW BETWEEN 

PARALLEL PLATES, IN FLAT DUCTS AND IN RECTANGULAR DUCTS 

Seban (1950) 

[101] 

𝑁𝑢 = 5.8 + 0.020 𝑃𝑒0.8 

102 ≤ 𝑃𝑒 ≤ 105, 0.01 ≤ 𝑃𝑟 ≤ 1.0,  unilateral uniform heat flux 

Hartnett-Irvine 

(1957) 

[9] [13] [58] 

For rectangular ducts (𝑎 ≠ 𝑏): 

𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 

𝑁𝑢𝑠𝑙𝑢𝑔 in Fig. 10 

For square ducts (𝑎 = 𝑏): 

𝑁𝑢𝑠𝑙𝑢𝑔 = 4.93 for uniform wall temperature 

𝑁𝑢𝑠𝑙𝑢𝑔 = 7.03 for uniform wall heat flux on both walls 

Buleev (1959) 

[9] [11] [62] [64] 

unilateral heat flux 

Nu = 5.1 + 0.02 𝑃𝑒0.8 

bilateral heat flux 

𝑁𝑢 = 9 + (1.41 − ln 100 𝑃𝑟) (0.1 + 0.02 𝑃𝑒)0.8 

Kays (1963) 

[13] [102] 

𝑁𝑢 =
𝑁𝑢0

1 − 𝛾𝜑
 

𝑁𝑢0, 𝑗 in Table 8 

uniform heat flux and arbitrary heat flux ratio on the surfaces 

Duchatelle-

Vautrey (1964) 

[9] [65] [103] 

𝑁𝑢 = 5.85 + 0.000341 𝑃𝑒1.29 

𝑁𝑢 = 5.14 + 0.0127 𝑃𝑒0.8 

unilateral uniform heat flux  

Dwyer (1965) 

[9] [65] [104] 

unilateral heat transfer: 

𝑁𝑢 = 5.60 + 0.01905 (
𝑃𝑒

𝑃𝑟𝑡
)
0.775

 for 100 ≤
𝑃𝑒

𝑃𝑟𝑡
≤ 104 

bilateral uniform heat flux: 

𝑁𝑢 = 9.49 + 0.0596 (
𝑃𝑒

𝑃𝑟𝑡
)
0.688

 

Dwyer (1966) 

[65] 
𝑁𝑢 = 4.73 + 0.02768 (

𝑃𝑒

𝑃𝑟𝑡
)
0.736

 

 

The empirical correlations for unilateral heating presented in Table 9 are also plotted in Fig. 11. 

For the purpose of comparison, the turbulent Prandtl number is assumed 𝑃𝑟𝑡 = 1.5 (if required 

in the correlation). The value 𝑃𝑟𝑡 = 1.5  corresponds to 𝑅𝑒 ∼ 50000  and 

𝑃𝑟 ∼ 5 ⋅ 10−3  at sodium temperature 𝑇 = 800 𝐾 . The visual comparison in Fig. 11 omits 

Harnett-Irvine (1957) [9] [13] [58] and Kays (1963) [13] [102]. The uniform heat transfer 

correlations are selected, as this phenomenon is best described by the correlations above. 

 



49 

 

 

 

FIG. 11 Comparison of empirical heat transfer correlations for flow between parallel plates and in 

rectangular ducts (unilateral, one-side heating) 

 

3.2.3 Flow in concentric annular ducts 

A concentric circular annular duct is another important geometry for many sodium flow and 

heat transfer applications. As shown in Fig. 12 sodium flows through the gap between the inner 

cylinder with external diameter D1 and the circular tube with internal diameter D2. Heating is 

usually applied from the inner wall but also can be supplied from the external wall or from both. 

 

FIG. 12. Heat transfer in flow in concentric annulus 
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3.2.3.1 Werner et al. (1949) 

In 1949 R.C. Werner et al. modified Lyon’s equation for turbulent flow of liquid metals in 

annuli with a factor of the diameter ratio to the form [107] [108]: 

 𝑁𝑢 = 0.7 (
𝐷2

𝐷1
)
0.53

[7 + 0.025𝑃𝑒0.8] (127) 

where the equivalent diameter 𝐷𝑒  of the annulus should be used to calculated Nusselt and Peclet 

numbers. This equation is valid for thin annuli with 
𝐷2

𝐷1
≤ 1.4, where 𝐷1 is the diameter of the 

internal annulus and 𝐷2 the diameter of the external annulus. 

 

3.2.3.2 Bailey (1950) 

In 1950 R.V. Bailey proposed the following correlation for flow in annuli when the 
𝐷2

𝐷1
> 1.4 

[107] [109]: 

 𝑁𝑢 = 0.75 (
𝐷2

𝐷1
)
0.3

[7 + 0.025𝑃𝑒0.8] (128) 

For 
𝐷2

𝐷1
< 1.4 Bailey recommended to use flat-plate correlations [110]. 

It should be noted that in 1993 N.E. Todreas and M. Kazimi presented for fully developed flow 

and uniform heat flux in the inner wall, the following Nusselt correlation for 
𝐷2

𝐷1
≥ 1.4 [45]: 

 𝑁𝑢 = 5.25 + 0.0188 𝑃𝑒0.8  (
𝐷2

𝐷1
)
0.3

 (129) 

If 
𝐷2

𝐷1
 is close to unity, R.A. Seban [45] [101] recommended his Eq. (115) derived for the parallel 

plates.  

The only publication found where the correlation (129) is mentioned is the book of M.M. El-

Wakil (“Nuclear Heat Transport” International Textbook Company, 1971) which presents this 

equation referring to Bailey [109] and Werner [108]. However, El-Wakil statement is incorrect 

since Bailey and Werner correlations are different as presented in the two previous sections. 

One should therefore be cautious about the use of Eq. (129) since the origin is doubtful. 

 

3.2.3.3 Lyon (1952) 

In 1952 R.N. Lyon presented the following correlation for uniform heat flux in the inner wall, 

being the outer wall insulated [110] [111]: 

 𝑁𝑢 = (5.25 + 0.0175 𝑃𝑒) (
𝐷2

𝐷1
)
0.53

 (130) 

Nusselt and Peclet numbers are based on the equivalent diameter 𝐷𝑒 = 𝐷2 − 𝐷1. 

 

3.2.3.4 Hartnett-Irvine (1957) 

In 1957 J.P. Hartnett and T.F. Irvine proposed the following model ( [9] Ch. 4) [13] [58]: 
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 𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 (131) 

This correlation although recommended in the 1950s provide conservative predictions of the 

Nusselt numbers. Figures 13, 14 and 15 show the Slug Nusselt numbers for the cases with: i) 

both walls at constant temperature, ii) constant heat input per unit length with both inner and 

outer walls at the same temperature at a given axial position (the heat input per unit area is not 

the same at both wall surfaces), and iii) constant heat flux on one wall with the other wall 

insulated. 

     

FIG. 13. Slug Nusselt number for annular duct with constant wall temperature 

 

FIG. 14. Slug Nusselt number for annular duct with constant heat input on both inner and outer walls 
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FIG. 15. Slug Nusselt numbers for annular duct with uniform heat flux (UHF) on one wall with the 

other wall insulated 

 

3.2.3.5 Buleev (1959) 

In 1959 N. Buleev published the following correlation for heat transfer to turbulently flowing 

liquid metals from the outer walls of annuli, having 
𝑟2

𝑟1
≤ 2. It is based on uniform heat flux and 

fully established velocity and temperature profiles [62] [65] [104]: 

 𝑁𝑢 = 5.1 + 0.02𝑃𝑒0.8 (132) 

This correlation is the same as the one presented above for one plate of a set of parallel plates 

Eq. (117). 

 

3.2.3.6 Baker-Sesonske (1962) 

In 1962 R.A. Baker and A. Sesonske [83] published results for counter-current flow of NaK in 

a stainless-steel double-pipe heat exchanger. The heat transfer coefficients on both the tube and 

shell sides were calculated from overall heat transfer coefficients. Furthermore, there was the 

problem of correcting for entrance effects. For these reasons the accuracy of the results is open 

to questions. The authors represented the experimental curve by the equation [65]: 

 𝑁𝑢 = 0.80 (
𝑟2
𝑟1

)
0.3

[5.12 + 0.0296𝑃𝑒0.785] (133) 

 

3.2.3.7 Dwyer (1963) 

In 1963 but in various publications O.E. Dwyer recommended different correlations for the heat 

transfer in concentric annuli. He first developed semi-empirical equations for liquid metal flow 

(𝑃𝑟 ≤ 0.03) in concentric annuli 0 ≤
𝑟1

𝑟2
≤ 1 with one wall subjected to uniform heat flux and 

the other wall insulated, where 𝑟1 is the radius of the internal annulus and 𝑟2 is the radius of the 

external annulus. For the case of outer wall heated, 𝑃𝑒 ≤ 𝑃𝑒𝑐𝑟𝑖𝑡, the Nusselt equation is: 

 𝑁𝑢 = 5.52 + 0.076
𝑟2
𝑟1

 (134) 
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Above the critical Peclet number, the semi-empirical equation is as follows [8] [9]: 

 𝑁𝑢 = 𝐴0 + 𝐵0  ( 
𝑃𝑒

𝑃𝑟𝑡
)
𝑛0

 (135) 

where: 

 

𝐴0 = 5.26 + 0.05
𝑟2
𝑟1

 

𝐵0 = 0.01848 + 0.003154
𝑟2
𝑟1

− 0.0001333 (
𝑟2
𝑟1

)
2

 

𝑛0 = 0.78 − 0.01333
𝑟2
𝑟1

+ 0.000833 (
𝑟2
𝑟1

)
2

 

(136) 

In the case of the inner wall heated, below the critical Peclet number the Nusselt equation is: 

 𝑁𝑢 = 4.92 + 0.686
𝑟2
𝑟1

 (137) 

Above the critical Peclet number, the semi-empirical equation of O.E. Dwyer is as follows: 

 𝑁𝑢 = 𝐴𝑖 + 𝐵𝑖  (
𝑃𝑒

𝑃𝑟𝑡
)
𝑛𝑖

 (138) 

where 

 

𝐴𝑖 = 4.63 + 0.686
𝑟2
𝑟1

 

𝐵𝑖 = 0.02154 − 0.000043 
𝑟2
𝑟1

 

𝑛𝑖 = 0.752 + 0.01657
𝑟2
𝑟1

− 0.000833 (
𝑟2
𝑟1

)
2

 

(139) 

Both Eqs. (135) and (138) are valid for 𝑃𝑒 values above its critical values. For 𝑃𝑒 ≤ 𝑃𝑒𝑐𝑟, the 

sole mode of heat transfer is molecular conduction for liquid metals. For 𝑃𝑟 =
0.005, 0.01, 0.02, 0.03  the critical 𝑃𝑒  values are 270, 300, 330, 345 , respectively (see 

Table 5). The critical Peclet numbers for annuli are for heat transfer at either the inner or the 

outer wall. 

In the same year 1963 in [112] O.E. Dwyer presented another set of equations for estimating 

Nusselt numbers for liquid metal flowing in annuli under conditions of uniform heat flux and 

fully-developed flow [113]. In the case with outer wall heated and the inner wall insulated, the 

Nusselt equation is (also presented in [65]): 

 𝑁𝑢 = 𝐴𝑜 + 𝐵𝑜  (
𝑃𝑒

𝑃𝑟𝑡
)

𝑛𝑜

 (140) 

where 

 𝐴𝑜 = 5.54 − 0.023
𝑟2
𝑟1

 (141) 
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𝐵𝑜 = 0.0189 + 0.00316
𝑟2
𝑟1

+ 0.0000867 (
𝑟2
𝑟1

)
2

 

𝑛𝑜 = 0.758 (
𝑟2
𝑟1

)
0.0204

 

It is valid for 1 ≤
𝑟2

𝑟1
≤ 7. This model is in a very good agreement with the data by Petrovichev 

(1961) [114] for the experiments with Hg [13]. 

For the case with inner wall heated and the outer wall insulated, the proposed equation is: 

 𝑁𝑢 = 𝐴𝑖 + 𝐵𝑖  (
𝑃𝑒

𝑃𝑟𝑡
)
𝑛𝑖

 (142) 

where: 

 

𝐴𝑖 = 4.82 + 0.697
𝑟2
𝑟1

 

𝐵𝑖 = 0.0222 

𝑛𝑖 = 0.758 (
𝑟2
𝑟1

)
0.053

 

(143) 

It is valid for 1 ≤
𝑟2

𝑟1
≤ 7. The validity of this model was demonstrated in the ranges 0.005 ≤

𝑃𝑟 ≤ 0.03 and 3 ⋅ 102 ≤ 𝑃𝑒 ≤ 105 with an accuracy being between 10 and 15% compared to 

the measurements by Rensen (1982) [13]. 

For the special case of 
𝑟2

𝑟1
= 1 (parallel plates), the previous equations are reduced to [113]: 

 𝑁𝑢 = 5.52 + 0.0222 ( 
𝑃𝑒

𝑃𝑟𝑡
)

0.758

 (144) 

In 1965 [115], 1966 [65] and later in 1976 ( [11] Ch. 2) O.E. Dwyer recommended the following 

correlations for bilateral heat transfer to fluids flowing in annuli with uniform heat flux from 

each wall and equal wall temperatures at a given axial position: 

 𝑁𝑢 = 𝐴 + 𝐵 ( 
𝑃𝑒

𝑃𝑟𝑡
)

𝑛

 (145) 

For heat transfer from inner wall the recommended equations valid for 1 ≤
𝑟2

𝑟1
≤ 7 are [65]: 

 

𝐴 = 7.82 + 1.72
𝑟2
𝑟1

− 0.051 (
𝑟2
𝑟1

)
2

 

𝐵 = 0.0592 − 0.000342
𝑟2
𝑟1

+ 0.000723 (
𝑟2
𝑟1

)
2

 

𝑛 = 0.655 + 0.0363
𝑟2
𝑟1

− 0.0037 (
𝑟2
𝑟1

)
2

 

(146) 

While for heat transfer from outer wall: 
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𝐴 = 7.11 +
3.22
𝑟2
𝑟1

−
0.842

(
𝑟2
𝑟1

)
2  

B = 0.0396 +
0.0200

𝑟2
𝑟1

 

𝑛 = 0.746 −
0.0864

𝑟2
𝑟1

+
0.0282

(
𝑟2
𝑟1

)
2  

(147) 

In 1966 [65] and later in 1976 ( [11] Ch. 2) O.E. Dwyer recommended the following correlations 

for heat transfer to liquid metals flowing in concentric annuli under conditions of uniform heat 

fluxes and fully developed velocity and temperature profiles. For the case with equal heat fluxes 

from both walls, the parameters of Eq. (145) for heat transfer from inner wall are presented in 

Table 10. 

TABLE 10. PARAMETERS OF THE INNER WALL HEAT TRANSFER CORRELATION 

IN CASE OF BILATERAL HEAT FLUX 

𝑟2
𝑟1

 A B n 

1.00 9.49 0.0596 0.688 

1.25 10.53 0.0662 0.698 

1.50 11.81 0.0726 0.701 

2.00 15.30 0.0855 0.704 

3.00 27.0 0.1095 0.707 

4.00 50.0 0.1278 0.708 

While the parameters of Eq. (145) for heat transfer from outer wall are presented in Table 11. 

TABLE 11. PARAMETERS OF THE OUTER WALL HEAT TRANSFER CORRELATION 

IN CASE OF BILATERAL HEAT FLUX 

𝑟2
𝑟1

 A B n 

1.00 9.49 0.0596 0.688 

1.25 8.72 0.0490 0.707 

1.50 8.24 0.0420 0.723 

2.00 7.60 0.0379 0.735 

3.00 6.94 0.0360 0.741 

4.00 6.64 0.0355 0.743 

 

3.2.3.8 Kays-Leung (1963) 

In 1963 W.M. Kays and E.Y. Leung [11] [102] published theoretical results of heat transfer in 

annular channels for developed turbulent flow. They presented the results for the uniform heat 

flux conditions from either the inner or the outer wall only in tabular form. Results were given 
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for several Prandtl numbers, including 0.001, 0.003, 0.010, and 0.030; for Reynolds numbers 

of 104 , 3 ∙ 104 , 1 ∙ 105 , 3 ∙ 105 , and 1 ∙ 106  ; and for 
𝑟2

𝑟1
 ratios of 1.00 , 1.25 , 2.00 , 5.00 , 

10.00, and infinity. In the very low Peclet range, the Kays-Leung results agree well with the 

following equations. For the case of uniform heat flux from the inner wall only: 

 𝑁𝑢 = 4.98 + 0.662
𝑟2
𝑟1

 (148) 

For the case of uniform heat flux from the outer wall only: 

 𝑁𝑢 = 5.60 + 0.195 (
𝑟2
𝑟1

− 1)
0.64

(𝑙𝑜𝑔 𝑅𝑒 − 3.70)0.54 (149) 

But at higher Peclet numbers Nusselt number values are considerably lower than those 

predicted by the equations proposed by Dwyer. For example, at 
𝑟2

𝑟1
= 2, 𝑃𝑟 = 0.02, and heat 

transfer from the inner wall only, the Kays-Leung Nusselt numbers are lower by about 

19, 33, 𝑎𝑛𝑑 38% at Peclet numbers of 600, 2000, and 6000, respectively. While the respective 

values for heat transfer from the outer wall only are roughly 12, 25, 𝑎𝑛𝑑 28%  lower, 

respectively. 

 

3.2.3.9 Rensen (1981) 

In 1981, Q. Rensen proposed a low-Prandtl-number liquid sodium Nusselt correlation for 

turbulent flow in annular geometry [116]. The study was made in the thermal entrance region 

as well as in the thermal fully developed region. In this latter case, Rensen measured fully 

developed Nusselt numbers in a concentric annulus (𝑟1 𝑟2 = 0.5409⁄ , where 𝑟1 and 𝑟2 are the 

inside and outside radii of the two concentric walls) with the inner wall subjected to a uniform 

heat flux and the outer wall insulated [9]. The experiments with liquid sodium covered the 

ranges of 0.0047 ≤ 𝑃𝑟 ≤ 0.0059 and 6 ∙ 103 ≤ 𝑅𝑒 ≤ 6 ∙ 104 (which correspond to a range of 

28.2 ≤ 𝑃𝑒 ≤ 354). Under these conditions, Rensen correlated his fully developed Nusselt 

numbers at the inner wall within ±5% by the following correlation: 

 𝑁𝑢 = 5.75 + 0.022𝑃𝑒0.8 (150) 

In his study, Q. Rensen compared his correlation to that of Baker-Sesonske [83] and 

Borishanskiy et al. [117]. His correlation is sometimes taken as a reference for comparison with 

other correlations in the Handbook [9]. 

 

3.2.3.10 Summary of heat transfer correlations for flow in concentric annuli and annular 

ducts 

Table 12 presents the list of all heat transfer correlations collected for flow in concentric annuli 

and annular ducts. 



57 

 

TABLE 12. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CONCENTRIC ANNULI AND ANNULAR DUCTS 

Werner et al. 

(1949) 

[107] [108] 

𝑁𝑢 = 0.7 (
𝐷2

𝐷1
)
0.53

[7 + 0.025𝑃𝑒0.8] 

𝐷2

𝐷1
≤ 1.4 

Bailey (1950) 

[107] [109] 

𝑁𝑢 = 0.75 (
𝐷2

𝐷1
)
0.3

[7 + 0.025𝑃𝑒0.8] 

𝐷2

𝐷1
> 1.4 

Lyon (1952) 

[110] [111] 

𝑁𝑢 = (5.25 + 0.0175 𝑃𝑒) (
𝐷2

𝐷1
)
0.53

 

uniform inner wall heat flux, outer wall insulated 

Hartnett-Irvine 

(1957) 

[9] [13] [58] 

𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 +  0.015 𝑃𝑒0.8 

𝑁𝑢𝑠𝑙𝑢𝑔 in Fig. 13, Fig. 14, and Fig. 15 

Buleev (1959) 

[62] [65] [104] 

𝑁𝑢 = 5.1 + 0.02𝑃𝑒0.8 

𝑟2

𝑟1
≤ 2,  uniform outer wall heat flux 

Baker-

Sesonske 

(1962) 

[83] [65] 

𝑁𝑢 = 0.80 (
𝑟2
𝑟1

)
0.3

[5.12 + 0.0296𝑃𝑒0.785] 

Dwyer 

(1963a) 

[8] [9]  

uniform outer wall heat flux, inner wall insulated 

𝑃𝑒 ≤ 𝑃𝑒𝑐𝑟𝑖𝑡:  𝑁𝑢 = 5.52 + 0.076
𝑟2

𝑟1
 

𝑃𝑒 ≥ 𝑃𝑒𝑐𝑟𝑖𝑡:  𝑁𝑢 = 𝐴0 + 𝐵0  ( 
𝑃𝑒

𝑃𝑟𝑡
)
𝑛0

 

𝐴0 = 5.26 + 0.05
𝑟2
𝑟1

 

𝐵0 = 0.01848 + 0.003154
𝑟2
𝑟1

− 0.0001333 (
𝑟2
𝑟1

)
2

 

𝑛0 = 0.78 − 0.01333
𝑟2
𝑟1

+ 0.000833 (
𝑟2
𝑟1

)
2

 

𝑃𝑒𝑐𝑟𝑖𝑡 in Table 5 
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TABLE 12. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CONCENTRIC ANNULI AND ANNULAR DUCTS 

Dwyer 

(1963a) 

[8] [9] 

uniform inner wall heat flux, outer wall insulated 

𝑃𝑒 ≤ 𝑃𝑒𝑐𝑟𝑖𝑡:  𝑁𝑢 = 4.92 + 0.686
𝑟2

𝑟1
 

𝑃𝑒 ≥ 𝑃𝑒𝑐𝑟𝑖𝑡:  Nu = 𝐴𝑖 + 𝐵𝑖  (
𝑃𝑒

𝑃𝑟𝑡
)
𝑛𝑖

 

𝐴𝑖 = 4.63 + 0.686
𝑟2
𝑟1

 

𝐵𝑖 = 0.02154 − 0.000043 
𝑟2
𝑟1

 

𝑛𝑖 = 0.752 + 0.01657
𝑟2
𝑟1

− 0.000833 (
𝑟2
𝑟1

)
2

 

𝑃𝑒𝑐𝑟𝑖𝑡 in Table 5 
 

Dwyer 

(1963b) 

[65] [112] 

[113] 

uniform outer wall heat flux, inner wall insulated 

𝑁𝑢 = 𝐴0 + 𝐵0  ( 
𝑃𝑒

𝑃𝑟𝑡
)
𝑛0

 

𝐴𝑜 = 5.54 − 0.023
𝑟2
𝑟1

 

𝐵𝑜 = 0.0189 + 0.00316
𝑟2
𝑟1

+ 0.0000867 (
𝑟2
𝑟1

)
2

 

𝑛𝑜 = 0.758 (
𝑟2

𝑟1
)
0.0204

  fully-developed flow 

                                 1 ≤
𝑟2

𝑟1
≤ 7, 0.005 ≤ 𝑃𝑟 ≤ 0.03, 3 ∙ 102 ≤ 𝑃𝑒 ≤ 105 

Dwyer 

(1963b) 

[65] [112] 

[113] 

uniform inner wall heat flux, outer wall insulated 

𝑁𝑢 = 𝐴𝑖 + 𝐵𝑖  (
𝑃𝑒

𝑃𝑟𝑡
)
𝑛𝑖

 

𝐴𝑖 = 4.82 + 0.697
𝑟2
𝑟1

 

𝐵𝑖 = 0.0222 

𝑛𝑖 = 0.758 (
𝑟2
𝑟1

)
0.053

 

fully-developed flow, 1 ≤
𝑟2

𝑟1
≤ 7, 0.005 ≤ 𝑃𝑟 ≤ 0.03, 3 ∙ 102 ≤ 

𝑃𝑒 ≤ 105 
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TABLE 12. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

CONCENTRIC ANNULI AND ANNULAR DUCTS 

Dwyer (1965) 

[11] [65][115] 

[118] 

bilateral uniform heat flux from the inner wall 

𝑁𝑢 = 𝐴 + 𝐵 ( 
𝑃𝑒

𝑃𝑟𝑡
)

𝑛

 

𝐴 = 7.82 + 1.72
𝑟2
𝑟1

− 0.051 (
𝑟2
𝑟1

)
2

 

𝐵 = 0.0592 − 0.000342
𝑟2
𝑟1

+ 0.000723 (
𝑟2
𝑟1

)
2

 

𝑛 = 0.655 + 0.0363
𝑟2
𝑟1

− 0.0037 (
𝑟2
𝑟1

)
2

 

 1 ≤
𝑟2

𝑟1
≤ 7,   

 

Dwyer (1965) 

[11] [65][115] 

[118] 

bilateral uniform heat flux from the outer wall 

𝑁𝑢 = 𝐴 + 𝐵 ( 
𝑃𝑒

𝑃𝑟𝑡
)

𝑛

 

𝐴 = 7.11 +
3.22
𝑟2
𝑟1

−
0.842

(
𝑟2
𝑟1

)
2  

B = 0.0396 +
0.0200

𝑟2
𝑟1

 

𝑛 = 0.746 −
0.0864

𝑟2
𝑟1

+
0.0282

(
𝑟2
𝑟1

)
2 ,   

 1 ≤
𝑟2
𝑟1

≤ 7 

Kays-Leung 

(1963) 

[11] [102] 

uniform heat flux from the inner wall 

𝑁𝑢 = 4.98 + 0.662
𝑟2
𝑟1

 

uniform heat flux from the outer wall: 

𝑁𝑢 = 5.60 + 0.195 (
𝑟2
𝑟1

− 1)
0.64

(𝑙𝑜𝑔 𝑅𝑒 − 3.70)0.54 

Both are valid for 0.001 ≤ 𝑃𝑒 ≤ 0.03, 104 ≤ 𝑅𝑒 ≤ 106 and 1.0 ≤ 
𝑟2
𝑟1

≤ 10.0 

Rensen (1981) 

[116] 

uniform inner wall heat flux and outer wall insulated 

𝑁𝑢 = 5.75 + 0.022𝑃𝑒0.8 

0.0047 ≤ 𝑃𝑟 ≤ 0.0059, 6 ∙ 103 ≤ 𝑅𝑒 ≤ 6 ∙ 104 (28.2 ≤ 𝑃𝑒 ≤ 354). 
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The empirical correlations for Nusselt number presented in Table 12 are also plotted in Fig. 16. 

For the purpose of comparison, a nominal value for the external-to internal ratio of the 

concentric radii or diameters (if required in the correlation) was selected such that 
r2

r1⁄ = 1.5, 

which is a typical value for several applications. The visual comparison in Fig. 16. omits 

Harnett-Irvine (1957) [9] [13] [58] and Dwyer (1965) [11] [65][115], because these correlations 

require additional parameters or specific conditions which may not be comparable with the 

other more generalized correlations. Additionally, Kays-Leung (1963) [11] [102] is omitted 

because the proposed correlation is not a function of Peclet Number. 

 

 

FIG. 16. Comparison of common correlations for Nusselt numbers for flow in concentric annular 

ducts, 𝑟2 ⁄ 𝑟1 = 1.5, Werner (1949) at 𝑟2 ⁄ 𝑟1 = 1.4 

 

3.2.4 Flow in noncircular ducts 

The heat transfer geometry in non-circular ducts can be seen in Fig. 17,  

where a, b – dimensions, Tw – wall temperature, Tf – film (bulk) temperature, q – heat load 
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                       Heat 

 

 

 

                                   b 

                      a 

 

 

FIG. 17. Flow in non-circular ducts 

 

3.2.4.1 Hartnett-Irvine (1957) 

A simple correlation is available for estimating fully developed Nusselt numbers for turbulent 

flow of liquid metals in elliptical ducts with the constant wall temperature and constant axial 

wall heat flux boundary conditions. This correlation was derived by J.P. Hartnett and T.F. Irvine 

in 1957 for a uniform velocity distribution (slug flow) and a pure molecular conduction heat 

transfer mechanism [58]. This is a good approximation for liquid metals with 𝑃𝑟 →  0. This 

correlation is given by [9]: 

 𝑁𝑢 =
2

3
 𝑁𝑢𝑠𝑙𝑢𝑔 + 0.015 𝑃𝑒0.8 (151) 

Here 𝑁𝑢𝑠𝑙𝑢𝑔 is the Nusselt number corresponding to slug flow (𝑃𝑟 = 0) in ellipsoidal ducts. 

Figure 18 shows the slug Nusselt number for various ellipsoidal sizes. 
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FIG. 18. Slug Nusselt numbers for elliptical ducts with uniform wall temperature conditions 

 

3.2.4.2 Kottowski (1983) 

In 1983, H.M. Kottowski investigated Nusselt number for low Prandtl number fluids for various 

channel shape geometry in forced convection [119]. Modifying the equation proposed by 

J.P. Hartnett and T.F. Irvine [58] for flow in noncircular shape channels, Kottowski proposed: 

 𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 + 0.025 𝑃𝑒0.8 (152) 

where 𝑁𝑢𝑠𝑙𝑢𝑔  is the Nusselt number for slug flow. Values of 𝑁𝑢𝑠𝑙𝑢𝑔  have been already 

presented previously in the correlations recommended by Hartnett and Irvine (see Fig. 10, Fig. 

13, Fig. 14, Fig. 15 and Fig. 18). This equation is valid when free convection effects are 

negligible, when heat transfer surfaces are clean and there is no gas entrainment. The fluid 

properties (e.g. Nusselt and Peclet) are evaluated at the bulk mean temperature. 

 

3.2.4.3 Summary of heat transfer correlations for flow in noncircular ducts 

Table 13 presents the list of all heat transfer correlations collected for flow in noncircular ducts. 

TABLE 13. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

NONCIRCULAR DUCTS 

Hartnett-Irvine 

(1957) 

[9] [58] 

𝑁𝑢 =
2

3
 𝑁𝑢𝑠𝑙𝑢𝑔 + 0.015 𝑃𝑒0.8 

𝑁𝑢𝑠𝑙𝑢𝑔 in Fig. 18 

elliptical ducts, constant wall temperature, constant heat flux 

Kottowski (1983) 

[119] 

𝑁𝑢 =
2

3
𝑁𝑢𝑠𝑙𝑢𝑔 + 0.025 𝑃𝑒0.8 

𝑁𝑢𝑠𝑙𝑢𝑔 in Fig. 10, Fig. 13, Fig. 14, Fig. 15, Fig. 18 

no free convection effects, clean surfaces, no gas entrainment 
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The empirical correlations for Nusselt number, Nu, presented in Table 13 are also plotted in 

Fig. 19. For the purpose of comparison, a nominal value for the ratio of the ellipsoidal duct’s 

radii or diameters was selected such that 𝑏 𝑎⁄ = 0.5. Note both correlations make additional 

conditions for validity. 

 

FIG. 19. Comparison of common correlations for Nusselt numbers for heat transfer in elliptical ducts, 
𝑏

𝑎⁄ = 0.5 

 

3.2.5 Cross flow around circular tubes and cylinders 

The geometry of cross flow around circular tubes and cylinders is shown in Fig. 20.  

 

 

FIG. 20. Cross flow around circular tubes and cylinders 
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3.2.5.1 Martinelli (1948) 

For turbulent cross flow around cylinders, R.C. Martinelli proposed in 1948 the following 

correlation [110]: 

 𝑁𝑢 = 0.80 𝑃𝑒0.5 (153) 

 

3.2.5.2 Andreevskii (1961) 

A.A. Andreevskii (1961) proposed an averaged Nusselt number correlation for cross flow in a 

single cylinder, based on the heat flux, the average wall temperature 𝑇𝑤 of the cylinder, the 

bulk mean temperature 𝑇𝑏 of the fluid, and the outside diameter of the cylinder [9] [120]. The 

fluid properties should be evaluated at the film temperature, defined as: 

 𝑇𝑓 =
𝑇𝑤 + 𝑇𝑏

2
 (154) 

By using the film temperature, the effect of variable fluid properties is minimized (variables 

evaluated in this manner have a subscript f, e.g., 𝑃𝑒𝑓). The data of Andreevskii for this case are 

well correlated by the following equation [9]: 

 𝑁𝑢𝑓 = 0.65 𝑃𝑒𝑓
0.5 (155) 

The empirical coefficient 0.65 is below the theoretical values (1.015 for uniform wall 

temperature and 1.145 for uniform wall heat flux) given by C.J. Hsu 1964 [121]. In both 

experimental work and commercial practice, however, the thermal boundary condition is 

neither of the two, but something in between. The coefficient 0.65 should represent all practical 

situations. 

 

3.2.5.3 Churchill-Bernstein (1977) 

S.W. Churchill and M.A. Bernstein (1977) recommended an equation for various types of fluid 

(e.g. different Prandtl numbers, including sodium) for flow passing in cross flow through a 

single cylinder, in case of a laminar boundary layer regime. The correlation postulated is as 

follows [122]: 

 
𝑁𝑢̅̅ ̅̅ =

𝐴 𝑅𝑒
1

2⁄ 𝑃𝑟
1

3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄

= 𝐴 𝛷 
(156) 

The approximate, theoretical calculations of Masliyah and Epstein for 𝑅𝑒 = 1 and 0.7 ≤ 𝑃𝑟 ≤
4 ∙ 104 indicate a value of 0.62 and the two, extrapolated, theoretical values of Jain and Goel a 

value of 0.64 for Eq. (156) with 𝐴 = 0.62 provides an excellent representation for 40 ≤ Re ≤
103 corresponding to 5 ≤ Φ ≤ 80 for 𝑃𝑟 = 0.7. 

In case of a creeping-flow regime (𝑃𝑒 ≤ 0.2), the correlation used has the following form: 

 
𝑁𝑢̅̅ ̅̅ =

1

[0.8237 − ln (𝑃𝑒
2

3⁄ )]
1

4⁄
 

(157) 
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The values of 𝑁𝑢̅̅ ̅̅  computed from Eq. (157) approach 0 as 𝑅𝑒 → 0, as it would be expected for 

pure conduction from an infinitely long cylinder to surroundings of infinite extent. The finite 

values observed experimentally for 𝑅𝑒 → 0 are presumably due to free convection, end effects 

and finite surroundings. 

In case of intermediate regime (𝑃𝑒 ≥ 0.2, 𝑅𝑒 ≤ 104), a considerable gap exists between the 

range of applicability of Eqs. (156) and (157). This behaviour can be approximated, as 

suggested by Tsubouchi, Masuda and others, by adding a constant term, 𝑁𝑢̅̅ ̅̅
0, to the right-hand 

side of Eq. (156). A proposed constant value of 0.3 for 𝑁𝑢̅̅ ̅̅
0 results in: 

 
𝑁𝑢̅̅ ̅̅ = 0.3 + 

0.62 𝑅𝑒
1

2⁄ 𝑃𝑟
1

3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄
 

(158) 

Collis and Williams asserted that an expression in the form of Eq. (158) is unsatisfactory 

because it cannot reproduce the discrete change in slope, which they have observed with the 

onset of eddy shedding (𝑅𝑒 = 44 for 𝑃𝑟 = 0.7). 

For the complete turbulent region, the following asymptotic expression for very large 𝑅𝑒 can 

be derived from the data of Achenbach: 

 𝑁𝑢̅̅ ̅̅
∞ = 0.00091 𝑅𝑒 (159) 

Postulating the same dependence on 𝑃𝑟 as in the laminar-boundary-layer regime Eq. (159) 

converts to: 

 
𝑁𝑢̅̅ ̅̅

∞ =
0.001168 𝑅𝑒 𝑃𝑟

1
3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄

 
(160) 

It should be emphasized that Eqs. (159) and (160) are the apparent asymptotes for the 

Achenbach data, not correlations for them. 

An overall correlation is obtained combining Eqs. (158) and (160) in the form suggested by 

Churchill and Usagi, which results in the following expression: 

 
𝑁𝑢̅̅ ̅̅ = 0.3 + 

0.62 𝑅𝑒
1

2⁄  𝑃𝑟
1

3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄
 [1 + (

𝑅𝑒

282000
)

5 8⁄

]

4 5⁄

 
(161) 

and appears to provide a lower bound for 𝑅𝑒𝑃𝑟 ≥ 0.4 and a reasonable approximation for all 

Reynolds and Prandtl numbers. 

Summary on the proposed equations: 

- Eq. (161) is proposed as a lower bound for the computed and experimental values of 

heat transfer by forced convection to a cylinder in cross flow for all 𝑅𝑒 and 𝑃𝑟, such 

that 𝑅𝑒𝑃𝑟 ≥ 0.4. 

- As a lower bound, Eq. (161) represents the behaviour for low free-stream turbulence, 

an isothermal surface, negligible blockage, negligible end-effects, a small temperature 

difference and negligible free convection. A possible exception is in the range of 103 ≤
Re ≤ 104 where the data of Hilpert for air and of Ishiguro et al. for sodium appear to 
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follow Eq. (158) rather than Eq. (161). In the range of 7 ∙ 104 ≤ Re ≤ 4 ∙ 105, 𝑁𝑢̅̅ ̅̅  may 

be significantly higher than predicted by Eq. (161) owing to a downstream shift of the 

point of separation of the laminar boundary layer. 

- Eq. (158) can be used as an approximation for Eq. (161) for 𝑅𝑒 ≤ 4 · 103  and all 

Prandtl numbers. 

- Eq. (157), which is based on the assumption of creeping flow, should provide a better 

representation than Eqs. (158) or (159) for 𝑅𝑒𝑃𝑟 ≤ 0.2  if free convection and end-

effects are negligible. It agrees well with such experimental data for air but has not been 

tested critically for a wide range of Prandtl numbers. 

Eq. (158) appears to provide reasonably good predictions even for 𝑅𝑒𝑃𝑟 ≤ 0.2 and can be 

modified to provide an even better representation for any single set of data by the proper, 

arbitrary choice of 𝑁𝑢0. 

 

3.2.5.4 Summary of heat transfer correlations for cross flow in circular pipes and cylinders 

Table 14 summarized the list of heat transfer correlations collected for cross flow in circular 

pipes and cylinders. 
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TABLE 14. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR CROSS FLOW 

IN CIRCULAR PIPES AND CYLINDERS 

Martinelli (1948) 

[110] 

𝑁𝑢 = 0.80 𝑃𝑒0.5 

Andreevskii (1961) 

[9] [120] 

𝑁𝑢𝑓 = 0.65 𝑃𝑒𝑓
0.5 

Churchill-Bernstein 

(1977) 

[122] 

For creeping-flow regime (𝑃𝑒 ≤ 0.2): 

𝑁𝑢̅̅ ̅̅ =
1

[0.8237 − ln (𝑃𝑒
2

3⁄ )]
1

4⁄
 

For intermediate regime (𝑃𝑒 ≥ 0.2, 𝑅𝑒 ≤ 104) 

𝑁𝑢̅̅ ̅̅ = 0.3 + 
0.62 𝑅𝑒

1
2⁄ 𝑃𝑟

1
3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄
 

For the complete turbulent region: 

𝑁𝑢̅̅ ̅̅
∞ = 0.00091 𝑅𝑒 

𝑁𝑢̅̅ ̅̅
∞ =

0.001168 𝑅𝑒 𝑃𝑟
1

3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄

 

For 𝑅𝑒𝑃𝑟 ≥ 0.4. 

𝑁𝑢̅̅ ̅̅ = 0.3 + 
0.62 𝑅𝑒

1
2⁄  𝑃𝑟

1
3⁄

[1 + (
0.4
𝑃𝑟)

2
3⁄

]

1
4⁄
 [1 + (

𝑅𝑒

282000
)

5 8⁄

]

4 5⁄

 

 

 

The empirical correlations for Nusselt number, Nu, presented in Table 14 are also plotted in 

Fig. 21. For the purpose of comparison, a nominal value for the Prandtl number is assumed 

𝑃𝑟 =  0.0045 (if required in the correlation) as discussed in earlier sections.  
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FIG. 21. Comparison of common correlations for Nusselt numbers for heat transfer around circular 

tubes and cylinders 

Martinelli [110], Eq. (153) 

Andreevskii [120], Eq. (161)  

Churchill-Bernstein [122], Eq. (161) 
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3.2.6 Flow in the shell side of heat exchangers 

The flow geometry in the shell side of heat exchangers is shown in Fig. 22 below. 

 

 

 

FIG. 22. Flow in the shell side of heat exchangers 

 

3.2.6.1 Brooks-Rosenblatt (1952) 

In 1952 R.D. Brooks and A.L. Rosenblatt presented the following correlation for the shell side 

of unbaffled heat exchangers valid for the turbulent regime [110] [123]: 

 𝑁𝑢 = 61.2 [𝑃𝑒 (
𝐴𝐹

𝐴𝐻
)
2

]

0.6

 (162) 

where 𝐴𝐹 is the flow area in the shell side of a heat exchanger, parallel to tube axis and 𝐴𝐻 is 

the area for heat transfer based on outside diameter tubes. In the report [124] from 1979 about 

the heat transfer characteristics of IHX (intermediate heat exchanger) and DHX (decay heat 

exchanger) for Joyo reactor, the above correlation is also presented and referred to as JSME 

correlation. 

 

3.2.6.2 Schroeder-Chionohio (1959) 

In 1959 R.W. Schroeder and M.A. Chionohio presented the following correlation for the shell 

side of heat exchangers [6] [125]: 

 𝑁𝑢 = 0.313 + 0.2 Pe0.613 (163) 

In the report [124] from 1979 about the heat transfer characteristics of IHX and DHX for Joyo 

reactor this correlation is presented referred to as USAEC TID-6881 correlation. 
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3.2.6.3 Fast-Reactor-Technology (JOYO start-up test report, 1979) 

In the JOYO start-up test report [124] from 1979 about the heat transfer characteristics of IHX 

and DHX for Joyo reactor the following correlation is presented for the shell side and axial flow 

[6]: 

 𝑁𝑢 = 0.106 (𝐷𝑒 𝑃𝑒)0.6, (164) 

where 𝐷𝑒 is an equivalent diameter (in inches). This correlation is referred to as Fast-Reactor-

Technology correlation in [124]. 

 

3.2.6.4 Summary of heat transfer correlations for flow in the shell side of heat exchangers 

Table 15 presents the list of heat transfer correlations collected for flow in the shell side of heat 

exchangers. 

TABLE 15. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN THE 

SHELL SIDE OF HEAT EXCHANGERS 

Brooks-Rosenblatt (1952) 

[110] [123] 
𝑁𝑢 = 61.2 [𝑃𝑒 (

𝐴𝐹

𝐴𝐻
)
2

]

0.6

 

Schroeder-Chionohio (1959) 

[6] [125] 
𝑁𝑢 = 0.313 + 0.2 Pe0.613 

Fast-Reactor-Technology (1979) 

[6] [124] 
𝑁𝑢 = 0.106 (𝐷𝑒 𝑃𝑒)0.6 

 

No summary comparison figure is included for the flow in the shell side of heat exchangers due 

to the inclusion of different variables across the correlations. 

 

3.2.7 Entrance region effects 

The temperature distribution and heat transfer are affected by the change of velocity profile at 

the channel entrance. A typical redistribution of the velocity in the entrance region is shown   in 

Fig. 23. 

 

FIG. 23. Redistribution of velocity profile at the entrance region  
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3.2.7.1 Sidelnikov et al. (1973) 

In 1973 V.N. Sidelnikov et al. recommended the following formula to determine the heat 

transfer coefficient and temperature behaviour at the entrance region of a pin bundle for 

hydraulically stable flow in turbulent and laminar regimes [126-131]: 

 
𝐹(𝑋)

𝐹𝑠𝑡𝑎𝑏
= 1 − [𝑝(50𝑝)−𝑋

𝑋𝑒𝑛.
⁄ + (1 − 𝑝)(50𝑝)−𝑋

𝑋𝑒𝑛.
⁄ ] (165) 

which is valid for 1.02 ≤ 𝑃
𝐷⁄ ≤ 2.0; 0.01 ≤ 𝜀6 ≤ 10; 100 ≤ 𝑃𝑒 ≤ 2500, 

𝐹(𝑋) represents the functions 𝐹1(𝑋) = 1
𝑁𝑢⁄  and 𝐹2(𝑋) = ∆𝑇 =

𝑡𝑤
𝑚𝑎𝑥−𝑡𝑤

𝑚𝑖𝑛

�̅�𝑅
𝜆𝑓 at the entrance 

section. 

𝐹𝑠𝑡𝑎𝑏 is the value of functions 𝐹1(𝑋) and 𝐹2(𝑋) at the developed heat transfer conditions. 

𝑋𝑒𝑛.𝑁𝑢 =
 𝑙𝑁𝑢

𝑅
· 𝑃𝑒¢ is the non-dimensional length of Nusselt number entrance section. 

𝑋𝑒𝑛.𝑡 =
𝑙𝑡

𝑅
· 𝑃𝑒¢ is the non-dimensional length of temperature non-uniformity entrance 

section.  

𝑙𝑁𝑢 and 𝑙𝑡 are the length of Nusselt number entrance section and length of temperature non-

uniformity entrance section, respectively.  

𝑒6 is the equivalent thermal conductivity based on the sixth harmonics in Fourier (see Section 

3.5)  

�̅� is the heat flux averaged around the pin perimeter.  

R is the pin radius. 

𝜆𝑓 is the coolant conductivity. 

Values 𝑋𝑒𝑛.𝑁𝑢, 𝑋𝑒𝑛.𝑡 and factors 𝑝𝑁𝑢 and 𝑝𝑡are presented in the works of V.N. Sidelnikov et al. 

graphically and can be also found in [132]. 

For the laminar flows, the ranges of application for relationship (165) are 

 1.01 ≤ 𝑃
𝐷⁄ ≤ 2.0; 0.01 ≤ 𝑒6 ≤ 10; 𝑃𝑒 ≤ 100. 

 

3.2.7.2 Zhukov et al. (1977) 

In 1977 A.V. Zhukov et al. [133] proposed that the length of the heat transfer entrance section 

of a pin bundle can be evaluated by this empirical formula for a hydraulically instable flow: 

 (
𝑙

𝐷ℎ
)
𝑁𝑢

= 𝐴 −
𝐵

255 + 𝑃𝑒
 (166) 

where 

 

𝐴 = 156.2 − 102.4
𝑃

𝐷

𝐵 = {51 − 34.5
𝑃

𝐷
− 4𝑒−14.27(

𝑃
𝐷

−1)} 103

𝑓𝑜𝑟 1 ≤ 𝑃
𝐷⁄ ≤ 1.2 (167) 



72 

 

 

𝐴 = 95 (
𝑃

𝐷
)
−5.8

𝐵 = 25.3 (
𝑃

𝐷
)
−5.6

103

𝑓𝑜𝑟 1.2 ≤ 𝑃
𝐷⁄ ≤ 1.7 (168) 

the ranges of application are:  

0.4 ≤ 𝑒6 ≤ 1.0 for 1.0 ≤ 𝑃
𝐷⁄ 1.20 

0.4 ≤ 𝑒6 ≤ 1.6 for 1.2 ≤ 𝑃
𝐷⁄ ≤ 1.70 

For Peclet number 

15 ≤ 𝑃𝑒 ≤ 800 for 𝑃 𝐷⁄ = 1.0 

30 ≤ 𝑃𝑒 ≤ 2500 for 𝑃 𝐷⁄ = 1.06 

50 ≤ 𝑃𝑒 ≤  3000 for 1.10 < 𝑃
𝐷⁄ <  1.70. 

In tight bundles of pins having high thermal conductivity (𝑃 𝐷⁄ =  1.10; 𝑒6 ~ 10 − 15) the 

length of thermal entrance section defined by Eq. (166) has to be reduced by 30–40%. 

 

3.2.7.3 Zhukov et al. (1977) 

In 1977 A.V. Zhukov et al. proposed to evaluate the length of temperature non-uniformity 

entrance section of a pin bundle by the following correlation [130] [131] [133] [134]: 

 (
𝑙

𝐷ℎ
)
𝑡

= (
𝑙

𝐷ℎ
)
𝑁𝑢

(18.1 − 4.5 log 𝑃𝑒) (
𝑃

𝐷
− 1) + 1 (169) 

It is valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.2, 0.4 ≤ 𝜀6 ≤ 1.0, 500 ≤ 𝑃𝑒 ≤ 2000. 

 

3.2.7.4 Chen-Chiou (1981) 

C.J. Chen and J.S. Chiou (1981) made an extensive study on thermal entrance effects for liquid 

metal flows. The proposed correlations for entry regions effects of a flow in a round pipe are as 

follows [9] [90]. 

Two flow regions are considered: developing thermal and developing thermal and velocity 

fields. In the fully developed region (FD), both velocity and temperature profiles are developed. 

In the developing thermal region (DT) the velocity profile is fully developed but the temperature 

profile is developing. 

 

Developing thermal (DT) region 

An approximate formula for the local Nusselt number 𝑁𝑢𝑥 for both conditions uniform wall 

temperature and uniform heat flux, can be derived as follows: 

 
𝑁𝑢𝑥

𝑁𝑢
= 1 +

2.4
𝑥

𝐷

−
1

(
𝑥

𝐷
)
2, for 

𝑥

𝐷
≥ 2, 𝑃𝑒 ≥ 500 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 (170) 

while for the average Nusselt number 𝑁𝑢𝑚: 
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𝑁𝑢𝑚

𝑁𝑢
= 1 +

7
𝐿

𝐷

+
2.8
𝐿

𝐷

ln (
𝐿

𝐷⁄

10
), for 

𝐿

𝐷
≥ 2, 𝑃𝑒 ≥ 500 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 (171) 

where: 

 𝑁𝑢 = 5.6 + 0.0165 𝑃𝑒0.85𝑃𝑟0.01 for constant heat flux (172) 

 𝑁𝑢 = 4.5 + 0.0156 𝑃𝑒0.85𝑃𝑟0.01 for constant wall temperature (173) 

The range of application is 0 ≤ 𝑃𝑟 ≤ 0.1  and 104 ≤ 𝑅𝑒 ≤ 5 ·  106  [31]. In the above 

correlations the following nomenclature is used: 𝑥  is the axial distance from the entrance 

region, 𝐷 is the diameter and 𝐿 is the axial length. 

Eq. (172) and (173) are improvements of Sleicher’s formulas Eqs. (56) and (57). 

 

Developing thermal and velocity (DTV) region 

The calculated local Nusselt number 𝑁𝑢𝑥  in the DTV region may be correlated in an 

approximated form by: 

 
𝑁𝑢𝑥

𝑁𝑢
= 0.88 +

2.4
𝑥

𝐷

−
1.25

(
𝑥

𝐷
)
2 − 𝐸 for 2 ≤

𝑥

𝐷
≤ 35 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 (174) 

and for the mean Nusselt number 𝑁𝑢𝑚: 

 
𝑁𝑢𝑚

𝑁𝑢
= 1 +

5
𝐿

𝐷

+
1.86

𝐿

𝐷

ln (
𝐿

𝐷⁄

10
) − 𝐹 for 

𝐿

𝐷
≥ 2 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 (175) 

In case of constant wall temperature, it is found that: 

 𝐸 =
40 − 𝑥

𝐷⁄

190
, 𝐹 = 0.09 (176) 

In case of constant heat flux 𝐸 = 𝐹 = 0. 

Corrections proposed in Section 3.2.1.27 by Chen and Chiou (1981) [90] for smooth circular 

ducts are also applicable to evaluate liquid metal properties in the entry region. 

 

3.2.7.5 Marocco (2012) 

In 2012 L. Marocco et al. [13] [135] proposed a correlation for the Nusselt number in the 

thermal entrance region of a vertical annulus with constant heat flux on the inner surface, based 

on the LBE data of Zeiniger (2009). They considered the fact that the fully developed Nusselt 

value 𝑁𝑢∞  is well represented by the correlation proposed by Dwyer in 1963 Eqs. (138) 

and (139). The correlation recommended is valid for the range 400 ≤ 𝑃𝑒 ≤ 6000: 

 

𝑁𝑢𝑥

𝑁𝑢∞
= 1 +

1.14

(
𝑥
𝐷ℎ

)
0.5 

(177) 

 

3.2.7.6 Summary of heat transfer correlations for flow in the entrance region 

Table 16 presents the list of heat transfer correlations collected for flow in the entrance region. 
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TABLE 16. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN THE 

ENTRANCE REGION 

Sidelnikov et al. 

(1973) 

[126] [127] [128] 

[129] [130] [131] 

𝐹(𝑋)

𝐹𝑠𝑡𝑎𝑏
= 1 − [𝑝(50𝑝)−𝑋

𝑋𝑒𝑛.
⁄ + (1 − 𝑝)(50𝑝)−𝑋

𝑋𝑒𝑛.
⁄ ] 

𝐹1(𝑋) = 1
𝑁𝑢⁄  and 𝐹2(𝑋) = ∆𝑇 =

𝑡𝑤
𝑚𝑎𝑥−𝑡𝑤

𝑚𝑖𝑛

�̅�𝑅
𝜆𝑓 

stable flow through a pin bundle 

1.02 ≤
𝑃

𝐷
≤ 2.0, 0.01 ≤ 𝜀6 ≤ 10, 100 ≤ 𝑃𝑒 ≤ 2500 

Zhukov et al. 

(1977) 

[133] 

(
𝑙

𝑑ℎ
)

𝑁𝑢

= 𝐴 −
𝐵

255 + 𝑃𝑒
 

𝐴 = 156.2 − 102.4
𝑃

𝐷

𝐵 = {51 − 34.5
𝑃

𝐷
− 4𝑒−14.27(

𝑃
𝐷

−1)} 103

  𝑓𝑜𝑟 1 ≤ 𝑃
𝐷⁄ ≤ 1.2 

𝐴 = 95 (
𝑃

𝐷
)
−5.8

𝐵 = 25.3 (
𝑃

𝐷
)

−5.6

103

   𝑓𝑜𝑟 1.2 ≤ 𝑃
𝐷⁄ ≤ 1.7 

instable flow through a pin bound 

0.4 ≤ 𝑒6 ≤ 1.0    for 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.10 

0.4 ≤ 𝑒6 ≤ 1.6     for 1.2 ≤ 𝑃
𝐷⁄ ≤ 1.70 

15 ≤ 𝑃𝑒 ≤ 800    for 𝑃 𝐷⁄ = 1.0 

30 ≤ 𝑃𝑒 ≤ 2500  for 𝑃 𝐷⁄ = 1.06 

50 ≤ 𝑃𝑒 ≤ 3000     for 1.10 < 𝑃
𝐷⁄ <  1.70 

Zhukov et al. 

(1977) 

[130] [131] [133] 

[134] 

(
𝑙

𝑑ℎ
)

𝑡

= (
𝑙

𝑑ℎ
)
𝑁𝑢

(18.1 − 4.5 log 𝑃𝑒) (
𝑃

𝐷
− 1) + 1   

1.0 ≤ 𝑃
𝐷⁄ ≤ 1.2, 0.4 ≤ 𝜀6 ≤ 1.0, 500 ≤ 𝑃𝑒 ≤ 2000 
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TABLE 16. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN THE 

ENTRANCE REGION 

Chen-Chiou (1981) 

[9] [90] 

Developing thermal region (DT) in pipes 

𝑁𝑢𝑥

𝑁𝑢
= 1 +

2.4
 𝑥

𝐷

−
1

(
𝑥

𝐷
)
2,  

for 
𝑥

𝐷
≥ 2, 𝑃𝑒 ≥ 500 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 

𝑁𝑢𝑚

𝑁𝑢
= 1 +

7
𝐿

𝐷⁄
+

2.8
𝐿

𝐷⁄
ln (

𝐿
𝐷⁄

10
), for 𝐿 𝐷⁄ ≥ 2 

𝑁𝑢 = 5.6 + 0.0165 𝑃𝑒0.85𝑃𝑟0.01  for constant heat flux 

𝑁𝑢 = 4.5 + 0.0156 𝑃𝑒0.85𝑃𝑟0.01 for constant wall temperature 

Developing thermal and velocity region (DTV) in pipes 

𝑁𝑢𝑥

𝑁𝑢
= 0.88 +

2.4
𝑥

𝐷⁄
−

1.25

(𝑥 𝐷⁄ )
2 − 𝐸, 

for 2 ≤ 𝑥
𝐷⁄ ≤ 35 and 0.004 ≤ 𝑃𝑟 ≤ 0.1 

𝑁𝑢𝑚

𝑁𝑢
= 1 +

5
𝐿

𝐷⁄
+

1.86
𝐿

𝐷⁄
ln (

𝐿
𝐷⁄

10
) − 𝐹  for 𝐿 𝐷⁄ ≥ 2 

Marocco (2012) 

[13] [135] 

𝑁𝑢𝑥

𝑁𝑢∞
= 1 +

1.14

(𝑥 𝐷ℎ
⁄ )

0.5  for 400 ≤ 𝑃𝑒 ≤ 6000 

with 𝑁𝑢∞ from Eqs. (138) and (139) 

for vertical annulus with constant inner wall heat flux 

400 ≤ 𝑃𝑒 ≤ 6000 

 

No summary comparison figure is included for the entrance region due to the inclusion of 

different geometrical parameters across the correlations. 

 

3.2.8 Axial flow in triangular rod array  

The set of correlations presented hereafter corresponds to the configuration where the flow is 

parallel to the longitudinal axis of the rods arranged in the triangular pin array as shown in 

Fig. 24 below. The general expression of the correlations will follow the form as in the circular 

pipe cases Eq. (48) where the coefficients of the two terms are no more constants but functions 

depending on the pitch-to-diameter ratio 𝑃/𝐷: 

 𝑁𝑢 = 𝑎(𝑃/𝐷) + 𝑏(𝑃/𝐷)𝑅𝑒𝑐𝑃𝑟𝑑 (1) 

Some correlations present c and d parameters depending on the 𝑃/𝐷 ratio, e.g. Eq. (191). 
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FIG. 24. Hexagonal fuel assembly and subchannels geometry 

 

The hydraulic diameter for triangular pin array is calculated as 𝐷ℎ = 𝐷 [
2√3

𝜋
(

𝑃

𝐷
)
2
− 1].  

Due to the relevance of this geometry in the evaluation of SFR core designs, individual figures 

are added for each correlation for various 𝑃/𝐷 values. 

 

3.2.8.1 Dwyer-Tu (1960) 

A heat transfer equation for fully developed, turbulent, and parallel flow of liquid metals in 

staggered tube bundles in a triangular arrangement was derived by O.E. Dwyer and P.S. Tu in 

1960 [136] [137]: 

 𝑁𝑢 = 0.93 + 10.81
𝑃

𝐷
− 2.01 (

𝑃

𝐷
)

2

+ 0.0252 (
𝑃

𝐷
)

0.273

(
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 (178) 

where 𝑃 is the pitch or distance between adjacent rod centerlines and 𝐷 the outer diameter of 

the rods. It is valid for 102 ≤ 𝑃𝑒 ≤ 104, 1.375 ≤
𝑃

𝐷
≤ 2.2. This equation was derived based on 

the experimental data obtained by the authors for flow of liquid metals outside the circular tubes 

arranged on an equilateral triangular pitch. A constant heat flux from the outer surfaces of the 

tubes was assumed, and the model of an annulus was used, i.e., the heat leaving each tube was 

assumed to be picked up by the flowing metal in an imaginary annulus surrounding the tube, 

the outer circumference of the annulus circumscribing an area equal to the total cross-sectional 

hexagonal area associated with each tube. The comparison of the Nusselt vs. Peclet numbers 

for several P/D ratios using 𝑃𝑟 = 0.0045 is shown in Fig. 25. 
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FIG. 25. Dwyer-Tu (1960) Empirical heat transfer correlations for axial flow in triangular rod array 

 

3.2.8.2 Friedland-Bonilla (1961) 

In 1961 A.J. Friedland and C.F. Bonilla made a theoretical analysis of heat transfer to liquid 

metals in parallel flow in a triangular tube bundle [65] [137] [138]. The equation proposed is 

the following: 

 𝑁𝑢 = 7.0 + 3.8 (
𝑃

𝐷
)
1.52

+ 0.027 (
𝑃

𝐷
)

0.27

(
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 (179) 

where the conditions are fully developed turbulent flow, constant heat flux at the wall, and an 

infinite number of tubes arranged on an equilateral triangular pitch. This equation is valid for 

0 ≤ 𝑃𝑒 ≤ 105, 1.375 ≤
𝑃

𝐷
≤ 10, 104 ≤ 𝑅𝑒 ≤ 106, 0 ≤ 𝑃𝑟 ≤ 0.1. Comparison of the Nu vs. 

Pe numbers for several P/D ratios using 𝑃𝑟 = 0.0045 is shown in Fig. 26 below. 
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FIG. 26. Friedland-Bonilla (1961) Empirical heat transfer correlation for axial flow in triangular rod 

array 

 

3.2.8.3 Borishanskii-Firsova (1964) 

V.M. Borishanskii and E.V. Firsova (1964) studied the heat transfer in mercury (𝑃𝑟~0.02) 

flowing around rod bundles in triangular lattices with the relative spacing values of 𝑃 𝐷⁄ = 1.38 

and 𝑃 𝐷⁄ = 1.75 (where 𝑃 is the pitch and 𝐷 is the outer diameter of the tube). They derived 

the following generalized correlation [139] (depicted in Fig. 27): 

 𝑁𝑢 = 6 + 0.006 𝑃𝑒 (180) 

A comparison against experimental data for sodium and mercury shows a spread in the 

experimental points of ±30%, where Reynolds and Peclet numbers varied over the range 2.8 ∙
103 ≤ 𝑅𝑒 ≤ 4.3 ∙ 103 and 28 ≤ 𝑃𝑒 ≤ 172. This large discrepancy may be a result of taking 

insufficiently the geometry of the system, such as the parameter P/D which is not present in the 

formula. It can be also due to a difference between the physical and chemical conditions at the 

liquid metal-wall interface. 

This correlation can be used to model the shell side of shell-and-tube heat exchangers. However, 

a corrective coefficient is required to take into account the tubes length compared to the heat 

exchanger length.   
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FIG. 27. Borishanskii-Firsova (1964) Empirical heat transfer correlation for axial flow in triangular 

rod array 

 

3.2.8.4 Maresca-Dwyer (1964) 

In the paper written by M.W. Maresca and O.E. Dwyer in 1964 [11] [137] [140], experimental 

results obtained for the case of in-line flow of mercury in an unbaffled bundle of circular rods 

were presented. The bundle consisted of 13 rods (13 mm outer diameter) arranged in an 

equilateral triangular pattern, the 
𝑃

𝐷
 ratio being 1.750. All rods in the bundle were electrically 

heated to provide equal and uniform heat fluxes throughout the bundle. The total of 146 data 

pairs of 𝑁𝑢 vs. 𝑃𝑒 were presented and the following semi-empirical correlation was proposed: 

 𝑁𝑢 = 6.66 + 3.126
𝑃

𝐷
+ 1.184 (

𝑃

𝐷
)

2

+ 0.0155 (
𝑃𝑒

𝑃𝑟𝑡
)
0.86

 (181) 

It is valid for 70 ≤ 𝑃𝑒 ≤ 104, 1.3 ≤
𝑃

𝐷
≤ 3.0. 

In the paper of Zhukov-Subbotin-Ushakov 1969 [141] the authors referred to this correlation 

as the one of Dwyer and Tu from 1960 [142], however the good reference is Maresca and Dwyer 

from 1964 [140]. 
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FIG. 28 Maresca-Dwyer (1964) Empirical heat transfer correlations for axial flow in triangular rod 

array 

 

3.2.8.5 Subbotin et al. (1964) 

In 1964 V.I. Subbotin et al. proposed a correlation for heat exchangers [65] [141] [143] [144]. 

The heat exchange in the experimental set-up was derived on the basis of seven tubes, where 

coolant inside the tubes was sodium and coolant outside the tubes was sodium-potassium in 

counter-current flow. The below correlation describes the shell-side Nusselt numbers between 

the tubes: 

 𝑁𝑢 = 8 ∙ [
𝐷ℎ

𝐿
+ 0.027 (

𝑃

𝐷
− 1.1)

0.46

] ∙ 𝑃𝑒0.6 (182) 

where 𝐿  is the pipe length and 𝑃  is the pitch of the tubes. This correlation predicts the 

experimental data within the error band of ±10% and is valid for 200 ≤ 𝑃𝑒 ≤ 1200, 1.1 ≤
𝑃

𝐷
≤ 1.4, 60 ≤

𝐿

𝐷ℎ
≤ 260 and 6.8 ≤ 𝐷 ≤ 7.6 𝑚𝑚. 

 

3.2.8.6 Subbotin et al. (1965) 

The following correlation was recommended by V.I. Subbotin et al. (1965) [144] for the flow 

of liquid metal in a triangular lattice of rods [137]: 

 𝑁𝑢 = 0.58 (
𝐷ℎ

𝐷
)

0.55

𝑃𝑒0.45 (183) 
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where 𝐷ℎ is the hydraulic diameter and 𝐷 is the outer rod diameter. It is valid for 80 ≤ 𝑃𝑒 ≤

4000, 1.1 ≤
𝑃

𝐷
≤ 1.5. 

This correlation is referred to as Orlov’s in [145] where the author X. Cheng referred to the 

paper published by Subbotin et al. in the 3rd Conference for Peaceful Uses of Atomic Energy in 

1965 [146]. 

 

3.2.8.7 Zhukov et al. (1969) 

In a paper published in 1969 [147] A.V. Zhukov, V.I. Subbotin and P.A. Ushakov concluded 

that for the same flow velocity of mercury and the same tube diameters, the relative spacing 

practically does not affect the heat transfer coefficient. Based on this observation they 

recommended the expression [141]: 

 𝑁𝑢 = 0.58 𝑃𝑒0.45 (184) 

where the outer diameter of the tube is taken as the characteristic dimension being valid for the 

range 1.1 ≤
𝑃

𝐷
≤ 1.5. The difference between experimental data for mercury and NaK and the 

results from the previous equation does not exceed ±15%. 

If in the previous equation the hydraulic diameter of the centre cell is taken as the characteristic 

linear dimension, then it will take the form of: 

 𝑁𝑢 = 0.58 ∙ (1.1 (
𝑃

𝐷
)
2

− 1)

0.55

∙ 𝑃𝑒0.45 (185) 

It is valid for 1.1 ≤
𝑃

𝐷
≤ 1.5 and 400 ≤ 𝑃𝑒 ≤ 4000. 
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FIG. 29. Zhukov et al. (1969) Empirical heat transfer correlations for axial flow in triangular rod 

array 

 

3.2.8.8 Borishanskii et al. (1969) 

In 1969, V.M. Borishanskii et al. [148] published results obtained in a bundle of 7 pins with 

triangular arrangement with 1.1 ≤
𝑃

𝐷
≤ 1.5, using coolants with Prandtl numbers of ≈ 0.007 

(sodium) and ≈ 0.03 (mercury). The proposed correlation was used to verify IPPE 

measurements for Prandtl number 0.024 and 𝑃𝑒 ≥ 103 as well as to predict values for laminar 

flow (𝑃𝑒 ≤ 200): 

 𝑁𝑢 = 24.15 log [−8.12 + 12.76
𝑃

𝐷
− 3.65 (

𝑃

𝐷
)
2

] for 𝑃𝑒 ≤ 200 (186) 

 
𝑁𝑢 = 24.15 log [−8.12 + 12.76

𝑃

𝐷
− 3.65 (

𝑃

𝐷
)
2

] + 0.0174 {1 −

𝑒−6(
𝑃

𝐷
−1)} (𝑃𝑒 − 200)0.9 for 200 ≤ 𝑃𝑒 ≤ 2200 

(187) 

The validity range of both equations is 1.1 ≤
𝑃

𝐷
≤ 1.5 

4
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FIG. 30. Borishanskii et al. (1969) Empirical heat transfer correlations for axial flow in triangular 

rod array 

 

3.2.8.9 Schad (1969) 

In 1969, H.O. Schad [149] [150] proposed the following Nusselt correlation for conditions 

1.1 ≤
𝑃

𝐷
≤ 1.5 and 300 ≤ 𝑃𝑒 ≤ 103: 

 𝑁𝑢 = [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)
2

] 𝑃𝑒0.3 (188) 

Later in 1974 Carelli and Bach [151] made an extension of this correlation to lower Peclet 

numbers. The extended correlation is presented and plotted in Section 3.2.8.14. 

 

3.2.8.10 West/Calamai et al./FFTF/ Westinghouse/Kazimi (1969) 

In 1969 H. West [150] [152] proposed the following correlation: 

 𝑁𝑢 = 4.0 + 0.16 (
𝑃

𝐷
)

5

+  0.33 (
𝑃

𝐷
)
3.8

(
𝑃𝑒

100
)

0.86

 (189) 

which is valid for 1.1 ≤
𝑃

𝐷
≤ 1.4 and 10 ≤ 𝑃𝑒 ≤ 5000. 

As this correlation was considered to be conservative, it was used in the analysis of CRBRP 

fuel assemblies where the lower bound of the correlation uncertainty was taken as −4% (1𝜎 

level of confidence) in the range 20 ≤ 𝑃𝑒 ≤ 1000 

According to A.E. Waltar et al. [3], Calamai et al. [153] used this correlation for Fast Flux Test 

Facility (FFTF) analysis in 1974. Later in 1976, M.S. Kazimi and M.D. Carelli [150] presented 

this correlation and called it the ‘Westinghouse’ correlation. 
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FIG. 31. West (1969) Empirical heat transfer correlation for axial flow in triangular rod array 

 

3.2.8.11 Dwyer-Berry (1970) 

The proposed correlation by O.E. Dwyer and H.C. Berry (1970) is as follows [154] [155]: 

 𝑁𝑢𝑡 =
7

8
𝑁𝑢𝑠 + 0.025 (

𝑃𝑒

𝑃𝑟𝑡
)
0.8

 (190) 

where 𝑁𝑢𝑡 is the average Nusselt number for turbulent flow in channels, 𝑁𝑢𝑠 is the average 

Nusselt number for in-line slug flow in unbaffled rod bundles and 𝑃𝑒 is the Peclet number for 

in-line turbulent flow in rod bundles. 

Eq. (190) is able to predict Nusselt numbers with acceptably good accuracy for turbulent flow 

of liquid metals in unbaffled equilateral triangular rod bundles with wide spacing. However, it 

was found that it predicts too high Nusselt numbers for very narrow spacing, being the narrower 

the spacing, the greater the error. Values of in-line slug flow Nusselt number are a function of 
𝑃

𝐷
 as shown in Table 17. 
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TABLE 17. IN-LINE SLUG FLOW NUSSELT NUMBERS FOR VARIOUS PITCH-TO-

DIAMETER RATIOS 
𝑃

𝐷
 

𝑃

𝐷
 𝑁𝑢𝑠 

1.05 3.76 

1.07 5.77 

1.10 8.29 

1.20 12.18 

1.30 13.66 

1.40 14.65 

1.50 15.52 

1.60 16.36 

1.80 18.01 

2.00 19.81 

 

3.2.8.12 Gräber-Rieger (1972) 

In the framework of the EURATOM-CEA association for the development of fast breeder 

reactors, an experimental programme was performed between 1961 and 1969 investigating 

NaK flow in 31 pin bundles arranged in triangular lattice. Arrangements with both heater pins 

and heat exchanger tubes were used. The applied 
𝑃

𝐷
 ratios were 1.25, 1.6, and 1.95. In 1972, H. 

Gräber and M. Rieger (EURATOM, Ispra) [45] [137] [156] [157] published the final analysis 

of these experiments. The correlation5 they proposed is quoted to describe also other results 

published at that time: 

 𝑁𝑢 = 0.25 + 6.2 
𝑃

𝐷
+ [0.032

𝑃

𝐷
− 0.007] 𝑃𝑒(0.8−0.024

𝑃
𝐷

)
 (191) 

valid for 110 ≤ 𝑃𝑒 ≤ 4000 and 1.25 ≤
𝑃

𝐷
≤ 1.95. 

 

5 In the IAEA report [378] from 2002 the expressions for the Gräber-Rieger correlation contain errors (0.32 and 

0.07 instead of 0.032 and 0.007, respectively), as well as in Waltar book [3] where the constant 0.032 is replaced 

by 0.32. 
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FIG. 32. Gräber-Rieger (1972) Empirical heat transfer correlation for axial flow in triangular rod 

array 

 

3.2.8.13 Bobkov et al. (1973) 

In 1973 V.P. Bobkov et al. published a paper recommending the following correlation [157] 

[158]: 

 

𝑁𝑢 = 𝑁𝑢0 + 𝛽𝑅𝑒0.87𝑃𝑟𝑚 

𝑚 = 0.4 +
1

2 + 4𝑃𝑟
 

𝛽 = 0.0083 {1 − 𝑒−10.4(
𝑃
𝐷

−1)−0.1√𝛼} + 0.008 (
𝑃

𝐷
− 1) 

𝛼 = 𝜀6 [1 +
4

1 + 10𝑃𝑟
] 

(192) 

This correlation is valid for 0 ≤ 𝑃𝑟 ≤ 10 , 104 ≤ 𝑅𝑒 ≤ 105 , 1 ≤
𝑃

𝐷
≤ 2 , 𝜀6 ≥ 0.01  (see 

Section 3.5), 𝑁𝑢 ≥ 0.2, 𝛽 ≥ 0.001, 
𝑅1

𝑅2
≤ 0.95. The values of 𝑁𝑢0 were determined from the 

nomograms in [157] [159]. 

 

3.2.8.14 Schad-Kazimi-Carelli (1974) 

In 1974, M.S. Kazimi and M.D. Carelli took the Schad-modified Nusselt correlation [149] for 

1.1 ≤
𝑃

𝐷
≤ 1.5 and extended it to a dog-leg shape for Peclet numbers below 150 [3] [45] [89] 

[150]. The complete proposed correlations are then as follows: 

For 150 ≤ 𝑃𝑒 ≤ 103: 
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 𝑁𝑢 = [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)
2

] 𝑃𝑒0.3 (Schad correlation) (193) 

For 𝑃𝑒 ≤ 150: 

 𝑁𝑢 = 4.496 [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)
2

] (Kazimi-Carelli extension) (194) 

 

 

 

FIG. 33. Schad-Kazimi-Carelli (1974) Empirical heat transfer correlations for axial flow in triangular 

rod array 

 

3.2.8.15 Subbotin et al. (1975) 

The following correlation was recommended in 1975 by V.I. Subbotin, et al. [13] [49] [130] 

[158] [160] [161] for the flow of liquid metal in a triangular lattice of rods: 

 

𝑁𝑢 = Nu𝑙𝑎𝑚 +
3.67

90(𝑃 𝐷⁄ )
2

[
 
 
 
 

1 −
1

(𝑃 𝐷⁄ )
30

− 1

6 + √1.15 + 1.24𝜀6]
 
 
 
 

𝑃𝑒𝑎 

𝑎 = 0.56 + 0.19
𝑃

𝐷
− 0.1 (

𝑃

𝐷
)
−80

 

(195) 

According to the authors, the Nusselt number for laminar flow can be calculated using: 

 Nu𝑙𝑎𝑚 = 7.55
𝑃

𝐷
−

6.3

(𝑃 𝐷⁄ )
𝑏 [1 −

3.6 𝑃
𝐷⁄

(𝑃 𝐷⁄ )
20

(1 + 2.5𝜀6
0.86) + 3.2

] (196) 



88 

 

𝑏 = 17
𝑃

𝐷
(
𝑃

𝐷
− 0.81) 

where 𝜀6 (see Section 3.5) is a generalized criterion of thermal similarity of fuel elements which 

takes into account the effects of heat conduction in the fuel, cladding and fluid. 𝜀6 is calculated 

by the main harmonics (𝑘 =  6). This correlation is valid for 0.01 ≤ 𝜀6 ≤ ∞, 1 ≤ 𝑃𝑒 ≤ 4000, 

1.0 ≤
𝑃

𝐷
≤ 2.0 and predicts the experimental values within ± 5% [158]. 

For some reference values of the 𝑃 𝐷⁄  ratio formula becomes simpler: 

for 𝑃 𝐷⁄  =  1 

 𝑁𝑢 = Nu𝑙𝑎𝑚 + 0.041 [1 −
1

√1.15 + 1.24𝜀6

] 𝑃𝑒0.65  (197) 

where 

 𝑁𝑢𝑙𝑎𝑚 = 1.25 [1 −
3.6

4.2 + 2.5𝜀6
0.86

] (198) 

for 1.2 ≤ 𝑃
𝐷⁄ ≤ 2.0: 

 𝑁𝑢 = 𝑁𝑢𝑙𝑎𝑚 +
0.041

(𝑃 𝐷⁄ )
2 𝑃𝑒0.56+0.19

𝑃
𝐷  (199) 

where 

 𝑁𝑢𝑙𝑎𝑚 = 7.55
𝑃

𝐷
− 20 (

𝑃

𝐷
)
−13

 (200) 

The accuracy of this correlation is 15%. 

 

3.2.8.16 Subbotin (1978) 

In Chapter 7 of the Handbook of Single-Phase Convective Heat Transfer edited by S. Kakac, 

R.K. Shah and W. Aung [9], K. Rehme made an analysis of convective heat transfer over rod 

bundles. When presenting the correlation provided by Subbotin et al. (1975) (see Section 0) he 

assumed that for increasing 
𝑃

𝐷
 ratios the parameter 𝜀6 (see Section 3.5) loses its influence on the 

equation. As the second term in the square brackets in Eq. (195) for 
𝑃

𝐷
= 1.3 and 𝜀6 = 0 equals 

to 0.002 and for higher values of 
𝑃

𝐷
 and 𝜀6 will be even smaller, so it can be neglected for the 

sake of simplicity. For the same reason the Peclet number power can be reduced to 0.56 +

0.19
𝑃

𝐷
 [9] [49] [137] [162]. The recommended expression was [163]: 

 𝑁𝑢 = 7.55
𝑃

𝐷
− 20 (

P

𝐷
)
−13

+
3.67

90 (
P
𝐷)

2 𝑃𝑒0.56+0.19
𝑃
𝐷 (201) 
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The validity range is 1 ≤ 𝑃𝑒 ≤ 4000 and 1.3 ≤
𝑃

𝐷
≤ 2.0. For 

𝑃

𝐷
≥ 1.3 the proposed correlation 

differs from Ushakov correlation Eq. (195) in less than ±5%: 

In the references [13] [164] [165] this correlation is called Ushakov (1977) correlation. 

 

 

FIG. 34. Subbotin (1977) Empirical heat transfer correlations for axial flow in triangular rod array 

 

3.2.8.17 Adamov-Orlov (2001) 

In 2001 E.O. Adamov and V.V. Orlov, general editors of the report “Naturally safe lead-cooled 

fast reactor for large-scale nuclear power” [49] [166], presented a heat transfer correlation for 

lead cooled fast reactors with hexagonal fuel assemblies: 

 𝑁𝑢 = 7.55 
𝑃

𝐷
− 14 (

𝑃

𝐷
)

−5

+ 
3.67

90 (
𝑃
𝐷)

2 𝑃𝑒0.56+0.19 
𝑃
𝐷 (202) 

where 𝑃 is the pitch and 𝐷 is the pin diameter. It is very similar to previous Eq. (201) but 

several coefficients in the second term are different. 
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FIG. 35. Adamov-Orlov (2001) Empirical heat transfer correlations for axial flow in triangular rod 

array 

 

3.2.8.18 Mikityuk (2009) 

In 2009, K. Mikityuk [13] [137] reviewed the data and correlations reported for liquid metals 

flowing in triangular and square pin arrays or bundles of rods to estimate the quality of a number 

of correlations recommended for liquid metal heat transfer. A new correlation was derived as a 

best fit for the data analysed (with mean absolute error of −0.1% and root mean square (RMS) 

error of 1.9%). The correlation proposed is applicable for both triangular and square arrays: 

 𝑁𝑢 = 0.047 (1 − 𝑒−3.8(
𝑃
𝐷

−1)) (𝑃𝑒0.77 + 250) (203) 

It is valid for 30 ≤ 𝑃𝑒 ≤ 5000, 1.1 ≤
𝑃

𝐷
≤ 1.95. 
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FIG. 36. Mikityuk (2009) Empirical heat transfer correlations for axial flow in triangular rod array 

 

3.2.8.19 Choi et al. (2010) 

In 2010 S.K. Choi et al. [167] performed a numerical study for the evaluation of heat transfer 

correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor for three 

different types of flows such as parallel flow, cross flow, inclined flow using five different 

correlations and reported that no correlation matched with numerical solutions. Then they 

proposed a new correlation as follows: 

 𝑁𝑢 = 0.16 + 4.03
𝑃

𝐷
+ {−0.005 + 0.021

𝑃

𝐷
}𝑃𝑒0.8–0.024

𝑃
𝐷 (204) 

valid for 40 ≤ 𝑃𝑒 ≤ 400, 1.15 ≤
𝑃

𝐷
≤ 1.35. 

 

3.2.8.20 Summary of heat transfer correlations for axial flow in triangular rod bundles 

Table 18 presents the list of heat transfer correlations collected for axial flow in triangular rod 

bundles. 
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TABLE 18. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR AXIAL FLOW 

IN TRIANGULAR ROD BUNDLES 

Dwyer and Tu 

(1960) 

[136] [137] 

𝑁𝑢 = 0.93 + 10.81
𝑃

𝐷
− 2.01 (

𝑃

𝐷
)
2

+ 0.0252 (
𝑃

𝐷
)

0.273

(
𝑃𝑒

𝑃𝑟𝑡
)

0.8

 

uniform heat flux 

102 ≤ 𝑃𝑒 ≤ 104, 1.375 ≤
𝑃

𝐷
≤ 2.2 

Friedland-Bonilla 

(1961) 

[65] [137] [138] 

𝑁𝑢 = 7.0 + 3.8 (
𝑃

𝐷
)
1.52

+ 0.027 (
𝑃

𝐷
)
0.27

(
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 

uniform heat flux 

0 ≤ 𝑃𝑒 ≤ 105, 1.375 ≤
𝑃

𝐷
≤ 10, 104 ≤ 𝑅𝑒 ≤ 106, 0 ≤ 𝑃𝑟 ≤ 0.1 

Borishanskii-

Firsova (1964) 

[139] 

𝑁𝑢 = 6 + 0.006 𝑃𝑒 

2800 ≤ 𝑅𝑒 ≤ 4300, 28 ≤ Pe ≤ 172 

Maresca-Dwyer 

(1964) 

[11] [137] [140] 

𝑁𝑢 = 6.66 + 3.126
𝑃

𝐷
+ 1.184 (

𝑃

𝐷
)

2

+ 0.0155 (
𝑃𝑒

𝑃𝑟𝑡
)
0.86

 

uniform heat flux 

70 ≤ 𝑃𝑒 ≤ 104, 1.3 ≤
𝑃

𝐷
≤ 3.0 

Subbotin et al. 

(1964) 

[65] [141] [143] 

[144] 

Nu = 8 ∙ [
𝐷ℎ

𝐿
+ 0.027 (

𝑃

𝐷
− 1.1)

0.46

] ∙ 𝑃𝑒0.6 

200 ≤ 𝑃𝑒 ≤ 1200,  1.1 ≤
𝑃

𝐷
≤ 1.4,  60 ≤

𝐿

𝐷ℎ
≤ 260, 

 6.8 ≤ 𝐷 ≤ 7.6 𝑚𝑚 

Subbotin et al. 

(1965) 

[137] [144] 

𝑁𝑢 = 0.58 (
𝐷ℎ

𝐷
)

0.55

𝑃𝑒0.45 

80 ≤ 𝑃𝑒 ≤ 4000, 1.1 ≤
𝑃

𝐷
≤ 1.5 

Zhukov et al. 

(1969) 

[141] 

𝑁𝑢 = 0.58 𝑃𝑒0.45 

𝑁𝑢 = 0.58 ∙ (1.1 (
𝑃

𝐷
)
2

− 1)

0.55

∙ 𝑃𝑒0.45 

1.1 ≤
𝑃

𝐷
≤ 1.5, 400 ≤ 𝑃𝑒 ≤ 4000 
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TABLE 18. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR AXIAL FLOW 

IN TRIANGULAR ROD BUNDLES 

Borishanskii et al. 

(1969) 

[148] 

𝑁𝑢 = 24.15 log [−8.12 + 12.76
𝑃

𝐷
− 3.65 (

𝑃

𝐷
)
2

] for 𝑃𝑒 ≤ 200 

𝑁𝑢 = 24.15 log [−8.12 + 12.76
𝑃

𝐷
− 3.65 (

𝑃

𝐷
)
2

] + 0.0174 {1 −

𝑒−6(
𝑃

𝐷
−1)} (𝑃𝑒 − 200)0.9 for 200 ≤ 𝑃𝑒 ≤ 2200 

1.1 ≤
𝑃

𝐷
≤ 1.5 

Schad (1969) 

[149] [150] 

𝑁𝑢 = [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)

2

] 𝑃𝑒0.3 

1.1 ≤
𝑃

𝐷
≤ 1.5, 300 ≤ 𝑃𝑒 ≤ 103 

West/Calamai et 

al./FFTF/ 

Westinghouse/ 

Kazimi (1969) 

[150] [152] 

𝑁𝑢 = 4.0 + 0.16 (
𝑃

𝐷
)
5

+  0.33 (
𝑃

𝐷
)

3.8

(
𝑃𝑒

100
)
0.86

 

1.1 ≤
𝑃

𝐷
≤ 1.4, 10 ≤ 𝑃𝑒 ≤ 5000 

Dwyer-Berry 

(1970) 

[154] [155] 

𝑁𝑢𝑡 =
7

8
𝑁𝑢𝑠 + 0.025 (

𝑃𝑒

𝑃𝑟𝑡
)
0.8

 

turbulent flow of liquid metals,  

unbaffled equilateral triangular wide spacing rod bundle 

Gräber-Rieger 

(1972) 

[45] [137] [156] 

[157] 

𝑁𝑢 = 0.25 + 6.2 
𝑃

𝐷
+ [0.032

𝑃

𝐷
− 0.007] 𝑃𝑒(0.8−0.024

𝑃
𝐷

)
 

110 ≤ 𝑃𝑒 ≤ 4000, 1.25 ≤
𝑃

𝐷
≤ 1.95 

Bobkov et al. 

(1973) 

[157] [158] 

𝑁𝑢 = 𝑁𝑢0 + 𝛽𝑅𝑒0.87𝑃𝑟𝑚 

𝑚 = 0.4 +
1

2 + 4𝑃𝑟
 

𝛽 = 0.0083 {1 − 𝑒−10.4(
𝑃
𝐷

−1)−0.1√𝛼} + 0.008 (
𝑃

𝐷
− 1) 

𝛼 = 𝜀6 [1 +
4

1 + 10𝑃𝑟
] 

𝑁𝑢0 in Ref. [157] [159] 

0 ≤ 𝑃𝑟 ≤ 10, 104 ≤ 𝑅𝑒 ≤ 105, 1 ≤
𝑃

𝐷
≤ 2, 𝜀6 ≥ 0.01, 𝑁𝑢 ≥ 0.2, 

𝛽 ≥ 0.001, 
𝑅1

𝑅2
≤ 0.95 
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TABLE 18. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR AXIAL FLOW 

IN TRIANGULAR ROD BUNDLES 

Schad-Kazimi-

Carelli (1974) 

[3] [45] [89] [150] 

For 150 ≤ 𝑃𝑒 ≤ 103: 

𝑁𝑢 = [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)

2

] 𝑃𝑒0.3 

For 𝑃𝑒 ≤ 150: 

𝑁𝑢 = 4.496 [−16.15 + 24.96 (
𝑃

𝐷
) − 8.55 (

𝑃

𝐷
)
2

] 

1.1 ≤
𝑃

𝐷
≤ 1.5 

Subbotin et al. 

(1975) 

[13] [49] [130] 

[158] [160] [161] 

1. 𝑁𝑢 = 𝑁𝑢𝑙𝑎𝑚 +
3.67

90(
𝑃

𝐷
)
2 [1 −

1

(
𝑃
𝐷

)
30

−1

6
+√1.15+1.24𝜀6

] 𝑃𝑒𝑎 

𝑎 = 0.56 + 0.19
𝑃

𝐷
− 0.1 (

𝑃

𝐷
)

−80

 

Nu𝑙𝑎𝑚 = 7.55
𝑃

𝐷
−

6.3

(
𝑃
𝐷

)
𝑏 [1 −

3.6
𝑃
𝐷

(
𝑃
𝐷

)
20

(1 + 2.5𝜀6
0.86) + 3.2

] 

𝑏 = 17
𝑃

𝐷
(
𝑃

𝐷
− 0.81) 

0.01 ≤ 𝜀6 ≤ ∞, 1 ≤ 𝑃𝑒 ≤ 4000, 1.0 ≤
𝑃

𝐷
≤ 2.0 

2. 𝑁𝑢 = 𝑁𝑢𝑙𝑎𝑚 +
0.041

(𝑃 𝐷⁄ )
2 𝑃𝑒0.56+0.19

𝑃

𝐷 

𝑁𝑢𝑙𝑎𝑚 = 7.55
𝑃

𝐷
− 20 (

𝑃

𝐷
)

−13

 

1≤ 𝑃𝑒 ≤ 4000, 1.2 ≤ 𝑃
𝐷⁄ ≤ 2.0 

Subbotin (1977) 

[9] [49] [137] 

[162] 

𝑁𝑢 = 7.55
𝑃

𝐷
− 20 (

P

𝐷
)
−13

+
3.67

90 (
P
𝐷)

2 𝑃𝑒0.56+0.19
𝑃
𝐷 

1 ≤ 𝑃𝑒 ≤ 4000, 1.3 ≤
𝑃

𝐷
≤ 2.0 

Adamov-Orlov 

(2001) 

[49] [166] 

𝑁𝑢 = 7.55 
𝑃

𝐷
− 14 (

𝑃

𝐷
)
−5

+ 
3.67

90 (
𝑃
𝐷)

2 𝑃𝑒0.56+0.19 
𝑃
𝐷 

Mikityuk (2009) 

[13] [137] 

𝑁𝑢 = 0.047 (1 − 𝑒
−3.8(

𝑃
𝐷

−1)) (𝑃𝑒0.77 + 250) 

30 ≤ 𝑃𝑒 ≤ 5000, 1.1 ≤
𝑃

𝐷
≤ 1.95 



95 

 

TABLE 18. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR AXIAL FLOW 

IN TRIANGULAR ROD BUNDLES 

Choi et al. (2010) 

[167] 

𝑁𝑢 = 0.16 + 4.03
𝑃

𝐷
+ {−0.005 + 0.021

𝑃

𝐷
} 𝑃𝑒0.8–0.024

𝑃
𝐷 

40 ≤ 𝑃𝑒 ≤ 400, 1.15 ≤
𝑃

𝐷
≤ 1.35 

 

Several widely used heat transfer correlations for the axial flow in triangular rod arrays are 

show in Fig. 37. At the below plots, all Nusselt numbers are calculated for 𝑃 𝐷⁄ =  1.17 that 

correspond to the value of pitch-to-diameter ratio in several most common designs of SFR fuel 

assemblies. Correlations not valid for this condition are omitted. Correlations dependent on 

additional variables such as rod dimensions or thermal conditions are not included.  

 

FIG. 37 Empirical heat transfer correlations for axial flow in triangular rod array with 𝑃 𝐷⁄ = 1.17 

 

3.2.9 Axial flow in square rod bundles 

Relatively little heat transfer information is available on axial flow of liquid metals along square 

rod bundles, presumably because of lesser common use in sodium cooled reactors due to poorer 

heat transfer capabilities and relatively less compactness [155]. The geometry of axial flow in 

square rod bundles is shown in Fig. 38. 
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FIG. 38. Square pin array and flow subchannels geometry 

The hydraulic diameter for square pin array is calculated as: 𝐷ℎ = 𝐷 [
4

𝜋
(

𝑃

𝐷
)
2
− 1]  

 

3.2.9.1 Ushakov et al. (1960) 

In 1960, P.A. Ushakov et al. published experimental data on heat transfer for flow of mercury 

and NaK in a square array of tightly packed rods (
𝑃

𝐷
= 1) [168]. Their measured rod-average 

heat transfer coefficients published in graphical form, can be represented within ±20% for both 

coolants by the equation ( [11] Ch. 2), [155]: 

 𝑁𝑢 = 0.48 + 0.0133 𝑃𝑒0.7 (205) 

This correlation was also proposed by O.E. Dwyer in [65]. 

 

3.2.9.2 Friedland-Bonilla (1961) 

In 1961, A.J. Friedland and C.F. Bonilla made a theoretical analysis of heat transfer to liquid 

metals in parallel flow in a tube bundle [65] [138]. The equation proposed is the following: 

 𝑁𝑢 = 7.0 + 4.24 (
𝑃

𝐷
)
1.52

+ 0.0275 (
𝑃

𝐷
)
0.27

(
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 (206) 

where 𝑃 is the pitch squared spacing and the conditions are fully developed turbulent flow, 

constant heat flux at the wall, and an infinite number of tubes arranged on an equilateral squared 

pitch. It is valid for 0 ≤ 𝑃𝑒 ≤ 105 , 1.375 ≤
𝑃

𝐷
≤ 10, 104 ≤ 𝑅𝑒 ≤ 106 , 0 ≤ 𝑃𝑟 ≤ 0.1. This 

equation is the modification of the correlation recommended by the authors for triangular rod 

bundles Eq. (179) adapted to squared rod bundles by using the relation: 

 (
𝑃𝑡𝑟𝑖𝑎𝑛𝑔.

𝐷
)
2

=
2

√3
(
𝑃𝑠𝑞𝑢𝑎𝑟.

𝐷
)
2

 (207) 
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where 𝑃𝑡𝑟𝑖𝑎𝑛𝑔. and 𝑃𝑠𝑞𝑢𝑎𝑟. are the pitch distances for triangular and square lattices, respectively. 

 

3.2.9.3 Zhukov (1994) 

In the frame of the BREST-300 lead cooled fast reactor project, an extensive experimental 

programme was conducted to study the heat transfer to liquid metal in a square lattice of round 

tubes [137] [169] [170]6. The working section consisted of 25 tubes of 12 mm outer diameter. 

Four sets of experimental data were measured with 
𝑃

𝐷
 ratios of 1.25, 1.28, 1.34 and 1.46. The 

working fluid was 22% 𝑁𝑎–78% 𝐾 at a temperature of about 50°𝐶. The heated length of the 

assembly was 980 mm. A total of 36 data pairs of 𝑁𝑢 vs. 𝑃𝑒 were provided leading to the 

correlation7 expressed as follows [49]: 

 

𝑁𝑢 = 7.55 
𝑃

𝐷
− 14 (

𝑃

𝐷
)

−5

+ a 𝑃𝑒0.64+0.246
𝑃
𝐷 

𝑎 = 0.007 for smooth rods (no spacers) 

𝑎 = 0.009 for spacers with 𝜀𝑔 = 20% 

𝑎 = 0.010 for spacers with 𝜀𝑔=10% 

(208) 

It is valid for 10 ≤ 𝑃𝑒 ≤ 2500 and 1.2 ≤
𝑃

𝐷
≤ 1.5. The accuracy of this formula is ±15% 

[170]. 

 

3.2.9.4 Adamov and Orlov (2001) 

In a report from 2001 published by E.O. Adamov and V.V. Orlov [166] the following 

correlation is presented as proposed and verified by the experiments performed by A.V. Zhukov 

et al. for square lattice which looks like a transcription of the Eq. (202): 

 𝑁𝑢 = 7.55 
𝑃

𝐷
− 20 (

𝑃

𝐷
)

−5

+ 
0.0354

(
𝑃
𝐷)

2 𝑃𝑒0.56+0.204
𝑃
𝐷 (209) 

It is verified for 
𝑃

𝐷
 ratios 1.28 and 1.46 in the range of 102 ≤ 𝑃𝑒 ≤ 1.6 · 103. Adamov and 

Orlov referred to the proceeding published by Zhukov in 1994 [170]. However, in that 

proceeding the correlation proposed is that of Eq. (207) for smooth rods, which differs from 

Eq. (209).  

 

3.2.9.5 Mikityuk (2009) 

In 2009, K. Mikityuk [13] [137] proposed a correlation applicable for both square and triangular 

lattices (see also Section 3.2.8.18):  

 

6 In Ref. [170] there is an error in the sign of the exponential in the second term, where it should be -5 instead of 

5. 

7 In Ref. [160] the values of the constant 𝑎 are a factor 10 smaller and should be an error. In Ref. [165] the signs 

of the values of the constant 𝑎 are negative, as well as for the second term of the Peclet exponent. 
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 𝑁𝑢 = 0.047 (1 − 𝑒
−3.8(

𝑃
𝐷

−1)) (𝑃𝑒0.77 + 250) (210) 

It is valid for 30 ≤ 𝑃𝑒 ≤ 5000, 1.1 ≤
𝑃

𝐷
≤ 1.95. 

 

3.2.9.6 Summary of correlations for axial al flow in square rod bundles 

Table 19 presents the list of all heat transfer correlations collected for axial flow in square rod 

bundles. 
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TABLE 19. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR AXIAL FLOW IN 

SQUARE ROD BUNDLES 

Ushakov et al. (1960) 

[11] [155] 

𝑁𝑢 = 0.48 + 0.0133 𝑃𝑒0.7 

tightly packed rods 

𝑃

𝐷
= 1 

Friedland-Bonilla 

(1961) 

[65] [138] 

𝑁𝑢 = 7.0 + 4.24 (
𝑃

𝐷
)
1.52

+ 0.0275 (
𝑃

𝐷
)

0.27

(
𝑃𝑒

𝑃𝑟𝑡
)
0.8

 

0 ≤ 𝑃𝑒 ≤ 105, 1.375 ≤
𝑃

𝐷
≤ 10, 104 ≤ 𝑅𝑒 ≤ 106, 0 ≤ 𝑃𝑟 ≤

0.1 

Zhukov et al. (1994) 

[137] [170] 

𝑁𝑢 = 7.55 
𝑃

𝐷
− 14 (

𝑃

𝐷
)
−5

+ a 𝑃𝑒0.64+0.246
𝑃
𝐷 

𝑎 = 0.007 for smooth rods (no spacers) 

𝑎 = 0.009 for spacers with 𝜀𝑔 = 20% 

𝑎 = 0.010 for spacers with 𝜀𝑔=10% 

10 ≤ 𝑃𝑒 ≤ 2500, 1.2 ≤
𝑃

𝐷
≤ 1.5 

Adamov and Orlov 

(2001) 

[166] 

𝑁𝑢 = 7.55 
𝑃

𝐷
− 20 (

𝑃

𝐷
)
−5

+ 
0.0354

(
𝑃
𝐷)

2 𝑃𝑒0.56+0.204
𝑃
𝐷 

𝑃

𝐷
= 1.28, 1.46, 102 ≤ 𝑃𝑒 ≤ 1.6 · 103 

Mikityuk (2009) 

[13] [137] 

𝑁𝑢 = 0.047 (1 − 𝑒−3.8(
𝑃
𝐷

−1)) (𝑃𝑒0.77 + 250) 

30 ≤ 𝑃𝑒 ≤ 5000, 1.1 ≤
𝑃

𝐷
≤ 1.95 

 

The empirical correlations for Nusselt number, presented in Table 19 are also plotted in Fig. 39. 

For the purpose of comparison, a nominal value for the pitch to diameter ratio was selected such 

that 𝑃 𝐷⁄ = 1.46 . This value meets the conditions for validity of the greatest number of 

correlations. This visual comparison omits Ushakov et al. (1960) [11] [155] which is only valid 

for tightly packed rod bundles. Note some correlations make additional conditions for validity. 
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FIG. 39. Comparison of common correlations for Nusselt numbers for heat transfer in square road 

bundles, 𝑃 𝐷⁄ = 1.46 

 

3.2.10 Heat transfer and temperature fields in peripheral zones of  

hexagonal fuel assembly 

The geometry of a hexagonal fuel assembly is shown in Fig. 40 below, where D is the diameter 

of fuel pin, P is the pitch of rod array, and H is the wire pitch. 

 

FIG. 40.Geometry of hexagonal fuel assembly 

 

3.2.10.1 Subbotin et al. (1975) 

 

According to V.I. Subbotin, et al. [13] [49] [130] [158] [160] [161] the maximum temperature 

non-uniformity around the edge pins can be calculated by the formula: 
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 ∆𝑇 =
𝑇𝑤

𝑚𝑎𝑥 − 𝑇𝑤
𝑚𝑖𝑛

�̅�𝑅
𝜆𝑓 =

∆𝑇𝑙𝑎𝑚

1 + 𝛾(𝜀6)𝑃𝑒𝛽(
𝑃
𝐷

)
 (211) 

where 𝑇𝑤
𝑚𝑎𝑥 and 𝑇𝑤

𝑚𝑖𝑛 are the pin wall temperatures in the internal and peripheral subchannels, 

respectively; �̅� is the average heat flux; 𝑅 is the pin radius; 𝜆𝑓 is liquid thermal conductivity; 

∆𝑇𝑙𝑎𝑚  is the temperature non-uniformity in the laminar flow obtained from pre-calculated 

nomograms, and 

 𝛾(𝜀6) = (1 + 0.03𝜀6) 8 10−3 (212) 

 𝛽 (
𝑃

𝐷
) = 0.65 +

51 log (
𝑃
𝐷)

(
𝑃
𝐷)

20  (213) 

The deviation of the temperature distribution from a cosine law can be evaluated using the 

nomogram or by the formula 

𝑍 =
𝑇𝑤

𝑚𝑎𝑥 − 𝑇𝑤
̅̅̅̅

𝑇𝑤
̅̅̅̅ − 𝑇𝑤

𝑚𝑖𝑛
= 0.9 + 0.1 [1 − 𝑒−10(

𝑃
𝐷

−1)] + 0.2𝑒−50(
𝑃
𝐷

−1) 

                               −0.49𝑒−20(
𝑃
𝐷

−1) tanh(log 𝜀6 + 0.6(1 −

𝑃
𝐷 − 1

0.1
)) 

(214) 

 

3.2.10.2 Zhukov et al. (1977) 

Considerable temperature non-uniformity around the periphery of pin bundles in fast reactors 

cause the decrease of the heat transfer coefficient in peripheral zones as compared to the internal 

pins. In 1977 A.V. Zhukov et al. [130] [171] [172] recommended a special relationship to be 

used: 

 𝑁𝑢 =
ℎ̅𝐷ℎ

𝜆𝑓
= 𝑎 + 𝑏𝑃𝑒𝑛 (215) 

It is valid for 1.04 ≤
𝑃

𝐷
≤ 1.3, 0.39 ≤ 𝛹 ≤ 0.52, 30 ≤ 𝑃𝑒 ≤ 3000,  

0 ≤
𝑑𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑟

𝐷
≤ 0.32, 0.04 ≤ 𝜀1 ≤ 0.14 (see Section 3.5). 

Here 𝐷ℎ is the hydraulic diameter of the internal zone of the subassembly; 𝑃𝑒 =
�̅�𝐷ℎ

𝛼⁄  is the 

Peclet number calculated based on average velocity of coolant in the subassembly �̅� and the 

hydraulic diameter of the internal channels; ℎ̅ =
�̅�

(𝑇𝑤̅̅ ̅̅ −𝑇𝑓̅̅̅̅ )
 is the mean heat transfer coefficient 

under stable heat transfer conditions (when there is no stable temperature difference 

“wall – liquid”, that is often observed at the edge pins, heat transfer coefficient is evaluated at 

the heated outlet cross-section); �̅� , 𝑇𝑤
̅̅̅̅  are averaged heat flux and pin wall temperature, 

respectively; 𝑇�̅�  is the bulk coolant temperature between adjacent channels; 𝑒1 is equivalent 

thermal conductivity based on the first harmonics in Fourier series; 𝑑𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑟 is the displacer 

diameter; 𝜆𝑓 is the thermal conductivity of the coolant; 𝛼 is the thermal diffusivity; 𝛹 =
𝛥

𝑃−𝐷
; 

and 𝛥 is the gap between the wrapper and pins. The displacer refers to a cylindrical or other 
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shape pin inserted in the peripheral subchannel next to the wrapper, which reduces the flow rate 

and equalizes the power-to-flow ratio between central and peripheral subchannels. 

According to  hukov’s experiments, values of factors a, b, and n can be approximated by the 

relationships presented in Table 20. For the peripheral pins, the minimal laminar-flow value of 

the Nusselt number is reached at low Peclet numbers, which depend on the of the values pitch-

to-diameter ratio 𝑃 𝐷⁄ .   

TABLE 20. FACTORS A, B, N IN EQ. (215) 

Pin 

location 
a b n 

Without displacers 

Edge 4.69𝑃
𝐷⁄ –  4.131 0.577 𝑃

𝐷⁄ –  0.566 3.53(𝑃 𝐷⁄ )
2
–  8.71𝑃

𝐷⁄ +  5.97 

Corner 7.13𝑃
𝐷⁄ –  6.972 0.331 𝑃

𝐷⁄ –  0.342 5.27(𝑃 𝐷⁄ )
2
– 13.12𝑃

𝐷⁄  +  8.83 

With displacers 

Edge 4.81𝑃
𝐷⁄ –  3.348 1.381 𝑃

𝐷⁄ –  1.376 1.26(𝑃 𝐷⁄ )
2
– 3.35𝑃

𝐷⁄  +  2.74 

Corner 3.59𝑃
𝐷⁄ –  3.189 1.324 𝑃

𝐷⁄ –  1.363 
14.88–  3.35𝑃

𝐷⁄

+  25.43(𝑃 𝐷⁄ )
2
–  6.57(𝑃 𝐷⁄ )

3
 

 

3.2.10.3 Zhukov et al. (1977) 

The maximum temperature non-uniformity across the edge pin can be evaluated as 

recommended by A.V. Zhukov et al. [171] [172]: 

 ∆𝑇 =
𝑇𝑖𝑛𝑛𝑒𝑟 − 𝑇𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

�̅�𝑅
𝜆𝑓 = 𝐴 + 𝐵Ψ − Ce−𝐷Ψ, (216) 

where 𝑇𝑖𝑛𝑛𝑒𝑟  and 𝑇𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙  are the pin wall temperatures in the internal and peripheral 

subchannels, respectively; �̅� is the average heat flux; 𝑅 = 𝐷/2 is the pin radius; 𝜆𝑓 is the liquid 

thermal conductivity; and the parameter Ψ is the ratio of the gap between wrapper and pins ∆ 

to the difference between bundle pitch P and pin diameter D:  

 Ψ =
Δ

𝑃 − 𝐷
=

Δ

𝐷 (
𝑃
𝐷 − 1)

 (217) 

The value of ∆𝑇 is positive, if the maximum pin temperature is observed near the internal 

channels (periphery is subcooled), and negative, if the maximum pin temperature is observed 

near the wrapper wall (periphery is superheated).  

Correlation (216) is valid for 200 ≤ 𝑃𝑒 ≤ 700  and for developed flow only (
𝑙

𝐷ℎ
≥ 200) , 

where l is a heated length and 𝐷ℎ is the hydraulic diameter of the pin array). Coefficients A, B, 

C, D are presented in the Table 21. 
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TABLE 21. COEFFICIENTS А, В, С, D IN EQ. (216) 

𝑃𝑒 number A B C D β 

Bundle of smooth pins without displacers (1.06 ≤ 𝑃
𝐷⁄ ≤ 1.15, 0 ≤ 𝛹 ≤ 1.05) 

700 0.10 0.40 0.63 15  

400 0.21 0.41 0.89 12.5  

200 0.47 0.82 1.3 10  

Bundle of wire wrapped pins without displacers (1.06 ≤ 𝑃
𝐷⁄ ≤ 1.15, 0.3 ≤ 𝛹 ≤ 1.05) 

700 0.02 0.48 0 0  

400 0.27 0.31 0 0  

200 0.52 0.62 0 0  

Bundle of smooth pins with displacers (1.06 ≤ 𝑃
𝐷⁄ ≤ 1.25, 0.25 ≤ 𝛹 ≤ 1.05) 

700 0.216 0.083 1.03 4.15  

400 0.33 0.12 1.17 5.05  

200 0.40 0.5 3.66 5.07  

Bundle of wire wrapped pins with displacers (1.06 ≤ 𝑃
𝐷⁄ ≤ 1.25, 0.25 ≤ 𝛹 ≤ 1.05) 

700 0.0525 0.16 1.33 7.25  

400 0.132 0.17 2.25 6.72  

200 0.45 0.19 4.08 5.9  

 

As a rule, the temperature fields of edge pins are not stable. The maximum and minimum 

temperatures over pin perimeter are practically opposite each other. This complicates the heat 

exchange between them. The phenomenon of non-stabilized temperature fields is mostly 

observed in bundles with small pitch-to-diameter ratio. The introduction of displacers in these 

bundles basically does not change the character of the temperature field along the bundle length; 

if the displacer diameter is not very large as to cause the coolant overheating in peripheral 

channels. The increasing of the gap between pins and the wrapper Δ (for the given pin pitch) 

also increases the non-stabilized character of the temperatures fields. 

 

3.2.10.4 Sorokin et al. (1984) 

In 1984 A.P. Sorokin et al. [173] [174] proposed that the maximum temperature non-uniformity 

around the edge pin can be approximately estimated from the superposition of the coolant 

temperature non-uniformity and the local temperature non-uniformity for “infinite” triangle rod 

arrays and the temperature non-uniformity for square rod arrays at the peripheral pins as 

follows: 

 

𝑇𝑖𝑛𝑛𝑒𝑟 − 𝑇𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 = 𝑇𝑓1 − 𝑇𝑓11 + (𝑇𝑤
𝑚𝑎𝑥 − 𝑇𝑤)∞

𝑡𝑟𝑖𝑎𝑛 + (𝑇𝑤
̅̅̅̅ − 𝑇𝑤

𝑚𝑖𝑛)
∞

𝑠𝑞𝑢𝑎𝑟𝑒
 (218) 
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Substituting the expressions for the local non-uniformity in the “infinite” triangular and square 

rod arrays gives: 

𝑇𝑖𝑛𝑛𝑒𝑟 − 𝑇𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 = ∆𝑇0 [(1 −
1

𝑔𝑒𝑓𝑓
)

1−𝑒−𝑇𝑀

𝑇𝑀
+

𝑃𝑒𝐷

8𝐿
(

𝑧

𝑧+1
(∆𝑇∞

𝑚𝑎𝑥)𝑡𝑟𝑖𝑎𝑛 +

1

𝑧+1
(∆𝑇∞

𝑚𝑎𝑥)𝑠𝑞𝑢𝑎𝑟𝑒)]  
(219) 

where ∆𝑇0 is the temperature non-uniformity in the triangular internal channels and  

 𝑔𝑒𝑓𝑓 =
𝐺𝑒𝑑𝑔𝑒

𝐺0
 (220) 

 𝑇𝑀 =
𝜇ℎ𝑧

𝑔𝑒𝑓𝑓
 (221) 

The following values 

 ∆𝑇∞
𝑚𝑎𝑥 =

𝑇𝑤
𝑚𝑎𝑥 − 𝑇𝑤

𝑚𝑖𝑛

�̅� 𝐷
2⁄

𝜆𝑓 (222) 

 𝑍 =
𝑇𝑤

𝑚𝑎𝑥 − 𝑇𝑤
̅̅̅̅

𝑡𝑤̅̅ ̅ − 𝑡𝑤
𝑚𝑖𝑛

 (223) 

are calculated by correlations for the “infinite” triangular rod array and the nomograms for 

square bundle at laminar flow with the correction for the turbulent flow; 𝐺𝑒𝑑𝑔𝑒 , and 𝐺0 are 

coolant mass flow rates in edge and internal channels, respectively; 𝜇ℎ is the inter-channel heat 

exchange; and 𝑧 is the distance from the beginning of the heating section. 

Statistical analysis shows that experimental data for temperature non-uniformity around the 

edge pins are in agreement with the correlation (219). 

 

3.2.11 Cross flow across rod bundles 

The set of correlations presented hereafter corresponds to the configuration where the flow is 

perpendicular to the rod longitudinal axis (see Fig. 41, contrary to the previous cases where the 

flow is parallel to the rod bundle axis. 

 

FIG. 41. Crossflow in triangular rod array 
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3.2.11.1 Rickard et al. (1958) 

In 1958 C.L. Rickard et al. [175] participated in the liquid metal heat transfer programme at 

Brookhaven National Laboratory, where both local and tube-average heat transfer coefficients 

were obtained for the flow of mercury perpendicular to a staggered tube bank [175] [176]. The 

tube bank consisted of sixty ½-inch tubes, six inches wide and ten inches deep, arranged an 

equilateral-triangular array. The following Nusselt number correlation is proposed for the range 

2 · 104 ≤ 𝑅𝑒 ≤ 2 · 105 [68]: 

 𝑁𝑢 = 4.03 + 0.228𝑃𝑒0.67 (224) 

Despite of the fact that the correlation (224) was developed for mercury, it is generally used for 

sodium systems as well. 

 

3.2.11.2 Cess-Grosh (1958) 

For the boundary condition of uniform wall temperature, R. Cess and R. Grosh (1958), 

assuming inviscid potential flow, derived the theoretical equation for cross-flow through rod 

bundles ( [11] Ch. 2) [177]: 

 𝑁𝑢 = 0.718 (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
𝑃𝑒𝜈𝑚𝑎𝑥

 (225) 

where 𝑓1 is the unit hydrodynamic potential at the rear stagnation point of a rod, 𝜈𝑚𝑎𝑥 is the 

average cross-flow velocity of coolant between the elements, based on minimum flow area, 

𝑃𝑒𝜈𝑚𝑎𝑥
=

𝐷𝜈𝑚𝑎𝑥 𝜌𝑐𝑝

𝑘
, 𝜌 is the fluid density, 𝑐𝑝 is the heat capacity at constant pressure, 𝐷 is the 

equivalent diameter of the rod-bundle and 𝑘 is the thermal conductivity. 

 

3.2.11.3 Hsu (1964) 

In 1964 C.J. Hsu derived the heat transfer equation based on the same assumptions as those of 

previous Cess-Grosh (1958) correlation ( [11] Ch. 2), [65] [121]: 

 𝑁𝑢 = 𝑎 (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2

√𝑃𝑒𝜈𝑚𝑎𝑥
 (226) 

𝑎 = 0.810 for uniform heat flux from the rod surface 

𝑎 = 0.958 for a simple cosine surface temperature distribution around the rod. 

3.2.11.4 Dwyer (1966) 

For a cross flow through bare fuel rod bundles or tube banks the heat transfer coefficient can 

be calculated from O.E. Dwyer (1966) correlation [65] [155]: 

 Nu = 5.36 + 0.1974 𝑃𝑒𝜈𝑚𝑎𝑥
0.682 (227) 

This correlation is valid for triangularly spaced elements where 𝑆1 𝐷 = 𝑃 𝐷⁄⁄  and 𝑆2 𝐷⁄  are 

pitch-to-diameter ratios of 1.38 and 1.19 respectively that corresponds to the triangular array 

with the same pitch P, where 𝑆1 = 𝑃 is the rod pitch in the stream-wise direction and 𝑆2 the rod 

spacing in the spam-wise direction. For any other values of 𝑃 𝐷⁄ , corrections can be made 

according to the theoretical study of Hsu, but the influence is quite small and can be 

approximated by multiplying the 𝑃 𝐷⁄  ratio with the Nusselt number. 
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3.2.11.5 Kalish-Dwyer (1967) 

In 1967 S. Kalish and O.E. Dwyer [178] obtained results on NaK for rod bundles with a 
𝑃

𝐷
 ratio 

of 1.75. On the basis of those results and adopting theoretical equations, which allow for the 

effects of type and degree of rod spacing, the authors developed the following equation for a 

rod in the interior of a bank in which all the rods were heated and for a simple cosine wall-

temperature distribution around the rods ( [11] Ch. 2): 

 𝑁𝑢 = (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
[6.19 + 0.2665𝑃𝑒𝜈𝑚𝑎𝑥

0.653] (228) 

In case of rods with thin stainless-steel sheaths, the thermal boundary condition approaches that 

of a uniform wall heat flux. For that case Kalish and Dwyer recommended the equation: 

 𝑁𝑢 = (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
[5.24 + 0.225𝑃𝑒𝜈𝑚𝑎𝑥

0.653] (229) 

 

3.2.11.6 Kottowski (1983) 

For flow across a staggered tube bank, H.M. Kottowski (1983) investigated Nusselt number for 

low Prandtl number fluids for tube bundle geometry in forced convection conditions [119]. 

Results for mercury and sodium were correlated within ±12% over the Peclet number range of 

50 ≤ 𝑃𝑒 ≤ 4000 by the following empirical equation given by Kottowski: 

 𝑁𝑢 = 𝑃𝑒0.5 (230) 

which is recommended for use in such conditions. Nusselt number 𝑁𝑢 is based on a mean heat 

transfer coefficient obtained by dividing the mean heat flux from the tube by the circumferential 

average of the temperature difference between tube and bulk fluid at points equally spaced 

around the periphery of the tube. For each tube, the bulk temperature of the flowing stream is 

evaluated at the location in the tube bank corresponding to the axis of the tube in question. The 

cross flow velocity in Peclet number 𝑃𝑒 is based on the minimum flow area [9]. 

 

3.2.11.7 Summary of heat transfer correlations for cross flow across rod bundles 

Table 22 presents the list of heat transfer correlations collected for cross flow across rod 

bundles. 
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TABLE 22. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR CROSS FLOW 

ACROSS ROD BUNDLES 

Rickard et al. (1958) 

[68] [175]  

𝑁𝑢 = 4.03 + 0.228𝑃𝑒0.67 

2 · 104 ≤ 𝑅𝑒 ≤ 2 · 105 

Cess-Grosh (1958) 

[11] [177] 

𝑁𝑢 = 0.718 (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
𝑃𝑒𝜈𝑚𝑎𝑥

 

uniform wall temperature 

Hsu (1964) 

[11] [65] [121] 

𝑁𝑢 = 𝑎 (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2

√𝑃𝑒𝜈𝑚𝑎𝑥
 

𝑎 = 0.810 for uniform heat flux from rod surface 

𝑎 = 0.958 for cosine surface temperature around the rod 

Dwyer (1966) 

[65] [155] 

𝑁𝑢 = 𝑓𝑐𝑜𝑟𝑟(5.36 + 0.1974 𝑃𝑒𝜈𝑚𝑎𝑥
0.682) 

𝑓𝑐𝑜𝑟𝑟 = 1 𝑓𝑜𝑟 𝑆1 𝐷 = 1.38⁄  and 𝑆2 𝐷⁄ = 1.19 

𝑓𝑐𝑜𝑟𝑟 = 𝑃 𝐷 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑆1 𝐷⁄ 𝑎𝑛𝑑 𝑆2 𝐷⁄⁄  

Kalish-Dwyer (1967) 

[11] [178] 

interior of a bank with cosine wall temperature: 

𝑁𝑢 = (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
[6.19 + 0.2665𝑃𝑒𝜈𝑚𝑎𝑥

0.653] 

uniform wall heat flux: 

𝑁𝑢 = (
𝑓1
𝐷

)

1
2
(
𝑃 − 𝐷

𝑃
)

1
2
[5.24 + 0.225𝑃𝑒𝜈𝑚𝑎𝑥

0.653] 

Kottowski (1983) 

[119] 

𝑁𝑢 = 𝑃𝑒0.5 

50 ≤ 𝑃𝑒 ≤ 4000 

 

No summary comparison figure is included for the cross flow across bundles due to the 

inclusion of different variables across the correlations. 

 

3.3 NATURAL CONVECTION 

In ordinary fluids the Nusselt number for natural convection is a function of the Rayleigh 

number 𝑅𝑎 = 𝐺𝑟𝑃𝑟, however in liquid metal flows Nusselt number becomes a function of 

𝐺𝑟𝑃𝑟2  ( [9] Ch. 8) ( [11] Ch. 2). Therefore, the general natural convection heat transfer 

correlation is expressed in the following form: 

 𝑁𝑢 = 𝑎𝑃𝑟𝑏𝐺𝑟𝑐 (231) 

where a, b, and c are constants. 

The criterion proposed by H.O. Buhr valid for both vertical and horizontal flows can be used 

to estimate whether free convection will influence the Nusselt number in pipe flow ( [9] Ch. 8) 

[179]. The parameter 𝑍 is defined as: 
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 𝑍 =
𝑅𝑎′

𝑅𝑒

𝐷ℎ

𝐿
 (232) 

Then Buhr criterion states: 

• If 𝑍 ≤ 20 ∙ 10−4: the effect of free convection is insignificant 

• If 𝑍 ≥ 20 ∙ 10−4: free convection affects forced convection 

The prime in 𝑅𝑎′ = 𝐺𝑟′𝑃𝑟  is used to distinguish the Grashof number using the axial 

temperature difference from the usual one using the radial temperature difference: 

 𝐺𝑟′ =
𝑏𝑔𝐷ℎ

3𝐷𝑇

𝑛2
 (233) 

where 

D𝑇 =
𝑑𝑇

𝑑𝑥
𝐷ℎ 

There are three distinct modes of free convection: creeping, laminar, and turbulent. These 

modes are associated to significantly different expressions for heat transfer and occur 

successively for increasing Rayleigh numbers (see Table 23) [155]. 

TABLE 23. RAYLEIGH NUMBERS FOR THE THREE FREE CONVECTION MODES 

Creeping regime 1700 ≤ 𝑅𝑎 < 3500 

Laminar regime 3500 ≤ 𝑅𝑎 < 105 

Turbulent regime 𝑅𝑎 ≥ 105 

 

3.3.1 Flow on heated vertical plates 

The geometry of heat transfer during flow on heated vertical plates is shown in Fig. 42. Also, 

the temperature profile is seen as well. Tw – wall temperature, T – fluid temperature. 

 

FIG. 42. Flow on heated vertical plates 
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3.3.1.1 Saunders (1939) 

O.A. Saunders (1939) developed a correlation for a natural convection on a heated vertical plate 

in laminar flow [155] [180]: 

 𝑁𝑢𝑥 = 0.3𝑅𝑎𝑥
0.25 (234) 

where 𝑥 is the plate vertical length. It is valid for the laminar regime, where Rayleigh number 

is in the range of 𝑅𝑎𝑥 ≤ 1 · 106. 

 

3.3.1.2 Eckert (1950) 

In 1950 E.R.G. Eckert [11] [181] wrote the momentum and energy equations in an integral form 

for laminar boundary-layer flow and uniform wall temperature. His final result was: 

 𝑁𝑢𝑥 = 0.508 [
𝑃𝑟2𝐺𝑟𝑥

0.952 + 𝑃𝑟
]

1
4

 (235) 

which agrees quite closely with Ostrach’s curve [182]. In [183] another correlation proposed 

by Eckert in 1939 is presented, where the first parameter is 0.68 instead of 0.508. It is being 

thought that over time Eckert refined the correlation and Eq. (235) is therefore more accurate. 

 

3.3.1.3 Eckert-Jackson (1951) 

When 𝐺𝑟𝑥 becomes sufficiently large (~1010), the boundary-layer flow becomes completely 

turbulent. As this was a difficult case to solve, E.R.G. Eckert and T.W. Jackson in 1951 [184] 

employing certain simplifying assumptions, solved the momentum and energy equations by 

integral methods and obtained the equation [11]: 

 𝑁𝑢𝑥 = 0.0295 [
𝑃𝑟

7
6𝐺𝑟𝑥

1 + 0.494𝑃𝑟
2
3

]

2
5

 (236) 

for the condition of uniform wall temperature. The subscript 𝑥 represents the vertical distance 

(measured from below) over which the boundary layer is fully turbulent. For the average 

Nusselt number, the coefficient 0.0295 becomes 0.0246. As this equation is based on 

calculations where Prandtl number was assumed to be close to unity, its applicability to liquid 

metals is doubtful, as indicated by the results of Bayley, Milne, and Stoddart [185]. 

 

3.3.1.4 Ostrach (1952) 

In 1952 S. Ostrach was the first to solve the basic differential equations of motion and energy 

describing the temperature field simultaneously (along with the continuity equation), for the 

laminar-boundary-layer natural-convection heat transfer from vertical plates for the boundary 

condition of uniform wall temperature and for Prandtl numbers in the liquid metal range [11] 

[182]. S. Ostrach (1953) showed that the average Nusselt number for a plate of length L is equal 

to [9] [182]: 

 𝑁𝑢𝑚 =
4

3
∙ 𝑁𝑢𝐿 (237) 
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in the case of uniform wall temperature and laminar flow. The average heat transfer coefficient 

is based on the average heat flux along the plate length L. In the above formula the subscript m 

indicates the average, and the subscript L indicates the length L of the plate. As for the local 

Nusselt number, the correlation reported in 3.3.1.7 is recommended. 

 

3.3.1.5 Siegel (1954) 

For the case of turbulent boundary layer flow and uniform wall heat flux, R. Siegel in 1954 

[186] recommended the equation [11]: 

 𝑁𝑢𝑥 = 0.0295 [
𝑃𝑟

7
6𝐺𝑟𝑥

1 + 0.444𝑃𝑟
2
3

]

2
5

 (238) 

 

 

3.3.1.6 Sparrow-Gregg (1956) 

In 1956 E.M. Sparrow and J.L. Gregg solved numerically the energy and velocity equations for 

natural convection for Prandtl numbers down to 0.1 and proposed the following local heat 

transfer correlation for the case of uniform wall heat flux and laminar boundary-layer flow [9] 

[11] [187] [188]: 

 𝑁𝑢𝑥 =
(𝐺𝑟𝑥

∗)
1

5⁄

5
1

5⁄ 𝜃(0)
 (239) 

where 

 𝐺𝑟𝑥
∗ =

𝑔𝛽𝑞𝑥4

λ𝑛2
 (240) 

𝐺𝑟𝑥
∗  is a modified Grashof number and 𝜃(0)  represents a non-dimensional temperature 

difference evaluated at the wall ℎ = 0 (𝑡 = 𝑡𝑤). In Eq. (240) 𝑔 is the gravitational acceleration, 

𝛽  the volumetric thermal expansion coefficient, 𝑞  the imposed heat flux, λ is the thermal 

conductivity, 𝜈 is the kinematic viscosity and 𝑥 is the distance from the leading edge of the 

plate. Estimated values of 𝜃(0) are presented in Table 24. 

TABLE 24. VALUES OF 𝜃(0) FOR EQ. (239) 

𝑷𝒓 𝜽(𝟎) 

0.01 6.304 

0.03 4.198 

0.10 2.751 

 

Since the modified Grashof number can be expressed as: 

 𝐺𝑟𝑥
∗ = 𝐺𝑟𝑥

ℎ𝑥𝑥

λ
= 𝐺𝑟𝑥𝑁𝑢𝑥 (241) 

the previous correlation can be also written as: 
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 𝑁𝑢𝑥 =
𝐺𝑟𝑥

1
4⁄

5
1

4⁄ [𝜃(0)]
5

4⁄
 (242) 

Moreover, by fitting the estimated values of 𝜃(0) to the following relationship: 

 𝜃(0) = 𝐴 ∙ 𝑃𝑟−
2
5 (243) 

The previous heat transfer correlation gives: 

 𝑁𝑢𝑥 = (
𝐺𝑟𝑥

∗ ∙ 𝑃𝑟2

5
)

1
5

∙
1

𝐴
= (

𝐺𝑟𝑥 ∙ 𝑃𝑟2

5
)

1
4

∙
1

𝐴
5
4

 (244) 

that follows the classical dependence on the Boussinesq number Eq. (9). The value A is close 

to one within few percent.  

E.M. Sparrow and J.L. Gregg also showed that the average Nusselt number (laminar flow) for 

a plate of length L is related to the local Nusselt number at 𝑥 = 𝐿 by [9] [187]: 

 𝑁𝑢𝑚 =
6

5
∙ 𝑁𝑢𝐿 (245) 

in the case of uniform heat flux. Here the average heat transfer coefficient is based on the 

average temperature difference along the plate length 𝐿. As for the local Nusselt number, the 

correlation reported by Sparrow et al. (Section 3.3.1.7) and Chang et al. (Section 3.3.1.8) can 

be used. 

Sparrow and Gregg [187] defined an average heat transfer coefficient and proposed the final 

expression valid for liquid metals [11]: 

 𝑁𝑢𝑥 = 0.707𝑃𝑟0.46(𝐺𝑟𝑥
∗)

1
4 (246) 

 

3.3.1.7 Sparrow et al. (1959) 

Combining the work of E.M. Sparrow and J.L. Gregg [189], LeFevre [190] and S. Ostrach 

[182], they obtained solutions of the following form for local Nusselt number for uniform wall 

temperature, vertical plates, natural-convection, laminar flow [9] [189]: 

 𝑁𝑢𝑥 = 𝑓(𝑃𝑟) ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
4 (247) 

where the subscript 𝑥 indicates the coordinate along the plate and the values of 𝑓(𝑃𝑟) are given 

in Table 25. 
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TABLE 25. VALUES OF 𝑓(𝑃𝑟) FOR EQ. (247) 

 𝑷𝒓 𝒇 (𝑷𝒓) 

0 0.6004 

0.003 0.5827 

0.008 0.5729 

0.01 0.5715 

0.02 0.5582 

0.03 0.5497 

0.1 0.5160 

 

3.3.1.8 Chang et al. (1964) 

K.S. Chang et al. [188] employing a first order perturbation analysis method, succeeded in 

extending the Sparrow-Gregg results down to 𝑃𝑟 = 0.01. Their values of 𝜃(0) for several 

Prandtl numbers are given in Table 26 [11]. 

TABLE 26. VALUES OF 𝜃(0) FOR EQ. (247) 

𝑷𝒓 𝜽(𝟎) 

0.01 6.304 

0.03 4.198 

0.10 2.751 

1.00 1.357 

 

In the range of 0.01 ≤ 𝑃𝑟 ≤ 0.05, 𝜃(0) can be expressed by the empirical equation: 

 𝜃(0) = 1.147 𝑃𝑟−0.37 (248) 

This gives place to the following equation, valid for liquid metals for uniform heat flux 

conditions: 

 𝑁𝑢𝑥 = 0.563𝑃𝑟0.46(𝐺𝑟𝑥
∗)

1
4 (249) 

It can be also expressed as [188] [191]: 

 𝑁𝑢𝑥 = 0.7320 ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
5 (250) 

 

3.3.1.9 Drokin-Sommercales (1965) 

D. Drokin and E. Sommercales (1965) [155] [198] proposed a correlation for natural convection 

over an enclosed liquid metal gap between plates in turbulent flow. 

 𝑁𝑢𝐷 = 0.028 ∙ (𝑅𝑎𝐷)0.355 for vertical parallel plates (251) 

 𝑁𝑢𝐷 = 0.043 ∙ (𝑅𝑎𝐷)0.33 for horizontal parallel plates (252) 
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where 𝐷 is the distance between plates, and the turbulent regime Rayleigh number is in the 

range of 4 · 104 ≤ 𝑅𝑎 ≤ 1 · 108. 

 

3.3.1.10 Churchill-Chu (1975) 

In 1975 S.W. Churchill and H.H.S. Chu [192] developed simple expressions for the space-mean 

𝑁𝑢̅̅ ̅̅  (or 𝑆ℎ) for all Rayleigh and Prandtl (or Schmidt) numbers in terms of the model of Churchill 

and Usagi. Their development utilizes experimental values for Rayleigh number 𝑅𝑎 

approaching zero and infinity, and the analytical solutions obtained from laminar boundary-

layer theory. The expression is applicable both to uniform heating and to uniform wall 

temperature conditions, as well as for mass transfer and simultaneous heat and mass transfer. 

For single-phase liquid sodium natural convection adjacent to a vertical plane (turbulent flow 

regime), the correlation recommended in [193] is: 

 𝑁𝑢̅̅ ̅̅ = [0.825 +
0.387𝑅𝑎

1
6

(1 + (0.492 𝑃𝑟⁄ )
9
16)

8
27

]

2

 (253) 

It is valid for 0.1 ≤ 𝑅𝑎 ≤ 1012. 

Churchill and Chu also proposed the following relation valid for 𝑅𝑎 ≤ 109 [193]: 

 𝑁𝑢̅̅ ̅̅ = 0.68 +
0.670𝑅𝑎

1
4

(1 + (0.492 𝑃𝑟⁄ )
9
16)

4
9

 (254) 

This equation may be modified for the case of constant heat flux if the average Nusselt number 

is based on the wall heat flux and the temperature difference at the centre of the plate (𝑥 =
𝐿

2
). 

Then the equation becomes [193]: 

 𝑁𝑢̅̅ ̅̅
1
4(𝑁𝑢̅̅ ̅̅ − 0.68) =

0.67(𝐺𝑟∗𝑃𝑟)
1
4

(1 + (0.492 𝑃𝑟⁄ )
9
16)

4
9

 (255) 

where 𝑁𝑢̅̅ ̅̅ =
𝑞𝐿

(𝑘∆𝑇̅̅̅̅ )
 and ∆𝑇̅̅̅̅ = 𝑇𝑤 at 

𝐿

2
− 𝑇∞. 

 

3.3.1.11 Sheriff-Davies (1979) 

For natural convection, laminar flow on vertical plate for uniform heat flux, N. Sheriff and 

N.W. Davies (1979) [191] proposed the following relation that fits most of the available data 

within ±7% and is therefore recommended [9] [191]: 

 𝑁𝑢𝑥 = 0.732 ∙ (𝐺𝑟𝑥
∗ ∙ 𝑃𝑟2)

1
5 (256) 

the subscript 𝑥 indicates the coordinate along the plate. The properties should be evaluated at 

the film temperature, the average of surface temperature and bulk mean fluid temperature. 𝐺𝑟𝑥
∗ 

is the modified Grashof number defined in Eq. (240). 
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3.3.1.12 Summary of heat transfer correlations for flow on vertical plates 

 

Table 27 presents the list of heat transfer correlations collected for flow in vertical plates. 

TABLE 27. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

VERTICAL PLATES 

Saunders (1939) 

[155] [180] 

𝑁𝑢𝑥 = 0.3𝑅𝑎𝑥
0.25

 

𝑅𝑎𝑥 ≤ 1 · 106, laminar flow 

Eckert (1950) 

[11] [181] 

𝑁𝑢𝑥 = 0.508 [
𝑃𝑟2𝐺𝑟𝑥

0.952 + 𝑃𝑟
]

1
4

 

laminar flow, uniform wall temperature 

Eckert-Jackson (1951) 

[11] [184] 

𝑁𝑢𝑥 = 0.0295 [
𝑃𝑟

7
6𝐺𝑟𝑥

1 + 0.494𝑃𝑟
2
3

]

2
5

 

𝑃𝑟~1, uniform wall temperature, turbulent flow 

Ostrach (1953) 

[9] [182] 

𝑁𝑢𝑚 =
4

3
∙ 𝑁𝑢𝐿 

laminar flow, uniform wall temperature 

Siegel (1954) 

[11] [186] 

𝑁𝑢𝑥 = 0.0295 [
𝑃𝑟

7
6𝐺𝑟𝑥

1 + 0.444𝑃𝑟
2
3

]

2
5

 

turbulent flow, uniform heat flux 

Sparrow-Gregg (1956) 

[9] [11] [187] [188] 

1. 

𝑁𝑢𝑥 =
(𝐺𝑟𝑥

∗)
1

5⁄

5
1

5⁄ 𝜃(0)
=

𝐺𝑟𝑥

1
4

5
1

4⁄ [𝜃(0)]
5

4⁄
 

𝐺𝑟𝑥
∗ =

𝑔𝛽𝑞𝑥4

λ𝑛2
, 𝜃(0) in Table 24, 𝐺𝑟𝑥

∗ = 𝐺𝑟𝑥𝑁𝑢𝑥 

2. 

𝑁𝑢𝑥 = (
𝐺𝑟𝑥

∗∙𝑃𝑟2

5
)

1

5
∙

1

𝐴
= (

𝐺𝑟𝑥∙𝑃𝑟2

5
)

1

4
∙

1

𝐴
5
4

 with 𝐴~1 

3. 

𝑁𝑢𝑚 =
6

5
∙ 𝑁𝑢𝐿 

4. 

𝑁𝑢𝑥 = 0.707𝑃𝑟0.46(𝐺𝑟𝑥
∗)

1
4 

All are valid for uniform heat flux and laminar flow 
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TABLE 27. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW IN 

VERTICAL PLATES 

Sparrow et al. (1959) 

[9] [189] 

𝑁𝑢𝑥 = 𝑓(𝑃𝑟) ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
4 

𝑓(𝑃𝑟) in Table 25 

uniform wall temperature, laminar flow 

Chang et al. (1964) 

[188] [191] 

𝑁𝑢𝑥 = 𝑓(𝑃𝑟) ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1

4 with 𝑓(𝑃𝑟) in Table 26 

𝑁𝑢𝑥 = 0.563𝑃𝑟0.46(𝐺𝑟𝑥
∗)

1
4 

𝑁𝑢𝑥 = 0.7320 ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
5 

All are valid for 0.01 ≤ 𝑃𝑟 ≤ 0.05 and uniform heat flux 

Dropkin-Sommercales 

(1965) 

[155] [198] 

For vertical parallel plates: 

𝑁𝑢𝐷 = 0.028 ∙ (𝑅𝑎𝐷)0.355  

For horizontal parallel plates: 

𝑁𝑢𝐷 = 0.043 ∙ (𝑅𝑎𝐷)0.33  

Both valid for 4 · 104 ≤ 𝑅𝑎 ≤ 1 · 108 

Churchill-Chu (1975) 

[192] [193] 

1. 

for 0.1 ≤ 𝑅𝑎 ≤ 1012: 

𝑁𝑢̅̅ ̅̅ = [0.825 +
0.387𝑅𝑎

1
6

(1 + (0.492 𝑃𝑟⁄ )
9
16)

8
27

]

2

 

for 𝑅𝑎 ≤ 109: 

𝑁𝑢̅̅ ̅̅ = 0.68 +
0.670𝑅𝑎

1
4

(1 + (0.492 𝑃𝑟⁄ )
9
16)

4
9

 

Both are valid for laminar flow and either uniform heat flux or 

uniform wall temperature 

2. 

𝑁𝑢̅̅ ̅̅
1
4(𝑁𝑢̅̅ ̅̅ − 0.68) =

0.67(𝐺𝑟∗𝑃𝑟)
1
4

(1 + (0.492 𝑃𝑟⁄ )
9
16)

4
9

 

laminar flow, uniform heat flux 

Sheriff-Davies (1979) 

[9] [191] 

𝑁𝑢𝑥 = 0.732 ∙ (𝐺𝑟𝑥
∗ ∙ 𝑃𝑟2)

1
5 

laminar flow, uniform heat flux 
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3.3.2 Flow over horizontal plates and around cylinders 

The flow geometry around cylinders is shown in Fig. 43, where D – diameter, Tw – wall 

temperature, Ts – stream (flow) temperature 

  

FIG. 43. Flow around cylinder 

3.3.2.1 Eckert (1950) 

In 1950 E.R.G Eckert proposed the following correlation for natural convection around a 

horizontal cylinder [110] [181]: 

 𝑁𝑢𝑥 = 0.53 [
𝑃𝑟2𝐺𝑟𝑥

0.952 + 𝑃𝑟
]

1
4

 (257) 

where the characteristic length x in Nusselt number 𝑁𝑢𝑥 = ℎ𝑥
𝜆⁄  is the same as in Grashof 

Number 𝐺𝑟𝑥 =
𝑏𝑔𝑥3𝑞

𝜈2⁄ , where x is the cylinder diameter. 

3.3.2.2 Hyman et al. (1953) 

S.C. Hyman et al. [194] studied natural convection on six different liquid metals and alloys 

under conditions of laminar-boundary-layer flow. The thermal boundary condition approached 

that of uniform heat flux [11]. They proposed the following correlation for natural convection 

around a horizontal cylinder in the laminar flow [155] [194]: 

 𝑁𝑢 = 0.53 ∙ (𝑅𝑎 ∙ 𝑃𝑟)0.25 = 0.53 ∙ (𝐺𝑟 ∙ 𝑃𝑟2)0.25 (258) 

valid for laminar regime and Rayleigh number 𝑅𝑎 ≤ 105. 𝑁𝑢 and 𝐺𝑟 are based on the diameter 

of the horizontal cylinder and the fluid properties are evaluated at the average of the surface 

and bulk temperatures. 

 

3.3.2.3 McAdams (1954) 

For single-phase sodium natural convection over a horizontal plate in turbulent flow, McAdams 

(1954) [183] recommended the following correlation: 

 𝑁𝑢 = 0.27𝑅𝑎0.25 (259) 

This correlation is valid for 105 ≤ 𝑅𝑎 ≤ 1010 for the lower surface of a heated plane or the 

upper surface of a cooled plane. 
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3.3.2.4 Levy (1955) 

In 1955 S. Levy [195] using the integral method of calculation, developed a correlation [11]: 

 𝑁𝑢𝑥 = 0.372 [
𝑃𝑟2𝐺𝑟𝑥

0.762 + 𝑃𝑟
]

1
5

 (260) 

for an infinitely long, heated, horizontal plate facing upwards; for laminar-boundary-layer flow; 

for uniform wall temperature; and for low Prandtl numbers. The subscript 𝑥 at Nusselt number 

𝑁𝑢𝑥 means that ℎ is for a point at a distance 𝑥 from either edge of the plate. For liquid metals, 

this equation is closely approximated by: 

 𝑁𝑢𝑥 = 0.39[𝑃𝑟2𝐺𝑟𝑥]
1
5 (261) 

For turbulent-boundary-layer flow, Levy obtained the relation: 

 𝑁𝑢𝑥 = 0.0727 [
𝑃𝑟0.75𝐺𝑟𝑥

1 + 0.441𝑃𝑟
2
3

]

4
11

 (262) 

under otherwise similar boundary conditions. 

For liquid metals this can be closely approximated by: 

 𝑁𝑢𝑥 = 0.071[𝑃𝑟0.75𝐺𝑟𝑥]
0.364 (263) 

 

3.3.2.5 Globe-Dropkin (1959) 

S. Globe and D. Dropkin (1959) [57] [196] made heat transfer measurements for horizontal 

spaces filled with mercury, water and silicone oils for a Prandtl number range from 0.02 ≤
𝑃𝑟 ≤  8750. Measurements were made in the Rayleigh range of 3 · 105 ≤ 𝑅𝑎 ≤ 7 · 109. The 

following relation correlates the test results with the reasonable accuracy: 

 𝑁𝑢 = 0.069 ∙ 𝐺𝑟
1

3 ∙ 𝑃𝑟0.407, (264) 

where properties are to be evaluated at the average of the two surface temperatures. 

Globe and Dropkin [196] measured heat transfer coefficients between the centres of chrome-

plated copper plates that formed the top (cooled) and bottom (heated) of a cylindrical chamber. 

The results obtained under turbulent-boundary-layer-flow conditions covered the 𝑅𝑎 range of 

4 ∙ 105 ≤ 𝑅𝑎 ≤ 4 ∙ 107 and were well represented by the equation [11]: 

 𝑁𝑢𝑑 = 0.052𝑅𝑎𝑑

1
3  (265) 

where the characteristic dimension in both 𝑁𝑢𝑑  and 𝑅𝑎𝑑  is the distance between the plates 

while the value of 𝛥𝑡 in Rayleigh number 𝑅𝑎 is the temperature difference between two plate 

surfaces. 

Globe and Dropkin also made measurements with water and silicone oils. All experimental 

results were generalized in the correlation for the turbulent flow: 
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 𝑁𝑢𝑑 = 0.069𝑅𝑎𝑑

1
3𝑃𝑟0.074 = 0.069𝐺𝑟𝑑

1
3𝑃𝑟0.407 (266) 

that can presumably be used to predict 𝑁𝑢𝑑 for liquid metals with Prandtl numbers different 

from 0.023, the average value for Globe and Dropkin's mercury. 

 

3.3.2.6 McDonald-Connolly (1960) 

The experimental results of J.S. McDonald and T.J. Connolly (1960) [155] [197] for the average 

Nusselt number for turbulent flow and uniform heat flux are correlated for heated upward facing 

plates cooled downward, turbulent flow and uniform wall temperature by the following 

equation in the range of 6 · 108 ≤ 𝐺𝑟𝐷 ≤ 5 · 109:  

 𝑁𝑢 = 0.262(𝐺𝑟𝐷𝑃𝑟2)0.35 (267) 

The Grashof number is based on the diameter 𝐷 of the horizontal disk used in the experiment8. 

𝑁𝑢𝐷 =
ℎ𝐷

𝜆
, where 𝐷 is the diameter of the horizontal plate. Turbulent regime Rayleigh number: 

5 · 106 ≤ 𝑅𝑎 ≤ 4 · 107. 

The authors also measured [155] [197] heat transfer rates to a cooled eight-inch diameter 

stainless-steel circular plate facing downward near the surface of a large volume of sodium. 

Neither uniform-wall-heat-flux nor uniform-wall-temperature conditions existed. These 

authors developed a correlation for the Nusselt number of liquid sodium under turbulent natural 

convection over a cold horizontal plate [11]:  

 𝑁𝑢𝐷 = 0.0785(𝐺𝑟𝐷𝑃𝑟)0.32 = 0.0785 ∙ (𝑅𝑎)0.32 (268) 

 

3.3.2.7 Dropkin-Somerscales (1965) 

In 1965 D. Dropkin and E. Somerscales [198] made measurements with plates that could be 

rotated through a 90° angle from horizontal to the vertical position. For mercury, data were 

taken only for the plates in the horizontal position. The results were presented graphically, and 

Dwyer, the author of the corresponding Chapter in [11], estimated that mercury results could 

be represented by the correlation for turbulent flows: 

 𝑁𝑢 = 0.043𝑅𝑎
1
3 (269) 

 

3.3.2.8 Kudryavtsev (1967) 

In 1967 A.P. Kudryavtsev et al. [199] studied heat transfer to sodium by natural convection 

from a heated plate placed at the bottom of a vessel. Their data points showed a spread of ±15% 

from a line represented by the equation for turbulent regime [11]: 

 𝑁𝑢 = 0.38(𝐺𝑟𝐷𝑃𝑟2)
1
3 (270) 

 

8 Experiments were done on horizontal plates with circular geometry, i.e. on disks. 
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Kudryavtsev et al. observed that the transition from laminar to turbulent-boundary-layer flow 

occurred at a 𝐺𝑟𝐷 value of ~108. They did not report their laminar-flow results but mentioned 

that they agreed satisfactorily with the equation: 

 𝑁𝑢 = 0.67 [
𝑃𝑟2𝐺𝑟𝐷
1 + 𝑃𝑟

]

1
4

 (271) 

Indeed, the two previous equations agree within 5% at 𝐺𝑟𝐷 = 108 , assuming 𝑃𝑟 = 0.004, 

which is a representative value for their experiments. 

 

3.3.2.9 Clifton-Chapman (1969) 

J.V. Clifton and A.J. Chapman (1969) [9] [200] obtained the following average Nusselt number 

correlation for low Prandtl number fluids for heated downward facing plates, laminar flow and 

uniform wall temperature: 

 𝑁𝑢𝑚 = 0.5212 ∙ (𝐺𝑟𝑎 ∙ 𝑃𝑟2)
1
5 (272) 

 

3.3.2.10 Pera-Gebhart (1973) 

The following theoretical expression for the local Nusselt number under isothermal conditions 

for heated upward facing plates cooled downward and laminar flow was extrapolated from the 

work of L. Pera and B. Gebhart (1973) [201] and N. Sheriff and N.W. Davies [9]: 

 𝑁𝑢𝑥 = 0.48 ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
5 (273) 

Experimental data of Kudryavtsev et al. [199] in the range 106 ≤ 𝐺𝑟𝑥 ≤ 108  are 0 𝑡𝑜 25% 

above the prediction of this correlation. It might be questionable because of possible edge 

effects due to the small size of the apparatus. Based on these considerations, the use of this 

proposed correlation is recommended with caution. 

 

3.3.2.11 Fuji et al. (1973) 

Experimental results of N. Sheriff and N.W. Davies [191] were observed to be roughly 15% 

higher than the approximate integral prediction made by T. Fuji et al. (1973) [9] [202] for the 

average Nusselt number at 𝐺𝑟∗~1010, for horizontal heated downward facing plates, laminar 

flow and uniform heat flux: 

 𝑁𝑢𝑚 = 0.522 ∙ (𝐺𝑟𝑎
∗ ∙ 𝑃𝑟2)

1
6 (274) 

𝐺𝑟𝑎
∗ is the modified Grashof number based on half width 𝑎 of an infinite strip. 

 

3.3.2.12 Churchill-Chu (1975) 

In 1975 S.W. Churchill and H.H.S. Chu developed a simple empirical expression for the mean 

value of 𝑁𝑢 over the cylinder for all Rayleigh and Prandtl numbers in terms of the model of 

Churchill and Usagi [192]. This expression is applicable for uniform heating as well as for 

uniform wall temperature and for mass transfer and simultaneous heat and mass transfer. These 
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expressions improve the previous existing graphical and empirical correlations in both accuracy 

and convenience. 

 𝑁𝑢 = [0.60 +
0.387𝑅𝑎

1
6

(1 + (0.559 𝑃𝑟⁄ )
9
16)

8
27

]

2

 (275) 

It is valid for 10−5 ≤ 𝐺𝑟𝑃𝑟 ≤ 1021 [193]. This equation is based on experimental values for 

𝑅𝑎 → 0 and ∞ and on previous equations for the interrelationship between 𝑅𝑎 and 𝑃𝑟. It fails 

however to take into account the discrete transitions from the laminar to the turbulent regime. 

It is probably a good approximation for uniform heating if the temperature difference at 90° is 

used in the definition of 𝑅𝑎 and 𝑁𝑢. 

A simpler equation but restricted to the laminar range 10−6 ≤ 𝐺𝑟𝑃𝑟 ≤ 109 is [193]: 

 𝑁𝑢 = 0.36 +
0.518(𝐺𝑟∗𝑃𝑟)

1
4

(1 + (0.559 𝑃𝑟⁄ )
9
16)

4
9

 (276) 

 

3.3.2.13 Summary of heat transfer correlations for flow over horizontal plates and around 

cylinders 

Table 28 presents the list of heat transfer correlations collected for flow over horizontal plates 

and around cylinders. 

 

TABLE 28. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW OVER 

HORIZONTAL PLATES AND AROUND CYLINDERS 

Eckert (1950) 

[110] [181] 

𝑁𝑢𝑥 = 0.53 [
𝑃𝑟2𝐺𝑟𝑥

0.952 + 𝑃𝑟
]

1
4

 

horizontal cylinder 

Hyman et al. (1953) 

[155] [194] 

𝑁𝑢 = 0.53 ∙ (𝑅𝑎 ∙ 𝑃𝑟)0.25 = 0.53 ∙ (𝐺𝑟 ∙ 𝑃𝑟2)0.25 

𝑅𝑎 ≤ 105, horizontal cylinder, laminar flow, uniform heat flux 

McAdams (1954) 

[183] 

𝑁𝑢 = 0.27𝑅𝑎0.25  

105 ≤ 𝑅𝑎 ≤ 1010, turbulent flow, lower surface of a heated plane 

or the upper surface of a cooled plane 
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TABLE 28. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW OVER 

HORIZONTAL PLATES AND AROUND CYLINDERS 

Levy (1955) 

[11] [195] 

for laminar flow: 

𝑁𝑢𝑥 = 0.372 [
𝑃𝑟2𝐺𝑟𝑥

0.762 + 𝑃𝑟
]

1
5

 

𝑁𝑢𝑥 = 0.39[𝑃𝑟2𝐺𝑟𝑥]
1

5 for liquid metals 

for turbulent flow: 

𝑁𝑢𝑥 = 0.0727 [
𝑃𝑟0.75𝐺𝑟𝑥

1 + 0.441𝑃𝑟
2
3

]

4
11

 

𝑁𝑢𝑥 = 0.071[𝑃𝑟0.75𝐺𝑟𝑥]
0.364 for liquid metals 

All are valid for heated horizontal plate facing upwards, uniform 

wall temperature and low Prandtl numbers   

Globe-Dropkin (1959) 

[11] [57] [196] 

for 0.02 ≤ 𝑃𝑟 ≤  8750, 3 · 105 ≤ 𝑅𝑎 ≤ 7 · 109 and for horizontal 

spaces: 

𝑁𝑢 = 0.069 ∙ 𝐺𝑟
1
3 ∙ 𝑃𝑟0.407 

for turbulent flow, 4 ∙ 105 ≤ 𝑅𝑎 ≤ 4 ∙ 107 in the region between 

top (cooled) and bottom (heated) of a cylindrical chamber: 

𝑁𝑢𝑑 = 0.052𝑅𝑎𝑑

1
3  

for turbulent flow: 

𝑁𝑢𝑑 = 0.069𝑅𝑎𝑑

1
3𝑃𝑟0.074 = 0.069𝐺𝑟𝑑

1
3𝑃𝑟0.407 

plate 

McDonald-Connolly 

(1960) 

[11] [155] [197] 

for heated upward facing plates cooled downward, uniform heat 

flux and uniform wall temperature, 

6 · 108 ≤ 𝐺𝑟𝐷 ≤ 5 · 109, 5 · 106 ≤ 𝑅𝑎 ≤ 4 · 107: 

𝑁𝑢 = 0.262(𝐺𝑟𝐷𝑃𝑟2)0.35 

cold horizontal plate, turbulent flow: 

𝑁𝑢𝐷 = 0.0785(𝐺𝑟𝐷𝑃𝑟)0.32 = 0.0785 ∙ (Ra)0.32 

Dropkin-Somerscales 

(1965) 

[11] [198] 

𝑁𝑢 = 0.043𝑅𝑎
1
3 

horizontal plate, turbulent flow 
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TABLE 28. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR FLOW OVER 

HORIZONTAL PLATES AND AROUND CYLINDERS 

Kudryavtsev (1967) 

[11] [199] 

turbulent flow: 

𝑁𝑢 = 0.38(𝐺𝑟𝐷𝑃𝑟2)
1
3 

laminar flow: 

𝑁𝑢 = 0.67 [
𝑃𝑟2𝐺𝑟𝐷
1 + 𝑃𝑟

]

1
4

 

plate 

Clifton-Chapman 

(1969) 

[9] [200] 

𝑁𝑢𝑚 = 0.5212 ∙ (𝐺𝑟𝑎 ∙ 𝑃𝑟2)
1
5 

plate, laminar flow, uniform wall temperature 

Pera-Gebhart (1973) 

[201] 

𝑁𝑢𝑥 = 0.48 ∙ (𝐺𝑟𝑥 ∙ 𝑃𝑟2)
1
5 

plate, isothermal conditions, laminar flow 

Fuji et al. (1973) 

[9] [202] 

𝑁𝑢𝑚 = 0.522 ∙ (𝐺𝑟𝑎
∗ ∙ 𝑃𝑟2)

1
6 

plates, laminar flow, uniform heat flux 

Churchill-Chu (1975) 

[192] [193] 

for 10−5 ≤ 𝐺𝑟𝑃𝑟 ≤ 1021: 

𝑁𝑢 = [0.60 +
0.387𝑅𝑎

1
6

(1 + (0.559 𝑃𝑟⁄ )
9
16)

8
27

]

2

 

for 10−6 ≤ 𝐺𝑟𝑃𝑟 ≤ 109, laminar flow: 

𝑁𝑢 = 0.36 +
0.518(𝐺𝑟∗𝑃𝑟)

1
4

(1 + (0.559 𝑃𝑟⁄ )
9
16)

4
9

 

cylinder, uniform heat flux and uniform wall temperature, all 𝑅𝑎 

and all 𝑃𝑟 

 

3.3.3 Flow over inclined plate 

The typical flow geometry over inclined plates is depicted in Fig. 44. 
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FIG. 44. Flow over inclined plate 

 

3.3.3.1 Sheriff-Davies (1979) 

A first-order estimate of the local Nusselt number for uniform heat flux and heated downward-

facing surfaces inclined at an angle  from the vertical can be determined by replacing gravity 

constant g with 𝑔 cos γ  in the Grashof number according to the study of N. Sheriff and 

N.W. Davies (1979) Eq. (256). Experimental data for uniform heat flux and laminar flow cited 

by N. Sheriff and N.W. Davies [191] for =75° were roughly 10% lower than the following 

relation: 

 𝑁𝑢𝑥(𝛾) = 0.732 ∙ (𝐺𝑟𝑥
∗ ∙ 𝑐𝑜𝑠 𝛾 ∙ 𝑃𝑟2)

1
5 (277) 

The data were in the range of 105 ≤ 𝐺𝑟𝑥
∗ ≤ 1011. Better agreement is expected for low angles 

because at large angles the thermal boundary layer may actually be below the leading edge of 

the plate. 𝐺𝑟𝑥
∗ is the modified Grashof number based on the distance from the leading edge of 

the plate 𝑥. 

3.3.4 Heat transfer in special cases 

The geometry of flow inside the walls of vertical vessels is shown in Fig. 45 below. 
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FIG. 45. Flow inside wall of vertical vessel 

 

3.3.4.1 Bayley et al. (1961) 

A correlation for the inside wall of vertical vessels under natural convection in laminar and 

turbulent flow was proposed by F.J. Bayley et al. (1961) [155] [185]. The correlation is of the 

form: 

 𝑁𝑢𝑥 = 0.16 ∙ [𝑅𝑎𝑥 ∙
𝑟

𝑥
]
0.3

 (278) 

where 𝑥 is the total height of cylindrical wall and 𝑟 is the radius of the vessel. 

 

3.3.4.2 Colwell-Welty (1973) 

R.G. Colwell and J.R. Welty (1973) [155] [203] developed a correlation for creeping flow 

 (1 · 10−3 ≤ 𝑅𝑎 ≤ 25) in natural convection within an open-ended channel: 

 𝑁𝑢𝐷 = 0.68 ∙ (𝑅𝑎)0.165, (279) 

where the characteristic length 𝐷 in the Nusselt number 𝑁𝑢𝐷 is the distance between plates. 

 

3.4 TWO PHASE SODIUM FLOW 

The patterns of two-phase flow are described in Fig. 46 below. The pattern with the lowest void 

fraction is the bubbly flow. It continues with slug flow, where larger bubbles appear. In the 

churn flow rising numbers of larger gaseous bubbles start to propagate. In the annular flow the 

centre is filled with the gaseous phase and the liquid phase is on the edge which makes the 

annular shape. The last phase is the mist flow, where only the gaseous phase is. 
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FIG. 46. Two-phase flow patterns for increasing void fractions 

 

3.4.1 Kucherov-Rikenglaz-Silver-Simpson (1960) 

A simple expression for the interfacial evaporation/condensation rate through an interface of 

area 𝐴 was proposed by R.Y. Kucherov and L.E. Rikenglaz in 1960 [204] and also by Silver 

and Simpson in 1961 as referred in [205]: 

 Γ = 𝐴 (
2𝜎

2 − 𝜎
) (

𝑀

2𝜋𝑅
)

1
2
[

𝑃𝑣

√𝑇𝑣

−
𝑃𝑙

√𝑇𝑙

] (280) 

with 𝑀 the molecular mass of sodium, 𝑅 the universal gas constant, and (𝑃𝑖 , 𝑇𝑖) the pressure 

and temperature of the phases (𝑖 = 𝑙 𝑜𝑟 𝑣) at the interface. In principle, this correlation is valid 

for low condensation rates, with a condensation/evaporation coefficient 0 ≤ 𝜎 ≤ 1 accounting 

for interactions between molecules approaching the interface with those leaving the interface. 

In practice, it has been used in sodium boiling cases with values of 𝜆 =
2𝜎

2−𝜎
 ranging between 

20 and 50 [206]. 

The above correlation is a simple approach of the kinetic theory. As it is based on the basic 

mechanism of evaporation and condensation at a plane liquid-vapour interface, it is applicable 

to any fluid, like water or sodium. Only the correction factor A has to be different and based on 

resulting predictions. 

The correlation can have different forms according to the condensation rate. The one written 

here is valid only for low condensation rates. These models ignore the non-equilibrium 

interactions between the cold molecules leaving the interface and the hot molecules 

approaching it. It is assumed that the molecular fluxes of the evaporating or condensing streams 

can be derived from kinetic theory for each component alone and the results superimposed to 

obtain the net flux, which is not correct. But there are considerable difficulties to solve a more 

complex problem. 

This approach uses the perfect gas law and is only valid for fluids without non-condensable gas. 

The presence of even a small quantity of non-condensable gas in the condensing vapour has a 

profound influence on the resistance to heat transfer in the region of liquid-vapour interface. 

 

3.4.2 Aladev et al. (1968) 

In 1968 I.T. Aladev et al. recommended the following boiling heat transfer coefficient for 

potassium in pipes [207] [208]: 
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 ℎ = 0.57 𝑞0.7𝑝0.15 (281) 

It is valid for 0.1 ≤ 𝑞 (𝑖𝑛 
𝑀𝑊

𝑚2 ) ≤ 1.0 ℎ is the heat transfer coefficient in 
𝑊

𝑚2𝐾
, q is the heat flux 

in 
𝑊

𝑚2 and 𝑝 is the pressure in kPa. 

 

3.4.3 Subbotin et al. (1969) 

In 1969 V.I. Subbotin et al. studied heat transfer in the boiling of metals providing important 

data regarding heat production and the critical thermal fluxes in the boiling of certain 

substances. This provided an opportunity of securing generalized relationships for calculating 

heat transfer in the boiling of metals [209]. In the developed boiling of liquids, including metals, 

the heat transfer coefficient ℎ may be described by a relation of this type: 

 ℎ = 𝐴𝑞𝑛𝑝𝑚 (282) 

where A is a coefficient, 𝑞 is the specific thermal flux and 𝑝 is the pressure. For liquid metals 

like Na, K, Cs and other alkali metals, it can take the expression: 

 ℎ = 8 [
𝑙𝑟𝛾

𝜎𝑇2
]

1
3
𝑞

2
3 [

𝑃

𝑃𝑐𝑟𝑖𝑡
]
0.45

 for 
𝑃

𝑃𝑐𝑟𝑖𝑡
≤ 10−3 (283) 

 ℎ = [
𝑙𝑟𝛾

𝜎𝑇2
]

1
3
𝑞

2
3 [

𝑃

𝑃𝑐𝑟𝑖𝑡
]
0.15

 for 10−3 ≤
𝑃

𝑃𝑐𝑟𝑖𝑡
≤ 2 ∙ 10−2 (284) 

It is valid for the reduced pressure range ~4 ∙ 10−5 to 2 ∙ 10−2, both under conditions of free 

convection and forced motion, when the vapour fraction in the flow is not greater than 

~15 𝑡𝑜 20%. The possibility of using the previous formulas for calculating the heat transfer 

coefficients in the boiling of sodium, potassium, and caesium at higher pressures, and also in 

the boiling of other alkali metals, requires further experimental verification according to the 

authors. 

 

3.4.4 Kovalev-Zhukov (1973) 

In 1973, S.A. Kovalev and V.M. Zhukov described an experimental study of heat transfer 

during sodium boiling on the surface of a horizontal tube under the conditions of low pressure 

and natural convection. In order to find out the dependence of the heat transfer coefficient on 

the pressure, the experimental data were treated in the coordinates of ℎ 𝑞0.7⁄  and 𝑝. Within the 

range of 7-35 mm of Hg, all the data obtained were satisfactorily described by a straight line 

having a slope of 0.25. The values of the heat transfer coefficient and pressure are well 

described within the studied range of loads by the relation [210]: 

 ℎ = 0.8 𝑝0.25 𝑞0.7 (285) 

where 𝑝 is in mm of Hg and ℎ in 
𝑘𝑐𝑎𝑙

𝑚2ℎ°𝐶
. 
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3.4.5 Gorlov et al. (1973) 

In 1973 I.G. Gorlov et al. presented a study with heat transfer data obtained on potassium 

boiling in a straight tube under pressures up to 17 ∙ 105 𝑁

𝑚2
(𝑇𝑠 ≤ 1460 𝐾) . In boiling 

experiments subcooled potassium was supplied to the test section. Boiling started with great 

superheating relative to the saturation temperature, due to more difficult conditions of vapour 

formation compared to those for conventional liquids. Experimental studies of heat transfer to 

boiling potassium in molybdenum and stainless-steel tubes showed that ℎ = ℎ(𝑝𝑛). The latter 

points to the fact that the above investigations probably dealt with nucleate boiling in the liquid 

film wetting the tube wall. For this vaporisation mechanism of potassium, the following 

relationship was obtained [211]: 

 ℎ = 0.57 𝑝0.15 𝑞0.7 (286) 

where ℎ units are 
𝑊

𝑚2𝐾
. The investigation covered the following ranges of the parameters: 

𝑝 = (2 − 17) ∙ 105 𝑁

𝑚2 (𝑇𝑠 up to 1460 K), 

𝑞 = (0.7 − 1.8) ∙ 106 𝑊

𝑚2
, 

𝑥𝑎 = 0.02 –  0.75 

𝐺 = 200 –  660
𝑘𝑔

𝑚2𝑠
 

 

3.4.6 Dwyer (1976) 

O.E. Dwyer (1976) [212] compared experimental data with theoretical correlations for 

predicting liquid metal nucleate-boiling heat transfer rates. According to the authors the blind 

use of any of the so-called theoretical correlations is indeed risky. However, under certain 

conditions, some of them may be used with confidence if the proper value of specific 

coefficients (α) is known, if they are not used at low pressures (i.e. below 1/1000 of the critical 

pressure) and if surface coefficient for the particular heating surface (𝑚1) is known. A judicious 

choice of a theoretical equation can be made on the basis of comparison. Overall, the 

Kutateladze correlation as slightly modified by Minchenko appears to be the most generally 

dependable on ℎ for predicting the influence of several parameters when alkali metals boil on 

commercially smooth stainless-steel surfaces and at a reduced pressure greater than 0.001. 

 𝑁𝑢𝑏 ≡ 
𝑞

(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝜆𝑙
[

𝜎

𝑔(𝜌𝐿 − 𝜌𝑉)
]

1
2

= 𝛼 (𝑅𝑒𝑏)
𝑚1(𝑃𝑟𝐿)

𝑚2(𝐾𝑝)
𝑚3

 (287) 

 𝑅𝑒𝑏 ≡ 
𝑞

𝑐𝑣𝜌𝑉𝜐𝐿
[

𝜎

𝑔(𝜌𝐿 − 𝜌𝑉)
]

1
2
 (288) 

 𝐾𝑝 ≡ 
𝑞

[𝑔𝜎(𝜌𝐿 − 𝜌𝑉)]
1
2

 (289) 

 𝛼 = 7 · 10−4, 𝑚1 = 0.7,𝑚2 = 0.35,𝑚3 = 0.7 for Kutateladze correlation 

𝛼 = 7 · 10−4,  𝑚1 = 0.7,  𝑚2 = 0.7,  𝑚3 = 0.7 for Minchenko correlation 
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where 𝑞  is the heat flux, 𝑇𝑤  the wall temperature, 𝑇𝑠𝑎𝑡  the saturation temperature, 𝜆𝑙  the 

thermal conductivity of the liquid, 𝜎  the surface tension of the liquid, 𝑔  the gravitational 

acceleration, 𝜌𝐿  and 𝜌𝑣  the liquid and vapour densities, respectively, 𝑐𝑣  the latent heat of 

vaporisation and 𝜈𝐿 the liquid kinematic viscosity. The value of 𝛼, parameter depending on the 

liquid metal/heating surface system, is to be estimated from experimental data. Dwyer also 

noted that  

 

“unless the particular situation to be confronted is familiar and certain correlation 

with a given set of constants is known for adequately representing it, it is better to 

try to find an empirical correlation based on data from experimental conditions that 

match or closely simulate this data. Further, one should be cautious when applying 

such a correlation to a situation that represents a substantial extrapolation of one or 

more of the important variables beyond the limits on which the correlation is based. 

The results of accurate experimental data under a variety of conditions over a wide 

range of pressure and where all the important independent variables have been 

carefully controlled are needed before generalized heat transfer correlation for 

nucleate boiling of liquid metals can be improved further”  [212] 

 

3.4.7 Zeigarnik (1980) 

In 1980 Y.A. Zeigarnik et al. performed experiments to investigate heat transfer of sodium 

boiling for forced flow in a tube [208] [213]. The heat flux on the wall was up to 1.1
𝑀𝑊

𝑚2 , mass 

velocity from 150 to 400 
𝑘𝑔

𝑚2𝑠
, sodium vapour quality up to 0.45 and system pressure from 100 

to 200 kPa. A total temperature difference between the wall and the saturation temperatures in 

the range from 1.5 to 3°C was observed. The experimental data is transformed to a correlation 

of the temperature difference between the wall and the saturation temperatures as a function of 

the heat flux: 

 ∆𝑇 = 2.12 ∙ 10−6𝑞 + 0.726 (290) 

It is valid for 0.2 ≤ 𝑞(𝑖𝑛 
𝑀𝑊

𝑚2 ) ≤ 1.2  and 𝑝 = 100 𝑘𝑃𝑎 

3.4.8 Carbajo-Rose (1984) 

The correlation proposed by J.J. Carbajo and S.D. Rose in 1984 [214] is of interest 

for dryout studies. The authors noted that  

 

“under certain postulated accident conditions for a Liquid Metal Fast Breeder 

Reactor (LMFBR), such as the failure of the shutdown heat removal system 

(SHRS), sodium boiling and clad dryout might occur in the fuel assemblies. It is 

important to predict the time from boiling inception to dryout, since sustained clad 

dryout will result in core damage” [214] 

  

In general, this work is based on 21 boiling tests which resulted in dryout, a 19-pin full-length 

simulated LMFBR fuel assembly and from a 61-pin full-length simulated LMFBR fuel 

assembly. The proposed correlation  
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“was obtained from experimental facilities with powers from 4.1 to 15.3 
𝑘𝑊

𝑝𝑖𝑛
, inlet 

velocities between 0.22 and 1.35 
𝑚

𝑠
, corresponding to inlet flows between  

4.6 · 10−6 and 26.3 · 10−6 
𝑚3

𝑠
 per pin, test section inlet temperatures from 386°𝐶 

to 450°𝐶, boiling temperatures from 913°𝐶 to 982°𝐶, bundle housing perimeters 

of 0.11 and 0.20 m and flow areas of 3.7 · 10−4 and 12.9 · 10−4 𝑚2” [214] 

 

The authors also stated that “the correlation was evaluated with other non-dryout boiling and 

non-boiling runs and good agreement was obtained. The correlation could predict if boiling 

occurred (by using factor 𝐾1), and for how long it could be maintained”. 

The experimental tests were performed as follows:  

 

“for each specified bundle power, an initial steady-state high sodium flow was 

established, for which sodium boiling did not occur in the bundle. The temperature 

at the outlet of the test section was 700°𝐶. Then, using a programmable pump 

control system, the flow was reduced to a lower value and boiling occurred. The 

flow at the beginning of the transient is called initial flow Q. In order to correlate 

the data, two separate factors were chosen: 

 𝐾1 =
𝑃

𝑄𝜌𝑖𝑛∆ℎ𝑠𝑢𝑏
 (291) 

and 

 𝐾2 = 103
𝐿

𝑁𝑣
=

103𝐿𝐴

𝑁𝑄
 (292) 

where 𝑃 is total input power (𝑘𝑊), 𝑄 is initial flow (𝑚3 𝑠⁄ ), v is inlet velocity 

(𝑚 𝑠⁄ ), 𝜌𝑖𝑛 is the density of the sodium at the inlet (𝑘𝑔 𝑚3⁄ ), ∆ℎ𝑠𝑢𝑏 is the specific 

inlet enthalpy of subcooling or the difference between liquid saturation and inlet 

enthalpies of sodium (𝑘𝐽 𝑘𝑔⁄ ), L is the perimeter of the bundle housing (𝑚), 𝐴 is 

the flow area (𝑚2) and 𝑁 is the number of fuel pins in the bundle. 

The factor 𝐾1 , is dimensionless, and the factor 𝐾2  has the dimension of a time 

(seconds). Factor 𝐾1 is the ratio of the total input power to the power needed to 

bring all the sodium inlet flow to saturated liquid at the downstream end of the 

heated section. A value of one for 𝐾1 will produce liquid saturation conditions for 

the sodium at the end of the heated section. Values larger than one will produce 

boiling. Values below one will produce only local boiling or no boiling. Boiling-to-

dryout times are expected to increase with decreasing value of 𝐾1. By the trial and 

error method, the following correlating parameter 𝐼𝑑 was obtained” ” [214] 

 

 𝐼𝑑 =
√𝐾2

𝐾1
 (293) 

The dryout time, t𝑑 is defined as the time from boiling inception to dryout. Two distinct regions 

were identified for the forced convection and for the natural convection tests. However, most 

of the tests were within 25% of the estimated fitting curve. 
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The authors obtained a two-part correlation as follow:  

“for forced convection, using the least-squares method for the logarithm of the 

dryout time, the following expression was obtained: 

 𝑡𝑑 = 100.76 𝐼𝑑 – 0.32 (294) 

valid for: 1.6 ≤ 𝐼𝑑 ≤ 2.5  corresponding to a range 8 𝑠 ≤ 𝑡𝑑 ≤ 39 𝑠 . The least-

squares correlation coefficient was 0.76 and the maximum deviation was 31%. 

For natural convection, the following curve was obtained: 

 𝑡𝑑 = 100.32 (𝐼𝑑)3 – 0.98 (𝐼𝑑)2+2.7 (295) 

valid for 2.5 ≤ 𝐼𝑑 ≤ 3.15 corresponding to a range of 39 𝑠 ≤ 𝑡𝑑 ≤ 1000 𝑠. The 

least-squares correlation coefficient was 0.85 and the maximum deviation was 

29%. 

In order to use this correlation, factor 𝐾1 should be calculated first. If this factor is 

less than one, no boiling occurs. If 𝐾1 ≥ 1, then factor 𝐾2 and the parameter 𝐼𝑑, 

should be calculated. 

If 𝐼𝑑 ≤ 1.6, 𝑡𝑑 ≤ 8 𝑠, dryout occurs very rapidly. 

If 1.6 ≤ 𝐼𝑑 ≤ 2.5, is typical for forced convection runs. 

If 2.5 ≤ 𝐼𝑑 ≤ 3.15, is typical for natural convection runs. 

If 𝐼𝑑 ≥ 3.15, then 𝑡𝑑 ≥ 1000 s, a very long boiling time, which can be considered 

as no dryout”  [214]. 

 

3.4.9 Sorokin (2002) 

In 2002, G.A. Sorokin et al. proposed the following heat transfer relation for pool boiling and 

pin bundles for potassium and NaK [208] [215]: 

 

ℎ = 𝐴𝑞𝑚𝑝𝑛 

𝐴 = 4.5 − 7.5 

𝑚 = 0.7 

𝑛 = 0.1 − 0.15 

(296) 

This equation is valid for 0.01
𝑀𝑊

𝑚2 ≤ 𝑞 ≤ 1.0
𝑀𝑊

𝑚2  and 40 𝑘𝑃𝑎 ≤ 𝑝 ≤ 120 𝑘𝑃𝑎. 

 

3.4.10 Dunn (2012) 

The sodium voiding model in SAS4A/SASSYS-1 (F.E. Dunn model) [216] is a multiple bubble 

slug ejection. As stated by the author,  

 

“The main purposes of this model are to predict the rate and extent of voiding for 

the voiding reactivity calculations and to predict the heat removal from the cladding 

surface, after the onset of voiding, for the fuel and cladding temperature 

calculations. 
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Voiding is assumed to result in the formation of bubbles that fill the whole cross 

section of the coolant channel, except for a film of liquid sodium that is left on the 

cladding and on the structure. Up to nine bubbles, separated by liquid slugs, are 

allowed in the channel at any time. The film is treated as a static film of a thickness 

that changes due to vaporisation or condensation… 

…The extent of voiding is determined mainly by liquid slug motion. The bubble 

pressures at the bubble-slug interfaces drive the liquid slugs. Therefore, the voiding 

calculation couples vapour or gas pressure calculations for the bubbles with 

momentum equations for the liquid slugs. If a bubble is small, it is assumed that the 

vapour or gas pressure within the bubble is constant throughout the bubble, and the 

bubble pressure is computed using a uniform vapour pressure model. For larger 

bubbles, the vapour pressure is calculated from a pressure gradient model” [216]. 

In terms of the cladding-vapour resistance, the heat transfer coefficient between cladding and 

sodium vapour bubble 

 “takes the form of: 

 ℎ =
𝜆

𝑤𝑓𝑒
 (297) 

where 𝜆 is the thermal conductivity of liquid sodium and 𝑤𝑓𝑒 is the thickness of 

liquid sodium film on the cladding. Such relation is valid if the cladding is more 

than 100 K hotter than the vapour. Then the liquid film is assumed to be at the same 

temperature as the vapour, which amounts to it, thus neglecting the thermal 

resistance of the vapour itself. If the cladding is more than 100 K colder than the 

vapour, then the liquid film is assumed to be at the same temperature as the cladding 

and so the resistance of the film is neglected. The heat transfer coefficient from the 

vapour to the film is then a condensation coefficient for which a reasonable value 

is” [216]: 

 ℎ𝑐𝑜𝑛𝑑 = 6 · 104  
𝑊

𝑚2𝐾
 (298) 

In the intermediate temperature range, “the heat transfer coefficient is calculated as an 

interpolation of the condensation coefficient and the conductive film resistance according to 

the formula”: 

 ℎ = ℎ𝑐𝑜𝑛𝑑 +

𝜆
𝑤𝑓𝑒

− ℎ𝑐𝑜𝑛𝑑

1 + 𝑒𝑥𝑝 (
𝑇𝑣𝑎𝑝𝑜𝑟 − 𝑇𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

2
)

 (299) 

 

3.4.11 Qiu et al. (2015) 

In 2015 Z.C. Qiu et al. published a paper on the experimental research on the thermal-hydraulic 

characteristics of sodium boiling in an annulus. The authors concluded that the experimental 

data indicate that the heat transfer is achieved by evaporation at the vapour–liquid interface for 

a well-purified liquid metal under forced motion conditions. Based on the data obtained in this 

study, a new correlation for boiling heat transfer coefficient (in 𝑊 𝑚2𝐾⁄ ), was proposed as 

[208] being: 
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 ℎ = 5 𝑞0.7𝑝0.15 (300) 

The deviation between the boiling heat transfer coefficient data obtained from the experiment 

and the calculated values is within 25%. 

 

3.4.12 Summary of heat transfer correlations for two-phase sodium flow 

Table 29 presents the list of heat transfer correlations collected for two-phase sodium flow. 

 

TABLE 29. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR TWO-PHASE 

SODIUM FLOW 

Kucherov-

Rikenglaz-

Silver-

Simpson 

(1960) 

[204] [205] 

interfacial evaporation/condensation rate, low condensation rates 

Γ = 𝐴 (
2𝜎

2 − 𝜎
) (

𝑀

2𝜋𝑅
)

1
2
[

𝑃𝑣

√𝑇𝑣

−
𝑃𝑙

√𝑇𝑙

] 

0 ≤ 𝜎 ≤ 1, 20 ≤ 𝜆 ≤ 50 

Aladev et al. 

(1968) 

[207] [208] 

ℎ = 0.57 𝑞0.7𝑝0.15 

0.1 ≤ 𝑞 ≤ 1.0 (𝑀𝑊 𝑚2⁄ ) 

Subbotin et 

al. (1969) 

[209] 

for 
𝑃

𝑃𝑐𝑟𝑖𝑡
≤ 10−3:  ℎ = 8 [

𝑙𝑟𝛾

𝜎𝑇2
]

1

3
𝑞

2

3 [
𝑃

𝑃𝑐𝑟𝑖𝑡
]
0.45

 

for 10−3 ≤
𝑃

𝑃𝑐𝑟𝑖𝑡
≤ 2 ∙ 10−2: ℎ = [

𝑙𝑟𝛾

𝜎𝑇2
]

1

3
𝑞

2

3 [
𝑃

𝑃𝑐𝑟𝑖𝑡
]
0.15

 

Valid under free convection and forced motion, when the vapour fraction 

𝑥 < 15 𝑡𝑜 20%. 

Kovalev-

Zhukov 

(1973) 

[210] 

ℎ = 0.8 𝑝0.25 𝑞0.7 

p in mm of Hg and q in 𝑘𝑐𝑎𝑙/𝑚2ℎ °𝐶 

Gorlov et al. 

(1973) 

[211] 

ℎ = 0.57 𝑝0.15 𝑞0.7 (
𝑊

𝑚2𝐾
) 

𝑝 = (2 − 17) ∙ 105 
𝑁

𝑚2
 , 𝑇𝑠 ≤ 1460 𝐾, 𝑞 = (0.7 − 1.8) ∙ 106 

𝑊

𝑚2
, 

𝑥𝑎 = 0.02 −  0.75, 𝑊𝑝 = 200 –  660 
𝑘𝑔

𝑚2𝑠
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TABLE 29. SUMMARY OF HEAT TRANSFER CORRELATIONS FOR TWO-PHASE 

SODIUM FLOW 

Dwyer (1976) 

[212] 

𝑁𝑢𝑏 ≡ 
𝑞

(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝜆𝑙
[

𝜎

𝑔(𝜌𝐿 − 𝜌𝑉)
]

1
2

= 𝛼 (𝑅𝑒𝑏)
𝑚1(𝑃𝑟𝐿)

𝑚2(𝐾𝑝)
𝑚3

 

𝑅𝑒𝑏 ≡ 
𝑞

𝑐𝑣𝜌𝑉𝜐𝐿
[

𝜎

𝑔(𝜌𝐿 − 𝜌𝑉)
]

1
2
 

𝐾𝑝 ≡ 
𝑞

[𝑔𝜎(𝜌𝐿 − 𝜌𝑉)]
1
2

 

for Kutateladze correlation: 𝛼 = 7 · 10−4, 𝑚1 = 0.7,  𝑚2 = 0.35,𝑚3 = 0.7 

for Minchenko correlation: 𝛼 = 7 · 10−4,  𝑚1 = 0.7,  𝑚2 = 0.7,  𝑚3 = 0.7 

Zeigarnik 

(1980) 

[208] [213] 

∆𝑇 = 2.12 ∙ 10−6𝑞 + 0.726 

0.2 ≤ 𝑞 ≤ 1.2 (
𝑀𝑊

𝑚2 ), 𝑝 = 100 𝑘𝑃𝑎 

Carbajo-Rose 

(1984) 

[214] 

𝐾1 =
𝑃

𝑄𝜌𝑖𝑛∆ℎ𝑠𝑢𝑏
 

𝐾2 = 103
𝐿

𝑁𝑣
=

103𝐿𝐴

𝑁𝑄
 

𝐼𝑑 =
√𝐾2

𝐾1
 

for forced convection: t𝑑 = 100.76 I𝑑 – 0.32, 1.6 ≤ 𝐼𝑑 ≤ 2.5 

for natural convection: t𝑑 = 100.32 (I𝑑)3 – 0.98 (I𝑑)2+2.7, 2.5 ≤ 𝐼𝑑 ≤ 3.15 

Sorokin 

(2002) 

[208] [215] 

ℎ = 𝐴𝑞𝑚𝑝𝑛 

𝐴 = 4.5 − 7.5, 𝑚 = 0.7, 𝑛 = 0.1 − 0.15, 

0.01 ≤ 𝑞 ≤ 1.0 (𝑀𝑊/𝑚2), 40 𝑘𝑃𝑎 ≤ 𝑝 ≤ 120 𝑘𝑃𝑎 

Dunn (2012) 

[216] 

ℎ𝑐𝑜𝑛𝑑 = 6 · 104  
𝑊

𝑚2𝐾
 

ℎ = ℎ𝑐𝑜𝑛𝑑 +

𝜆
𝑤𝑓𝑒

− ℎ𝑐𝑜𝑛𝑑

1 + 𝑒𝑥𝑝 (
𝑇𝑣𝑎𝑝𝑜𝑟 − 𝑇𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

2
)

 

Qiu et al. 

(2015) 

[208] 

ℎ = 5 𝑞0.7𝑝0.15 
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3.5 MODELLING OF HEAT TRANSFER IN FUEL PINS 

The purpose of this section is to support some of the correlations presented from Russian 

investigation and to present the assessment needed to evaluate experimental tests studying the 

heat transfer in fuel pin assemblies [160][217][218]. It describes approximate equations to 

evaluate the temperatures in the fuel pin surfaces as well as in the coolant in a non-dimensional 

way. The theory and methodology of thermal modelling of fuel pins were proposed and 

developed by P. Ushakov in 1967 [217] and have been successfully applied to several Russian 

sodium cooled fast reactor designs. The approach allows to design an experimental model of 

the fuel pin that does not exactly reflects the pin geometry, heat source and conductivities of 

fuel, coolant and cladding but, nevertheless, represent nearly the same relative temperature 

distributions.  

Assuming the fuel pin being composed of ‘n’ layers with contact thermal resistance between 

fuel and cladding or between cladding layers, (Fig. 47-a), the equation for non-dimensional 

temperatures in the fuel pin and coolant can be written as follows: 

𝑇𝑖 =
𝑡𝑖𝜆𝑖

�̅�𝑅𝑛+1
= 𝑓1(𝜉, 𝑧, 𝜑, 𝑥, 𝜉1, 𝜉2, … , 𝜉𝑛, Λ0, Λ1, … , Λ𝑛, 𝜎1, 𝜎2, … , 𝜎𝑛, 𝑅𝑒, 𝑃𝑒) (301) 

 

𝑇𝑓 =
𝑡𝑓𝜆𝑓

�̅�𝑅𝑛+1
= 𝑓2(𝜉, 𝑧, 𝜑, 𝑥, 𝜉1, 𝜉2, … , 𝜉𝑛, Λ0, Λ1, … , Λ𝑛, 𝜎1, 𝜎2, … , 𝜎𝑛, 𝑅𝑒, 𝑃𝑒) (302) 

 

where 𝑇𝑖  and 𝑇𝑓  are non-dimensional internal cladding layer and coolant temperatures, 

respectively; 

𝑡𝑖 and 𝑡𝑓 are temperatures of internal pin layer i and coolant; 

�̅� is heat flux averaged over perimeter; 

𝜆𝑓 is coolant conductivity; and 

𝑅𝑛+1 is the external pin radius. 

It is assumed in Eqs. (301) and (302) that both non-dimensional temperatures can be defined as 

functions of the following quantities: 

𝜉 = 𝑟
𝑅𝑛+1

⁄ , z, 𝜑 are non-dimensional coordinates in radial, axial and azimuthal directions, 

respectively; 

𝑥 = 𝑃
2𝑅𝑛+1

⁄ is the pitch-to-diameter ratio (P is the pitch of pin array); 

 n is the number of cladding layers in the pin; 

 𝜉𝑖 =
𝑅𝑖

𝑅𝑛+1
⁄  (𝑖 = 1,… , 𝑛) is the non-dimensional thickness of the cladding layer 𝑖; 

 Λ𝑖 =
𝜆𝑖

𝜆𝑓
⁄  ( 𝑖 = 1,… , 𝑛 ) is the non-dimensional thermal conductivity of fuel ( Λ0 ) and 

claddings (
Λ1

Λ𝑛
⁄ );  
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𝜎𝑖 =
𝜙𝑖𝜆𝑖−1

𝑅𝑛−1
⁄ , (𝑖 = 1, … , 𝑛) is a non-dimensional contact resistance between fuel and 

cladding (𝜎1) and between claddings (𝜎2, 𝜎3, … , 𝜎𝑛); 

 𝜙𝑖 is the thermal resistance; 

 �̅� =
𝑞𝑣𝑅1

2

2𝑅𝑛+1
⁄  is the mean heat flux at the pin surface (𝜉 = 1);  

𝑅𝑒 =
�̅�𝑑ℎ

𝑣⁄  is the Reynolds number; 

 𝑃𝑒 =
�̅�𝑑ℎ

𝛼⁄  is the Peclet number; 

 �̅� is the mean coolant velocity;  

𝑑ℎ is the hydraulic diameter of the channel;  

𝑣 is the kinematic viscosity; and 

 𝛼 is the thermal diffusivity.  

These parameters are also indicated in Fig. 47-a. 

 

 
FIG. 47 Geometry and nomenclature for the fuel pin model  

 

Equations (301) and (302) are derived from the analysis of the heat conduction equations in a 

heated pin and the heat transfer to the coolant assuming the following: i) heat transfer is steady-

state and fully-developed; ii) coolant and pin properties do not depend on temperature; iii) the 

volumetric heat source in the pin is uniform and isotropic; iv) the pin is symmetrical in its 

properties and geometry; v) the second derivative of temperature with respect to the vertical 

axis z is negligible; and vi) the turbulence characteristics of the coolant flow are defined only 

by the geometry and properties of the channel and by the coolant velocity. 
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In experimental simulation, parameters 𝑥,
Λ1

Λ𝑛
⁄ , 𝑅𝑒, 𝑃𝑒 in a model are easy to get from the 

real fuel pin. Difficulties arise when the experimental pin is heated with volumetric power 

source (modelling Λ0) and features contact thermal resistance (𝜎𝑖). If the pins are considered as 

free of contact thermal resistance, it is difficult to provide an ideal thermal contact between the 

cladding layers in the experimental model. Therefore, it is difficult to reproduce the relative 

thickness of the cladding layers in experiments. 

The essence of the thermal modelling of fuel pins [160] [217] [218] consists of the integration 

of the parameters responsible for azimuthal thermal conductivity of the pin, namely Λ0, 
Λ1

Λ𝑛
⁄ , 

𝜉1
𝜉𝑛

⁄ , 
𝜎1

𝜎𝑛
⁄ , into a single parameter of equivalent thermal conductivity 𝜀𝑘  and in the 

equivalence of parameters 𝜀𝑘0  for the real fuel pin and for the experimental model. These 

parameters are calculated on the basis of the main temperature harmonics in Fourier series 

expansion. Such parameter integration was confirmed by the analytical solution of the fuel pin 

heat conduction equation. N.I. Buleev was the first who solved this problem applying it to a 

cylindrical pin containing fuel and one cladding. The general solution of the problem on 

cylindrical pin embedded in ‘n’ cladding layers and having the contact interlayers was 

performed by P.A. Ushakov [217] where he derived the relationship for 𝜀𝑘0 . 

Using of 𝜀𝑘0 allows to derive the following criterion equations: 

  𝑇𝑓 ≈ Ψ1(𝜉, 𝑧, 𝜑, 𝜀𝑘0, 𝑅𝑒, 𝑃𝑒) (303) 

  𝑁𝑢 ≈ Ψ2(𝑧, 𝜀𝑘0, 𝑅𝑒, 𝑃𝑒) (304) 

The technical concepts of thermal modelling were developed taking into account these 

equations. 

The major practical issue is evaluating the accuracy of approximate thermal modelling of a fuel 

pin. Examples of well simulated fuel pins are found in the reactors (BN-350, BOR-60, BN-600, 

BN-800) with low fuel thermal conductivity (𝑙0~1.8 − 2.9 𝑊/𝑚𝐾). At the inner surface of the 

pin the uniform heat flux condition should be met. Dependence of parameter 𝜀𝑘 on thermal 

resistance or on a number of harmonics for such a pin and their simulators are similar in kind. 

Values of 𝜀𝑘 are slightly different (not more than by 5%) from each other. 

To calculate 𝜀𝑘 for the fast reactor pin, the following relations can be used: 

𝜀𝑘 =
𝜆𝑤

𝜆𝑓

1 + 𝑥1 + (𝜎 +
𝑥1 + 𝑥0

𝑥1 − 𝑥0
) (1 − 𝑥1) − 𝑚 [1 + 𝑥1 + (𝜎 +

𝑥1 + 𝑥0

𝑥1 − 𝑥0
) (1 − 𝑥1)]

1 − 𝑥1 + (𝜎 +
𝑥1 + 𝑥0

𝑥1 − 𝑥0
) (1 + 𝑥1) − 𝑚 [1 − 𝑥1 + (𝜎 +

𝑥1 + 𝑥0

𝑥1 − 𝑥0
) (1 + 𝑥1)]

 (305) 

where 𝑥0 = 𝜉0
2𝑘, 𝜉0 = 𝑅0 𝑅2⁄ , 𝑥1 = 𝜉1

2𝑘, 𝜉1 = 𝑅1 𝑅2⁄ , 𝑚 = (𝜆𝑤 − 𝜆0) (𝜆𝑤 + 𝜆0)⁄ ,  
𝜎 = 𝑘𝜆𝑤Φ 𝑅1⁄  

The parameters related to the above description are specified in Fig. 47-c. The number of the 

main harmonics in Fourier series is accepted to be equal 𝑘 = 𝑘0 = 6 for the regular part of the 

bundle and 𝑘 = 𝑘0 = 1 for the edge pins. 

The value of the contact thermal resistance originated between the stainless-steel and dioxide 

of uranium may be defined in accordance with [219], and those between the helix and insulation 

were defined in experiments [220] (𝑅𝑡 = 1.3 ∙ 10−2 𝑚2𝐾 𝑊⁄ ). 
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An internal structure of the pin has no effect on the value of 𝜀𝑘 for the most part, as shown in 

[220]. Therefore, 𝜀𝑘 can be predicted with the single pipe formula (see nomenclature in Fig. 

47-b): 

 𝜀𝑘 =
𝜆𝑤

𝜆𝑓

1 − (
𝑅3

𝑅4
⁄ )

2𝑘

1 + (
𝑅3

𝑅4
⁄ )

2𝑘 (306) 

3.6 HEAT TRANSFER CORRELATIONS USED IN SYSTEM CODES 

Table 30 summarizes the information as to what heat transfer correlations are commonly being 

used nowadays across the system codes used by experts performing safety analysis of the 

sodium cooled fast reactors for pipes or pin bundle geometries. Most codes do allow the user 

to specify or input other heat transfer correlation but for most applications typically default 

options are selected. 

TABLE 30. SUMMARY OF HEAT TRANSFER CORRELATIONS USED IN SYSTEM 

CODES 

CODE PIPE ROD BUNDLE 

SAM Seban-Shimazaki (1951) Schad-Kazimi-Carelli (1974) 

RELAP 5 & 7 Seban-Shimazaki (1951) Schad-Kazimi-Carelli (1974) 

TRACE Seban-Shimazaki (1951) Ushakov et al. (1977) 

ANTEO+ 
Cheng-Tak (2004) and 

Sleicher-Rouse (1975) 
Mikityuk (2009) 

ATHLET 
Lyon (1949), Skupinski (1965), 

and Notter-Sleicher (1973) 

Ushakov et al. (1977), Mikityuk 

(2009), Gräber-Rieger (1972) 

ATHENA Seban-Shimazaki (1951) Kazimi-Carelli (1974) 

CATHARE 

Dittus-Boelter (1930), Lyon 

(1949), Skupinski (1965), 

Borishanski (1983) 

Dittus-Boelter (1930), Lyon 

(1949), Skupinski (1965) 

HYDRA 

(IBRAE) 
-- Ushakov (1977) 

MARS-LMR Aoki (1973) 
Modified Schad (1976) 

Gräber-Rieger (1972) 

SAS4A/SAS-SFR Seban-Shimazaki (1951) -- 
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4 FRICTION FACTORS AND PRESSURE DROP CORRELATIONS 

While thermal properties are very different between sodium and water, hydraulic properties are 

quite similar. For instance, sodium viscosity at nominal temperature (~400°𝐶) is of the same 

order of magnitude as water at 100°𝐶. Liquid density at operational temperature is quite similar 

as well. Hence, it is possible to realize experimental studies with water as a simulant fluid to 

characterize sodium pressure drop in reactor components. 

As fast reactor deployment brought the development of specific technologies, used correlations 

have to take into account specific geometries, for example in-core (triangular-lattice rod 

bundles, wire spacers, plenum, etc.) or in heat exchangers (tube-side and shell-side). 

For performance and safety studies, it is required to be able to characterize sodium pressure 

drop for single-phase flow, as well as for two-phase flow. Regarding the latter, for regimes in 

which evaporation/condensation kinetics do not play a large role, air/water can be used as a 

simulant for sodium liquid/gas, as their density ratios are quite similar. When such an 

approximation is valid, the use of air/water allows for accurately measuring of the void fraction, 

which in turn allows one to distinguish the interfacial friction and wall friction contributions to 

the total pressure drop in two-phase flows. 

The straight tube, straight vertical shell configuration is generally preferred in IHX designs 

because of its greater simplicity of design and construction [221]. However, helical tube 

bundles such as in Superphenix steam generator or in KNK reactor were also used [45]. 

Therefore, two sections presenting single-phase and two-phase friction factors in helical/curved 

pipes have been considered in this report. 

Chapter 0 consists of three sections, describing friction factor/pressure drop correlations for 

single-phase and two-phase sodium flow and the third one presenting the friction factor 

correlations used in the system codes. 

Following the definition of the friction factor proposed by Darcy-Weisbach and Moody, all 

friction factors from different sources are transformed to the Darcy-Weisbach’s form. For 

instance, in Kakac et al. handbook [9] (Ch. 18, Ch. 7, Ch. 4 and Ch. 5) the friction factors are 

given as Fanning friction factors that are four times smaller than the Darcy-Weisbach friction 

factor Eq. (12). 

 

4.1 SINGLE PHASE FRICTION FACTOR AND 

PRESSURE DROP CORRELATIONS 

This section collects friction factors and pressure drop coefficient for single-phase flows. 

4.1.1 Flow in straight pipes 

For the estimation of the friction factor, it is frequently distinguished between smooth tubes and 

tubes with a rough surface. For smooth tubes, the theory of dimensional analysis indicates that 

the friction factor depends on the Reynolds number only as in laminar flow case. For non-

smooth tube surface, the friction factor depends both on the Reynolds number and a parameter 

𝜀 𝐷⁄ (𝜀 𝑟⁄ ) that represents the relative non-dimensional roughness, where ε is the height of the 

wall surface roughness and D (r) is the diameter (radius) of the pipe. 

Some of the correlations below presented are implicit in the friction factor, which makes them 

more complicate to be used than those which are explicit. For those correlation including 

logarithm terms, two expressions might be included, one using the natural logarithm and one 
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using the decimal logarithm. Both expressions are related using the expression log 𝑥 =

ln 𝑥
ln 10⁄  or similarly ln 𝑥 =

log 𝑥
log 𝑒⁄ . 

 

Figure 48 depicts the velocity profile u of flow in straight pipes. Here D – pipe diameter,  

ubulk – bulk velocity, umax – maximum velocity 

 

FIG. 48. Flow in straight pipes 

 

4.1.1.1 Hagen–Poiseuille (1839, 1846) 

Hagen-Poiseuille's law established that the volumetric flow rate in a pipe is directly proportional 

to the pressure drop and to the fourth power of the pipe radius, but inversely proportional to the 

viscosity of the fluid and to the length of the pipe. This relation was published first by Hagen 

in 1839, and then by Poiseuille in 1846 as a result of independent experiments [107] [222] 

[223]. For laminar flow in smooth pipes, the value of 𝑓  can be derived from the Hagen-

Poiseuille equation: 

 𝑓 =
64

𝑅𝑒
 (307) 

 

4.1.1.2 Darcy-Weisbach (1858) 

Darcy friction factor is a dimensionless quantity used in the Darcy–Weisbach equation, for the 

description of friction losses in pipe flow, as well as in an open channel flow [224]. It is also 

known as the Darcy–Weisbach friction factor, resistance coefficient or simply friction factor 

and is four times larger than the Fanning friction factor. Darcy friction factor for laminar flow 

is as follows [225]: 

 𝑓 =
64

𝑅𝑒
 𝑓𝑜𝑟 𝑅𝑒 ≤ 2000 (308) 

This expression has been verified experimentally and is valid for engineering calculations of 

both smooth and rough circular pipes for 𝑅𝑒 ≤ 2000. 

Darcy friction factor for smooth pipes and turbulent flow is as follows [193]: 

 𝑓 =
1

[1.82 ∙ log 𝑅𝑒 − 1.64]2
 (309) 

It is valid for 𝑅𝑒 ≥ 4000. 
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4.1.1.3 Blasius (1912) 

In 1912, P.R.H Blasius [226] [227] [228] provided a similar correlation for the friction factor 

of a turbulent flow (𝑅𝑒 ≥ 3 ∙ 103) within a circular pipe: 

 𝑓 =
0.316

𝑅𝑒0.25
 (310) 

The Blasius correlation is a simple model for liquid wall friction description. It gives reasonable 

results when applied to turbulent flow in smooth circular tubes. It is only a function of Reynolds 

number and it is a generic correlation which works for every fluid. It is often used in system 

codes. Then, one should be careful when using specific correlations for laminar flow and for 

turbulent flow in a rough tube. Blasius equation is explicit in 𝑓, therefore it is widely used for 

calculating turbulent flow in smooth pipes. It is valid for 4000 ≤ 𝑅𝑒 ≤ 1 ∙ 105 ( [9] Ch. 4) 

[225]. 

 

4.1.1.4 Von Karman (1930) 

In 1930 T. von Karman [229] recommended the following correlation for rough circular duct 

in the range of 𝑅𝑒 𝑒/𝐷 ≥ 70 ( [9] Ch. 4), where the roughness size becomes much higher that 

the boundary layer thickness and thus the friction factor does not depend on the Reynolds 

number: 

 
1

√𝑓
= 1.68 − 0.8815 ln (

𝜀

𝑟
) (311) 

where 𝜀 is the surface roughness and 𝑟 is the radius of the circular duct. Von Karman also 

presented a theoretical equation for smooth circular ducts with the constants adjusted to best fit 

Nikuradse’s experimental data, which is valid for very high values of Reynolds numbers: 4 ∙
103 ≤ 𝑅𝑒 ≤ 3 ∙ 106. It is also referred to as the Prandtl correlation ( [9] Ch. 18) [225]: 

 
1

√𝑓
4

= 1.737 ln(𝑅𝑒√
𝑓

4
) − 0.4 = 4 log(𝑅𝑒√

𝑓

4
) − 0.4 (312) 

This expression can be approximated as: 

 𝑓 = 4 ∙ (3.64 log 𝑅𝑒 − 3.28)−2 ≈ 4 ∙ 0.046 ∙ 𝑅𝑒−0.2 (313) 

 

4.1.1.5 Drew et al. (1932) 

In 1932 T.B. Drew et al. [230] proposed the following correlation for smooth circular duct ([9] 

Ch. 4 and Ch. 18): 

 𝑓 = 0.0056 + 0.5 ∙ 𝑅𝑒−0.32 (314) 

It is valid for the 𝑅𝑒 range of: 4 ∙ 103 ≤ 𝑅𝑒 ≤ 5 ∙ 106 ( [9] Ch. 18) 

 

4.1.1.6 Nikuradse (1933) 

In 1933 J. Nikuradse recommended a friction factor correlation for fully developed turbulent 

flow in smooth pipes [231]: 
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1

√𝑓
= 2 log(𝑅𝑒√𝑓) − 0.8 = 0.87 ln(𝑅𝑒√𝑓) − 0.8 (315) 

This correlation is the base for the turbulent smooth portion of the Moody diagram [232], 

however there are significant differences between them in the transition region from laminar to 

complete turbulent flow [107]. As Nikuradse equation is implicit for f, it needs an iteration 

procedure to be solved [233] [234]. It is also called the Karman-Nikuradse equation as in [45]. 

There is one similar correlation called the PKN (Prandtl-Karma-Nikuradse) valid for large 

Reynolds numbers 4 ∙ 103 ≤ 𝑅𝑒 ≤ 107 ( [9] Ch. 4) [106] [235] [236]: 

 
1

√𝑓
4

= 1.7372 ln(𝑅𝑒√
𝑓

4
) − 0.3946 (316) 

Explicit expressions in 𝑓 were developed based on the original Nikuradse correlation, such as: 

 𝑓 = 0.0032 + 0.2232𝑅𝑒−0.237 (317) 

which is valid for smooth circular duct for the 𝑅𝑒 range: 105 ≤ 𝑅𝑒 ≤ 107 ( [9] Ch. 4). 

For rough circular ducts J. Nikuradse also proposed a correlation ( [9] Ch. 4) [225] [231]: 

 
1

√𝑓
= 1.74 − 0.8686 ln (

𝜀

𝑟
) (318) 

where 𝜀/𝑟 is the relative roughness. 

 

4.1.1.7 Colebrook-White (1939) 

Colebrook developed an empirical formula for the transition zone between laminar flow and 

complete turbulence in smooth and rough pipes. This equation is known as the Colebrook-

White formula and was used by Moody in developing his diagram. The friction coefficient for 

the complete turbulent zone depends only on the relative roughness 𝜀 𝐷⁄ , regardless of pipe 

diameter or Reynolds number [107]. The Moody diagram is a graphic representation of the C.F. 

Colebrook correlation (1939) [45] [237] for friction factor, which covers both rough and smooth 

walls and is given by: 

 
1

√𝑓
= −2 log [

𝜀
𝐷⁄

3.70
+

2.51

𝑅𝑒 ∙ √𝑓
] = −0.8686 ln [

𝜀
𝐷⁄

3.70
+

2.51

𝑅𝑒 ∙ √𝑓
] (319) 

valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, and 0 ≤
𝜀

𝐷
≤ 0.05, where 

ε

𝐷
 is the relative roughness. 

When 𝜀 𝐷⁄ =0, the Colebrook equation is identical to the Nikuradse equation. The Nikuradse 

equation is the base for the turbulent smooth portion of the Moody diagram [232] while the 

Colebrook equation is the base for the turbulent rough portion of the Moody diagram [234]. As 

this correlation is implicit in 𝑓, it requires an iteration procedure to be solved [233]. 

In [225] Olson and Wright and in ( [9] Ch. 4) Bhatti and Shah presented the Colebrook and 

White equation valid for rough circular duct with all turbulent flow regimes as follows: 
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1

√𝑓
= 1.74 − 0.8686 𝑙𝑛 [

𝜀

𝑟
+

18.7

𝑅𝑒 ∙ √𝑓
] (320) 

where 𝜀/𝑟 is the relative roughness. 

In ( [9] Ch. 4) Bhatti and Shah presented Colebrook correlation valid for smooth circular duct 

in the 𝑅𝑒 range: 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107 as: 

 

1

√𝑓
4⁄

= 1.5635 ln (
𝑅𝑒

7
) 

(321) 

 

4.1.1.8 McAdams (1942) 

A common approximate equation for the friction factor in a smooth tube is the McAdams 

relation ( [9] Ch. 4) [45] [238]: 

 𝑓 =
0.184

𝑅𝑒0.2 
 (322) 

It is valid for 3 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 106. 

 

4.1.1.9 Moody (1944) 

As mentioned above, the Nikuradse equation is the base for the turbulent smooth portion of the 

Moody diagram [232], while the Colebrook equation is the base for the turbulent rough portion 

of the Moody diagram [234] (see Fig. 49). 
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FIG. 49. Moody’s diagram for friction factor 𝑓 (data from [232]) 
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4.1.1.10 Moody (1947) 

In 1947 L.F. Moody proposed the following equation for flow in rough circular pipes valid for 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 5 ∙ 108 and 0 ≤
𝜀

𝐷
≤ 0.01 [232] [239]9: 

 𝑓 = 0.0055 [1 + (20000
𝜀

𝐷
+

106

𝑅𝑒
)

1
3

] (323) 

where 𝜀/𝐷 is the relative roughness. 

 

4.1.1.11 Filonenko (1954) 

In 1954 Filonenko proposed the following equation for turbulent flow in smooth tubes ( [9] Ch. 

4, Ch. 18) [85] [240]: 

 𝑓 = (0.79 ln 𝑅𝑒 − 1.64)−2 = (1.82 log 𝑅𝑒 − 1.64)−2 (324) 

It is valid for the range: 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107. 

 

4.1.1.12 Techo et al. (1965) 

In 1965 R. Techo et al. proposed the following correlation for turbulent flow in smooth circular 

ducts ( [9] Ch. 4, Ch. 18) [241]: 

 
1

𝑓
= (0.8686 ln

𝑅𝑒

1.964 ln 𝑅𝑒 − 3.8215
)
2

 (325) 

It is valid in the range: 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107. 

 

4.1.1.13 Wood (1966) 

In 1966 D.J. Wood recommended the following correlation for a rough circular duct [242]10: 

 𝑓 = 0.53
𝜀

𝐷
+ 0.094 (

𝜀

𝐷
)
0.225 

+ 88 (
𝜀

𝐷
)
0.44 

 𝑅𝑒−1.62(
𝜀
𝐷

)
0.134

 
 (326) 

where 𝜀/𝐷  is the relative roughness. It is valid for 10−5 ≤
𝜀

𝐷
≤ 0.04  and 

 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108 [233]. 

 

4.1.1.14 Churchill (1973) 

In 1973 S.W. Churchill recommended the following correlation [243]11: 

 

9 In Ref. ( [9] Ch. 4) the correlation referred to as Moody (Table 4.3) has different parameters. 

10 In Ref. ( [9] Ch. 4), Wood correlation is presented in Table 4.3. Although the Fanning friction factor is used in 

the whole book, Wood correlation is presented as Darcy friction factor, where 𝑓𝐷𝑎𝑟𝑐𝑦 = 4𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔. 

11 In Ref. [234] Churchill’s correlation has errors. 
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1

√𝑓
= −2 log (

𝜀

3.7𝐷
+ (

7

𝑅𝑒
)
0.9

) (327) 

where 𝜀/𝐷 is the relative roughness. 

In [45] this correlation is expressed as: 

 𝑓 =
8

6.0516
(ln (

𝜀

3.7𝐷
+ (

7

𝑅𝑒
)
0.9

))

2

 (328) 

 

4.1.1.15 Jain (1976) 

In 1976 A.K. Jain recommended the following correlation for rough circular duct ( [9] Ch. 4) 

[244]: 

 
1

√𝑓
= 1.74205 − 0.8686 ln [

𝜀

𝑟
+

42.5

𝑅𝑒0.9
] (329) 

It is valid for 4 ∙ 10−5 ≤
𝜀

𝐷
≤ 0.05 where 𝜀/𝐷 is the relative roughness. Jain’s correlation is 

also expressed in this way in [233]: 

 
1

√𝑓
= −2 log (

𝜀

3.715𝐷
+

5.72

𝑅𝑒0.9
) (330) 

 

4.1.1.16 Swamee-Jain (1976) 

In 1976 P.K. Swamee and A.K. Jain recommended the following correlation for rough circular 

duct ( [9] Ch. 4) [245]: 

 
1

√𝑓
= 1.73845 − 0.8686 ln [

𝜀

𝑟
+

42.48

𝑅𝑒0.9
] (331) 

where 𝜀/𝑟 is the relative roughness. In Ref. [233], this correlation is presented as: 

 
1

√𝑓
= −2 log (

𝜀

3.7𝐷
+

5.74

𝑅𝑒0.9
) (332) 

It is valid for 5 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108 and 10−6 ≤
𝜀

𝐷
≤ 0.05. 

 

4.1.1.17 Churchill (1977) 

In 1977, S.W. Churchill proposed a single correlation [227] [246] that relates pipe friction loss 

to Reynolds number and surface roughness for laminar, transitional and turbulent flow, thus 

making fluid-flow calculation simpler12: 

 

12 In Ref. ( [9] Ch. 4) and Ref. [234] the values of the constant in the expression of the parameter A are not 

consistent with the expression in the original paper. 
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𝑓 = 8 [(
8

𝑅𝑒
)
12

+ 
1

(𝐴 + 𝐵)
3
2

]

1
12

 

𝐴 = [2.457 𝑙𝑛
1

(
7
𝑅𝑒)

0.9

+ 
0.27 𝜀

𝐷

]

16

 

𝐵 = (
37530

𝑅𝑒
)
16

 

(333) 

where 𝜀/𝐷  is the relative roughness. In the original paper, Churchill used a friction factor 

definition different than Darcy. Thus, he indicated how to get the Darcy friction factor – by 

multiplying the expressions of 𝑓 in his paper by 8. This correlation not only reproduces the 

friction factor, but also avoids interpolation and provides unique values in the transition region. 

 

4.1.1.18 Chen (1979) 

In 1979 N.H. Chen recommended the following correlation for rough circular duct ( [9] Ch. 4) 

[247]: 

 
1

√𝑓
= 1.74 − 0.8686 ln (

𝜀

𝑟
−

16.2426

𝑅𝑒 
ln (

(𝜀 𝑟⁄ )1.1098

6.0983
+ (

7.149

𝑅𝑒
)

0.8981

)) (334) 

where 𝜀/𝑟 is the relative roughness. It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108 and 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1. 

In [233] it is also expressed as: 

 
1

√𝑓
= −2 log (

𝜀

3.7065 𝐷
−

5.0452

𝑅𝑒 
log (

(𝜀 𝐷⁄ )
1.1098

2.8257
+

5.8506

𝑅𝑒0.8981 
)) (335) 

It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 4 ∙ 108 and 10−7 ≤
𝜀

𝐷
≤ 0.05. 

 

4.1.1.19 Round (1980) 

In 1980 G.F. Round recommended the following correlation for rough circular duct ( [9] Ch. 4) 

[248]: 

 
1

√𝑓
= 2.1073 − 0.78175 ln (

𝜀

𝑟
+

96.2963

𝑅𝑒 
) (336) 

where 𝜀/𝑟 is the relative roughness. In [233], it is presented as: 

 
1

√𝑓
= −1.8 log (0.135

𝜀

𝐷
+

6.5

𝑅𝑒 
) (337) 

It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 4 ∙ 108 and 0 ≤
𝜀

𝐷
≤ 0.05. 
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4.1.1.20 Barr (1981) 

In 1981 D.I.H Barr recommended the following correlation [233] [249]: 

 
1

√𝑓
= −2 log

(

  
 𝜀

𝐷⁄

3.7
+

4.518 log (
𝑅𝑒
7 )

𝑅𝑒 (1 +
𝑅𝑒0.52(𝜀 𝐷⁄ )

0.7

29
)
)

  
 

 (338) 

 

4.1.1.21 Zigrang-Sylvester (1982) 

In 1982 Zigrang and Sylvester recommended two similar correlations for turbulent flows in 

rough circular duct as an approximation that covers the entire regime with good accuracy and 

consideration for wall roughness (𝜀) ( [9] Ch. 4) [250] [251]. They are based on the numerical 

solution of the implicit Colebrook-White formula. The first correlation proposed is: 

 
1

√𝑓
= 1.73845 − 0.8686 ln {

𝜀

𝑟
−

16.1332

𝑅𝑒
ln (

𝜀

7.4𝑟
+

13

𝑅𝑒
)} (339) 

where 𝜀/𝑟 is the relative roughness. It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108 and 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1. 

This correlation is implemented in RELAP 5 and 7. It can also be written as in the original 

paper in the following way: 

 
1

√𝑓
= −2 log {

𝜀

3.7𝐷
−

5.02

𝑅𝑒
log [

𝜀

3.7𝐷
+

13

𝑅𝑒
]} (340) 

And the second one adding a second iteration in the numerical solution of the Colebrook-White 

formula is: 

 

1

√𝑓

= 1.73845 − 0.8686 ln {
𝜀

𝑟
− 16.1332 ln (

𝜀

7.4𝑟
− 2.1802 ln (

𝜀

7.4𝑟
+

13

𝑅𝑒
))} 

(341) 

where, as in the previous correlation, where 𝜀/𝑟 is the relative roughness. It can be also written 

as [233]: 

 
1

√𝑓
= −2 log {

𝜀

3.7𝐷
−

5.02

𝑅𝑒
log [

𝜀

3.7𝐷
−

5.02

𝑅𝑒
log (

𝜀

3.7𝐷
+

13

𝑅𝑒
)]} (342) 

It is valid for 𝑅𝑒 ≥ 3 ∙ 103 with the uncertainty of ±5.5%. 

 

4.1.1.22 Haaland (1983) 

The recommendation from S.E. Haaland (1983) [45] [252] to estimate the friction factor for 

rough circular duct ( [9] Ch. 4) is the following: 

 
1

√𝑓
= 1.73675 − 0.78175 ln ((

𝜀

𝑟
)
1.11

+
63.6350

𝑅𝑒 
) (343) 
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where 𝜀/𝑟  is the relative roughness. It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108  and 2 ∙ 10−8 ≤
𝜀

𝑟
≤

0.1.It can be also found in the literature as [225] [233]: 

 
1

√𝑓
= −1.8 log [(

𝜀
D⁄

3.70
)

1.11

+
6.9

Re
] = −0.782 ln [(

𝜀
D⁄

3.70
)

1.11

+
6.9

Re
] (344) 

valid for 10−6 ≤ 𝜀
𝐷⁄ ≤ 0.05. 

 

4.1.1.23 Serghides (1984) 

In 1984 T.K. Serghides recommended various correlations [253] for rough circular duct ( [9] 

Ch. 4)13: 

 

1

√𝑓
=

1

2
∙ A5 −

1

2
∙

(A5−B2)
2

C1 − 2B2 + A5
 

A5 = −0.8686 ln (
𝜀

7.4𝑟
+

12

𝑅𝑒
) 

B2 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51A5

𝑅𝑒
) 

C1 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51B2

𝑅𝑒
) 

(345) 

where 𝜀/𝑟 is the relative roughness. It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108 and 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1. 

Another correlation proposed is ( [9] Ch. 4): 

 

1

√𝑓
= 2.3905 −

1

2
∙

(A5 − 4.781)2

4.781 − 2A5 + B2
 

A5 = −0.8686 ln (
𝜀

7.4𝑟
+

12

𝑅𝑒
) 

B2 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51A5

𝑅𝑒
) 

(346) 

where 𝜀/𝑟  is the relative roughness. It is also valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108  and 

 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1. 

 

4.1.1.24 Bhatti-Shah (1987) 

Bhatti and Shah as authors of Chapter 4 of the Handbook [9] proposed two correlations. The 

first one is: 

 𝑓 =
0.1464

𝑅𝑒0.1818
 (347) 

which is valid for smooth circular duct in the 𝑅𝑒 range of 4 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 107. 

 

13 In Ref. [234] this correlation is presented in Table 1 with errors. 
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The second correlation is: 

 𝑓 = 0.02048 +
1.8288

𝑅𝑒0.311
 (348) 

It is valid for smooth circular duct for the 𝑅𝑒 range of 4 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 107 ( [9] Ch. 4). 

 

4.1.1.25 Manadilli (1997) 

In 1997 Manadilli recommended the following correlation [254]: 

 
1

√𝑓
= −2 log (

𝜀

3.7 𝐷
+

95

𝑅𝑒0.983
−

96.82

𝑅𝑒
) (349) 

It is valid for 5.2 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.05 [233]. 

 

4.1.1.26 Romeo et al. (2002) 

In 2002 E. Romeo et al. recommended the following correlation [255]: 

1

√𝑓
= −2 log (

𝜀

3.7065 𝐷
−

5.0272

𝑅𝑒
𝐴) 

𝐴 = log {
𝜀

3.827 𝐷
−

4.567

𝑅𝑒 
log [(

𝜀

7.7918 𝐷
)
0.9924

 + (
5.3326

208.815 + 𝑅𝑒
)
0.9345

]} 

(350) 

It is valid for 3 ∙ 103 ≤ 𝑅𝑒 ≤ 1.5 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.05 [233]. 

 

4.1.1.27 Sonnad-Goudar (2006) 

In 2006 J.R. Sonnad and C.T. Goudar recommended the following correlation [256]: 

 

1

√𝑓
= 0.8686 ln [

0.4587𝑅𝑒

𝑆
𝑆

𝑆+1⁄
] 

𝑆 = 0.124
𝜀

𝐷
𝑅𝑒 + ln(0.4587𝑅𝑒) 

(351) 

It is valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, 10−6 ≤
𝜀

𝐷
≤ 0.05 [233]. 

 

4.1.1.28 Fang et al. (2011) 

In 2011 X.D. Fang et al. developed single-phase friction factor correlations for turbulent flow 

based on computer analysis. They used a data bank of 1056 data points covering the regime of 

3 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108 and 0 ≤ 𝜀
𝐷⁄ ≤ 0.05 generated with the Colebrook equation and the 

Nikuradse equation. 

Based on regression and optimization with software, two correlations were proposed, one for 

smooth pipes, and the other for both smooth and rough pipes in the range of 0.0 ≤
𝜀

𝐷
≤ 0.05. 

The recommended correlation for turbulent flow in smooth pipes is [233] [234]: 
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 𝑓 = 0.25 [log (
150.39

𝑅𝑒0.98865
−

152.66

𝑅𝑒
)]

−2

 (352) 

While the correlation for single-phase friction factor for turbulent flow in both smooth and 

rough pipes is: 

 𝑓 = 1.613 [ln (0.234 (
𝜀

𝐷
)
1.1007

−
60.525

𝑅𝑒1.1105
+

56.291

𝑅𝑒1.0712
)]

−2

 (353) 

Valid for the range of 3 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108 and 0 ≤ 𝜀
𝐷⁄ ≤ 0.05. 

 

4.1.1.29 Summary of friction factor correlations for single-phase flow in straight pipes 

Table 31 presents the list of all friction factor correlations collected for single-phase flow in 

straight pipes. 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Hagen–Poiseuille (1839, 

1846) 

[107] [222] [223] 

𝑓 =
64

𝑅𝑒
 

laminar flow, smooth pipes 

Darcy-Weisbach (1858) 

[193] [225] [224] 

for smooth and rough circular pipes and 𝑅𝑒 ≤ 2000: 

𝑓 =
64

𝑅𝑒
 

for smooth pipes and 𝑅𝑒 ≥ 4000: 

𝑓 =
1

[1.82 ∙ log 𝑅𝑒 − 1.64]2
 

Blasius (1912) 

[9] [226] [227] [228] 

𝑓 =
0.316

𝑅𝑒0.25
 

𝑅𝑒 ≥ 3 ∙ 103 

Von Karman (1930) 

[9] [225] [229] 

for rough pipes, 𝑅𝑒 ≥ 70: 

1

√𝑓
= 1.68 − 0.8815 ln (

𝜀

𝑟
) 

for smooth pipes, 4 ∙ 103 ≤ 𝑅𝑒 ≤ 3 ∙ 106: 

1

√𝑓
4

= 4 log (𝑅𝑒√
𝑓

4
) − 0.4 

𝑓 =
4

(3.64 log𝑅𝑒 − 3.28)2
≈

4 ∙ 0.046

𝑅𝑒0.2
 

Drew et al.(1932) 

[9] [230] 

𝑓 = 0.0056 + 0.5 𝑅𝑒−0.32 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 5 ∙ 106, smooth pipes 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Nikuradse (1933) 

[9] [106] [231] [235] 

[236] 

for turbulent flow and smooth pipes: 

1

√𝑓
= 2 log(𝑅𝑒√𝑓) − 0.8 

for 105 ≤ 𝑅𝑒 ≤ 107: 

𝑓 = 0.0032 + 0.2232𝑅𝑒−0.237 

Prandtl-Karma-Nikuradse for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 107: 

1

√𝑓
4

= 1.7372 ln(𝑅𝑒√
𝑓

4
) − 0.3946 

for rough pipes: 

1

√𝑓
= 1.74 − 0.8685 ln (

𝜀

𝑟
) 

turbulent flow 

Colebrook-White (1939) 

[9] [107] [225] [237] 

for smooth, rough pipes (0 ≤ 𝜀/𝐷 ≤ 0.05) and 4 ∙ 103 ≤ 𝑅𝑒 ≤
1 ∙ 108: 

1

√𝑓
= −2 log [

𝜀
𝐷⁄

3.70
+

2.51

𝑅𝑒 ∙ √𝑓
]

= −0.8686 ln [
𝜀

𝐷⁄

3.70
+

2.51

𝑅𝑒 ∙ √𝑓
] 

for rough pipes: 

1

√𝑓
= 1.74 − 0.8686 𝑙𝑛 [

𝜀

𝑟
+

18.7

𝑅𝑒 ∙ √𝑓
] 

for smooth pipes: 

1

√𝑓
4

= 1.5635 ln (
𝑅𝑒

7
) 

Last two are valid for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107 

McAdams (1942) 

[9] [45] [238] 

𝑓 =
0.184

𝑅𝑒0.2 
 

3 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 106, smooth pipes 

Moody (1947) 

[232] [239] 

𝑓 = 0.0055 [1 + (20000
𝜀

𝐷
+

106

𝑅𝑒
)

1
3

] 

4 ∙ 103 ≤ Re ≤ 5 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.01, rough pipes 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Filonenko (1954) 

[9] [85] [240] 

𝑓 = (0.79 ln 𝑅𝑒 − 1.64)−24 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107, smooth 

pipes 

Techo et al. (1965) 

[9] [241] 

1

𝑓
= (0.8686 ln

𝑅𝑒

1.964 ln 𝑅𝑒 − 3.8215
)
2

 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 107, smooth pipes 

Wood (1966) 

[233] [242] 

𝑓 = 0.53
𝜀

𝐷
+ 0.094 (

𝜀

𝐷
)
0.225 

+ 88 (
𝜀

𝐷
)
0.44 

 𝑅𝑒−1.62(
𝜀
𝐷

)
0.134

 
 

10−5 ≤
𝜀

𝐷
≤ 0.04 , 4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, rough pipes 

Churchill (1973) 

[45] [243] 

1

√𝑓
= −2 log (

𝜀

3.7𝐷
+ (

7

𝑅𝑒
)
0.9

) 

𝑓 =
8

6.0516
(ln (

𝜀

3.7𝐷
+ (

7

𝑅𝑒
)
0.9

))

2

 

rough pipes 

Jain (1976) 

[9] [233] [244] 

1

√𝑓
= 1.74205 − 0.8686 ln [

𝜀

𝑟
+

42.5

𝑅𝑒0.9
] 

1

√𝑓
= −2 log (

𝜀

3.715𝐷
+

5.72

𝑅𝑒0.9
) 

4 ∙ 10−5 ≤
𝜀

𝐷
≤ 0.05, rough pipes 

Swamee-Jain (1976) 

[9] [233] [245] 

1

√𝑓
= 1.73845 − 0.8686 ln [

𝜀

𝑟
+

42.48

𝑅𝑒0.9
] 

1

√𝑓
= −2 log (

𝜀

3.7𝐷
+

5.74

𝑅𝑒0.9
) 

5 ∙ 103 ≤ 𝑅𝑒 ≤ 108, 10−6 ≤
𝜀

𝐷
≤ 0.05 

rough pipes 

Churchill (1977) 

[227] [246] 

𝑓 = 8 [(
8

𝑅𝑒
)
12

+ 
1

(𝐴 + 𝐵)
3
2

]

1
12

 

 𝐴 = [2.457 𝑙𝑛
1

(
7
𝑅𝑒)

0.9

+ 
0.27 𝜀

𝐷

]

16

 

𝐵 = (
37530

𝑅𝑒
)
16

 

laminar, transitional and turbulent flow, rough pipes 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Chen (1979) 

[9] [233] [247] 

1

√𝑓

= 1.74 − 0.8686 ln(
𝜀

𝑟
−

16.2426

𝑅𝑒 
ln (

(𝜀 𝑟⁄ )1.1098

6.0983
+ (

7.149

𝑅𝑒
)
0.8981

)) 

2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1 

1

√𝑓
= −2 log(

𝜀

3.7065 𝐷
−

5.0452

𝑅𝑒 
log(

(𝜀 𝐷⁄ )
1.1098

2.8257
+

5.8506

𝑅𝑒0.8981 
)) 

10−7 ≤
𝜀

𝐷
≤ 0.05, 4 ∙ 103 ≤ 𝑅𝑒 ≤ 4 ∙ 108, rough pipes 

Round (1980) 

[9] [233] [248] 

1

√𝑓
= 2.1073 − 0.78175 ln (

𝜀

𝑟
+

96.2963

𝑅𝑒 
) 

1

√𝑓
= −1.8 log (0.135

𝜀

𝐷
+

6.5

𝑅𝑒 
) 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 4 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.05, rough pipes 

Barr (1981) 

[233] [249] 

1

√𝑓
= −2 log

(

  
 𝜀

𝐷⁄

3.7
+

4.518 log (
𝑅𝑒
7 )

𝑅𝑒 (1 +
𝑅𝑒0.52(𝜀 𝐷⁄ )

0.7

29
)
)

  
 

 

rough pipes 

Zigrang-Sylvester (1982) 

[9] [233] [250] [251] 

1

√𝑓
= 1.73845 − 0.8686 ln {

𝜀

𝑟
−

16.1332

𝑅𝑒
ln (

𝜀

7.4𝑟
+

13

𝑅𝑒
)} 

1

√𝑓
= −2 log {

𝜀

3.7𝐷
−

5.02

𝑅𝑒
log [

𝜀

3.7𝐷
+

13

𝑅𝑒
]} 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 108 , 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1 

1

√𝑓

= 1.73845 − 0.8686 ln {
𝜀

𝑟
− 16.1332 ln (

𝜀

7.4𝑟
− 2.1802 ln (

𝜀

7.4𝑟
+

13

𝑅𝑒
))} 

1

√𝑓

= −2 log {
𝜀

3.7𝐷
−

5.02

𝑅𝑒
log [

𝜀

3.7𝐷
−

5.02

𝑅𝑒
log (

𝜀

3.7𝐷
+

13

𝑅𝑒
)]} 

𝑅𝑒 ≥ 3 ∙ 103, rough pipes 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Haaland (1983) 

[9] [45] [225] [233] 

[252] 

for 4 ∙ 103 ≤ 𝑅𝑒 ≤ 108and 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1: 

1

√𝑓
= 1.73675 − 0.78175 ln ((

𝜀

𝑟
)
1.11

+
63.6350

𝑅𝑒 
) 

for 10−6 ≤ 𝜀
𝐷⁄ ≤ 0.05: 

1

√𝑓
= −1.8 log [(

𝜀
D⁄

3.70
)
1.11

+
6.9

Re
] = −0.782 ln [(

𝜀
D⁄

3.70
)
1.11

+
6.9

Re
]. 

Serghides (1984) 

[9] [253] 

1

√𝑓
=

1

2
∙ A5 −

1

2
∙

(A5−B2)
2

C1 − 2B2 + A5
 

A5 = −0.8686 ln (
𝜀

7.4𝑟
+

12

𝑅𝑒
) 

B2 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51A5

𝑅𝑒
) 

C1 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51B2

𝑅𝑒
) 

1

√𝑓
= 2.3905 −

1

2
∙

(A5 − 4.781)2

4.781 − 2A5 + B2
 

A5 = −0.8686 ln (
𝜀

7.4𝑟
+

12

𝑅𝑒
) 

B2 = −0.8686 ln (
𝜀

7.4𝑟
+

2.51A5

𝑅𝑒
) 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 108, 2 ∙ 10−8 ≤
𝜀

𝑟
≤ 0.1, rough pipes 

Bhatti-Shah (1987) 

[9] 

𝑓 =
0.1464

𝑅𝑒0.1818
 

𝑓 = 0.02048 +
1.8288

𝑅𝑒0.311
 

4 ∙ 104 ≤ 𝑅𝑒 ≤ 107, smooth pipes 

Manadilli (1997) 

[233] [254] 

1

√𝑓
= −2 log (

𝜀

3.7 𝐷
+

95

𝑅𝑒0.983
−

96.82

𝑅𝑒
) 

5.2 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.05, rough pipes 

Romeo et al. (2002) 

[233] [255] 

1

√𝑓
= −2 log (

𝜀

3.7065 𝐷
−

5.0272

𝑅𝑒
𝐴) 

𝐴

= log {
𝜀

3.827 𝐷
−

4.567

𝑅𝑒 
log [(

𝜀

7.7918 𝐷
)

0.9924

 +  (
5.3326

208.815 + 𝑅𝑒
)

0.9345

]} 

3 ∙ 103 ≤ 𝑅𝑒 ≤ 1.5 ∙ 108, 0 ≤
𝜀

𝐷
≤ 0.05, rough pipes 
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TABLE 31. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN STRAIGHT PIPES 

Sonnad-Goudar (2006) 

[233] [256] 

1

√𝑓
= 0.8686 ln [

0.4587𝑅𝑒

𝑆
𝑆

𝑆+1⁄
] 

𝑆 = 0.124
𝜀

𝐷
𝑅𝑒 + ln(0.4587𝑅𝑒) 

4 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108, 10−6 ≤
𝜀

𝐷
≤ 0.05 

Fang et al. (2011)  

[233] [234] 

for smooth pipes: 

𝑓 = 0.25 [log (
150.39

𝑅𝑒0.98865
−

152.66

𝑅𝑒
)]

−2

 

for smooth and rough pipes (0 ≤ 𝜀
𝐷⁄ ≤ 0.05): 

𝑓 = 1.613 [ln (0.234 (
𝜀

𝐷
)
1.1007

−
60.525

𝑅𝑒1.1105
+

56.291

𝑅𝑒1.0712
)]

−2

 

3 ∙ 103 ≤ 𝑅𝑒 ≤ 1 ∙ 108 

 

All friction factor correlations complied in section 4.1.1 for the turbulent flows in smooth 

straight pipes are compared in Fig. 50. All except Moody (1947) are in very good agreement 

with each other and plots cannot be visually distinguished in Fig. 50. The main difference is in 

the validity ranges that depend on the Reynold number. 

 

 

FIG. 50. Summary comparison of friction factor correlations for smooth pipes 

Correlations for the rough pipes are compared in Fig. 51 for selected relative roughness /D = 

0.003. All corelations are split in two groups with close results. The first group includes 

correlations from Moody (1947), Wood (1966) and Round (1980), while the rest are in the 

second group. The differences in friction fraction values within each group are negligible 
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therefore it is nearly impossible to distinguish individual correlations in Fug. 51. Maximal 

deviation between two groups reaches only about 3%.  

 

 

FIG. 51. Comparison of friction factor correlations for rough pipes; relative roughness /D = 0.003 

 

 

4.1.2 Flow in curved and helical pipes 

The friction factor for helical coil and curved tubes 𝑓𝑐 is found to depend on Reynolds number 

and a geometrical number 
𝑑

𝐷
 in the form of the dimensionless Dean number 𝐷𝑒 = 𝑅𝑒√

𝑑

𝐷
, where 

𝐷 is the diameter of the coil and 𝑑 is the diameter of the pipe [257] (see Fig. 52). 

As some of the correlations relate the friction factor for curved or helical coil tube 𝑓𝑐 to the 

friction factor for straight tube 𝑓𝑠, the subscripts c and s will be used in this subsection 4.1.2 to 

distinguish the two tube geometries respectively. Figure 52 shows a representation of a helical 

pipe [258]. d – pipe diameter, D – coil diameter, p – coil pitch, β – pipe angle. 

 

 

FIG. 52. Representation of helical pipe parameters (from [258]) 
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4.1.2.1 Dean (1928) 

In 1928 W.R. Dean proposed the following analytical correlation relating 𝑓𝑐 the friction factor 

for curve pipes and 𝑓𝑠 that for straight pipes [257] [259] [260]: 

 
𝑓𝑐
𝑓𝑠

= 1.03058 (
𝐷𝑒2

288
)

2

+ 0.01195 (
𝐷𝑒2

288
)

4

 (354) 

It is valid for laminar flow, small 
𝑑

𝐷
 ratios and 𝐷𝑒 ≤ 20. 

 

4.1.2.2 White (1929) 

In 1929 C.M. White presented an empirical correlation valid for circular tubes, laminar flow 

and ratios 
𝐷

𝑑
= 15.15, 50 and 2050 [257] [261] [262]: 

 
𝑓𝑠
𝑓𝑐

= 1 − [1 − (
11.6

𝐷𝑒
)
0.45

]

2.22

 (355) 

It is valid for 11.6 ≤ 𝐷𝑒 ≤ 2000. And White proposed that 𝑓𝑐 = 𝑓𝑠 for 𝐷𝑒 ≤ 11.6. 

 

4.1.2.3 White (1932) 

Some years later, in 1932, C.M White proposed another empirical correlation based on 

experimental data valid for turbulent flow in helical pipes [257] [263]: 

 𝑓𝑐 = 0.32𝑅𝑒−
1
4  +  0.048√

𝑑

𝐷
 (356) 

It is valid in the range of 1.5 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 105. 

 

4.1.2.4 Adler (1934) 

In 1934 M. Adler recommended the following correlation derived from experimental results 

and theoretical analysis [257] [264]: 

 
𝑓𝑐
𝑓𝑠

= 0.1064√𝐷𝑒 (357) 

It is valid for laminar flow with large Dean numbers. 

 

4.1.2.5 Prandtl (1949) 

In 1949 L. Prandtl related the friction factors for laminar flow in curved and straight pipes with 

the following empirical correlation [235] [257]: 

 
𝑓𝑐
𝑓𝑠

= 0.37 (
𝐷𝑒

2
)

0.36

 (358) 

It is valid in the range of 40 ≤ 𝐷𝑒 ≤ 2000. 
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4.1.2.6 Hasson (1955) 

In 1955 D. Hasson derived an empirical correlation for laminar flow in helical pipes [257] 

[265]: 

  
𝑓𝑐
𝑓𝑠

= 0.556 + 0.0969√𝐷𝑒 (359) 

 

4.1.2.7 Ito (1959) 

In 1959 H. Ito proposed a set of different correlations based on the experimental data obtained 

in air and water experiments in curved pipes [257] [266]. 

For laminar flow in the range of 13.5 ≤ 𝐷𝑒 ≤ 2000 he recommended the following empirical 

correlation for the ratio between 𝑓𝑐 and 𝑓𝑠: 

 
𝑓𝑐
𝑓𝑠

=
21.5𝐷𝑒

(1.56 + 𝑙𝑜𝑔𝐷𝑒)5.73
 (360) 

For turbulent flow in circular curved tubes for the values 𝑅𝑒(
𝑑

𝐷
)
2

≥ 6 Ito proposed the 

expression: 

 𝑓𝑐
𝑓𝑠

= [𝑅𝑒 ∙ (
𝑑

𝐷
)

2

]

1
20

 (361) 

By making use of the Blasius equation, Eq. (310), Ito then derived an alternative equation for 

the curved friction factor: 

 𝑓𝑐 =
0.316

𝑅𝑒0.2
(
𝑑

𝐷
)

1
10

 (362) 

where 𝑑 is the inner diameter of the pipe and 𝐷 is the helical diameter of the coil. 

For turbulent flow in the range of 0.034 ≤ 𝑅𝑒(
𝑑

𝐷
)
2

≤ 300 Ito recommended also the 

theoretical correlation ( [9] Ch. 5) [266]: 

 𝑓𝑐 = 0.029 (
𝑑

𝐷
)

1
2
+

0.304 

 𝑅𝑒0.25
 (363) 

In ( [9] Ch. 5) it is said that this correlation can also be used for curved rectangular ducts for 

𝑅𝑒 ≥ 8000 replacing 𝑑 by 𝐷ℎ, where 𝐷ℎ is the hydraulic diameter of the rectangular duct. 

Later Ito introduced a new parameter 𝑌 defined as: 

𝑌3𝑒𝑌 = 𝑅𝑒√
𝐷

𝑑
 

He then presented another theoretical correlation for turbulent flow: 
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 𝑓𝑐 = 0.0324 (
𝑑

𝐷
)

1
2
+

1.6

(
𝑑
𝐷)

0.77

𝑌2.54

 for 𝑌2√
𝑑

𝐷
≤ 12 (364) 

 𝑓𝑐 =
1.186

𝑌2
 for 𝑌2√

𝑑

𝐷
≥ 5.3 (365) 

 

4.1.2.8 Kubair-Varrier (1961) 

In 1961 V. Kubair and C.B.S Varrier proposed empirical correlations for helical pipes in non-

isothermal conditions and 0.037 ≤
𝑑

𝐷
≤ 0.097 [257] [267]: 

 𝑓𝑐 = 3.0864𝑅𝑒−0.5𝑒3.553
𝑑
𝐷 for 2 ∙ 103 ≤ 𝑅𝑒 ≤ 9 ∙ 103 (366) 

 𝑓𝑐 = 0.014152𝑅𝑒0.09𝑒1.887
𝑑
𝐷 for 9 ∙ 103 ≤ 𝑅𝑒 ≤ 2.5 ∙ 104 (367) 

 

4.1.2.9 Barua (1963) 

In 1963 S.N. Barua derived a theoretical correlation for laminar flows in a torus [257] [268]: 

 
𝑓𝑐
𝑓𝑠

= 0.509 + 0.0918√𝐷𝑒 (368) 

It is valid for large Dean numbers. 

 

4.1.2.10 Seban-McLaughlin (1963) 

R.A. Seban and E.F. McLaughlin presented in 1963 friction factor experimental results for 

turbulent flow of water in tube coils having ratios of coil to tube diameter 
𝐷

𝑑
= 17 𝑎𝑛𝑑 104 and 

for Reynolds numbers 12 ≤ 𝑅𝑒 ≤ 65000 [262]. They compared their experimental data with 

the following correlation: 

 𝑓𝑐 =
0.184

𝑅𝑒0.2
∙ [𝑅𝑒 ∙ (

𝑑

𝐷
)
2

]

1
20

 (369) 

where: 𝑑 is tube inside diameter and 𝐷 the coil diameter to tube centre. They observed that this 

formula was only about 6% lower in comparison with the experimental data, so that within this 

error it predicts all the turbulent friction factors measured on the two coils 
𝐷

𝑑
= 17 𝑎𝑛𝑑 104. 

This equation was derived by the authors using Ito’s Eq. (361) for the ratio 
𝑓𝑐

𝑓𝑠
 and McAdams 

Eq. (322) for straight pipes. 

 

4.1.2.11 Mori-Nakayama (1965) 

In 1965 Y. Mori and W. Nakayama recommended a theoretical correlation experimentally 

verified with air tests for laminar flow [257] [269]: 
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𝑓𝑐
𝑓𝑠

=
0.108√𝐷𝑒

1 −
3.253

√𝐷𝑒

 (370) 

It is valid for helical circular coils and 13.5 ≤ 𝐷𝑒 ≤ 2000. 

 

4.1.2.12 Mori-Nakayama (1967) 

In 1967 Y. Mori and W. Nakayama recommended a friction factor correlation for a circular 

curved pipe with fully developed turbulent flow [270]14: 

 𝑓 = (
𝑟

𝑅
)
0.5

∙
0.192

[𝑅𝑒 ∙ (
𝑟
𝑅)

2.5

]

1
6

 ∙

(

 
 

1 +
0.068

[𝑅𝑒 ∙ (
𝑟
𝑅)

2.5

]

1
6

)

 
 

 (371) 

As in previous equations, 𝑟 is the radius of the pipe and 𝑅 the radius of curvature of the coil. 

 

4.1.2.13 Schmidt (1967) 

In 1967 E.F. Schmidt proposed the following empirical correlation for curved pipes with 

laminar flow [271]15: 

 
𝑓𝑐
𝑓𝑠

= 1 + 0.14 (
𝑑

𝐷
)
0.97

𝑅𝑒1−0.644(
𝑑
𝐷

)
0.312

 (372) 

It is valid for 100 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑐𝑟𝑖𝑡.. For turbulent flow, the recommended equation was: 

 
𝑓𝑐
𝑓𝑠

= 1 +
2.88 ∙ 104

𝑅𝑒
(
𝑑

𝐷
)
0.62

 (373) 

It is valid for 𝑅𝑒𝑐𝑟𝑖𝑡. ≤ 𝑅𝑒 ≤ 2.2 ∙ 104. 

A similar equation was presented for turbulent flow: 

 
𝑓𝑐
𝑓𝑠

= 1 + 0.0823 (1 +
𝑑

𝐷
) (

𝑑

𝐷
)

0.53

𝑅𝑒0.25 (374) 

It is valid for 2 ∙ 104 ≤ 𝑅𝑒 ≤ 1.5 ∙ 105. 

 

4.1.2.14 Srinivasan et al. (1968) 

In 1968 P.S. Srinivasan et al. proposed a set of empirical correlations for helical tubes with 

0.0097 ≤
𝑑

𝐷
≤ 0.135 [257] [272]: 

 

14 In Ref. [258] this correlation is presented with errors in Table 1. 

15 In Ref. [258] this correlation is presented with errors in Table 1. 
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 𝑓𝑐 =
128

𝑅𝑒
 𝑅𝑒√

𝑑

𝐷
≤ 30 (375) 

 𝑓𝑐 = 20.88(𝑅𝑒√
𝐷

𝑑
)

−0.6

 30 ≤ 𝑅𝑒√
𝑑

𝐷
≤ 300 (376) 

 𝑓𝑐 = 7.2(𝑅𝑒√
𝐷

𝑑
)

−0.5

 300 ≤ 𝑅𝑒√
𝑑

𝐷
≤ 𝑅𝑒𝑐𝑟𝑖𝑡.√

𝑑

𝐷
 (377) 

 𝑓𝑐 = 4.336(𝑅𝑒√
𝐷

𝑑
)

−0.2

 𝑅𝑒 ≥ 𝑅𝑒𝑐𝑟𝑖𝑡. (378) 

 

4.1.2.15 Ito (1969) 

In 1969 Ito derived the following theoretical correlation for laminar flow in curved pipes [257] 

[273]: 

 
𝑓𝑐
𝑓𝑠

= 0.1033√𝐷𝑒 [(1 +
1.729

𝐷𝑒
)

0.5

–
1.315

𝐷𝑒0.5
]

−3

 (379) 

He also extended the power series to the expression: 

 
𝑓𝑐
𝑓𝑠

= 0.1033√𝐷𝑒 [1 +
3.945

𝐷𝑒0.5
+

7.782

𝐷𝑒
+

9.097

𝐷𝑒1.5
+

5.608

𝐷𝑒2
+ ⋯] (380) 

Ito then presented an empirical equation deduced from experiments presenting fair accuracy for 

values of 𝐷𝑒 > 30  where the numerical coefficient outside the parenthesis differed only 

slightly from that obtained based on the theory: 

 
𝑓𝑐
𝑓𝑠

= 0.1008√𝐷𝑒 [1 +
3.945

𝐷𝑒0.5
+

7.782

𝐷𝑒
+

9.097

𝐷𝑒1.5
+

5.608

𝐷𝑒2
+ ⋯] (381) 

 

4.1.2.16 Srinivasan et al. (1970) 

In 1970 P.S. Srinivasan et al. obtained extensive friction factor experimental data and proposed 

the following equation for turbulent flow in a helical smooth pipe ( [9] Ch. 5) [274]: 

 𝑓𝑐 (
𝑅

𝑟
)
0.5

= 0.336 [𝑅𝑒 (
𝑅

𝑟
)
−2

]

−0.2

 (382) 

where 𝑟 is the inner radius of the pipe and R is the radius of the curvature. It is valid for 𝑅𝑒 ∙

(
𝑅

𝑟
)
−2

< 700 and 7 <
𝑅

𝑟
< 104. 

They also measured friction factors in five spiral coils for water and fuel-oil flow, thus 

recommending the experimental correlation ( [9] Ch. 5): 
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𝑓𝑐 =

0.0296 (𝑛2
0.9 − 𝑛1

0.9)1.5

[𝑅𝑒 (
𝑃
𝑟)

0.5

]

0.2  
(383) 

where 𝑃 is the coil pitch (see Fig. 52), 𝑛1 is the number of coil turns at the beginning of the 

spiral 𝑛1 =
𝐿

2𝜋𝑃𝑁
−

𝑁

2
 and 𝑛2 is the number of coil turns at the end of the spiral 𝑛2 =

𝐿

2𝜋𝑃𝑁
+

𝑁

2
. 

N is the number of spiral coils turns 𝑛2 − 𝑛1. This correlation is valid for 40000 < 𝑅𝑒 (
𝑃

𝑟
)
0.5

<

150000 and 7.3 <
𝑃

𝑟
< 15.5. In ([6] Ch. 5) it is said that this correlation can also be used for 

curved rectangular ducts for 𝑅𝑒 ≥ 8000  replacing 𝑟  by 0.5𝐷ℎ , where 𝐷ℎ  is the hydraulic 

diameter of the rectangular duct. 

Srinivasan et al. used only the Dean number in their friction factors correlations for helical coils, 

claiming that it alone is sufficient to account for an increase in the friction factor due to the coil 

curvature. They proposed the following correlation for their experimental data with several 

coils (7 < 𝑅
𝑟⁄ < 104): 

 
𝑓𝑐
𝑓𝑠

= 1 for 𝐷𝑒 < 30 (384) 

 
𝑓𝑐
𝑓𝑠

= 0.419𝐷𝑒0.275 for 30 ≤ 𝐷𝑒 ≤ 300 (385) 

 
𝑓𝑐
𝑓𝑠

= 0.1125𝐷𝑒0.5 for 𝐷𝑒 > 300 (386) 

 

4.1.2.17 Tarbell-Samuels (1973) 

In 1973 J.M. Tarbell and M.R. Samuels solved the equations of motion and energy to study 

flow characteristics in helical coils by using the alternating direction implicit technique. The 

numerical results were compared with the experimental data of White, boundary layer analysis 

results of Mori and Nakayama, and numerical solution of Truesdell and Adler. A correlation of 

friction factor representing the data within 3% was proposed [257] [275] [276]: 

 
𝑓𝑐
𝑓𝑠

= 1 + [8.279 ∙ 10−4 + 7.964 ∙ 10−3
𝑑

𝐷
]𝑅𝑒 − 2.096 ∙ 10−7𝑅𝑒2 (387) 

It is valid for 20 ≤ 𝐷𝑒 ≤ 500, 3 ≤
𝐷

𝑑
≤ 30. 

 

4.1.2.18 Ramana Rao-Sadasivudu (1974) 

In 1974 M.V. Ramana Rao and D. Sadasivudu proposed the following empirical correlation 

valid for helical pipes with 0.0159 ≤
𝑑

𝐷
≤ 0.0556 [257] [277]: 

 𝑓𝑐 = 62 𝑒14.12
𝑑

𝐷𝑅𝑒−1 for 𝑅𝑒 ≤ 1200 (388) 

 𝑓𝑐 = 6.2 𝑒14.12
𝑑

𝐷𝑅𝑒−0.64 for 1200 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑐𝑟𝑖𝑡. 
(389) 
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 𝑓𝑐 = 0.1528 𝑒11.17
𝑑

𝐷𝑅𝑒−0.2 for 𝑅𝑒𝑐𝑟𝑖𝑡. ≤ 𝑅𝑒 ≤ 27000 (390) 

For turbulent flow their recommendation was: 

 𝑓𝑐 = 0.0426(
𝑑0.94

𝐷0.1
)𝑅𝑒−0.2 (391) 

 

4.1.2.19 Collins-Dennis (1975) 

In 1975 Collins and Dennis recommended a correlation for laminar flow and large Dean 

numbers [257] [278]: 

 
𝑓𝑐
𝑓𝑠

= 0.38 + 0.1028√𝐷𝑒 (392) 

 

4.1.2.20 Van Dyke (1978) 

In 1978 M. Van Dyke presented a correlation for laminar flow in the range of 𝐷𝑒 ≥ 30 [257] 

[279]: 

 
𝑓𝑐
𝑓𝑠

= 0.47136𝐷𝑒
1
4 (393) 

 

4.1.2.21 Mishra-Gupta (1979) 

In 1975 P. Mishra and S.N. Gupta studied the laminar flow in helical pipes and recommended 

the following empirical correlation [257] [280]: 

 

𝑓𝑐
𝑓𝑠

= 1 + 0.033[𝑙𝑜𝑔𝐻𝑒]4 

𝐻𝑒 = 𝑅𝑒√

𝑑
𝐷

[1 + (
𝑝

𝑝𝐷)
2

]
 

(394) 

It is valid for 1 ≤ 𝐻𝑒 ≤ 3000 . For helical pipes they also recommended an empirical 

correlation valid for turbulent flow for 4500 ≤ 𝑅𝑒 ≤ 105, 6.7 ≤
𝐷

𝑑
≤ 346, 0 ≤

𝑃

𝐷
≤ 25.4: 

 𝑓𝑐 =
0.316

𝑅𝑒
1
4

+ 0.03√
𝑑

𝐷
 (395) 

 

4.1.2.22 Dennis (1980) 

In 1980 S.C.R. Dennis proposed the following correlation for laminar flow in helical pipes and 

large Dean numbers [257] [281]: 
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𝑓𝑐
𝑓𝑠

= 0.388 + 0.1015√𝐷𝑒 (396) 

 

4.1.2.23 Manlapaz-Churchill (1980) 

In 1980 R.L. Manlapaz and S.E.W. Churchill presented a correlation for helical pipes where a 

separated term 
𝐷

𝑑
 is included in addition to a De term to account for the coil-curvature effect ( 

[9] Ch. 5) [257] [282]: 

 

𝑓𝑐
𝑓𝑠

=

[
 
 
 
 

(

 
 

1.0 −
0.18

[1 + (
35
𝐷𝑒)

2

]

0.5

)

 
 

𝑚

+ (1.0 +
𝑑

3𝐷
)
2

(
𝐷𝑒

88.33
)

]
 
 
 
 
0.5

 

𝑚 = 2 for 𝐷𝑒 < 20 

𝑚= 1 for 20 < 𝐷𝑒 < 40 

𝑚= 0 for 𝐷𝑒 > 40 

(397) 

Manlapaz and Churchill suggested using the helical coil number 𝐻𝑒 instead of the Dean number 

𝐷𝑒 in the previous equation to account for changes in the friction factor due to the coil pitch. 

However, their own theoretical predictions, other predictions [283], and experimental data 

[280] demonstrate that the influence of the coil pitch on the friction factors is very small ( [9] 

Ch. 5). 

 

4.1.2.24 Kadambi (1983) 

Kadambi's air friction factor data for 𝑅𝑒 ≥ 8000 for two curved rectangular ducts are well 

predicted by a circular-tube correlation when the hydraulic diameter of the rectangular tube is 

used [284] [285]. However, for 𝑅𝑒 ≤ 8000 the friction factors for a curved rectangular duct 

were higher than those for the curved circular tube. Higher friction factors were also observed 

by Butuzov et al. in 1975 [286]. Their experiments included two rectangular ducts and a square 

duct with water and Freon as working fluids. They correlated their extensive test results as ( [9] 

Ch. 5) follows: 

 
𝑓𝑐
𝑓𝑠

= 0.435 ∙ 10−3 𝑅𝑒∗0.96 (
𝑅

𝑑∗
)

0.22

 (398) 

where 𝑑∗ represents the short channel side and is used as a characteristic dimension in 𝑅𝑒∗. In 

the above equation, 𝑓𝑠 represents the friction factor in a straight duct with the same aspect ratio 

as that of a curved coil. The application range for the correlation is given as 450 ≤ 𝑅𝑒√
𝑑∗

𝑅
≤

7500 and 25 ≤
𝑅

𝑑∗
≤ 164. This equation may be used for curved rectangular ducts for 𝑅𝑒∗ ≤

8000. 
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4.1.2.25 Yanase et al. (1989) 

In 1989 S. Yanase et al. recommended a theoretical correlation for laminar flow in toroidal 

tubes [257] [287]: 

 
𝑓𝑐
𝑓𝑠

= 0.557 + 0.0938√𝐷𝑒 (399) 

 

4.1.2.26 Liu-Masliyah (1993) 

In 1993 S. Liu and J.M. Masliyah proposed the following numerical correlation for helical 

pipes and developing laminar flows [257] [288]: 

𝑓𝑐
4

∙ 𝑅𝑒 = [16 + (0.378𝐷𝑒𝜆
1
4 + 12.1)𝐷𝑒

1
2𝜆

1
2𝛾2] 

× [1 + {
{(0.0908 + 0.0233𝜆

1
2)𝐷𝑒

1
2 − 0.132𝜆

1
2+ 0.37𝜆− 0.2}

(1 + 49
𝐷𝑒⁄ )

}] 

(400) 

𝜆 =

𝐷
2

[(
𝐷
2)

2

+ (
𝑝
2𝜋)

2

]

 

𝛾 =
𝜂

(𝜆𝐷𝑒)
1
2

 

 𝜂 =

𝑝
2𝜋

(
𝐷
2)

2

+ (
𝑝
2𝜋)

2
 

where 𝑝 in this last expression refers to the pitch of the coil in cm. 

 

4.1.2.27 Xin et al. (1997) 

In 1997 R.C. Xin et al. [289] studied the effects of coil geometries and the flow rates of air and 

water on pressure drop in both annular vertical and horizontal helical pipes with three different 

diameters of inner and outer tubes. On the basis of the experimental data, a correlation of the 

friction factor was developed [275]: 

 
𝑓𝑐 = 0.02985 +

75.89 [0.5 −
(tan−1 (

𝐷𝑒 − 39.88
77.56

))

𝜋 ]

(
𝐷

𝑑𝑖,𝑜𝑢𝑡 − 𝑑𝑜,𝑖𝑛
)
1.45 , 

(401) 

where 𝑑𝑖,𝑜𝑢𝑡 is the inner diameter of outer tube in meters and 𝑑𝑜,𝑖𝑛  is the outer diameter of inner 

tube in meters. This correlation is valid for 35 ≤ 𝐷𝑒 ≤ 20000, 1.61 ≤
𝑑𝑖,𝑜𝑢𝑡

𝑑𝑜,𝑖𝑛
≤ 1.67, 21 ≤

𝐷
𝑑𝑖,𝑜𝑢𝑡 − 𝑑𝑜,𝑖𝑛

⁄ ≤ 32. 
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4.1.2.28 Ju et al. (2001) 

In 2001, H. Ju et al. [284] used an HTR-10 steam generator to evaluate the hydraulic 

performance of small bending radius helical pipe. All experimental data were regressed to 

obtain the friction factor correlations as follows [275]: 

For 𝐷𝑒 < 11.6, it is laminar flow: 

 𝑓𝑠 =
64

𝑅𝑒
,
𝑓𝑐
𝑓𝑠

= 1 (402) 

For 𝐷𝑒 > 11.6 and 𝑅𝑒 < 𝑅𝑒𝑐𝑟𝑖𝑡 it is laminar with large vortex: 

 𝑓𝑠 =
64

𝑅𝑒
,
𝑓𝑐
𝑓𝑠

= 1 + 0.015𝑅𝑒0.75 (
𝑑

𝐷
)
0.4

 (403) 

For 𝐷𝑒 > 11.6 and 𝑅𝑒 > 𝑅𝑒𝑐𝑟𝑖𝑡 it is turbulent flow: 

 

𝑓𝑠 =
0.316

𝑅𝑒
 (𝑠𝑚𝑜𝑜𝑡ℎ 𝑝𝑖𝑝𝑒) 

𝑓𝑠 = 0.1 (1.46
𝜀

𝑑
+

100

𝑅𝑒
)

0.25

(𝑟𝑜𝑢𝑔ℎ 𝑝𝑖𝑝𝑒) 

𝑓𝑐
𝑓𝑠

= 1 + 0.11𝑅𝑒0.23 (
𝑑

𝐷
)

0.14

 

(404) 

where 𝜀 is the roughness of the pipe. 

 

4.1.2.29 Guo et al. (2001) 

L. Guo et al. [290] studied frictional pressure drops of single-phase water flow in two helically 

coiled tubes at four different helix axial inclinations angles. The results indicated that the helix 

axial angles have insignificant effect on the single-phase frictional pressure drop. All measured 

data were fitted to obtain a new friction factor correlation in the following form [275]: 

 𝑓𝑐 = 2.552𝑅𝑒−0.15 (
𝑑

𝐷
)

0.51

 (405) 

 

4.1.2.30 Summary of friction factor correlations for single-phase flow in curved and helical 

pipes 

Table 32 presents the list of all friction factor correlations collected for single-phase flow in 

curved and helical pipes. 

TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Dean (1928) 

[257] [259] [260] 

𝑓𝑐
𝑓𝑠

= 1.03058 (
𝐷𝑒2

288
)

2

+ 0.01195 (
𝐷𝑒2

288
)

4

 

𝐷𝑒 ≤ 20, laminar flow, small 
𝑑

𝐷
 ratios 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

White (1929) 

[257] [261] [262] 

for 11.6 ≤ 𝐷𝑒 ≤ 2000: 

𝑓𝑠
𝑓𝑐

= 1 − [1 − (
11.6

𝐷𝑒
)
0.45

]

2.22

 

for 𝐷𝑒 ≤ 11.6: 
𝑓𝑐
𝑓𝑠

= 1 

𝐷

𝑑
= 15.15, 50, 𝑎𝑛𝑑 2050, circular tubes, laminar flow 

White (1932) 

[257] [263] 

𝑓𝑐 = 0.32𝑅𝑒−
1
4  +  0.048√

𝑑

𝐷
 

1.5 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 105, helical pipes, turbulent flow 

Adler (1934) 

[257] [264] 

𝑓𝑐
𝑓𝑠

= 0.1064√𝐷𝑒 

laminar flow, large Dean numbers 

Prandtl (1949) 

[235] [257] 

𝑓𝑐
𝑓𝑠

= 0.37 (
𝐷𝑒

2
)
0.36

 

40 ≤ 𝐷𝑒 ≤ 2000, laminar flow, curved pipes 

Hasson (1955) 

[257] [265] 

𝑓𝑐
𝑓𝑠

= 0.556 + 0.0969√𝐷𝑒 

laminar flow, helical pipes 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Ito (1959) 

[9] [257] [266] 

1. laminar flow, 13.5 ≤ 𝐷𝑒 ≤ 2000: 

𝑓𝑐
𝑓𝑠

=
21.5𝐷𝑒

(1.56 + 𝑙𝑜𝑔𝐷𝑒)5.73
 

2. turbulent flow, 𝑅𝑒(
𝑑

𝐷
)
2

≥ 6: 

𝑓𝑐
𝑓𝑠

= [𝑅𝑒 ∙ (
𝑑

𝐷
)
2

]

1
20

 

𝑓𝑐 =
0.316

𝑅𝑒0.2 (
𝑑

𝐷
)

1

10
(using Blasius Eq. (310)) 

3. turbulent flow, 0.034 ≤ 𝑅𝑒(
𝑑

𝐷
)
2

≤ 300: 

𝑓𝑐 = 0.029 (
𝑑

𝐷
)

1
2
+

0.304 

 𝑅𝑒0.25
 

4. turbulent flow, 𝑌2√
𝑑

𝐷
≤ 12: 

𝑓𝑐 = 0.0324 (
𝑑

𝐷
)

1
2
+

1.6

(
𝑑
𝐷)

0.77

𝑌2.54

 

𝑌2√
𝑑

𝐷
≥ 5.3: 

𝑓𝑐 =
1.186

𝑌2
 

where 𝑌3𝑒𝑌 = 𝑅𝑒√
𝐷

𝑑
 

Kubair-Varrier 

(1961) 

[257] [267] 

for 2 ∙ 103 ≤ 𝑅𝑒 ≤ 9 ∙ 103: 

𝑓𝑐 = 3.0864𝑅𝑒−0.5𝑒3.553
𝑑
𝐷 

for 9 ∙ 103 ≤ 𝑅𝑒 ≤ 2.5 ∙ 104: 

𝑓𝑐 = 0.014152𝑅𝑒0.09𝑒1.887
𝑑
𝐷 

Both are valid for 0.037 ≤
𝑑

𝐷
≤ 0.097, helical pipes 

Barua (1963) 

[257] [268] 

𝑓𝑐
𝑓𝑠

= 0.509 + 0.0918√𝐷𝑒 

laminar flow, large Dean number 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Seban-

McLaughlin 

(1963) 

[262] 

𝑓𝑐 =
0.184

𝑅𝑒0.2
∙ [𝑅𝑒 ∙ (

𝑑

𝐷
)
2

]

1
20

 

12 ≤ 𝑅𝑒 ≤ 65000, 
𝐷

𝑑
= 17 𝑎𝑛𝑑 104 

Mori-Nakayama 

(1965) 

[257] [269] 

𝑓𝑐
𝑓𝑠

=
0.108√𝐷𝑒

1 −
3.253

√𝐷𝑒

 

13.5 ≤ 𝐷𝑒 ≤ 2000, laminar flow 

Mori-Nakayama 

(1967) 

[270] 

𝑓 = (
𝑟

𝑅
)
0.5

∙
0.192

[𝑅𝑒 ∙ (
𝑟
𝑅)

2.5

]

1
6

 ∙

(

 
 

1 +
0.068

[𝑅𝑒 ∙ (
𝑟
𝑅)

2.5

]

1
6

)

 
 

 

turbulent flow 

Schmidt (1967) 

[271] 

for 100 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑐𝑟𝑖𝑡.: 

𝑓𝑐
𝑓𝑠

= 1 + 0.14 (
𝑑

𝐷
)

0.97

𝑅𝑒1−0.644(
𝑑
𝐷

)
0.312

 

for 𝑅𝑒𝑐𝑟𝑖𝑡. ≤ 𝑅𝑒 ≤ 2.2 ∙ 104 

𝑓𝑐
𝑓𝑠

= 1 +
2.88 ∙ 104

𝑅𝑒
(
𝑑

𝐷
)

0.62

 

for 2 ∙ 104 ≤ 𝑅𝑒 ≤ 1.5 ∙ 105: 

𝑓𝑐
𝑓𝑠

= 1 + 0.0823 (1 +
𝑑

𝐷
) (

𝑑

𝐷
)

0.53

𝑅𝑒0.25 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Srinivasan et al. 

(1968) 

[257] [272] 

for 𝑅𝑒√
𝑑

𝐷
≤ 30: 

𝑓𝑐 =
128

𝑅𝑒
 

for 30 ≤ 𝑅𝑒√
𝑑

𝐷
≤ 300 

𝑓𝑐 = 20.88(𝑅𝑒√
𝐷

𝑑
)

−0.6

 

for 300 ≤ 𝑅𝑒√
𝑑

𝐷
≤ 𝑅𝑒𝑐𝑟𝑖𝑡.√

𝑑

𝐷
 

𝑓𝑐 = 7.2(𝑅𝑒√
𝐷

𝑑
)

−0.5

 

For 𝑅𝑒 ≥ 𝑅𝑒𝑐𝑟𝑖𝑡. 

𝑓𝑐 = 4.336 (𝑅𝑒√
𝐷

𝑑
)

−0.2

 

All are valid for 0.0097 ≤
𝑑

𝐷
≤ 0.135 

Ito (1969) 

[257] [273] 

𝑓𝑐
𝑓𝑠

= 0.1033√𝐷𝑒 [(1 +
1.729

𝐷𝑒
)
0.5

–
1.315

𝐷𝑒0.5
]

−3

 

𝑓𝑐
𝑓𝑠

= 0.1033√𝐷𝑒 [1 +
3.945

𝐷𝑒0.5
+

7.782

𝐷𝑒
+

9.097

𝐷𝑒1.5
+

5.608

𝐷𝑒2
+ ⋯] 

𝑓𝑐
𝑓𝑠

= 0.1008√𝐷𝑒 [1 +
3.945

𝐷𝑒0.5
+

7.782

𝐷𝑒
+

9.097

𝐷𝑒1.5
+

5.608

𝐷𝑒2
+ ⋯] 

laminar flow 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Srinivasan et al. 

(1970) 

[9] [274] 

1. helical smooth pipe, turbulent flow, 𝑅𝑒 (
𝑅

𝑟
)
−2

< 700, 7 <
𝑅

𝑟
< 104: 

𝑓𝑐 (
𝑅

𝑟
)
0.5

= 0.336 [𝑅𝑒 (
𝑅

𝑟
)
−2

]

−0.2

 

2. spiral coils, 40000 < 𝑅𝑒 (
𝑃

𝑟
)
0.5

< 150000, 7.3 <
𝑃

𝑟
< 15.5: 

𝑓𝑐 =
0.0296 (𝑛2

0.9 − 𝑛1
0.9)1.5

[𝑅𝑒 (
𝑃
𝑟)

0.5

]

0.2  

3. for 7 <
𝑅

𝑟
< 104: 

𝐷𝑒 < 30: 

𝑓𝑐
𝑓𝑠

= 1 

30 ≤ 𝐷𝑒 ≤ 300: 

𝑓𝑐
𝑓𝑠

= 0.419𝐷𝑒0.275 

𝐷𝑒 > 300: 

𝑓𝑐
𝑓𝑠

= 0.1125𝐷𝑒0.5 

Tarbell-Samuels 

(1973) 

[257] [275] [276] 

𝑓𝑐
𝑓𝑠

= 1 + [8.279 ∙ 10−4 + 7.964 ∙ 10−3
𝑑

𝐷
]𝑅𝑒 − 2.096 ∙ 10−7𝑅𝑒2 

20 ≤ 𝐷𝑒 ≤ 500, 3 ≤
𝐷

𝑑
≤ 30 

Ramana Rao-

Sadasivudu 

(1974) 

[257] [277] 

for 𝑅𝑒 ≤ 1200: 

𝑓𝑐 = 62 𝑒14.12
𝑑
𝐷𝑅𝑒−1 

for 1200 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑐𝑟𝑖𝑡.: 

𝑓𝑐 = 6.2 𝑒14.12
𝑑
𝐷𝑅𝑒−0.64 

for 𝑅𝑒𝑐𝑟𝑖𝑡. ≤ 𝑅𝑒 ≤ 27000: 

𝑓𝑐 = 0.1528 𝑒11.17
𝑑
𝐷𝑅𝑒−0.2 

turbulent flow: 

𝑓𝑐 = 0.0426 (
𝑑0.94

𝐷0.1
)𝑅𝑒−0.2 

0.0159 ≤
𝑑

𝐷
≤ 0.0556, helical pipes 



173 

 

TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Collins-Dennis 

(1975) 

[257] [278] 

𝑓𝑐
𝑓𝑠

= 0.38 + 0.1028√𝐷𝑒 

laminar flow, large Dean number 

Van Dyke (1978) 

[257] [279] 

𝑓𝑐
𝑓𝑠

= 0.47136𝐷𝑒
1
4 

𝐷𝑒 ≥ 30, laminar flow 

Mishra-Gupta 

(1979) 

[257] [280] 

for laminar flow, 1 ≤ 𝐻𝑒 ≤ 3000: 

𝑓𝑐
𝑓𝑠

= 1 + 0.033[𝑙𝑜𝑔𝐻𝑒]4 

where 𝐻𝑒 = 𝑅𝑒√

𝑑

𝐷

[1+(
𝑝

𝑝𝐷
)
2
]
 

for 4500 ≤ 𝑅𝑒 ≤ 105, 6.7 ≤
𝐷

𝑑
≤ 346, 0 ≤

𝑃

𝐷
≤ 25.4: 

𝑓𝑐 =
0.316

𝑅𝑒
1
4

+ 0.03√
𝑑

𝐷
 

Dennis (1980) 

[257] [281] 

𝑓𝑐
𝑓𝑠

= 0.388 + 0.1015√𝐷𝑒 

laminar flow, large Dean number 

Manlapaz-

Churchill (1980) 

[9] [257] [282] 

𝑓𝑐
𝑓𝑠

=

[
 
 
 
 

(

 
 

1.0 −
0.18

[1 + (
35
𝐷𝑒

)
2

]

0.5

)

 
 

𝑚

+ (1.0 +
𝑑

3𝐷
)
2

(
𝐷𝑒

88.33
)

]
 
 
 
 
0.5

 

𝑚 = 2 for 𝐷𝑒 < 20 

𝑚= 1 for 20 < 𝐷𝑒 < 40 

𝑚= 0 for 𝐷𝑒 > 40 

Kadambi (1983) 

[284] [285] 

𝑓𝑐
𝑓𝑠

= 0.435 ∙ 10−3 𝑅𝑒∗0.96 (
𝑅

𝑑∗
)

0.22

 

450 ≤ 𝑅𝑒√
𝑑∗

𝑅
≤ 7500, 25 ≤

𝑅

𝑑∗ ≤ 164 

Yanase et al. 

(1989) 

[257] [287] 

𝑓𝑐
𝑓𝑠

= 0.557 + 0.0938√𝐷𝑒 

laminar flow 
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Liu-Masliyah 

(1993) 

[257] [288] 

𝑓𝑐
4

𝑅𝑒 = [16 + (0.378𝐷𝑒𝜆
1
4 + 12.1)𝐷𝑒

1
2𝜆

1
2𝛾2] 

× [1 + {
{(0.0908 + 0.0233𝜆

1
2)𝐷𝑒

1
2 − 0.132𝜆

1
2+ 0.37𝜆− 0.2}

(1 + 49
𝐷𝑒⁄ )

}] 

𝜆 =

𝐷
2

[(
𝐷
2)

2

+ (
𝑝
2𝜋)

2

]

 

𝛾 =
𝜂

(𝜆𝐷𝑒)
1
2

 

𝜂 =
(

𝑝
2𝜋)

[(
𝐷
2)

2

+ (
𝑝
2𝜋)

2

]

 

developing laminar flows 

Xin et al. (1997) 

[275] [289] 

𝑓𝑐 = 0.02985 +

75.89 [0.5 −
(tan−1 (

𝐷𝑒 − 39.88
77.56

))

𝜋 ]

(
𝐷

𝑑𝑖,𝑜𝑢𝑡 − 𝑑𝑜,𝑖𝑛
)
1.45  

35 ≤ 𝐷𝑒 ≤ 20000, 1.61 ≤
𝑑𝑖,𝑜𝑢𝑡

𝑑𝑜,𝑖𝑛
≤ 1.67,  

21 ≤ 𝐷
𝑑𝑖,𝑜𝑢𝑡 − 𝑑𝑜,𝑖𝑛

⁄ ≤ 32 

Ju et al.(2001) 

[275] [284] 

for 𝐷𝑒 < 11.6, it is laminar flow: 

𝑓𝑠 =
64

𝑅𝑒
,
𝑓𝑐
𝑓𝑠

= 1 

for 𝐷𝑒 > 11.6 and 𝑅𝑒 < 𝑅𝑒𝑐𝑟𝑖𝑡 it is laminar with large vortex: 

𝑓𝑠 =
64

𝑅𝑒
,
𝑓𝑐
𝑓𝑠

= 1 + 0.015𝑅𝑒0.75 (
𝑑

𝐷
)
0.4

 

for 𝐷𝑒 > 11.6 and 𝑅𝑒 > 𝑅𝑒𝑐𝑟𝑖𝑡 it is turbulent flow: 

𝑓𝑠 =
0.316

𝑅𝑒
 (𝑠𝑚𝑜𝑜𝑡ℎ 𝑝𝑖𝑝𝑒) 

𝑓𝑠 = 0.1 (1.46
𝜀

𝑑
+

100

𝑅𝑒
)
0.25

(𝑟𝑜𝑢𝑔ℎ 𝑝𝑖𝑝𝑒) 

𝑓𝑐
𝑓𝑠

= 1 + 0.11𝑅𝑒0.23 (
𝑑

𝐷
)
0.14
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TABLE 32. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN CURVED AND HELICAL PIPES 

Guo et al. (2001) 

[275] [290] 

𝑓𝑐 = 2.552𝑅𝑒−0.15 (
𝑑

𝐷
)
0.51

 

helically coiled tubes 

 

4.1.3 Flow in bundles with smooth pins 

In Fig. 53, the geometry of the rod bundles with smooth rods (without wire wrap) are shown 

for hexagonal and square configurations. Here D – diameter of the fuel pin and P – pitch. 

 

 

FIG. 53. Geometry of hexagonal subassembly and square rod bundle 

 

4.1.3.1 Presser (1967) 

The empirical correlations by K.H. Presser (1967) ( [9] Ch. 7) [291] are recommended for an 

infinite triangular array and a 
𝑃

𝐷
 ratio of 1 ≤

𝑃

𝐷
≤ 2. 

For 
𝑃

𝐷
≤ 1.2: 

 𝑓 = 𝐴1 ∙ 𝑅𝑒−0.25  𝑓𝑜𝑟 104 ≤ 𝑅𝑒 ≤ 5 ∙ 104 (406) 

 𝑓 = 𝐴1 ∙ 𝑅𝑒−0.2  𝑓𝑜𝑟 5 ∙ 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105 (407) 

where 

 𝐴1 = 0.171 + 0.012 ∙
𝑃

𝐷
− 0.07 ∙ 𝑒−50(𝑃 𝐷 ⁄ − 1) (408) 

Presser’s correlation agrees within 2% with the solution obtained by the laminar method. He 

also proposed empirical correlations for an infinite square array and 1 ≤
𝑃

𝐷
≤ 2: 

 𝑓 = 𝐴1 ∙ 𝑅𝑒−0.25  𝑓𝑜𝑟 104 ≤ 𝑅𝑒 ≤ 5 ∙ 104 (409) 

 𝑓 = 𝐴1 ∙ 𝑅𝑒−0.2  𝑓𝑜𝑟 5 ∙ 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105 (410) 

where 
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 𝐴1 = 0.181 + 0.0108 ∙
𝑃

𝐷
− 0.132 ∙ 𝑒−20(𝑃 𝐷 ⁄ − 1) (411) 

 

4.1.3.2 Subbotin et al. (1972) 

In 1972 V.I. Subbotin et al. [130] [160] [292] proposed the following friction factor for laminar 

flow along smooth pin bundles: 

 𝑓 =
64

𝑅𝑒
𝐾 (412) 

where the values of the form factor K for smooth pins are indicated in Table 33, 𝑅𝑒 =
𝑤×𝑑ℎ

𝑛
 is 

the Reynolds number based on the bulk flow velocity and hydraulic diameter of the “infinite” 

pin array. 

TABLE 33. VALUES OF FACTOR K IN LAMINAR FLOW IN SMOOTH PIN BUNDLES 

Type of 

bundle 

Relative pitch, 𝑃 𝐷⁄  

1.0 1.02 1.05 1.10 1.20 1.30 1.40 1.50 2.0 

Triangular 0.407 0.663 0.966 1.274 1.56 1.715 1.834 1.940 2.46 

Square 0.405 0.518 0.679 0.913 1.264 1.510 1.699 1.858 2.51 

For approximate calculations it is possible to use the following formulas. For triangular bundles: 

 𝐾 ≅ 0.41 + 1.9√
𝑃

𝐷
− 1

3

 (413) 

For square bundles: 

 𝐾 ≅ 0.41 + 1.9√
𝑃

𝐷
− 1 (414) 

Eqs. (412)(413)(414) are applicable when pitch-to diameter ratio of the bundle is between 

1.0 ≤ 𝑃
𝐷⁄ ≤ 2.0. 

 

4.1.3.3 Subbotin et al. (1971) 

In 1971 V.I Subbotin et al. [130] [293] [294] [295] recommended the following friction factor 

for turbulent flow in triangular smooth pin bundle as follows: 

 
𝑓

𝑓0
= 0.57 + 0.18 (

𝑃

𝐷
− 1) + 0.53(1 − 𝑒−𝑎) (415) 

 
𝑓

𝑓0
= 0.59 + 0.19 (

𝑃

𝐷
− 1) + 0.52(1 − 𝑒−𝑏) (416) 
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where: 𝑎 = 0.58 [1 − 𝑒−70(
𝑃

𝐷
−1)] + 9.2 (

𝑃

𝐷
− 1), 𝑏 = 10 (

𝑃

𝐷
− 1). 

𝑓0 is the friction factor for turbulent flow in smooth round tube obtained using Blasius formula 

Eq. (310). 

For 𝑃 𝐷⁄ > 1.02, it is possible to neglect exponents in the above correlations. 

 

4.1.3.4 Rehme (1972) 

For the annular-zone solution, K. Rehme [296] recommended the following correlation for 

triangular arrays for 𝑃 𝐷⁄ ≥ 1.2 ( [9] Ch. 7): 

 
𝑓

𝑓𝑡
= 1.045 + 0.071 (

𝑃

𝐷
− 1)  𝑓𝑜𝑟 𝑅𝑒 = 104 (417) 

 
𝑓

𝑓𝑡
= 1.036 + 0.054 (

𝑃

𝐷
− 1)  𝑓𝑜𝑟 𝑅𝑒 = 105 (418) 

where 𝑓𝑡 is the friction factor of circular tubes. 

A relationship between laminar and turbulent flow friction factors was also developed by 

Rehme [297] based on the law of the wall for the velocity profile. The equation for the turbulent 

friction factor can be written as follows ( [9] Ch. 7): 

 √
8

𝑓
= A2 ∙ [2.5 ln𝑅𝑒√

𝑓

8
+ 5.5] − 𝐺∗ (419) 

where A2 and 𝐺∗ are two geometry parameters which depend on 𝑓 𝑅𝑒 for laminar flow: 

 

A2 = 1 for 𝑓 𝑅𝑒 ≥ 64 

A2 = 1 + 0.552 log (
64

𝑓 𝑅𝑒
) 𝑓𝑜𝑟 𝑓 𝑅𝑒 < 64 

(420) 

𝐺∗ can be determined from correlations developed by Cheng and Todreas [7] [45]  

 𝐺∗ = 2.553 + 3.872 log (
𝑓𝑅𝑒

4
) − 1.042 (log (

𝑓𝑅𝑒

4
))

2

 for 24 < 𝑓𝑅𝑒 ≤ 64 (421) 

 𝐺∗ = 6.615 − 3.376 log (
𝑓𝑅𝑒

4
) + 2.159 (log (

𝑓𝑅𝑒

4
))

2

 for 64 < 𝑓𝑅𝑒 ≤ 125 (422) 

 𝐺∗ = 1.663 + 3.151 log (
𝑓𝑅𝑒

4
) for 125 < 𝑓𝑅𝑒 ≤ 1000 (423) 

 

4.1.3.5 Zhukov et al. (1985) 

In 1985 A.V. Zhukov et al. [298] [299] recommended the following correlation for transition 

from laminar to turbulent flow in rod bundles with smooth pins: 

 log 𝑓 = 5.2𝑅𝑒−0.22+0.145(
𝑃
𝐷

−1) − 2.35 (424) 
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The same formula describes friction factor over a wide range of parameters (10 ≤ 𝑅𝑒 ≤

2 ∙ 105, 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5), with accuracy ± 20%. 

Considerable attention has been focused on the analysis of a rich variety of the data collected 

on the friction factors in infinite rod arrays with smooth pins that results in the following simple 

relationship: 

 𝑓 =
0.210

𝑅𝑒0.25
[1 + (

𝑃

𝐷
− 1)

0.32

] (425) 

It is valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5, 6 ∙ 103 ≤ 𝑅𝑒 ≤ 2 ∙ 105. 

Correlation (425) is in a good agreement with the results of experimental and numerical 

investigations of the pressure drops in multi-pin bundles. 

When arranged in square bundle, the friction factor can be found using the relationship: 

 
𝑓

0.316𝑅𝑒−0.25
= 0.59 + 0.19 (

𝑃

𝐷
− 1) + 0.52 [1 − 𝑒−10(

𝑃
𝐷

−1)] (426) 

It is valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 2.0, 104 ≤ 𝑅𝑒 ≤ 5 ∙ 105. 

 

4.1.3.6 Malak et al. (1975) 

In 1975 J. Malak et al. [130] [300] recommended to express the friction factor for fuel bundles 

of smooth pins in laminar and turbulent flow using the geometrical parameters 𝜒𝑙𝑎𝑚 and 𝜒𝑡𝑢𝑟𝑏 

respectively as follows: 

 𝑓 =
64

𝑅𝑒
𝜒𝑙𝑎𝑚

2  (427) 

 

 √
𝜒𝑡𝑢𝑟𝑏

𝑓
= 2 log

𝑅𝑒√𝑓

𝜒𝑡𝑢𝑟𝑏
1.5 − 0.8 (428) 

Experiments have shown that parameters 𝜒𝑙𝑎𝑚 and 𝜒𝑡𝑢𝑟𝑏 are related to each other as: 

 𝜒𝑡𝑢𝑟𝑏 =
1 + 3𝜒𝑙𝑎𝑚

4
 (429) 

0.25 ≤ 𝜒𝑙𝑎𝑚 ≤ 1.25, 0.45 ≤ 𝜒𝑡𝑢𝑟𝑏 ≤ 1.2. 

 

FIG. 54 shows the values of these parameters concerning fast reactor subassembly. The wall 

channels are considered here and an influence of the pin number on these parameters is 

demonstrated. 

 

J n 𝜒𝑙𝑎𝑚 𝜒𝑡𝑢𝑟𝑏 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

7 

9 

37 

61 

91 

127 

169 

217 

271 

331 

397 

0.774 

0.982 

1.059 

1.098 

1.120 

1.135 

1.145 

1.152 

1.158 

1.163 

1.166 

0.830 

0.987 

1.044 

1.073 

1.090 

1.101 

1.109 

1.114 

1.119 

1.122 

1.125 

 

FIG. 54. Coefficients 𝜒𝑙𝑎𝑚 and 𝜒𝑡𝑢𝑟𝑏 for pin bundle of BN-600 type, J: number of rows, n: number of 

pins, 𝑃 𝐷⁄ = 1.166, 𝑚 𝐷⁄ = 0.1045 

 

4.1.3.7 Summary of friction factor correlations for single-phase flow in rod bundles with 

smooth pins 

Friction factor correlations for single-phase flow in wire-wrapped bundle are summarized in 

Table 34. 

 

TABLE 34. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN SMOOTH ROD BUNDLES 

Presser (1967) 

[9] [291] 

For 
𝑃

𝐷
≤ 1.2 and hexagonal infinitive pin array:  

𝑓 = 𝐴1 ∙ 𝑅𝑒−0.25  𝑓𝑜𝑟 104 ≤ 𝑅𝑒 ≤ 5 ∙ 104 

𝑓 = 𝐴1 ∙ 𝑅𝑒−0.2  𝑓𝑜𝑟 5 ∙ 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105 

𝐴1 = 0.171 + 0.012 ∙
𝑃

𝐷
− 0.07 ∙ 𝑒−50(𝑃 𝐷 ⁄ – 1) 

For 1 ≤
𝑃

𝐷
≤ 2 and square infinitive pin array:  

𝑓 = 𝐴1 ∙ 𝑅𝑒−0.25  𝑓𝑜𝑟 104 ≤ 𝑅𝑒 ≤ 5 ∙ 104 

𝑓 = 𝐴1 ∙ 𝑅𝑒−0.2  𝑓𝑜𝑟 5 ∙ 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105 

𝐴1 = 0.181 + 0.0108 ∙
𝑃

𝐷
− 0.132 ∙ 𝑒−20(𝑃 𝐷 ⁄ − 1) 
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TABLE 34. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN SMOOTH ROD BUNDLES 

Subbotin et al. 

(1972) 

[130] [160] [293] 

Laminar flow in smooth rod bundles: 

𝑓 =
64

𝑅𝑒
𝐾 

K is given in Table 33 for both triangular and squared arrays; 

approximate values can be obtained as: 

for triangular pin arrays: 𝐾 ≅ 0.41 + 1.9√
𝑃

𝐷
− 1

3
 

for square pin arrays: 𝐾 ≅ 0.41 + 1.9√
𝑃

𝐷
− 1 

All are valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 2.0. 

Subbotin et al. 

(1971) 

[130] [293] [294] 

[295] 

𝑓

𝑓0
= 0.57 + 0.18 (

𝑃

𝐷
− 1) + 0.53(1 − 𝑒−𝑎) 

𝑓

𝑓0
= 0.59 + 0.19 (

𝑃

𝐷
− 1) + 0.52(1 − 𝑒−𝑏) 

𝑎 = 0.58 [1 − 𝑒−70(
𝑃

𝐷
−1)] + 9.2 (

𝑃

𝐷
− 1), 𝑏 = 10 (

𝑃

𝐷
− 1) 

𝑓0 is the friction factor by Blasius correlation Eq. (310) 

turbulent flow in triangular smooth pin bundle 

Rehme (1972) 

[296] 

𝑓

𝑓𝑡
= 1.045 + 0.071 (

𝑃

𝐷
− 1)  𝑓𝑜𝑟 𝑅𝑒 = 104 

𝑓

𝑓𝑡
= 1.036 + 0.054 (

𝑃

𝐷
− 1)  𝑓𝑜𝑟 𝑅𝑒 = 105 

𝑓𝑡: friction factor of circular tubes 

for triangular arrays and 𝑃 𝐷⁄ ≥ 1.2 

Zhukov et al. (1985) 

[298] [299] 

Transition from laminar to turbulent flow in bundles with smooth 

pins: 

log 𝑓 = 5.2𝑅𝑒−0.22+0.145(
𝑃
𝐷

−1) − 2.35 

10 ≤ 𝑅𝑒 ≤ 2 ∙ 105, 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5 

Infinitive pin array with smooth pins: 

𝑓 =
0.210

𝑅𝑒0.25
[1 + (

𝑃

𝐷
− 1)

0.32

] 

1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5, 6 ∙ 103 ≤ 𝑅𝑒 ≤ 2 ∙ 105 

Square rod bundles: 
𝑓

0.316𝑅𝑒−0.25
= 0.59 + 0.19 (

𝑃

𝐷
− 1) + 0.52 [1 − 𝑒−10(

𝑃
𝐷

−1)] 

1.0 ≤ 𝑃
𝐷⁄ ≤ 2.0, 104 ≤ 𝑅𝑒 ≤ 5 ∙ 105 
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TABLE 34. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN SMOOTH ROD BUNDLES 

Malak et al. (1975) 

[130] [300] 

𝑓 =
64

𝑅𝑒
𝜒𝑙𝑎𝑚

2  

√
𝜒𝑡𝑢𝑟𝑏

𝑓
= 2 log

𝑅𝑒√𝑓

𝜒𝑡𝑢𝑟𝑏
1.5 − 0.8 

𝜒𝑡𝑢𝑟𝑏 =
1 + 3𝜒𝑙𝑎𝑚

4
 

0.25 ≤ 𝜒𝑙𝑎𝑚 ≤ 1.25, 0.45 ≤ 𝜒𝑡𝑢𝑟𝑏 ≤ 1.2. 

bundles of smooth pins in laminar and turbulent flow 

𝜒𝑙𝑎𝑚 and 𝜒𝑡𝑢𝑟𝑏 from Fig. 54 for hexagonal bundles 

 

4.1.4 Flow in wire-wrapped rod bundles 

The geometry of wire wrapped rod bundles in a hexagonal fuel assembly can be seen in Fig. 55 

where D is the diameter of fuel pin, H – wire pitch and P – pin pitch. 

 

 

FIG. 55. Hexagonal fuel assembly and subchannels geometry 

 

4.1.4.1 Pontier-Combe (1968) 

In 1968, L. Pontier and J. Combe proposed a correlation following a programme of turbulent 

tests in water [301]. The tests were realized with four wire-wrapped rod bundles, each having 

different rod diameter and wire diameter. 

 𝑓 = 𝛺0𝑒
𝑟 (430) 

D
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 𝛺0 = 0.12𝑅𝑒−0.16 for 𝜀~1.6 ∙ 10−4 mm (as for Pontier’s experiments) (431) 

 𝛺0 = [−2𝑙𝑜𝑔 [
𝜀

3.7𝐷ℎ
+ (

6.81

𝑅𝑒
)
0.9

]]

−2

for other roughness (432) 

 𝑟 = (1 + 4.6 (
𝑃

𝐷
− 1)) tanα with 𝑡𝑎𝑛 𝛼 = 𝜋

𝑑

𝐻
 (433) 

This correlation is valid for the following conditions: 1 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 105 (turbulent flow 

regime), 15.7 ≤
𝐻

𝐷
≤ ∞ , 1.1 ≤

𝑑𝑚

𝐷
≤ 1.4 , 37 ≤ 𝑁𝑟𝑜𝑑 ≤ 331 , 0 ≤ 𝑡𝑎𝑛 𝛼 ≤ 0.2  and 1.3 ∙

10−4 ≤ 𝜀 ≤ 2 ∙ 10−4 where 𝑑𝑚 is the rod diameter plus the wire diameter, 𝑃 is the rod pitch, 

𝐷 is the rod diameter, 𝑅𝑒 is the Reynolds number using mean bundle average value, 𝐻 is the 

wire pitch, 𝐷ℎ is the hydraulic diameter, 𝑁𝑟𝑜𝑑 is the rod number and 𝜀 is the roughness. 

Pontier correlation was established from water turbulent flow tests, but it may be used for 

sodium flow as well. The test sections were horizontal, and 9 configurations were studied. It 

takes into account the roughness of the pins. The accuracy of this correlation in its domain of 

validity (turbulent region) is ±10% . However, there is no laminar model in Pontier’s 

correlation and moreover it is independent of the number of pins in the bundle. 

 

4.1.4.2 Sangster (1968) 

In 1968 W. Sangster proposed the friction factor correlation for rod bundles as follows [299] 

[302]: 

 𝑓 = 0.974 (
𝑃

𝐷
)
0.8 4.76

(𝐻 𝐷⁄ )
0.47 𝑓𝑝 for 1.135 ≤

𝑃

𝐷
≤ 1.195 (434) 

 𝑓 = 1.048 (
𝑃

𝐷
)
0.37 4.76

(𝐻 𝐷⁄ )
0.47 𝑓𝑝 for 1.195 ≤

𝑃

𝐷
≤ 1.255 (435) 

 𝑓 = 1.138
4.76

(𝐻 𝐷⁄ )
0.47 𝑓𝑝 for 

𝑃

𝐷
≥ 1.255 (436) 

where 𝑓𝑝 is a flow resistance factor for a round pipe. It is valid for 10 ≤
𝐻

𝐷
≤ 40 and 4 ∙ 103 ≤

𝑅𝑒 ≤ 105. 

 

4.1.4.3 Novendstern (1972) 

E.H. Novendstern (1972) presented a model where the influence of the wire wrap is considered 

by means of an effective friction factor 𝑓1 calculated as follows [3] [303] [304]: 

 𝑓1 = M 𝑓𝑠 (437) 

where  𝑓𝑠  is the standard friction factor for smooth pipes. The friction factor will then be 

calculated as: 

 𝑓 = 𝑓1𝑋1
2 (

𝐷𝑒𝑏

𝐷𝑒1
 ) = M 𝑓𝑠𝑋1

2 (
𝐷𝑒𝑏

𝐷𝑒1
 ) (438) 

The multiplier M has the expression: 
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 𝑀 = (
1.034

(𝑃 𝐷⁄ )
0.124 +

29.7 (𝑃 𝐷⁄ ) 6.94 𝑅𝑒1
0.086

(𝐻 𝐷⁄ )
2.239 )

0.885

 (439) 

where 𝑅𝑒1 is the Reynolds number for the centre subchannel of the hot SA in the wire-wrap 

configuration calculated as follows [155] [305]: 

 𝑅𝑒1 =
𝜌𝑣1𝐷𝑒1

𝜇
= 𝑋1𝑅𝑒

𝐷𝑒1

𝐷𝑒𝑏
 (440) 

 𝑅𝑒 =
𝜌𝑣𝐷𝑒

𝜇
 and 𝑣1 = 𝑋𝑣 (441) 

𝑋1 is the flow distribution factor calculated based on the central, side and corner subchannels: 

 
𝑋1 =

𝐴𝑏

(𝑁1𝐴1 + 𝑁2𝐴2 (
𝐷𝑒2

𝐷𝑒1
 )

0.714

+ 𝑁3𝐴3 (
𝐷𝑒3

𝐷𝑒1
 )

0.714

)

 
(442) 

 𝐴𝑏 = 𝑁1𝐴1 + 𝑁2𝐴2 + 𝑁3𝐴3 (443) 

Flow areas 𝐴𝑖 and equivalent diameters 𝐷𝑖 are calculated as if the wire spacer cross-section was 

distributed uniformly in all subchannels: 

 𝐷𝑒𝑖 =
4𝐴𝑖

𝑃𝑤𝑖
⁄  (444) 

 𝐴1 = 𝐴1
′ −

𝜋𝐷𝑤
2

8
⁄  (445) 

 𝐴2 = 𝐴2
′ −

𝜋𝐷𝑤
2

8
⁄  (446) 

 𝐴3 = 𝐴3
′ −

𝜋𝐷𝑤
2

24
⁄  (447) 

 𝐴𝑏 = 𝑁1𝐴1 + 𝑁2𝐴2 + 𝑁3𝐴3 (448) 

 𝐴1
′ = (√3

4
⁄ )𝑃2 − 𝜋𝐷2

8 ⁄  (449) 

 𝐴2
′ = 𝑃(𝑊 − 𝐷

2⁄ ) − 𝜋𝐷2

8 ⁄  (450) 

 𝐴3
′ = ((𝑊 − 𝐷

2⁄ )
2
√3) − 𝜋𝐷2

24 ⁄  (451) 

 𝑃𝑤1 = 𝑃𝑤1
′ −

𝜋𝐷𝑤
2

(2 cos 𝜃)
⁄  (452) 

 𝑃𝑤2 = 𝑃𝑤2
′ −

𝜋𝐷𝑤
2

(2 cos 𝜃)
⁄  (453) 

 𝑃𝑤3 = 𝑃𝑤3
′ −

𝜋𝐷𝑤
2

(6 cos 𝜃)
⁄  (454) 
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 𝑃𝑤1
′ = 𝜋𝐷

2 ⁄  (455) 

 𝑃𝑤2
′ = 𝑃 + 𝜋𝐷

2 ⁄  (456) 

 𝑃𝑤3
′ = 𝜋𝐷

6⁄ − 2(𝑊 − 𝐷
2⁄ )√3 (457) 

 cos 𝜃 = 𝐻
√𝐻2 + (𝜋(𝐷 + 𝐷𝑤)2)⁄  (458) 

The nomenclature here is as follows: 𝑃: rod pitch, 𝐷: rod diameter, 𝑓: Darcy friction factor, if 

no subscript means bundle average value, 𝐻 : wire lead length, 𝐷𝑒 : equivalent hydraulic 

diameter, 𝐷𝑤: wire diameter, 𝐴: area, 𝑁𝑖: number of subchannels in each kind of subchannel i 

in the bundle, 𝑊: edge pitch parameter defined as (𝐷 + gap between rod and bundle wall). 

Subscripts i=1, 2, 3 or b denote interior, edge, corner subchannel type, or bundle average, 

respectively. 

This correlation is valid for the conditions [155]: 600 ≤ 𝑅𝑒 ≤ 2 ∙ 105, 5 ∙ 10−3 ≤ 𝐷 ≤ 12 ∙

10−3, 19 ≤ 𝑁𝑟𝑜𝑑 ≤ 217, 1.06 ≤
𝑃

𝐷
≤ 1.42 and 8 ≤

𝐻

𝐷
≤ 90. 

 

4.1.4.4 Rehme (1973) 

In 1973, K. Rehme proposed a correlation established on a set of experiments (most of which 

were conducted before 1967) combining 75 different geometries [306]: 

 𝑓 = [
64√𝐹

𝑅𝑒
+ 

0.0816𝐹0.9335

𝑅𝑒0.133
]

𝑃𝑏

𝑃𝑡𝑜𝑡
 (459) 

where 𝑃𝑏 is the wetted perimeter of rods and wires, 𝑃𝑡𝑜𝑡 is the total wetted perimeter of the rod 

bundle including the wetted perimeter of the channel walls. √𝐹  represents the ratio of the 

effective to average velocity: 

 𝐹 = (
𝑣𝑒𝑓𝑓

𝑣𝑚
)
2

= (
𝑃

𝐷
)

0.5

+ [7.6
𝑑𝑚

𝐻
(
𝑃

𝐷
)
2

]

2.16

 (460) 

The hydraulic diameter in the Reynolds number and the pressure drop evaluation include the 

cross-section and the wetted perimeter of the wires, taking into account that the cross-section 

of the wire perpendicular to the rod bundle axis is an ellipse. 𝑑𝑚 is the mean diameter of the 

wire wraps, which is 𝑑𝑚 = 𝑃 for contact between rods and wires and 𝑑𝑚 = 𝐷 + ℎ for contact 

among fins, with ℎ being the height of the fins ( [9] Ch. 7). 

The Rehme correlation takes into account the influence of the hexagonal wrapper. This 

correlation is valid for the following conditions: 1 ∙ 103 ≤ 𝑅𝑒 ≤ 3 ∙ 105 (transition or turbulent 

flow regime), 8 ≤
𝐻

𝑑𝑚
≤ 50 , 1.1 ≤

𝑃

𝐷
≤ 1.42  and 7 ≤ 𝑁𝑟𝑜𝑑 ≤ 217 , where 𝑑𝑚  is the rod 

diameter plus the wire diameter, 𝑃  is the rod pitch, 𝐷  the rod diameter, 𝑅𝑒  the Reynolds 

number, using means bundle average value, 𝐻 the wire pitch, 𝑁𝑟𝑜𝑑 the rod number, 𝑃𝑏 the rod 

bundle and wire friction perimeter and 𝑃𝑡𝑜𝑡  is the total (with hexagonal wrapper) friction 

perimeter. 

Rehme correlation is a widely used correlation based on an effective velocity to take into 

account the swirl flow velocity around the rod. It considers the effects of 
𝑃

𝐷
 and 

𝐻

𝐷
 and the 
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influence of the wrapper and the number of pins. This correlation has been built based on a 

large bundle of data sets. Rehme performed pressure drop experiments for 75 wire-wrapped rod 

bundles with different combinations of geometrical parameters. In total there were 25 

combinations composed of five 
𝑃

𝐷
 for each of the five 

𝐻

𝐷
 ratios; further, each combination had 3 

different pin number configurations, 7, 19, 37; only for 
𝑃

𝐷
= 1.125 61-pin bundles were used. 

D. Tenchine in 2010 [307] concluded that, for pressure drop evaluation (the comparison of 

different friction factor models proposed in the literature with the pressure drop correlation 

provided by Superphenix subassembly tests), the best agreement with Superphenix data was 

obtained using Rehme and Cheng-Todreas pressure drop correlations. The advantage of the 

Rehme model is its relative simplicity, but the Cheng–Todreas model was validated over a 

larger range of bundle characteristics and flow regimes. By the way, Rehme correlation is the 

only correlation where the application range starts at as low as 7 pins. 

Most correlations are valid for 
𝑃

𝐷
 as low as 1.06, except for the Rehme correlation, which was 

calibrated by only Rehme’s own experimental results for which a validation range for 
𝑃

𝐷
 is 

between 1.1 and 1.42. Some evaluations [304] show that Rehme correlation can predict data of 

bundles with 
𝑃

𝐷
 as low as 1.05, while it breaks down for 

𝑃

𝐷
 approaching 1.04. Moreover, there is 

no laminar model in Rehme’s correlation. The accuracy of this correlation compared to 

Rehme’s own data is around ±8% in the turbulent region. 

 

4.1.4.5 Subbotin et al. (1975) 

For BN-600 fuel assembly, based on the results of measurements of the flow rate on models 

and in a reactor, the following dependence for friction factor of a pin bundle spaced by the 

standard (Fig. 56) spiral wire of type “single wire between pins” was derived [160]: 

 𝑓𝑝 = 0.117 (
𝜀

𝑑ℎ
+

68

𝑅𝑒
)
0.25

 (461) 

where 𝜀 is the roughness of the pin surface. 

 

    

FIG. 56. Hexagonal array of pins spaced by wire wrapping in single CCW direction (“single wire 

between pins”) 
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For transition from laminar to turbulent flow the following relation can be recommended: 

 𝑓𝑝
′ = 𝑓𝑝 𝑙𝑎𝑚𝛼 + 𝑓𝑝 (1 − 𝛼) (462) 

where 𝑓𝑝 𝑙𝑎𝑚 is friction factor in the bundle of wrapped pins in laminar flow and 𝑓𝑝 is friction 

factor for turbulent flow.  

 𝛼 = 0.5 {1 − tanh [0.8(𝑅𝑒
1450⁄ − 1)]} (463) 

The accuracy of this relationship is ~20%. In case the pin spacer is realized as “two wires 

between pins” (see Fig. 57) type of wire wrap, the experimental data for friction factor can be 

represented by the following formulas. For laminar flow: 

 

𝑓𝑝

𝑓
≈ 1 +

1.8

𝐻
𝐷

 (464) 

valid for 𝑃 𝐷⁄ from 1.13 to 1.15. 

  

FIG. 57. Hexagonal array of pins spaced by wire wrapping in both directions (odd row in CW 

direction, even row in CCW; “two wires between pins”) 

 

For turbulent flow: 

 
𝑓𝑝

𝑓
≈ 1 +

600 (
𝑃
𝐷 − 1)

(
𝐻
𝐷)

2  (465) 

This correlation is valid for 104 ≤ 𝑅𝑒 ≤ 20 ∙ 104 , 1.05 ≤ 𝑃
𝐷⁄ ≤ 1.25 , 𝐻 𝐷⁄ ≥ 5  and 2 ≤

𝑛 ≤ 4 where n is the number of entries of the fin. 

 

4.1.4.6 Engel et al. (1979) 

In 1979, F.C. Engel, et al. proposed a friction factor correlation on the basis of the 19-pin and 

61-pin experiments performed in fissile-type or fertile-type fuel assembly geometries [308]. 
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Over the domain of 50 ≤ 𝑅𝑒 ≤ 1 ∙ 105  (fertile), 50 ≤ 𝑅𝑒 ≤ 400  (fissile), 1.067 ≤
𝑃

𝐷
≤

1.082 (𝑓𝑒𝑟𝑡𝑖𝑙𝑒),
𝑃

𝐷
~1.2 (𝑓𝑖𝑠𝑠𝑖𝑙𝑒) and 19 ≤ 𝑁𝑟𝑜𝑑 ≤ 61. This correlation takes the form of: 

 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
 for 𝑅𝑒 ≤ 𝑅𝑒𝐿 (466) 

 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
√1 − 𝜓 +

𝐶𝑓𝑇

𝑅𝑒0.25 √𝜓 for 𝑅𝑒𝐿 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑇 (467) 

 𝑓 =
𝐶𝑓𝑇

𝑅𝑒0.25
 for 𝑅𝑒 ≥ 𝑅𝑒𝑇 (468) 

 𝐶𝑓𝐿 = 110 for 1.067 ≤
𝑃

𝐷
≤ 1.082 (469) 

 𝐶𝑓𝐿 =
320

√𝐻
(
𝑃

𝐷
)
1.5

 for 
𝑃

𝐷
~1.2 (470) 

𝑅𝑒𝐿 = 400, 𝑅𝑒𝑇 = 5000, 𝜓 =
𝑅𝑒−400

4600
, 𝐶𝑓𝑇 = 0.55 

where 𝑃: rod pitch, 𝐷: rod diameter, 𝑅𝑒: Reynolds number using mean bundle average value, 

𝐻: wire pitch, 𝑁𝑟𝑜𝑑: rods number. Within the given range, the accuracy of this correlation is 

given as ±18%. 

 

4.1.4.7 Markley-Engel (1976) 

In 1976 R. Markley and F. Engel proposed a correlation based on the experimental data in the 

range of 1.067 ≤
𝑃

𝐷
≤ 1.32, 

𝐻

𝐷
~8 and 40 ≤ 𝑅𝑒 ≤ 105 [299] [309]: 

 𝑓 =
110

𝑅𝑒
 for 𝑅𝑒 ≤ 𝑅𝑒𝐿 (471) 

 𝑓 =
110

𝑅𝑒
√1 − 𝜓 +

0.48

𝑅𝑒0.25 √𝜓 for 𝑅𝑒𝐿 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑇 (472) 

 𝑓 =
0.48

𝑅𝑒0.25
 for 𝑅𝑒 ≥ 𝑅𝑒𝑇 (473) 

where 𝜓 =
𝑅𝑒−400

4600
. 

 

4.1.4.8 Engel et al. (1979) 

In 1979 F.C. Engel et al. proposed the following correlation for laminar flow in rod bundles 

[299] [304] [308] [310]: 

 𝑓 =
32

𝑅𝑒√𝐻
(
𝑃

𝐷
)
1.5

 for 𝑅𝑒 ≤ 400 (474) 

where 𝐻  is measured in meters. It is valid for 4 ≤
𝐻

𝐷
≤ 52 , 1.067 ≤

𝑃

𝐷
≤ 1.25  and 61 ≤

𝑁𝑟𝑜𝑑 ≤ 217. 
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4.1.4.9 Roidt et al. (1980) 

In 1980 R. Roidt, et al. proposed the friction factor correlation for the peripheral rod of a rod 

bundle [299] [311]: 

 𝑓 =
2.284

𝑅𝑒0.4183
 (475) 

It is valid for 8 ≤
𝐻

𝐷
≤ 52, 1.08 ≤

𝑃

𝐷
≤ 1.24 and 4.3 ∙ 103 ≤ 𝑅𝑒 ≤ 7.3 ∙ 104. 

 

4.1.4.10 Baxi-Dalle Donne (1981) 

C.B. Baxi and M. Dalle Donne (1981) friction factor correlation is as follows [312]: 

For laminar region, 𝑅𝑒 ≤ 400 

 
𝑓𝐿 =

(
𝑇𝑤

𝑇𝐵
 ) (

320

√𝐻
 ) (𝑃 𝐷⁄ )

1.5

𝑅𝑒
 

(476) 

where 𝑇𝑤 is the wall temperature in K, 𝑇𝐵 is the coolant bulk temperature in K and 𝐻 is the wire 

lead length in cm. 

For turbulent region, 𝑅𝑒 ≥ 5 ∙ 103 

 𝑓𝑇 = 𝑀𝑓𝑠 (477) 

where 𝑓𝑠  is the friction factor for smooth pipe and M is the multiplier proposed by Novendstern 

Eq. (437). 

 𝑀 = (
1.034

(𝑃 𝐷⁄ )
0.124 +

29.6 (𝑃 𝐷⁄ ) 6.94 𝑅𝑒0.086

(𝐻 𝐷⁄ )
2.239⁄ )

0.885

 (478) 

For transition region, 400 ≤ 𝑅𝑒 ≤ 5 · 103 

 𝑓 = 𝑓𝐿 (1 − 𝜓)0.5 + 𝑓𝑇  𝜓0.5 (479) 

Where 𝜓 =
(𝑅𝑒−400)

4600
. Subscripts: L denotes laminar flow regime and T denotes turbulent flow 

regime. 

 

4.1.4.11 Zhukov et al. (1985) 

The correlation proposed by Zhukov in 1985 for the turbulent region [298] [304] [313] is as 

follows. For the turbulent flow, the analysis of the data on friction factor in triangular bundle 

of the pins spaced by the helical wire of the type “single wire between pins” (see Fig. 56)  

resulted in the following formula for the infinite pin bundle: 

 𝑓 = (
0.21

𝑅𝑒0.25
 ) (1 + 

124 𝑅𝑒0.06

 (𝐻 𝐷⁄ )
1.65)(1.78 + 1.485(𝑃 𝐷⁄ − 1)) (𝑃 𝐷⁄ − 1) (480) 
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It is valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5, 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105 and 8.0 ≤ 𝐻

𝐷⁄ ≤ 50. 

This formula is simple in structure, with passing on to  hukov’s Eq. (425) for smooth pins in 

case of their dense packing. It is in agreement with the experimental data of Rehme K. [314] 

and Chiu C., Todreas N. [315] with an accuracy of ± 15%. 

To predict friction factor exactly, but in the lesser range for parameter 𝐻 𝐷⁄ , the following 

formula is recommended: 

 
𝑓𝑝

𝑓
= 1 + 𝑔 (

𝐻

𝐷
)(

𝑃

𝐷
− 1) 𝑅𝑒0.038 (481) 

where f is defined by the  hukov’s correlation (425) for smooth pin bundles and  

 𝑔 (
𝐻

𝐷
) = 30.3956 − 4.5911 (

𝐻

𝐷
) + 0.24308 (

𝐻

𝐷
)
2

− 0.0042955 (
𝐻

𝐷
)
3

 (482) 

It is valid for 1.0 ≤ 𝑃
𝐷⁄ ≤ 1.5, 6 ∙ 103 ≤ 𝑅𝑒 ≤ 2 ∙ 105 and 8.0 ≤ 𝐻

𝐷⁄ ≤ 25. 

This correlation agrees with the experimental data of K. Rehme. and C. Chiu, N. Todreas in the 

indicated ranges of parameter change with the accuracy of ±10% and confirms the formulas 

recommended by authors Chiu, Todreas [315] and Novendstern [316]. 

 

4.1.4.12 Cheng-Todreas (1986) 

In 1986, S.K. Cheng and N.E. Todreas [317] proposed correlations for the single-phase friction 

factor in a wire-wrapped rod bundle. In addition to a simplified correlation for the global friction 

factor of the bundle, a detailed correlation was also proposed, in which the friction coefficient 

varies within the bundle. These correlations were established over the following domain: 50 ≤

𝑅𝑒 ≤ 1 ∙ 106 , 8 ≤
𝐻

𝑑𝑚
≤ 50  (simplified correlation), 4 ≤

𝐻

𝑑𝑚
≤ 52  (detailed correlation), 

1.025 ≤
𝑃

𝐷
≤ 1.42  (simplified), 1 ≤

𝑃

𝐷
≤ 1.42  (detailed), 19 ≤ 𝑁𝑟𝑜𝑑 ≤ 217 , where P: rod 

pitch, D: rod diameter, 𝑑𝑚: rod diameter + wire diameter, Re: Reynolds number using mean 

bundle average value, H: wire pitch, 𝑁𝑟𝑜𝑑: rod number. 

Both correlations take the form: 

 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
 for 𝑅𝑒 ≤ 𝑅𝑒𝐿 (483) 

 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
(1 − 𝜓)

1
3 +

𝐶𝑓𝑇

𝑅𝑒0.18
𝜓

1
3 for 𝑅𝑒𝐿 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑇 (484) 

 𝑓 =
𝐶𝑓𝑇

𝑅𝑒0.18
 for 𝑅𝑒 ≥ 𝑅𝑒𝑇 (485) 

with 𝑅𝑒𝐿 = 300 ∙ 101.7(
P

D
−1)

, 𝑅𝑒𝑇 = 104 ∙ 100.7(
P

D
−1)

, and 𝜓 =
log(

Re

𝑅𝑒𝐿
)

log(
𝑅𝑒𝑇
𝑅𝑒𝐿

)
. 

For the simplified correlation: 
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 𝐶𝑓𝐿 = [−974.6 + 1612.0 
𝑃

𝐷
− 598.5 (

𝑃

𝐷
)
2

] (
𝐻

𝐷
)
0.06−0.085

𝑃
𝐷

 (486) 

 𝐶𝑓𝑇 = [0.8063 − 0.9022 𝑙𝑜𝑔 
𝐻

𝐷
+ 0.3526 (𝑙𝑜𝑔

𝐻

𝐷
)
2

] (
𝑃

𝐷
)

9.7

(
𝐻

𝐷
)
1.78−2.0

𝑃
𝐷

 (487) 

For the detailed correlation, 𝐶𝑓𝐿 and 𝐶𝑓𝑇 take different values according to the geometric type 

of the liquid subchannel under consideration: triangular (between three pins), edge (between 

two pins and a wall), or corner (between one pin and two walls). Its complete expression is 

detailed in [304]. 

The root mean square (RMS) error of these correlations based on a database of 79 bundles is 

7%  (detailed) / 7.6%  (simplified) for turbulent flows and 12.2%  (detailed) / 13.6% 

(simplified) for laminar flows. 

Most bundle pressure drop correlations provide a correlation for the overall bundle pressure 

drop. The level of description of the simplified correlation is well-suited to system-scale 

modelling. However, subchannel codes require correlations for the pressure drop in each of the 

three subchannel types encountered in SFR rod bundles (central, corner or edge subchannels): 

otherwise, a correlation for the flow split between subchannel types should be provided. The 

detailed Cheng-Todreas correlation is one of the few correlations which provide a per-type 

subchannel pressure drop estimate: moreover, its performance over a wide range of 

experimental data is considered best-in-class [304]. 

The per subchannel type pressure drop estimate provided by the detailed Cheng-Todreas 

correlation is adapted in subchannel codes but cannot be used directly in system codes. The 

simplified Cheng-Todreas correlation uses the same data reduction techniques used to establish 

the detailed Cheng-Todreas correlation to provide an estimate for the overall bundle pressure 

drop, in order to be more readily usable in system codes. Contrary to its detailed counterpart, 

the simplified Cheng-Todreas correlation does not exhibit best-in-class performance over the 

experimental dataset analysed in [304]. 

 

4.1.4.13 Zhukov et al. (1986) 

A.V. Zhukov et al. (1986) friction factor correlation is as follows [299]: 

For laminar region, 1.125 ≤ 𝑃
𝐷⁄ ≤ 1.417, 102 ≤ 𝑅𝑒 ≤ 2 ∙ 103, 8.3 ≤ 𝐻

𝐷⁄ ≤ 50. 

 𝑓 = 𝑓𝐿 = (64 
𝑅𝑒⁄  ) (0.407 + 2 (𝑃 𝐷⁄ − 1)

0.5
)(1 +

17 (𝑃 𝐷⁄ − 1)

𝐻
𝐷⁄

) (488) 

For turbulent region 𝑅𝑒 ≥ 6 ∙ 103 

 𝑓 = 𝑓𝑇 = (0.21 
𝑅𝑒0.25⁄  ) (1 + (𝑃 𝐷⁄ − 1)

0.32
) (1 + 𝑀 (𝑃 𝐷⁄ − 1)𝑅𝑒0.038) (489) 

where 

 𝑀 = 30.3956 − 4.5911(𝐻 𝐷⁄ ) + 0.24308(𝐻 𝐷⁄ )
2
− 0.0042955(𝐻 𝐷⁄ )

3
 (490) 

𝑃 is rod pitch, 𝐷 is rod diameter and 𝐻 is wire pitch. For transition region, 2 ∙ 103 ≤ 𝑅𝑒 ≤ 6 ∙
103 
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 𝑓 = 𝑓𝑇𝑟 = 𝑓𝐿𝜀 + 𝑓𝑇(1 − 𝜀) (491) 

where 

 𝜀 = 0.5 {1 − tanh [0.8(𝑅𝑒
1450⁄ − 1)]} (492) 

Subscripts: 𝐿: laminar flow regime, 𝑇: turbulent flow regime, 𝑇𝑟: transition flow regime. 

 

4.1.4.14 No-Kazimi (1987) 

H.C. No and M.S. Kazimi (1987) [46], when estimating total pressure drop, considered it as a 

sum of two terms: Transverse wall friction force and Axial wall friction force. Four multiphase 

regimes are distinguished: 

1. Single-phase: liquid region 

2. Two-phase: Pre-dryout region 0 ≤ 𝛼 ≤ 0.957 

3. Two-phase: Post-dryout region 0.957 ≤ 𝛼 ≤ 1 

4. Single-phase: vapour region 

Here only the single-phase liquid regime is presented. For the multi-phase or vapour regimes 

the original reference gives further information [46]. 

The following correlations are devoted to the single-phase liquid region. The correlation for the 

axial wall friction force per unit volume for single-phase in the liquid region is: 

For 𝑅𝑒𝑙 ≤ 400 

 𝑓𝑓1 = 𝑓𝐿 =
32

√𝐻
 (

𝐷

𝑃
)
1.5 1

𝑅𝑒𝑙
 (493) 

For 𝑅𝑒𝑙 ≥ 2600 

 𝑓𝑙1 = 𝑓𝑇 =
0.316 M

𝑅𝑒𝑙
0.25  (494) 

where 

 𝑀 = (
1.034

(
𝑃
𝐷)

0.124 +
29.7 (

𝑃
𝐷) 6.9 𝑅𝑒𝑙

0.086

(
𝐻
𝐷)

2.239 )

0.885

 (495) 

𝑃 is rod pitch, 𝐷 is rod diameter and 𝐻 is wire pitch. 

For 400 ≤ 𝑅𝑒𝑙 ≤ 2600 

 𝑓𝑙1 = 𝑓𝑇𝑟 = 𝑓𝑇  √𝛹 + 𝑓𝐿 √1 − 𝛹 (496) 

where 

 𝛹 =
(𝑅𝑒1 − 400)

2200
 (497) 

The correlation for the transverse wall friction force per unit volume for single-phase in liquid 

region is: 

For 𝑅𝑒𝑙 ≤ 202.5 
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 𝑓𝑙1 = 𝑓𝐿 =
180

𝑅𝑒𝑙
 (498) 

For 𝑅𝑒𝑙 ≥ 202.5 

 𝑓𝑙1 = 𝑓𝑇 =
1.92

𝑅𝑒𝑙
0.145 (499) 

where 

 𝑅𝑒𝑙 =
𝜌𝑙  |𝑣𝑙,𝑚𝑎𝑥|𝐷𝑣

 

𝜇𝑙
 (500) 

and 𝐷𝑣
  is the transverse hydraulic diameter, 𝑣𝑙,𝑚𝑎𝑥 is the maximum liquid velocity, and 𝜇𝑙 is 

the dynamic viscosity. 

Subscripts: 𝑓: friction, 𝐿: laminar flow regime, 𝑇: turbulent flow regime, 𝑇𝑟: denotes transition 

flow regime, 𝑙: denote liquid phase. 

 

4.1.4.15 Kirillov et al. (1990) 

P.L. Kirillov et al. (1990) [304] [313] proposed a friction factor correlation as follows: 

For laminar region, 𝑅𝑒 ≤ 400 

 𝑓 = 𝑓𝐿 = (
64 

𝑅𝑒
 ) (0.407 + 2 (

𝑃

𝐷
− 1)

0.5

)(1 +
17 (

𝑃
𝐷 − 1)

𝐻
𝐷

) (501) 

For turbulent region, 𝑅𝑒 ≥ 5 ∙ 103 

 𝑓 = 𝑓𝑇 = (
0.21 

𝑅𝑒0.25
 ) (1 + (

𝑃

𝐷
− 1)

0.32

)(1 + 600 (
𝐷

𝐻
)
2

(
𝑃

𝐷
− 1)) (502) 

For transition region, 400 ≤ 𝑅𝑒 ≤ 5 ∙ 103 

 𝑓 = 𝑓𝑇𝑟 = 𝑓𝐿 (1 − 𝜓)0.5 + 𝑓𝑇  𝜓0.5 (503) 

where 𝜓 =
(𝑅𝑒−400)

4600
, 𝑃 is rod pitch, 𝐷 is rod diameter and 𝐻 is wire pitch. 

Subscripts: 𝐿: laminar flow regime, 𝑇: turbulent flow regime, 𝑇𝑟: transition flow regime. 

In 2006 V. Sobolev used this same correlation for the friction factor calculation in the XT-ADS 

project for the wire-wrapped fuel bundle [318] as follows: 

 𝑓 = (
0.210

𝑅𝑒0.25
 (1 + (

𝑃𝑡

𝐷
− 1)

0.32

))(1 + 600 (
𝐷

𝐻
)
2

 (
𝑃𝑡

𝐷
− 1)) (504) 

where 𝐷 is the rod diameter, 𝐻 the wire lead length (pitch), 𝑃𝑡 = 𝐷 + 1.0444 𝐷𝑤  is the rod 

pitch for wire-wrap configuration [305], and 𝐷𝑤 is the wire (spacer) diameter. 
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4.1.4.16 Summary of friction factor correlations for single-phase flow in wire-wrapped 

bundle 

Table 35 presents the list of all friction factor correlations collected for single-phase flow in 

wire-wrapped bundle. 

 

TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Pontier-Combe 

(1968) 

[301] 

𝑓 = 𝛺0𝑒
𝑟 

𝛺0 = 0.12𝑅𝑒−0.16 for 𝜀~1.6 ∙ 10−4 mm 

𝛺0 = [−2𝑙𝑜𝑔 [
𝜀

3.7𝐷ℎ
+ (

6.81

𝑅𝑒
)
0.9

]]

−2

for other 𝜀 

𝑟 = (1 + 4.6 (
𝑃

𝐷
− 1)) tan α 

𝑡𝑎𝑛 𝛼 = 𝜋
𝑑

𝐻
 

1 ∙ 104 ≤ 𝑅𝑒 ≤ 1 ∙ 105, 15.7 ≤
𝐻

𝐷
≤ ∞, 1.1 ≤

𝑑𝑚

𝐷
≤ 1.4,  

37 ≤ 𝑁𝑟𝑜𝑑 ≤ 331, 0 ≤ 𝑡𝑎𝑛 𝛼 ≤ 0.2, 1.3 ∙ 10−4 ≤ 𝜀 ≤ 2 ∙ 10−4  

Sangster (1968) 

[299] [302] 

for 1.135 ≤
𝑃

𝐷
≤ 1.195: 

𝑓 = 0.974 (
𝑃

𝐷
)

0.8 4.76

(
𝐻
𝐷)

0.47 𝑓𝑝 

for 1.195 ≤
𝑃

𝐷
≤ 1.255: 

𝑓 = 1.048 (
𝑃

𝐷
)

0.37 4.76

(
𝐻
𝐷)

0.47 𝑓𝑝 

for 
𝑃

𝐷
≥ 1.255: 

𝑓 = 1.138
4.76

(
𝐻
𝐷)

0.47 𝑓𝑝 

10 ≤
𝐻

𝐷
≤ 40, 4 ∙ 103 ≤ 𝑅𝑒 ≤ 105 



194 

 

TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Novendstern (1972) 

[3] [155] [303] [304] 

[305] 

𝑓 = 𝑓1𝑋1
2 (

𝐷𝑒𝑏

𝐷𝑒1
 ) = M 𝑓𝑠𝑋1

2 (
𝐷𝑒𝑏

𝐷𝑒1
 ) 

𝑀 = (
1.034

(
𝑃
𝐷)

0.124 +
29.7 (

𝑃
𝐷) 6.94 𝑅𝑒1

0.086

(
𝐻
𝐷)

2.239 )

0.885

 

𝑅𝑒1 =
𝜌𝑣1𝐷𝑒1

𝜇
= 𝑋1𝑅𝑒

𝐷𝑒1

𝐷𝑒𝑏
 

𝑋1 =
𝐴𝑏

(𝑁1𝐴1 + 𝑁2𝐴2 (
𝐷𝑒2

𝐷𝑒1
 )

0.714

+ 𝑁3𝐴3 (
𝐷𝑒3

𝐷𝑒1
 )

0.714

)

 

𝐴𝑏 = 𝑁1𝐴1 + 𝑁2𝐴2 + 𝑁3𝐴3 

600 ≤ 𝑅𝑒 ≤ 2 ∙ 105, 5 ∙ 10−3 ≤ 𝐷 ≤ 12 ∙ 10−3, 19 ≤ 𝑁𝑟𝑜𝑑 ≤
217, 

1.06 ≤
𝑃

𝐷
≤ 1.42, 8 ≤

𝐻

𝐷
≤ 90 

Rehme (1973) 

[306] 

𝑓 = [
64√𝐹

𝑅𝑒
+ 

0.0816𝐹0.9335

𝑅𝑒0.133
]

𝑃𝑏

𝑃𝑡𝑜𝑡
 

𝐹 = (
𝑣𝑒𝑓𝑓

𝑣𝑚
)
2

= (
𝑃

𝐷
)
0.5

+ [7.6
𝑑𝑚

𝐻
(
𝑃

𝐷
)

2

]

2.16

 

1 ∙ 103 ≤ 𝑅𝑒 ≤ 3 ∙ 105, 8 ≤
𝐻

𝑑𝑚
≤ 50, 1.1 ≤

𝑃

𝐷
≤ 1.42,  

7 ≤ 𝑁𝑟𝑜𝑑 ≤ 217 
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TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Subbotin et al. 

(1975) 

[160] 

1.For standard wire wrapping “single wire between pins” (see Fig. 

56) 

𝑓𝑝 = 0.117 (
𝜀

𝑑ℎ
+

68

𝑅𝑒
)
0.25

 

transition from laminar to turbulent: 

𝑓𝑝
′ = 𝑓𝑝 𝑙𝑎𝑚𝛼 + 𝑓𝑝 (1 − 𝛼) 

𝛼 = 0.5 {1 − tanh [0.8(𝑅𝑒
1450⁄ − 1)]} 

2. For bi-directional wire wrapping “two wires between pins” 

(Fig. 57): 

a. for laminar flow: 

𝑓𝑝

𝑓
≈ 1 +

1.8

𝐻
𝐷

 

Valid for 1.13 ≤
𝑃

𝐷
≤ 1.15 

b. for turbulent flow: 

𝑓𝑝

𝑓
≈ 1 +

600 (
𝑃
𝐷 − 1)

(
𝐻
𝐷)

2  

104 ≤ 𝑅𝑒 ≤ 20 ∙ 104, 1.05 ≤
𝑃

𝐷
≤ 1.25, 

𝐻

𝐷
≥ 5, 2 ≤ 𝑛 ≤ 4  

Engel et al. (1979) 

[308] 

for 𝑅𝑒 ≤ 𝑅𝑒𝐿: 

𝑓 =
𝐶𝑓𝐿

𝑅𝑒
 

for 𝑅𝑒𝐿 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑇: 

𝑓 =
𝐶𝑓𝐿

𝑅𝑒
√1 − 𝜓 +

𝐶𝑓𝑇

𝑅𝑒0.25 √𝜓 

for 𝑅𝑒 ≥ 𝑅𝑒𝑇: 

𝑓 =
𝐶𝑓𝑇

𝑅𝑒0.25
 

where  

𝑅𝑒𝐿 = 400, 𝑅𝑒𝑇 = 5000, 𝜓 =
𝑅𝑒−400

4600
 

𝐶𝑓𝑇 = 0.55, 19 ≤ 𝑁𝑟𝑜𝑑 ≤ 61 

𝐶𝑓𝐿 = 110 for 1.067 ≤
𝑃

𝐷
≤ 1.082, 

𝐶𝑓𝐿 =
320

√𝐻
(

𝑃

𝐷
)
1.5

for 
𝑃

𝐷
~1.2. 
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TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Markley-Engel 

(1979) 

[299] [309] 

for 𝑅𝑒 ≤ 400: 

𝑓 =
110

𝑅𝑒
 

for 400 ≤ 𝑅𝑒 ≤ 5000: 

𝑓 =
110

𝑅𝑒
√1 − 𝜓 +

0.48

𝑅𝑒0.25 √𝜓 

for 𝑅𝑒 ≥ 5000 

𝑓 =
0.48

𝑅𝑒0.25
 

𝜓 =
𝑅𝑒 − 400

4600
 

1.067 ≤
𝑃

𝐷
≤ 1.32, 

𝐻

𝐷
~8, 40 ≤ 𝑅𝑒 ≤ 105 

Engel et al. (1979) 

[299] [304] [308] 

[310] 

𝑓 =
32

𝑅𝑒√𝐻
(
𝑃

𝐷
)
1.5

 

𝑅𝑒 ≤ 400, 4 ≤
𝐻

𝐷
≤ 52, 1.067 ≤

𝑃

𝐷
≤ 1.25, 61 ≤ 𝑁𝑟𝑜𝑑 ≤ 217 

Roidt et al. (1980) 

[299] [311] 

𝑓 =
2.284

𝑅𝑒0.4183
 

8 ≤
𝐻

𝐷
≤ 52, 1.08 ≤

𝑃

𝐷
≤ 1.24, 4.3 ∙ 103 ≤ 𝑅𝑒 ≤ 7.3 ∙ 104, for 

peripheral rods of a bundle 

Baxi-Dalle Donne 

(1981) 

[312] 

for 𝑅𝑒 ≤ 400: 

𝑓𝐿 =

(
𝑇𝑤

𝑇𝐵
 ) (

320

√𝐻
 ) (𝑃 𝐷⁄ )

1.5

𝑅𝑒
 

for 𝑅𝑒 ≥ 5 ∙ 103: 

𝑓𝑇 = 𝑀𝑓𝑠 

𝑀 = (
1.034

(
𝑃
𝐷)

0.124 +
29.6 (

𝑃
𝐷) 6.94 𝑅𝑒0.086

(
𝐻
𝐷)

2.239 )

0.885

 

𝑓𝑠 : friction factor for smooth pipe 

for 400 ≤ 𝑅𝑒 ≤ 5 · 103: 

𝑓 = 𝑓𝐿 (1 − 𝜓)0.5 + 𝑓𝑇  𝜓0.5 

𝜓 =
(𝑅𝑒 − 400)

4600
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TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Zhukov et al. (1985) 

[298] [304] [313] 

1. 𝑓 = (
0.21

𝑅𝑒0.25 ) (1 + 
124 𝑅𝑒0.06

 (𝐻 𝐷⁄ )
1.65) (1.78 + 1.485 (

𝑃

𝐷
− 1)) (

𝑃

𝐷
− 1) 

1.0 ≤
𝑃

𝐷
≤ 1.5, 104 ≤ 𝑅𝑒 ≤ 2 ∙ 105, 8.0 ≤

𝐻

𝐷
≤ 50 

2. 
𝑓𝑝

𝑓
= 1 + 𝑔 (

𝐻

𝐷
) (

𝑃

𝐷
− 1)𝑅𝑒0.038 

𝑓 is defined by Eq. (425) 

 𝑔 (
𝐻

𝐷
) = 30.3956 − 4.5911 (

𝐻

𝐷
) + 0.24308(

𝐻

𝐷
)
2
− 0.0042955(

𝐻

𝐷
)
3
 

1.0 ≤
𝑃

𝐷
≤ 1.5, 6 · 103 ≤ 𝑅𝑒 ≤ 2 · 105 and 8.0 ≤

𝐻

𝐷
≤ 25. 

Cheng-Todreas 

(1986) 

[317] 

for 𝑅𝑒 ≤ 𝑅𝑒𝐿: 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
 

for 𝑅𝑒𝐿 ≤ 𝑅𝑒 ≤ 𝑅𝑒𝑇: 𝑓 =
𝐶𝑓𝐿

𝑅𝑒
(1 − 𝜓)

1

3 +
𝐶𝑓𝑇

𝑅𝑒0.18 𝜓
1

3 

for 𝑅𝑒 ≥ 𝑅𝑒𝑇: 𝑓 =
𝐶𝑓𝑇

𝑅𝑒0.18 

𝑅𝑒𝐿 = 300 ∙ 101.7(
P

D
−1)

, 𝑅𝑒𝑇 = 104 ∙ 100.7(
P

D
−1)

 

𝜓 =
log (

Re
𝑅𝑒𝐿

)

log (
𝑅𝑒𝑇

𝑅𝑒𝐿
)
 

𝐶𝑓𝐿 = [−974.6 + 1612.0 
𝑃

𝐷
− 598.5 (

𝑃

𝐷
)

2

] (
𝐻

𝐷
)
0.06−0.085

𝑃
𝐷

 

 𝐶𝑓𝑇 = [0.8063 − 0.9022 𝑙𝑜𝑔 
𝐻

𝐷
+ 0.3526(𝑙𝑜𝑔

𝐻

𝐷
)
2
] (

𝑃

𝐷
)
9.7

(
𝐻

𝐷
)
1.78−2.0

𝑃

𝐷
 

50 ≤ 𝑅𝑒 ≤ 1 ∙ 106, 8 ≤
𝐻

𝑑𝑚
≤ 50, 1.025 ≤

𝑃

𝐷
≤ 1.42  
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TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

Zhukov et al. (1986) 

[299] 

for laminar region, 1.125 ≤ 𝑃
𝐷⁄ ≤ 1.417, 102 ≤ 𝑅𝑒 ≤ 2 ∙ 103 and 

 8.3 ≤ 𝐻
𝐷⁄ ≤ 50: 

𝑓 = 𝑓𝐿 = (
64

𝑅𝑒
 ) (0.407 + 2 (

𝑃

𝐷
− 1)

0.5

)(1 +
17 (

𝑃
𝐷 − 1)

𝐻
𝐷

) 

for turbulent region 𝑅𝑒 ≥ 6 ∙ 103: 

𝑓 = 𝑓𝑇 = (
0.21

𝑅𝑒0.25
) (1 + (

𝑃

𝐷
− 1)

0.32

) (1 + 𝑀 (
𝑃

𝐷
− 1)𝑅𝑒0.038) 

𝑀 = 30.3956 − 4.5911 (
𝐻

𝐷
) + 0.24308 (

𝐻

𝐷
)
2

− 0.0042955 (
𝐻

𝐷
)
3

 

for transition region, 2 ∙ 103 ≤ 𝑅𝑒 ≤ 6 ∙ 103: 

𝑓 = 𝑓𝑇𝑟 = 𝑓𝐿𝜀 + 𝑓𝑇(1 − 𝜀) 

𝜀 = 0.5 {1 − tanh [0.8 (
𝑅𝑒

1450
− 1)]} 
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TABLE 35. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN WIRE-WRAPPED ROD BUNDLES 

No-Kazimi (1987) 

[46] 

axial wall friction force: 

for 𝑅𝑒𝑙 ≤ 400: 

𝑓𝑓1 = 𝑓𝐿 =
32

√𝐻
 (

𝐷

𝑃
)
1.5 1

𝑅𝑒𝑙
 

for 𝑅𝑒𝑙 ≥ 2600: 

𝑓𝑙1 = 𝑓𝑇 =
0.316 M

𝑅𝑒𝑙
0.25  

𝑀 = (
1.034

(
𝑃
𝐷)

0.124 +
29.7 (

𝑃
𝐷) 6.9 𝑅𝑒𝑙

0.086

(
𝐻
𝐷)

2.239 )

0.885

 

for 400 ≤ 𝑅𝑒𝑙 ≤ 2600: 

𝑓𝑙1 = 𝑓𝑇𝑟 = 𝑓𝑇  √𝛹 + 𝑓𝐿 √1 − 𝛹 

𝛹 =
(𝑅𝑒1 − 400)

2200
 

transverse wall friction: 

for 𝑅𝑒𝑙 ≤ 202.5: 

𝑓𝑙1 = 𝑓𝐿 =
180

𝑅𝑒𝑙
 

for 𝑅𝑒𝑙 ≥ 202.5: 

𝑓𝑙1 = 𝑓𝑇 =
1.92

𝑅𝑒𝑙
0.145 

𝑅𝑒𝑙 =
𝜌𝑙  |𝑣𝑙,𝑚𝑎𝑥|𝐷𝑣

 

𝜇𝑙
 

Kirillov et al. (1990) 

[304] [313] 

for laminar region, 𝑅𝑒 ≤ 400: 

𝑓 = 𝑓𝐿 = (
64 

𝑅𝑒
 ) (0.407 + 2 (

𝑃

𝐷
− 1)

0.5

)(1 +
17 (

𝑃
𝐷 − 1)

𝐻
𝐷

) 

for turbulent region, 𝑅𝑒 ≥ 5 ∙ 103: 

𝑓 = 𝑓𝑇 =
0.21

𝑅𝑒0.25
 (1 + (

𝑃

𝐷
− 1)

0.32

)(1 + 600 (
𝐷

𝐻
)

2

(
𝑃

𝐷
− 1)) 

for transition region, 400 ≤ 𝑅𝑒 ≤ 5 ∙ 103: 

𝑓 = 𝑓𝑇𝑟 = 𝑓𝐿 (1 − 𝜓)0.5 + 𝑓𝑇  𝜓0.5 

𝜓 =
(𝑅𝑒 − 400)

4600
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4.1.5 Flow in grid-spaced rod bundles 

The pressure losses across grid spacers can be calculated using Rehme’s formulation as follows 

[227] [296] [319]: 

 ∆𝑝𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟 = 𝐶𝑣 𝜀
2
1

2
 𝜌 𝑣2 = 𝐾

1

2
 𝜌 𝑣2 (505) 

where 𝑣 is the average coolant velocity in the rod bundle, 𝐾 = 𝐶𝑣𝜀
2, and 𝐶𝑣 is the modified 

loss coefficient. Rehme assumed that the relative plugging 𝜀 =
𝐴𝑣

𝐴𝑠
 (where 𝐴𝑣 is the projected 

grid cross-section and 𝐴𝑠  is the undisturbed flow section) constitutes the main factor 

influencing the pressure drop. 

The geometry of the spacer grid is shown in Fig. 58 below. 

 

FIG. 58. Grid-spaced rod bundle 

 

4.1.5.1 Voj et al. (1971) 

P. Voj et al. in 1971 developed a correlation based on sodium flow experiments in a SNR-300 

reactor like grid-spaced bundle [320]: 

 𝐾 = 𝐶𝑣𝜀
2 =

1 − 𝜀

𝜀
(2.12 + 

104𝜀2

𝑅𝑒
) (506) 

where 𝜀 : blockage factor of the grid spacer (ratio of areas) calculated as: 𝜀 =
𝐴𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟

𝐴𝑓𝑙𝑜𝑤
, 

𝐴𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟 is the cross-section area of the grid spacer in the flow path (𝑚2) and 𝐴𝑓𝑙𝑜𝑤 is the 

unobstructed coolant flow area (𝑚2) (parameter 𝜀 can be based on the unit cell, per pin or per 

subassembly). 

 

4.1.5.2 Rehme-Cigarini-Dalle Donne (1973) 

M. Cigarini and M. Dalle Donne recommended the following modified loss coefficient [306] 

[319] [321]: 

 𝐶𝑣 = 3.5 + 
73.14

𝑅𝑒0.264
+ 

2.79 ∙ 1010

𝑅𝑒2.79
 (507) 

having a maximum value: 



201 

 

 𝐶𝑣 =
2

𝜀2
 (508) 

Finally, 𝐶𝑣 can be written as: 

 𝐶𝑣 = min [3.5 + 
73.14

𝑅𝑒0.264
+ 

2.79 ∙ 1010

𝑅𝑒2.79
,
2

𝜀2
]  (509) 

where 𝜀: is the blockage factor of the grid spacer, which ranges from 0.15 to 0.5 for typical grid 

spacer designs. It is calculated as: 

 𝜀 =
𝐴𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟

𝐴𝑓𝑙𝑜𝑤
 (510) 

𝐴𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟 is the cross-section area of the grid spacer in the flow path (𝑚2), and 𝐴𝑓𝑙𝑜𝑤 is the 

unobstructed coolant flow area (𝑚2). The blockage factor 𝜀 is sensitive to the particular design 

characteristics of the sub-assemblies and the grid spacers. Typical numerical examples of 𝜀 can 

be found in [306] ranging from 𝜀~0.15 for transversally connected tube spacers to 𝜀~0.44 for 

honeycomb-type grid spacers. Under ideal conditions, 𝜀  should be determined for each 

particular grid spacer design. Then, 

 ∆𝑝𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟𝑠 = 𝑁𝑠𝑝𝑎𝑐𝑒𝑟𝑠 ∆𝑝𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟 (511) 

where 𝑁𝑠𝑝𝑎𝑐𝑒𝑟𝑠 is the number of grid spacers in a fuel assembly. 

 

4.1.5.3 Savatteri et al. (1986) 

In 1986 C. Savatteri et al. developed a correlation based on sodium flow experiments in a 12-

pin grid-spaced bundle [227] [322]. They proposed the following correlation: 

 𝐾 = 𝐶𝑣𝜀
2 = (9 + 

3.8

(10−4𝑅𝑒)0.25
+ 

0.82

(10−4𝑅𝑒)2
) 𝜀2 (512) 

where ε: blockage factor of the grid spacer. 

 

4.1.5.4 Cevolani (1995) 

In 1995 S. Cevolani proposed the following correlation for triangular bundles and spacers with 

rounded leading edges [227] [323]: 

 𝐾 = 𝐶𝑣𝜀
2 = min[𝜀2 𝑒𝑥𝑝(7.69 − 0.9421 𝑙𝑛(𝑅𝑒) + 0.0379 𝑙𝑛2(𝑅𝑒)), 2] (513) 

where 𝜀 is the blockage factor of the grid spacer. 

 

4.1.5.5 Epiney et al. (2010) 

In order to improve the prediction of the spacer loss for sharp-edged spacers, a new correlation 

was proposed by A. Epiney et al. in 2010 [324]: 

 𝐾 = 𝐶𝑣𝜀
0.2 = (1.104 + 

791.8

𝑅𝑒0.748
+ 

3.348 ∙ 109

𝑅𝑒5.652
) 𝜀0.2 (514) 
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where 𝜀 is the blockage factor of the grid spacer. The Reynolds number range covered by the 

sharp-edge spacer experiments, taken into account when deriving this correlation, is 1 ∙ 103 ≤
𝑅𝑒 ≤ 5 ∙ 104. 

 

4.1.5.6 Summary of friction factor correlations for single-phase flow in grid-spaced bundle 

Table 36 presents the list of friction factor correlations collected for single-phase flow in grid-

spaced bundle. 

TABLE 36. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR SINGLE-

PHASE FLOW IN GRID-SPACED BUNDLES 

Voj et al. (1971) 

[320] 

𝐾 = 𝐶𝑣𝜀
2 =

1 − 𝜀

𝜀
(2.12 + 

104𝜀2

𝑅𝑒
) 

𝜀 =
𝐴𝑔𝑟𝑖𝑑 𝑠𝑝𝑎𝑐𝑒𝑟

𝐴𝑓𝑙𝑜𝑤
 

Rehme-Cigarini-Dalle 

Donne (1973) 

[306] [319] [321] 

𝐶𝑣 = min [3.5 + 
73.14

𝑅𝑒0.264
+ 

2.79 ∙ 1010

𝑅𝑒2.79
,
2

𝜀2
] 

Savatteri et al. (1986) 

[227] [322] 
𝐾 = 𝐶𝑣𝜀

2 = (9 + 
3.8

(10−4𝑅𝑒)0.25
+ 

0.82

(10−4𝑅𝑒)2
) 𝜀2 

Cevolani (1995) 

[227] [323] 

𝐾 = 𝐶𝑣𝜀
2

= min[𝜀2 𝑒𝑥𝑝(7.69 − 0.9421 𝑙𝑛(𝑅𝑒) + 0.0379 𝑙𝑛2(𝑅𝑒)), 2] 

Epiney et al. (2010) 

[324] 

𝐾 = 𝐶𝑣𝜀
0.2 = (1.104 + 

791.8

𝑅𝑒0.748
+ 

3.348 ∙ 109

𝑅𝑒5.652
) 𝜀0.2 

1 ∙ 103 ≤ 𝑅𝑒 ≤ 5 ∙ 104 
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4.1.6 Transverse flow in a rod bundle 

The representation of transverse flow in a rod bundle geometry is shown in Fig. 59. 

 

 

FIG. 59. Transverse flow in a rod bundle 

 

4.1.6.1 Subbotin et al. (1975) 

In 1975 V.I. Subbotin et al. proposed the following friction factor for the transverse flow in 

triangular bundle having an accuracy of 20% [160]: 

 𝑓𝑟 = (
𝑃

𝐷
− 1)

−0.125

𝐾𝑝 103.14𝑅𝑒−0.22−0.42 (515) 

where parameter 𝐾𝑝 accounts for an influence of the– I -entries of wire wrap with the wire pitch 

H, 𝑥 = 𝑃
𝐷⁄  is relative pins pitch in the array. 

 𝐾𝑝 = {𝐼 −
𝐼

𝜋
√[(2 −

1

𝑥
)
2

− 1] [1 + (
𝜋𝑥𝐷

𝐻
)
2

]}

−2

 (516) 

 

  

P 

D 
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4.1.7 Inclined flow in a rod bundle 

 

 

FIG. 60. Inclined flow in a rod bundle 

 

4.1.7.1 Subbotin et al. (1975) 

In 1975 V.I. Subbotin et al. proposed the following friction factor for inclined flow in a 

triangular bundle which depends on the slope as follows [160]: 

 
𝑓𝜑

𝑓90º
= sin2 𝜑 +

𝑓𝑧
𝑓𝑟

cos2 𝜑 (517) 

where 𝑓𝑧 is the friction factor in longitudinal flow: 

 𝑓𝑧 =
∆𝑝2𝑑ℎ

𝐿𝜌�̅�2
 (518) 

and 𝑓𝑟 = 𝑓90º is the friction factor in transverse flow 

 𝑓𝑟 =
∆𝑝2𝑑ℎ

𝐿𝜌�̅�2
 (519) 

where L is the length of the rod bundle; �̅� = �̅�
𝜀⁄  is the liquid velocity averaged over the bundle; 

�̅� is the free flow velocity on the bundle; and 𝜀 is porosity. 
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4.2 TWO PHASE FRICTION FACTORS AND PRESSURE DROP CORRELATIONS 

It has been experimentally observed in two-phase flow that, for a given mass flow, the pressure 

drop can be much greater than for a corresponding single-phase flow. In general, the friction 

factor depends on flow patterns, which are classified as bubbly, slug, plug, churn, annular, wavy 

and mist flows as show in Fig. 61. 

 

 

 

FIG. 61. Two-phase flow patterns in vertical and horizontal pipes (adapted from [325]) 

 

In order to correlate two-phase frictional losses, the classical approach is to consider the friction 

factor for single-phase flow 𝑓𝑙, at the same mass flux as in the two-phase case, and to use a 

multiplier 𝜙𝑙
2 to account for the two-phase effects [227]. Then the two-phase pressure gradient 

is expressed as a multiple of the pressure gradient that would occur if the liquid phase flowed 

alone in the duct: 

 (
𝛥𝑝

𝛥𝐿
)

2𝜙
= 𝜙𝑙

2  (
𝛥𝑝

𝛥𝐿
)
𝑙
 (520) 

where 

 (
Δp

Δ𝐿
)
2𝜙

is the negative two-phase pressure gradient  

 (
𝛥𝑝

𝛥𝐿
)
𝑙
is the negative pressure gradient for the liquid alone  

 Δ𝑃2𝜙 = 𝜙𝑙
2𝑓𝑙  

𝐿

𝐷ℎ
 
ρ𝑙  𝑉𝑙

2

2
 (521) 

where: l is the liquid single-phase, 2𝜙: two-phase, 𝜙: two-phase friction multiplication factor, 

𝑓: friction factor, 𝐿: integrated fuel element length, 𝐷ℎ: hydraulic diameter [326]. The two-

phase friction multiplication factor 𝜙𝑙 can also be expressed as [339]: 

 𝜙𝑙 = 𝑓(𝑋𝐿𝑀) = {

(
Δ𝑝
ΔL)

2𝜙 𝑓𝑟𝑖𝑐

(
Δ𝑝
Δ𝐿)

1𝜙

}

1
2

 (522) 
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where 𝑝 is the pressure, 𝐿 is the axial coordinate and 𝑓𝑟𝑖𝑐 stands for ‘friction’. 

In the following 𝑣 represents the void fraction or vapour volume fraction and 𝑥 represents the 

vapour quality or vapour mass fraction. 

 

4.2.1 Flow in straight pipes 

The methods developed so far can be divided into two groups: homogeneous and separated 

flow approaches. 

Homogeneous models treat two-phase flow as a pseudo single-phase fluid characterized by 

averaged properties of the liquid and vapour phases, where the two phases are assumed to have 

the same velocity. 

The separated flow model considers the two-phase flow to be artificially separated into two 

streams, each flowing in separate zones, as in the annular and stratified regimes. In this model 

the two phases generally have different velocities, but constant for each phase and can interact 

with each other. Under most conditions, the separated flow model provides a better 

representation of the pressure drop in a pipe flow [234] [326]. 

The separated flow approach can be further classified in two categories: the f𝑙
2, f𝑔

2 based method 

and the f𝑙0
2 , f𝑔0

2  based method, where f𝑙
2, f𝑔

2, f𝑙0
2 , and f𝑔0

2  are two-phase friction multipliers. 

As for the f𝑙
2, f𝑔

2 based method, Lockhart and Martinelli (1949) proposed the concept of two-

phase friction multipliers f𝑙
2 , f𝑔

2  [327]. f𝑙
2  is defined as the ratio of the two-phase frictional 

pressure gradient to the frictional pressure gradient, which would exist if the liquid phase is 

assumed to flow alone. Correspondingly, f𝑔
2 is defined as the ratio of the two-phase frictional 

pressure gradient to the frictional pressure gradient, which would exist if the vapour phase is 

assumed to flow alone [234]. 

 f𝑙
2 =

(
Δ𝑝
ΔL)

2𝜙

(
Δ𝑝
ΔL)

𝑙

 (523) 

 f𝑔
2 =

(
Δ𝑝
ΔL)

2𝜙

(
Δ𝑝
ΔL)

𝑔

 (524) 

 (
Δ𝑝

ΔL
)
𝑙
=

[𝐺2𝜙(1 − 𝑥)]
2

2𝐷𝜌𝑙
𝑓𝑙 (525) 

 (
Δ𝑝

ΔL
)
𝑔

=
[𝐺2𝜙𝑥]

2

2𝐷𝜌𝑔
𝑓𝑔 (526) 

where 𝑓  is calculated with a single-phase friction factor correlation using the single-phase 

properties and mass flux. 

As for the 𝑓𝑙0
2, f𝑔0

2  based method, 𝑓𝑙0
2 is defined as the ratio of the two-phase frictional pressure 

gradient to the frictional pressure gradient, which would exist if the total mixture were assumed 

to be liquid. 𝑓𝑔0
2  is defined as the ratio of the two-phase frictional pressure gradient to the 
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frictional pressure gradient, which would exist if the total mixture were assumed to be vapour 

[234]. 

 𝑓𝑙𝑜
2 =

(
𝛥𝑝
𝛥𝐿)

2𝜙

(
𝛥𝑝
𝛥𝐿)

𝑙𝑜

 (527) 

 𝑓𝑔𝑜
2 =

(
𝛥𝑝
𝛥𝐿)

2𝜙

(
𝛥𝑝
𝛥𝐿)

𝑔𝑜

 (528) 

 (
𝛥𝑝

𝛥𝐿
)

𝑙𝑜
=

𝐺2𝜙
2

2𝐷𝜌𝑙
𝑓𝑙𝑜 (529) 

 (
𝛥𝑝

𝛥𝐿
)
𝑔𝑜

=
𝐺2𝜙

2

2𝐷𝜌𝑔
𝑓𝑔𝑜 (530) 

where 𝑓𝑙𝑜  can be calculated with the single-phase friction factor correlations (presented in 

Section 4.1) using 𝐺2𝜙 and the liquid phase properties, and 𝑓𝑔𝑜 can be calculated with same 

single-phase correlations using 𝐺2𝜙 and the vapour phase properties. 

Concerning the homogeneous model, it determines two-phase frictional pressure drop using the 

following equation: 

 (
Δ𝑝

ΔL
)
2𝜙

=
𝐺2𝜙

2

2𝐷𝜌2𝜙
𝑓2𝜙 (531) 

where 𝑓2𝜙 can be calculated with single-phase friction factor correlations, using 𝐺2𝜙 and the 

two-phase properties, while 𝜌2𝜙 is commonly calculated as: 

 
1

𝜌2𝜙
=

𝑥

𝜌𝑔
+

1 − 𝑥

𝜌𝑙
 (532) 

The main difference among homogeneous correlations concerns the estimation of the two-phase 

viscosity [234]. The homogeneous model generally gives reliable results for the mist flow and 

bubbly flow regimes, where the velocities of the two phases do not differ greatly. For other 

flow regimes, it tends to overestimate the void fraction 𝑣 causing the underestimation of the 

two-phase density [326]. 

When assuming a homogeneous flow, both phases have the same velocity and the slip ratio 

𝑆𝑅 =
𝑢𝑔

𝑢𝑙
 is one, then the void volume fraction is [326]: 

 𝑣 =
𝑥

𝑥 + (1 − 𝑥)
𝜌𝑔

𝜌𝑙
⁄

 (533) 

which is the fraction of the total volume that is occupied by the vapour phase [326]. As the two-

phase density is the total mass (vapour and liquid) of fluid divided by the total volume of the 

fluid, it can be expressed as: 

 𝜌2𝜙 = 𝑣𝜌𝑔 + (1 − 𝑣)𝜌𝑙 (534) 
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The void fraction is also the fractional area of the pipe cross-section occupied by the vapour 

which relates the void fraction to the vapour mass fraction, or quality 𝑥. By denoting the average 

vapour velocity by 𝑢𝑔, the mass flux of vapour can be written as [326]: 

 𝜌g𝑢g =
�̇�g

𝐴𝑔
 (535) 

where 𝐴𝑔 is the cross-sectional area occupied by the gas phase. Since 𝑥 =
�̇�g

�̇�
⁄ , it follows 

that: 

 
𝑥

𝜌g𝑢gv
=

�̇�g

�̇�

𝐴g

�̇�g
=

𝐴g

�̇�
 (536) 

As for the liquid phase, it can be written: 

 
1 − 𝑥

𝜌l𝑢l
=

𝐴l

�̇�
 (537) 

where 𝐴l is the cross-sectional area occupied by the liquid. Combining both previous equations 

it leads to the void fraction 𝑣 as follows [326]: 

 

𝑥
𝜌g𝑢gv

𝑥
𝜌g𝑢g

+
1 − 𝑥
𝜌l𝑢l

=

𝐴g

�̇�
𝐴g

�̇�
+

𝐴l

�̇�

=
𝐴g

𝐴g + 𝐴l
= 𝑣 (538) 

Void fraction can be also written as: 

 𝑣 =
𝑥

𝑥 + 𝑆𝑅(1 − 𝑥)
𝜌𝑔

𝜌𝑙
⁄

 (539) 

where 𝑆𝑅 =
𝑢𝑔

𝑢𝑙
 is the slip ratio. It would be then needed a flow model or empirical correlation 

to evaluate 𝑆𝑅 [326]. 

As for the slip model, assuming a slip between the vapour and liquid phases, the two-phase 

pressure loss multiplier can be obtained from [227]: 

 𝜙 =
𝜌𝑙

𝛼 𝜌𝑔 + (1 −  𝛼)𝜌𝑙
 (540) 

 
𝛼 ≡

1

1 + (
1 − 𝑥

𝑥 )  𝑆𝑅 
ρ𝑔

ρ𝑙

 
(541) 

The slip model becomes the homogeneous model when the slip ratio 𝑆𝑅 =
𝑢𝑔

𝑢𝑙
 is equal to 1. 

 

4.2.1.1 McAdams et al. (1942) 

In the early 1942 W. McAdams et al. proposed a very simple homogeneous model to estimate 

the two-phase dynamic viscosity [234] [238]: 
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1

𝜇2𝜙
=

𝑥

𝜇𝑔
+

1 − 𝑥

𝜇𝑙
 (542) 

It was proposed based on an analogy to the expression for the two-phase flow density. 

 

4.2.1.2 Lockhart-Martinelli (1949) 

In 1949 R.W. Lockhart and R.C. Martinelli suggested that the two-phase friction factor 

multipliers f𝑙
2 and f𝑔

2 are functions of the non-dimensional variable 𝑋𝐿𝑀. This conclusion was 

based on experimental data with air, water and other liquids, such as benzene, kerosene, as well 

as various oils in pipes. They studied the values of f2 as a function of 𝑋𝐿𝑀 for four flow types: 

turbulent liquid–turbulent vapour (tt), turbulent liquid–viscous vapour (tv), viscous liquid–

turbulent vapour (vt), viscous liquid–viscous vapour (vv), where the turbulent, viscous and 

transitional regimes where assumed to exist when 𝑅𝑒 ≥ 2000, 𝑅𝑒 ≤ 1000, and 1000 ≤ 𝑅𝑒 ≤
2000, respectively [234]. 

The variable 𝑋𝐿𝑀 is a function of the ratio of densities of the liquid and vapour, the ratio of 

viscosities of the liquid and vapour and tube diameter [327]. 

 𝑋𝐿𝑀
2 =

(
Δ𝑝
ΔL)

𝑙

(
Δ𝑝
ΔL)

𝑔

=
𝑅𝑒𝑔𝑝

𝑚

𝑅𝑒𝑙𝑝
𝑛

𝐶𝑙

𝐶𝑔
(
𝑊𝑙

𝑊𝑔
)

2
𝜌𝑔

𝜌𝑙
 (543) 

where 

𝑅𝑒𝑔𝑝 =
4𝑊𝑔

𝜋𝐷𝑔𝜇𝑔
 

𝑅𝑒𝑙𝑝 =
4𝑊𝑙

𝜋𝐷𝑙𝜇𝑙
 

𝐶𝑘 is the constant in Blasius equation for friction factor for the phase k, 

𝑊𝑘 is the mass flow rate for phase k, 

𝐷𝑘 is relative to the tube diameter and the flow conditions (it is always lower than the pipe 

diameter), 

m and n are equal to 1 for viscous flow regime and are equal to 0.2 for turbulent flow regime. 

The relationship between f𝑙
2  and f𝑔

2  and 𝑋𝐿𝑀  was given in graphical form by Lockhart and 

Martinelli. From the definition of the parameter 𝑋𝐿𝑀, the following expression can be deduced: 

 𝑋𝐿𝑀 = (
1 − 𝑥

𝑥
)
(
2−𝑛
2

)

(
𝜌𝑔

𝜌𝑙
)
0.5

(
𝜇𝑙

𝜇𝑔
)

𝑛
2

 (544) 

where 𝑥 is the vapour mass fraction. For the turbulent-turbulent flow Lockhart and Martinelli 

assumed the value n=0.2, obtaining: 

 𝑋𝐿𝑀
𝑡𝑡 = (

1 − 𝑥

𝑥
)
0.9

(
𝜌𝑔

𝜌𝑙
)
0.5

(
𝜇𝑙

𝜇𝑔
)

0.1

 (545) 

Although the exponent n is closer to 0.25 for commercial pipe and tubing, the difference is 

insignificant compared with the inherent uncertainty associated with the Lockhart-Martinelli 
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correlation. It should be noted that 𝑋𝐿𝑀
𝑡𝑡  is zero, when the vapour quality 𝑥 equals 1.0 and the 

two-phase multiplier, f𝑙
2 becomes infinite. 

In their classic paper from 1949, Lockhart and Martinelli presented a single correlation for void 

fraction 𝑣 covering all four laminar-turbulent combinations [326]. Their graphical correlation 

can be represented analytically by the following equation: 

 𝑣 =
f𝑙 − 1

f𝑙
 (546) 

where f𝑙 is calculated for the turbulent-turbulent case. Substituting the above expression for 𝑣 

in the expression for the two-phase density, it leads to: 

 𝜌2𝜙 =
𝜌𝑙 + (f𝑙 − 1)𝜌𝑣

f𝑙
 (547) 

The Lockhart–Martinelli methodology is the basis of the two-phase model based on the 

functions f𝑙
2 and f𝑔

2. And the correlation proposed for the turbulent-turbulent flow is considered 

as a reference. The model which provides a correlation for the two-phase pressure drop wall 

friction multiplier may be considered as a best-estimate mean value [328]. 

The Lockhart-Martinelli correlation, used in tubes, provides quite good results for bubbly flow, 

but doesn’t work as well for churn flow (typical void fraction overestimation of 20% to 30%).  

 

4.2.1.3 Lottes-Flinn (1956) 

A simple correlation for 𝜙𝑙
2  was proposed by P.A. Lottes and W.A. Flinn in 1956 [329]. 

According to the authors, for (1 − 𝑥) close to one, constant heat flux and constant slip ratio 

𝑆𝑅 =
𝑢𝑔

𝑢𝑙
 along the streaming channel, the local liquid velocity 

𝑣

(1−𝑣)
 and 

1

(1−𝑣)
 are all linear with 

the length of the channel, so the ratio of the two-phase friction to single-phase friction at the 

same mass flow rate for the entire boiling length can be expressed as follows: 

 𝜙𝑙
2 =

1

3
[1 +

1

1 − 𝑣
+

1

(1 − 𝑣)2
] (548) 

where 𝑣 is vapour volume fraction. 

Compared to the Lockhart-Martinelli correlation described above, this correlation was found to 

provide a better estimate for the two-phase multiplier within a single subchannel in the 

framework of 3D codes [206]. 

The Lottes-Flinn model provides a simple correlation for the two-phase pressure drop wall 

friction multiplier: it is obtained by assuming that the liquid remains in contact with the wall in 

two-phase regime, and thus that wall-to-liquid friction predominates. This model is expected to 

remain accurate unless film entrainment by the gas core occurs (typically at very high void 

fraction): then, the Lottes-Flinn correlation is likely to overestimate the two-phase pressure 

drop. 

Because of its simplicity, this model should be considered as a first step towards the 

establishment of a more elaborate two-phase pressure drop model based on feedback from 

experimental validation. 
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4.2.1.4 Cicchitti et al. (1960) 

In 1960 Cicchitti et al. proposed the following homogeneous model correlation [234] [330]: 

 𝜇2𝜙 = 𝑥𝜇𝑔 + (1 − 𝑥)𝜇𝑙 (549) 

 

4.2.1.5 Dukler et al. (1964) 

In 1964 Dukler et al. proposed the following homogeneous model correlation [234] [331]: 

 𝜇2𝜙 = 𝜌2𝜙 [𝑥
𝜇𝑔

𝜌𝑔
+ (1 − 𝑥)

𝜇𝑙

𝜌𝑙
] (550) 

based on the averaged value of kinematic viscosity. 

 

4.2.1.6 Chisholm (1967) 

A milestone of the f𝑙
2  and f𝑔

2  based method is the D. Chisholm (1967) method, where f𝑙
2  is 

expressed analytically as the function of 𝑋𝐿𝑀 and a constant C [332] based on the Lockhart–

Martinelli graphs: 

 f𝑙
2 = 1 +

C

𝑋𝐿𝑀
+

1

𝑋𝐿𝑀
2 (551) 

 

C = 20 

C = 12 

C = 10 

C = 2 

for turbulent liquid /turbulent vapour 

for laminar liquid /turbulent vapour 

for turbulent liquid /laminar vapour 

for laminar liquid /laminar vapour 

(552) 

Chisholm in [332] proposed four constants for the different flow patterns following the same 

criterion for the Reynolds numbers in the turbulent, viscous, and transitional regimes. 

In practice, if the liquid phase is turbulent, the vapour phase will usually be turbulent as well, 

and this is by far the most important case. Therefore, the Chisholm equation is restated for the 

turbulent-turbulent case as follows [326]: 

 f𝑙
2 = 1 +

20

𝑋𝐿𝑀
𝑡𝑡 +

1

𝑋𝐿𝑀
𝑡𝑡 2 (553) 

After Chisholm, many correlations with this same functional form were proposed [234]. 

 

4.2.1.7 Premoli et al. (1970) 

The CISE correlation was proposed by A. Premoli et al. [333] in 1970 to provide the correct 

asymptotic behaviour for the slip ratio, as various fluid properties and flow parameters approach 

their theoretical limits. The correlation is based on experimental data for upward flow in vertical 

channels [326]. The equation for the slip ratio is: 
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 𝑆𝑅 = 1 + 𝐾√
𝑌

1 + 𝐶𝑌
+ 𝐶𝑌 (554) 

 𝑌 =
𝑣

1 − 𝑣
 (555) 

 𝑣 =
𝜌𝑙𝑥

𝜌𝑙𝑥 + 𝜌𝑔(1 − 𝑥)
 is the homogeneous void fraction (556) 

 𝐾 = 1.578𝑅𝑒−0.19 (
𝜌𝑙

𝜌𝑔
)

0.22

 (557) 

 𝐶 = 0.0273𝑊𝑒𝑅𝑒−0.51 (
𝜌𝑙

𝜌𝑔
)

−0.08

 (558) 

 𝑅𝑒 =
𝐺𝑑

𝜇𝑙
 is the Reynolds number (559) 

 𝑊𝑒 =
𝐺2𝑑

𝜎𝜌𝑙
 is the Weber number (560) 

In the above equations 𝜇𝑙 and 𝜇𝑔 are the liquid and gas dynamic viscosity, respectively; 𝐺 is 

the total mass flux and 𝜎 is the surface tension. 

Both the Reynolds and Weber numbers in this correlation are computed using the total mass 

flux, G, and physical properties of the liquid phase. As mentioned in [326], in the article by 

Premoli et al. [333], the last term in square brackets was incorrectly printed with a minus sign 

instead of the plus sign, and this typographical error has been repeated many times in the 

subsequent papers. The plus sign is required based on theoretical grounds in order for the slip 

ratio to exhibit the correct asymptotic behaviour, and to prevent the square root of negative 

numbers from occurring at low Reynolds numbers or high Weber numbers. It is also needed to 

reproduce the graphical results presented in the original paper. 

 

4.2.1.8 Chen-Kalish (1970) 

The correlation proposed by J.C. Chen and S. Kalish in 1970 was derived on the basis of the 

measurements performed with potassium [227] [334]: 

 ln (
1

𝜙𝑙
) = −1.59 + 0.518 ln𝑋𝐿𝑀 − 0.0867 (ln𝑋𝐿𝑀)2 (561) 

where 𝑋𝐿𝑀 is the Lockhart-Martinelli parameter. 

 

4.2.1.9 Chisholm (1973) 

In 1973 D. Chisholm proposed the following correlation for the two-phase multiplier in the 

frame of the separated flow model [234] [335], based on empirical results from the literature: 
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 f𝑙0
2 = 1 + (𝑌2 − 1) {𝐵[𝑥(1 − 𝑥)]

2−𝑛
2 + x2−𝑛} (562) 

where 𝑥  is the vapour fraction, n is 0.25 for turbulent-turbulent flow, B is a parameter 

depending on the mass flux 𝐺 and 𝑌 and defined as: 

 𝑌2 =

(
𝛥𝑝
𝛥𝐿)

𝑔0

(
𝛥𝑝
𝛥𝐿)

𝑙𝑜

=
𝜌𝑙

𝜌𝑔
 (

𝜇𝑔

𝜇𝑙
)

𝑛

 (563) 

Y is analogous to the reciprocal of the Lockhart-Martinelli parameter 𝑋𝐿𝑀 . Chisholm then 

adjusted the correlation to obtain a conservative estimate of pressure drop for design purposes. 

As a result, his final correlation for B is a discontinuous function that tends to over-predict the 

pressure drop in certain ranges of G and Y. 

In [234] the graphical procedure of Baroczy (1966) [336] was transformed to equations for 

predicting pressure drop during the turbulent flow of two-phase mixtures in smooth tubes to 

enable their more convenient application to evaporating flow [234] in the following way: 

For 0 ≤ 𝑌 < 9.5: 

 𝐵 =
55

𝐺2𝜙
0.5  𝑓𝑜𝑟 𝐺2𝜙 ≥ 1900

𝑘𝑔

𝑚2𝑠
 (564) 

 𝐵 = 2400 𝑓𝑜𝑟 500 < 𝐺2𝜙 < 1900
𝑘𝑔

𝑚2𝑠
 (565) 

 𝐵 = 4.8 𝑓𝑜𝑟 𝐺2𝜙 ≤ 500
𝑘𝑔

𝑚2𝑠
 (566) 

For 9.5 < 𝑌 < 28: 

 𝐵 =
520

𝑌𝐺2𝜙
0.5  𝑓𝑜𝑟 𝐺2𝜙 ≤ 600

𝑘𝑔

𝑚2𝑠
 (567) 

 𝐵 =
21

𝑌
 𝑓𝑜𝑟 𝐺2𝜙 > 600

𝑘𝑔

𝑚2𝑠
 (568) 

For 𝑌 > 28: 

 𝐵 =
15000

𝑌2𝐺2𝜙
0.5  (569) 

In [326] it is proposed to follow Hewitt's [337] [338] recommendation and use Chisholm's 

unadjusted correlation for B, which is represented by similar equations for B as shown above. 

 

4.2.1.10 Kaiser et al. (1974) 

On the basis of the measurements in a sodium loop with an induction heated round test section 

of 9 mm inner diameter and 200 mm heated length, A. Kaiser et al. in 1974 derived the 

following correlation for the two-phase friction pressure drop multiplier [227] [339]: 

 𝜙𝑙 = 8.2 𝑋𝐿𝑀
−0.55 (570) 
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where 𝑋𝐿𝑀 is the Lockhart-Martinelli parameter. 

 

4.2.1.11 Friedel (1979) 

In 1979 L. Friedel derived a separated flow model correlation for frictional two-phase pressure 

gradient for 
𝜇𝑙

𝜇𝑔
≤ 1000, which is given by [234] [326] [340]:16 

 𝑓𝑙0
2 = (1 − 𝑥)2 + 𝑥2

𝑓𝑔0

𝑓𝑙0

𝑟𝑙
𝑟𝑔

+ 3.24𝑥0.78(1 − 𝑥)0.224
𝐻

𝐹𝑟2𝜙
0.045𝑊𝑒2𝜙

0.035 (571) 

 𝐻 = (
𝜌𝑙

𝜌𝑔
)

0.91

 (
𝜇𝑔

𝜇𝑙
)
0.19

(1 −
𝜇𝑔

𝜇𝑙
)
0.7

 (572) 

 𝐹𝑟2𝜙 =
𝐺2𝜙

2

𝑔𝐷𝜌2𝜙
2  is the Froude number (573) 

 𝑊𝑒 =
𝐺2𝐷

𝜌2𝜙𝜎
 is the Weber number (574) 

where 𝑓𝑔𝑜 and 𝑓𝑙𝑜 are the friction factors for the total mass flux flowing with the gas and the 

liquid, respectively. 𝜎 is the surface tension and 𝑔 is the acceleration due to gravity. In addition, 

G is the mass flux (product of velocity and density or, alternatively is the mass flow rate divided 

by the channel area), 𝐷 is the channel internal diameter, 𝑥 is the vapour quality and 𝜌2𝜙 is the 

two-phase density: 

 
1

𝜌2𝜙
=

𝑥

𝜌𝑔
+

1 − 𝑥

𝜌𝑙
 (575) 

The correlation can be rewritten in a more convenient form to eliminate the friction factors: 

 𝑓𝑙0
2 = (1 − 𝑥)2 + 𝑥2 (

𝜇𝑔

𝜇𝑙
)

𝑛 𝑟𝑙
𝑟𝑔

+ 3.24𝑥0.78(1 − 𝑥)0.224
𝐻

𝐹𝑟2𝜙
0.045𝑊𝑒2𝜙

0.035 (576) 

with 𝑛 = 0.25  for turbulent-turbulent flows. The correlation as given here is valid for 

horizontal and vertical upward flows. This correlation is based on 25000 experimental data 

points and considers the effects of the gravity and the surface tension [326]. 

 

4.2.1.12 Gronnerud (1979) 

In 1979 Gronnerud proposed the following separated flow model correlation [234] [341]: 

 f𝑙0
2 = 1 + (

𝛥𝑝

𝛥𝐿
)
𝐹𝑟

[(
𝜌𝑙

𝜌𝑔
) (

𝜇𝑔

𝜇𝑙
)
0.25

− 1] (577) 

 

16 In Ref. [339] the Weber number expression for this correlation is presented as 𝑊𝑒 =
𝐺2𝐷

𝑔𝜌2𝜙𝜎
, which is not correct 

and should be 𝑊𝑒 =
𝐺2𝐷

𝜌2𝜙𝜎
. 
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 (
𝛥𝑝

𝛥𝐿
)
𝐹𝑟

= 𝑓𝐹𝑟[𝑥 + 4(𝑥1.8 − 𝑥10𝑓𝐹𝑟
0.5)] (578) 

 𝑓𝐹𝑟 = 1 for 𝐹𝑟𝑙0 ≥ 1 (579) 

 𝑓𝐹𝑟 = 𝐹𝑟𝑙0
0.3 + 0.0055 [𝑙𝑛 (

1

𝐹𝑟𝑙0
)]

2

 for 𝐹𝑟𝑙0 ≤ 1 (580) 

 𝐹𝑟𝑙0 =
𝐺2𝜙

2

𝑔𝐷𝜌𝑙
2 (581) 

 

4.2.1.13 Beattie-Whalley (1982) 

In 1982 Beattie-Whalley proposed the following homogeneous model correlation [234] [342]: 

 𝜇2𝜙 = 𝛽𝜇𝑔 + (1 − 𝛽)(1 + 2.5𝛽)𝜇𝑙 (582) 

 
𝛽 =

𝑥

𝑥 + (1 − 𝑥)
𝜌𝑔

𝜌𝑙

 
(583) 

The structure of this equation is consistent with the form that might be expected for some 

gravity dominated flows. 

 

4.2.1.14 Chisholm (1983) 

D. Chisholm [326] [343] presented the following simple correlation for the slip ratio: 

 𝑆𝑅 = (
𝜌𝑙

𝜌2𝜙
)

0.5

 for 𝑋𝐿𝑀 > 1 (584) 

 𝑆𝑅 = (
𝜌𝑙

𝜌𝑔
)

0.25

 for 𝑋𝐿𝑀 ≤ 1 (585) 

where 𝑋𝐿𝑀  is the Lockhart-Martinelli parameter and 𝜌2𝜙  is the homogeneous two-phase 

density given by: 

 
1

𝜌2𝜙
=

𝑥

𝜌𝑔
+

1 − 𝑥

𝜌𝑙
 (586) 

This correlation is valid for flow in both vertical and horizontal tubes over a wide range of 

conditions, including void fractions from zero to unity. Chisholm stated that in a test of 14 

methods, it proved to be the best for density prediction. 

 

4.2.1.15 Kottowski-Savatteri (1984) 

In 1984, H.M. Kottowski and C. Savatteri derived a correlation on the basis of the round tube 

quasi steady-state experiments. The least-square fit correlation derived from the measurement 

data is given by [227] [325]: 
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 log𝜙𝑙 = 0.1046 (log𝑋𝐿𝑀)2 − 0.5098 log𝑋𝐿𝑀 + 0.6252 (587) 

for 0.07 ≤ 𝑋𝐿𝑀 ≤ 30. 𝑋𝐿𝑀 is the Lockhart-Martinelli parameter. 

 

4.2.1.16 Muller-Steinhagen- Heck (1986) 

The correlation proposed in 1986 by H. Muller-Steinhagen and K. Heck can be reformulated in 

the format of Chisholm functional with the two-phase multiplier given by the following 

equation [234] [326] [344]: 

 

f𝑙0
2 = 𝑌2𝑥3 + (1 − 𝑥)

1
3[1 + 2𝑥(𝑌2 − 1)] 

𝑌2 =

(
𝛥𝑝
𝛥𝐿)

𝑔0

(
𝛥𝑝
𝛥𝐿)

𝑙𝑜

 

(588) 

where 𝑥 is the vapour mass fraction and 𝑌 is the Chisholm parameter. This is an interpolation 

formula between all liquid flow (𝑥 = 0) and all vapour flow (𝑥 = 1). For 𝑥 = 0, f𝑙0
2  is one and 

the negative two-phase pressure gradient becomes (
𝛥𝑝

𝛥𝐿
)
𝑙0

. For 𝑥 = 1, f𝑙0
2  is 𝑌2 and the negative 

two-phase pressure gradient becomes (
𝛥𝑝

𝛥𝐿
)
𝑔0

. 

The Friedel correlation (section 4.2.1.11) is widely accepted as the most reliable general method 

for computing two-phase pressure losses. However, in two studies [345] [346], the performance 

of the simpler Muller-Steinhagen and Heck method was found to be superior to that of the 

Friedel method. It should be recognized that the uncertainty associated with all of these methods 

is much greater than for single-phase pressure drop calculations, and relatively large errors are 

possible in any given application [326]. 

 

4.2.1.17 Lin et al. (1991) 

In 1991 S. Lin et al. proposed the following homogeneous model correlation [234] [348]: 

 𝜇2𝜙 =
𝜇𝑔𝜇𝑙

𝜇𝑔
+ 𝑥1.4(𝜇𝑙 − 𝜇𝑔) (589) 

It is based on experimental data of vaporisation of R12 in capillary tubes. 

 

4.2.1.18 Lahey-Moody (1993) 

In 1993, based on extensive experimental data, R.T. Lahey and F.J. Moody [227] [349] reported 

that a homogeneous multiplier does a fairly good job of correlating the two-phase pressure drop 

data for a wide range of grid-type spacers, and proposed the following correlation: 

 𝜙 = (
𝑥

ρ𝑔
+ 

1 − 𝑥

ρ𝑙
) ρ𝑙 (590) 

where 𝑥 is the flow quality. 
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4.2.1.19 Lobo de Souza-de Mattos Pimenta (1995) 

In 1995 A. Lobo de Souza and M. de Mattos Pimenta proposed the following separated flow 

model correlation [234] [350]: 

 f𝑙0
2 = 1 + (Γ2 − 1)𝑥1.75(1 + 0.9524 Γ 𝑋𝑡𝑡

0.4126) (591) 

 Γ = (
𝜌𝑙

𝜌𝑔
)

0.5

 (
𝜇𝑔

𝜇𝑙
)

0.125

 (592) 

 𝑋𝑡𝑡 =
1

Γ
(
1 − 𝑥

𝑥
)
0.875

 (593) 

It is based on experimental data for R12, R22, R134a, MP39, and R32/125 refrigerants. 

 

4.2.1.20 Mishima-Hibiki (1996) 

In 1996 K. Mishima and T. Hibiki, recommended a correlation based on the Chisholm 

functional relationship for viscous liquid and viscous gas flow [234] [351]: 

 𝐶 = 21(1 − 𝑒−0.319𝐷) (594) 

where 𝐷 is the hydraulic diameter in meters. 

 

4.2.1.21 Wang et al. (1997) 

In 1997 C.C. Wang et al. proposed the following correlation based on the Chisholm functional 

form [234] [352] for different values of the mass flux G: 

 𝐶 = 4.566 ∙ 10−6𝑋0.128𝑅𝑒𝑙𝑜
0.938 (

𝜌𝑙

𝜌𝑔
)

−2.15

 (
𝜇𝑙

𝜇𝑔
)

5.1

 for 𝐺 = 50–100
𝑘𝑔

𝑚2𝑠
 (595) 

 𝑓𝑔
2 = 1 + 9.397𝑋0.62 + 0.564𝑋2.45for 𝐺 ≥ 200

𝑘𝑔

𝑚2𝑠
 (596) 

This correlation is based on experimental data for R22, R134a and R407C refrigerants inside a 

6.5 mm smooth tube. 

 

4.2.1.22 Tran et al. (2000) 

In 2000 T. Tran et al. proposed the following separated flow model correlation [234] [353]: 

 𝑓𝑙0
2 = 1 + (4.3𝑌2 − 1){[𝑥(1 − 𝑥)]0.875𝐿𝑎 + 𝑥1.75} (597) 

It is applicable for R134a, R113 and R12 in smooth tubes, with 𝑝 from 138 to 864 𝑘𝑃𝑎, 𝐺 from 

33 to 832 
𝑘𝑔

𝑚2𝑠
, 𝑞 from 2.2 to 90.8 

𝑘𝑊

𝑚2
, and 𝑥 from 0 to 0.95. 

 

4.2.1.23 Zhang-Webb (2001) 

In 2001 M. Zhang and R.L. Webb proposed the following separated flow model correlation 

[234] [354]: 
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 f𝑙0
2 = (1 − 𝑥)2 + 2.87𝑥2 (

𝑝

𝑝𝑐
)
−1

+ 1.68𝑥0.8(1 − 𝑥)0.25 (
𝑝

𝑝𝑐
)

−1.64

 (598) 

where 𝑝𝑐 is the critical pressure. It is based on experimental data of R134a, R22 and R404A 

flowing in a multi-port extruded aluminum tube with diameter of 2.13 mm, and in two cooper 

tubes having diameter or 6.25 and 3.25 mm. 

 

4.2.1.24 Chen et al. (2001) 

In 2001 Y. Chen et al. proposed the following separated flow model correlation for 𝐷 ≤ 10 𝑚𝑚 

[234] [355]: 

 (
𝛥𝑝

𝛥𝐿
)

2𝜙
= 𝛺 (

𝛥𝑝

𝛥𝐿
)
2𝜙 𝐹𝑟𝑖𝑒𝑑𝑒𝑙 

 (599) 

 𝛺 = 0.0333
𝑅𝑒𝑙𝑜

0.45

𝑅𝑒𝑔
0.09

[1 + 0.4𝑒−𝐵0] 𝑓𝑜𝑟 𝐵0 ≤ 2.5 (600) 

 𝛺 =
𝑊𝑒2𝜙

0.2

2.5
+ 0.06𝐵0 𝑓𝑜𝑟 𝐵0 ≥ 2.5 (601) 

 𝐵0 = 𝑔(𝜌𝑙 − 𝜌𝑔)
(𝐷 2⁄ )

2

𝜎
 (602) 

where (
𝐷𝑝

𝐷𝐿⁄ )
𝑡𝑝,𝐹𝑟𝑖𝑒𝑑𝑒𝑙

 is the two-phase friction pressure gradient predicted using the Friedel 

correlation, and the 𝑊 correlation is obtained from the measured data of air–water and R410A 

refrigerant. 

They also proposed another homogeneous model correlation for 𝐷 ≤ 10 𝑚𝑚 [234] [355]: 

 (
𝛥𝑝

𝛥𝐿
)

2𝜙
= 𝛺𝐻𝑜𝑚.  (

𝛥𝑝

𝛥𝐿
)

2𝜙 𝐻𝑜𝑚.
 (603) 

 𝛺𝐻𝑜𝑚. = 1.2 − 0.9𝑒−𝐵0 𝑓𝑜𝑟 𝐵0 ≤ 2.5 (604) 

 𝛺𝐻𝑜𝑚. = 1 +
𝑊𝑒0.2

𝑒𝐵0
0.3 − 0.9𝑒−𝐵0 𝑓𝑜𝑟 𝐵0 ≥ 2.5 (605) 

 𝐵0 = 𝑔(𝜌𝑙 − 𝜌𝑔)
(𝐷 2⁄ )

2

𝜎
 (606) 

where (
𝐷𝑝

𝐷𝐿⁄ )
2𝜙 𝐻𝑜𝑚.

 is the two-phase friction pressure gradient predicted using a 

homogeneous model, and the 𝑊 correlation is obtained from the measured data of air–water 

and R410A refrigerant. 
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4.2.1.25 Lee-Lee (2001) 

Based on the Chisholm functional relation, in 2001 H.J. Lee and S.Y. Lee proposed the 

following correlation [234] [356]: 

 𝐶 = 𝐴𝑙𝑞𝑌𝑅𝑅𝑒𝑙𝑜
𝑆  (607) 

where l =
𝜇𝑙

𝜌𝑙𝜎𝐷
 and Y =

𝜇𝑙𝑗

𝐷
. Table 37 presents the values of 𝑅𝑒𝑙, 𝑅𝑒𝑔, 𝐴, 𝑞, 𝑅 and 𝑆. 

TABLE 37. VALUES OF PARAMETERS OF LEE-LEE CORRELATION 

𝑹𝒆𝒍 𝑹𝒆𝒈 𝑨 𝒒 𝑹 𝑺 

≤ 2000 ≤ 2000 6.833 ∙ 10−8 −1.317 0.719 0.557 

≤ 2000 > 2000 6.185 ∙ 10−2 0 0 0.726 

> 2000 ≤ 2000 3.627 0 0 0.174 

> 2000 > 2000 0.408 0 0 0.451 

It is based on 305 experimental data points of horizontal rectangular channels with small 

heights. 

 

4.2.1.26 Cavallini et al. (2002) 

In 2002 A. Cavallini et al.  proposed the following separated flow model correlation [234] 

[357]: 

 

f𝑙0
2 = (1 − 𝑥)2 + 𝑥2

𝑟𝑙𝑓𝑔0

𝑟𝑔𝑓𝑙0
+ 1.262𝑥0.6978

𝐻

𝑊𝑒𝑔0
0.1458 

𝐻 = (
𝜌𝑙

𝜌𝑔
)

0.3278

 (
𝜇𝑔

𝜇𝑙
)
−1.184

(
1 − 𝜇𝑔

𝜇𝑙
)
3.477

 

𝑊𝑒𝑔𝑜 =
𝐺2𝜙

2 𝐷

𝜌𝑔𝜎
 

(608) 

It is based on experimental data of condensation of halogenated refrigerants inside smooth 

tubes. 

 

4.2.1.27 Yu et al. (2002) 

In 2002 W. Yu et al. recommended a correlation [234] [358]: 

 f𝑙
2 = [18.65 (

𝜌𝑔

𝜌𝑙
)
0.5

(
1 − 𝑥

𝑥
)
𝑅𝑒𝑔

0.1

𝑅𝑒𝑙
0.5]

−1.9

 (609) 

It is based on experimental data of water in a horizontal tube of 2.98 mm inside diameter. 

 

4.2.1.28 Wilson et al. (2003) 

In 2003 M. Wilson et al. proposed the following separated flow model correlation [234] [359]: 
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f𝑙0
2 = 12.82 (1 − 𝑥)1.8𝑋𝑡𝑡

−1.47 

𝑋𝑡𝑡 = (
1 − 𝑥

𝑥
)

0.9

(
𝜌𝑔

𝜌𝑙
)

0.5

 (
𝜇𝑔

𝜇𝑙
)

0.1

 
(610) 

It is based on experimental data of R134a and R410A in horizontal flattened tube, with 𝐺 from 

75 to 400 
𝑘𝑔

𝑚2𝑠
 and 𝑥 from 0.1 to 0.8. 

 

4.2.1.29 Lee-Mudawar (2005) 

In 2005 J. Lee and I. Mudawar, published a correlation based on the Chisholm functional 

relation [234] [360]: 

 𝐶 = {
2.16Re𝑙𝑜

0.047We𝑙𝑜
0.6 for vv

1.45Re𝑙𝑜
0.25We𝑙𝑜

0.23 for vt
 (611) 

 𝑅𝑒𝑙𝑜 =
𝐺2𝜙𝐷

𝜇𝑙
 (612) 

 𝑊𝑒𝑙𝑜 =
𝐺2𝜙

2 𝐷

𝜌𝑙𝜎
 (613) 

It is based on experimental data of R134a in a micro-channel of 231 µm wide × 713 µm deep 

groove at high heat flux of 𝑞=31.6–93.8 
𝑊

𝑐𝑚2. 

 

4.2.1.30 Hwang-Kim (2006) 

In 2006, following the functional relation proposed by Chisholm, Y.W. Hwang and M.S. Kim 

proposed a correlation for the value of the C parameter [234] [361]: 

 𝐶 = 0.227𝑅𝑒𝑙𝑜
0.452𝑋−0.32 𝐿𝑎−0.82 (614) 

 

𝐿𝑎 =

√
𝜎

𝑔(𝜌𝑙 − 𝜌𝑔)

𝐷
 

(615) 

They recommended this correlation based on experimental data of R134a in 0.244, 0.430 and 

0.792 mm pipes. 

 

4.2.1.31 Awad-Muzychka (2008) 

In 2008 M. Awad and Y. Muzychka proposed the following homogeneous model correlations 

[234] [362]: 

 𝜇2𝜙 =
𝜇𝑙[2𝜇𝑙 + 𝜇𝑔 − 2(𝜇𝑙 − 𝜇𝑔)𝑥]

2𝜇𝑙 + 𝜇𝑔 + (𝜇𝑙 − 𝜇𝑔)𝑥
 (616) 



221 

 

 𝜇2𝜙 =
𝜇𝑔[2𝜇𝑔 + 𝜇𝑙 − 2(𝜇𝑔 − 𝜇𝑙)(1 − 𝑥)]

2𝜇𝑔 + 𝜇𝑙 + (𝜇𝑔 − 𝜇𝑙)(1 − 𝑥)
 (617) 

It was proposed using an analogy between thermal conductivity of porous media and dynamic 

viscosity of two-phase flow. 

 

4.2.1.32 Shannak (2008) 

In 2008 B.A. Shannak proposed the following homogeneous model correlation [234] [363]: 

 𝑅𝑒2𝜙 =
𝐺2𝜙𝐷 [𝑥2 + (1 − 𝑥)2 𝜌𝑔

𝜌𝑙
]

𝜇g𝑥 + 𝜇l(1 − x)
𝜌𝑔

𝜌𝑙

 (618) 

It is given as the ratio of the sum of inertial force of each phase and that of the sum of viscous 

force of each phase. 

 

4.2.1.33 Sun-Mishima (2009) 

In 2009 L. Sun and K. Mishima proposed the following correlation for viscous flow based on 

the Chisholm method [234] [364]: 

 𝐶 = 26 (1 + 
𝑅𝑒𝑙

1000
) (1 − 𝑒−

0.153
0.8+0.28𝐿𝑎) (619) 

For turbulent flow they recommended: 

 𝑓𝑙
2 = 1 +

𝐶

𝑋1.19
+

1

𝑋2
 (620) 

 𝐶 = 1.79 (
𝑅𝑒𝑔

𝑅𝑒𝑙
)
0.4

(
1 − 𝑥

𝑥
)
0.5

 (621) 

 𝑅𝑒𝑔 =
𝐺2𝜙𝑥𝐷

𝜇𝑔
 and 𝑅𝑒𝑙 =

𝐺2𝜙(1−𝑥)𝐷

𝜇𝑙
 (622) 

These correlations are based on 2092 experimental data points of R123, R134a, R22, R236ea, 

R245fa, R404A, R407C, R410A, R507, CO2, water and air in 0.506–12 mm tubes. 

 

4.2.1.34 Zhang et al. (2010) 

In 2010 W. Zhang et al. proposed the following correlation for viscous liquid and viscous gas 

flow of the Chisholm-type [234] [365]: 

 𝐶 = 21 (1 − 𝑒−
0.674
𝐿𝑎 ) for adiabatic gas–liquid (623) 

 𝐶 = 21 (1 − 𝑒−
0.142
𝐿𝑎 ) for adiabatic vapour–liquid (624) 



222 

 

 𝐶 = 21 (1 − 𝑒−
0.358
𝐿𝑎 ) for flow boiling (625) 

 

4.2.1.35 Pamitran et al. (2010) 

In 2010 A. Pamitran et al. recommended a two-phase correlation of the Chisholm-type [234] 

[366]: 

 𝐶 = 3 ∙ 10−3 𝑅𝑒2𝜙
1.23𝑊𝑒2𝜙

−0.433 (626) 

 𝑅𝑒2𝜙 =
𝐺2𝜙𝐷

𝜇2𝜙
 (627) 

 𝑊𝑒2𝜙 =
𝐺2𝜙

2 𝐷

𝜌2𝜙𝜎
 (628) 

It is based on experimental data of R22, R134a, R410A, R290 and R744 in horizontal tubes of 

0.5, 1.5 and 3.0 mm inside diameter. 

 

4.2.1.36 Qiu et al. (2015) 

In 2015 Z.C. Qiu et al. studied the thermal-hydraulic characteristics of sodium boiling by 

boiling experiments on sodium, flowing through the annulus of 1000 mm length, 8 mm inner 

diameter and 12 mm outer diameter. The heat flux varied from 80 to 500 
𝑘𝑊

𝑚2 , with inlet 

subcooling from 63 to 285ºC, inlet flow velocity from 0.02 to 0.5 
𝑚

𝑠
 and system pressure from 

3.67 to 103 𝑘𝑃𝑎. They proposed the following correlation for the two-phase friction multiplier 

factor [208]: 

  𝑓𝑙
2 = 1 +

8.57

𝑋
+

1

𝑋2
 (629) 

 

4.2.1.37 Summary of friction factor correlations for two-phase flow in straight pipes 

Table 38 presents the list of all friction factor correlations collected for two-phase flow in 

straight pipes. 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

McAdams et al. 

(1942) 

[234] [238] 

1

𝜇2𝜙
=

𝑥

𝜇𝑔
+

1 − 𝑥

𝜇𝑙
 

homogeneous model 

Lockhart-

Martinelli (1949) 

[234] [326] [327] 

𝑋𝐿𝑀
2 =

(
Δ𝑝
ΔL)

𝑙

(
Δ𝑝
ΔL)

𝑔

=
𝑅𝑒𝑔𝑝

𝑚

𝑅𝑒𝑙𝑝
𝑛

𝐶𝑙

𝐶𝑔
(
𝑊𝑙

𝑊𝑔
)

2
𝜌𝑔

𝜌𝑙
 

𝑅𝑒𝑔𝑝 =
4𝑊𝑔

𝜋𝐷𝑔𝜇𝑔
 

𝑅𝑒𝑙𝑝 =
4𝑊𝑙

𝜋𝐷𝑙𝜇𝑙
 

𝑋𝐿𝑀 = (
1 − 𝑥

𝑥
)
(
2−𝑛
2

)

(
𝜌𝑔

𝜌𝑙
)
0.5

(
𝜇𝑙

𝜇𝑔
)

𝑛
2

 

for the turbulent-turbulent flow n=0.2: 

𝑋𝐿𝑀
𝑡𝑡 = (

1 − 𝑥

𝑥
)
0.9

(
𝜌𝑔

𝜌𝑙
)
0.5

(
𝜇𝑙

𝜇𝑔
)

0.1

 

𝑣 =
f𝑙 − 1

f𝑙
 

𝜌2𝜙 =
𝜌𝑙 + (f𝑙 − 1)𝜌𝑣

f𝑙
 

separated flow model 

Lottes-Flinn 

(1956) 

[329] 

𝜙𝑙
2 =

1

3
[1 +

1

1 − 𝑣
+

1

(1 − 𝑣)2
] 

separated flow model 

Cicchitti et al. 

(1960) 

[234] [330] 

𝜇2𝜙 = 𝑥𝜇𝑔 + (1 − 𝑥)𝜇𝑙 

homogeneous model 

Dukler et al. 

(1964) 

[234] [331] 

𝜇2𝜙 = 𝜌2𝜙 [𝑥
𝜇𝑔

𝜌𝑔
+ (1 − 𝑥)

𝜇𝑙

𝜌𝑙
] 

homogeneous model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Chisholm 

(1967) 

[326] [332] 

f𝑙
2 = 1 +

C

𝑋𝐿𝑀
+

1

𝑋𝐿𝑀
2 

𝐶 = 20 for turbulent liquid /turbulent vapour 

𝐶 = 12 for laminar liquid /turbulent vapour 

𝐶 = 10 for turbulent liquid /laminar vapour 

𝐶 = 2 for laminar liquid /laminar vapour 

separated flow model 

Premoli et al. 

(1970) 

[326] [333] 

𝑆𝑅 = 1 + 𝐾√
𝑌

1 + 𝐶𝑌
+ 𝐶𝑌 

𝑌 =
𝑣

1 − 𝑣
 

𝑣 =
𝜌𝑙𝑥

𝜌𝑙𝑥 + 𝜌𝑔(1 − 𝑥)
 

𝐾 = 1.578𝑅𝑒−0.19 (
𝜌𝑙

𝜌𝑔
)

0.22

 

𝐶 = 0.0273𝑊𝑒𝑅𝑒−0.51 (
𝜌𝑙

𝜌𝑔
)

−0.08

 

slip ratio model 

Chen-Kalish 

(1970) 

[227] [334] 

ln (
1

𝜙𝑙
) = −1.59 + 0.518 ln𝑋𝐿𝑀 − 0.0867 (ln𝑋𝐿𝑀)2 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Chisholm 

(1973) 

[234] [335] 

f𝑙0
2 = 1 + (𝑌2 − 1) {𝐵[𝑥(1 − 𝑥)]

2−𝑛
2 + x2−𝑛} 

n is 0.25 for turbulent-turbulent flow 

𝑌2 =

(
𝛥𝑝
𝛥𝐿)

𝑔0

(
𝛥𝑝
𝛥𝐿)

𝑙𝑜

=
𝜌𝑙

𝜌𝑔
 (

𝜇𝑔

𝜇𝑙
)
𝑛

 

for 0 ≤ 𝑌 < 9.5: 

𝐵 =
55

𝐺2𝜙
0.5  𝑓𝑜𝑟 𝐺2𝜙 ≥ 1900

𝑘𝑔

𝑚2𝑠
 

𝐵 = 2400 𝑓𝑜𝑟 500 < 𝐺2𝜙 < 1900
𝑘𝑔

𝑚2𝑠
 

𝐵 = 4.8 𝑓𝑜𝑟 𝐺2𝜙 ≤ 500
𝑘𝑔

𝑚2𝑠
 

for 9.5 < 𝑌 < 28: 

𝐵 =
520

𝑌𝐺2𝜙
0.5  𝑓𝑜𝑟 𝐺2𝜙 ≤ 600

𝑘𝑔

𝑚2𝑠
 

𝐵 =
21

𝑌
 𝑓𝑜𝑟 𝐺2𝜙 > 600

𝑘𝑔

𝑚2𝑠
 

for 𝑌 > 28: 

𝐵 =
15000

𝑌2𝐺2𝜙
0.5 

separated flow model 

Kaiser et al. 

(1974) 

[227] [339] 

𝜙𝑙 = 8.2 𝑋𝐿𝑀
−0.55 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Friedel (1979) 

[234] [326] 

[340] 

𝑓𝑙0
2 = (1 − 𝑥)2 + 𝑥2

𝑓𝑔0

𝑓𝑙0

𝑟𝑙
𝑟𝑔

+ 3.24𝑥0.78(1 − 𝑥)0.224
𝐻

𝐹𝑟2𝜙
0.045𝑊𝑒2𝜙

0.035 

𝐻 = (
𝜌𝑙

𝜌𝑔
)

0.91

 (
𝜇𝑔

𝜇𝑙
)

0.19

(1 −
𝜇𝑔

𝜇𝑙
)
0.7

 

𝐹𝑟2𝜙 =
𝐺2𝜙

2

𝑔𝐷𝜌2𝜙
2  

𝑊𝑒 =
𝐺2𝐷

𝜌2𝜙𝜎
 

alternatively: 

𝑓𝑙0
2 = (1 − 𝑥)2 + 𝑥2 (

𝜇𝑔

𝜇𝑙
)
𝑛 𝑟𝑙
𝑟𝑔

+ 3.24𝑥0.78(1 − 𝑥)0.224
𝐻

𝐹𝑟2𝜙
0.045𝑊𝑒2𝜙

0.035 

𝑛 = 0.25 for turbulent-turbulent flows 

separated flow model with  
𝜇𝑙

𝜇𝑔
≤ 1000 

Gronnerud 

(1979) 

[234] [341] 

f𝑙0
2 = 1 + (

𝛥𝑝

𝛥𝐿
)
𝐹𝑟

[(
𝜌𝑙

𝜌𝑔
) (

𝜇𝑔

𝜇𝑙
)
0.25

− 1] 

(
𝛥𝑝

𝛥𝐿
)
𝐹𝑟

= 𝑓𝐹𝑟[𝑥 + 4(𝑥1.8 − 𝑥10𝑓𝐹𝑟
0.5)] 

𝑓𝐹𝑟 = 1 for 𝐹𝑟𝑙0 ≥ 1 

𝑓𝐹𝑟 = 𝐹𝑟𝑙0
0.3 + 0.0055 [𝑙𝑛 (

1

𝐹𝑟𝑙0
)]

2

for 𝐹𝑟𝑙0 ≤ 1 

𝐹𝑟𝑙0 =
𝐺2𝜙

2

𝑔𝐷𝜌𝑙
2 

separated flow model 

Beattie-

Whalley 

(1982) 

[234] [342] 

𝜇2𝜙 = 𝛽𝜇𝑔 + (1 − 𝛽)(1 + 2.5𝛽)𝜇𝑙 

𝛽 =
𝑥

𝑥 + (1 − 𝑥)
𝜌𝑔

𝜌𝑙

 

homogeneous model 

Chisholm 

(1983) 

[234] [343] 

SR = (
𝜌𝑙

𝜌2𝜙
)
0.5

for 𝑋𝐿𝑀 > 1 

SR = (
𝜌𝑙

𝜌𝑔
)

0.25

for 𝑋𝐿𝑀 ≤ 1 

1

𝜌2𝜙
=

𝑥

𝜌𝑔
+

1 − 𝑥

𝜌𝑙
 

slip ratio model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Kottowski-

Savatteri 

(1984) 

[227] [325] 

log𝜙𝑙 = 0.1046 (log𝑋𝐿𝑀)2 − 0.5098 log 𝑋𝐿𝑀 + 0.6252 

0.07 ≤ 𝑋𝐿𝑀 ≤ 30 

separated flow model 

Muller-

Steinhagen- 

Heck (1986) 

[234] [326] 

[344] 

Chisholm functional relationship 

f𝑙0
2 = 𝑌2𝑥3 + (1 − 𝑥)

1
3[1 + 2𝑥(𝑌2 − 1)] 

separated flow model 

Lin et al. 

(1991) 

[234] [348] 

𝜇2𝜙 =
𝜇𝑔𝜇𝑙

𝜇𝑔
+ 𝑥1.4(𝜇𝑙 − 𝜇𝑔) 

homogeneous model 

Lahey-Moody 

(1993) 

[227] [349] 

𝜙 = (
𝑥

ρ𝑔
+ 

1 − 𝑥

ρ𝑙
) ρ𝑙 

valid for a wide range of grid-type spacers 

separated flow model 

Lobo de 

Souza-de 

Mattos 

Pimenta 

(1995) 

[234] [350] 

f𝑙0
2 = 1 + (Γ2 − 1)𝑥1.75(1 + 0.9524 Γ 𝑋𝑡𝑡

0.4126) 

Γ = (
𝜌𝑙

𝜌𝑔
)

0.5

 (
𝜇𝑔

𝜇𝑙
)
0.125

 

𝑋𝑡𝑡 =
1

Γ
(
1 − 𝑥

𝑥
)
0.875

 

separated flow model 

Mishima-

Hibiki (1996) 

[234] [351] 

Chisholm functional relationship 

𝐶 = 21(1 − 𝑒−0.319𝐷) 

for viscous liquid and viscous gas flow 

 

separated flow model 

Wang et al. 

(1997) 

[234] [352] 

for 𝐺 = 50– 100
𝑘𝑔

𝑚2𝑠
 

𝐶 = 4.566 ∙ 10−6𝑋0.128𝑅𝑒𝑙𝑜
0.938 (

𝜌𝑙

𝜌𝑔
)

−2.15

 (
𝜇𝑙

𝜇𝑔
)

5.1

  

for 𝐺 ≥ 200
𝑘𝑔

𝑚2𝑠
 

𝑓𝑔
2 = 1 + 9.397𝑋0.62 + 0.564𝑋2.45 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Tran et al. 

(2000) 

[234] [353] 

f𝑙0
2 = 1 + (4.3Y2 − 1){[𝑥(1 − 𝑥)]0.875𝐿𝑎 + 𝑥1.75} 

for R134a, R113 and R12 in smooth tubes 

138 ≤ 𝑝 ≤ 864𝑘𝑃𝑎, 33 ≤ 𝐺 ≤ 832
𝑘𝑔

𝑚2𝑠
, 2.2 ≤ 𝑞 ≤ 90.8

𝑘𝑊

𝑚2
, 

and 0 ≤ 𝑥 ≤ 0.95 

 

separated flow model 

Zhang-Webb 

(2001) 

[234] [354] 

f𝑙0
2 = (1 − 𝑥)2 + 2.87𝑥2 (

𝑝

𝑝𝑐
)

−1

+ 1.68𝑥0.8(1 − 𝑥)0.25 (
𝑝

𝑝𝑐
)
−1.64

 

separated flow model 

Chen et al. 

(2001) 

[234] [355] 

1. separated flow model: 

(
𝛥𝑝

𝛥𝐿
)
2𝜙

= 𝛺 (
𝛥𝑝

𝛥𝐿
)
2𝜙 𝐹𝑟𝑖𝑒𝑑𝑒𝑙 

 

𝛺 = 0.0333
𝑅𝑒𝑙𝑜

0.45

𝑅𝑒𝑔
0.09

[1 + 0.4𝑒−𝐵0] 𝑓𝑜𝑟 𝐵0 ≤ 2.5 

𝛺 =
𝑊𝑒2𝜙

0.2

2.5
+ 0.06𝐵0 𝑓𝑜𝑟 𝐵0 ≥ 2.5 

𝐵0 = 𝑔(𝜌𝑙 − 𝜌𝑔)
(𝐷 2⁄ )

2

𝜎
 

2. homogeneous model 

(
𝛥𝑝

𝛥𝐿
)
2𝜙

= 𝛺𝐻𝑜𝑚.  (
𝛥𝑝

𝛥𝐿
)
2𝜙 𝐻𝑜𝑚.

 

𝛺𝐻𝑜𝑚. = 1.2 − 0.9𝑒−𝐵0 𝑓𝑜𝑟 𝐵0 ≤ 2.5 

𝛺𝐻𝑜𝑚. = 1 +
𝑊𝑒0.2

𝑒𝐵0
0.3 − 0.9𝑒−𝐵0 𝑓𝑜𝑟 𝐵0 ≥ 2.5 

Valid for 𝐷 ≤ 10 𝑚𝑚 

Lee-Lee 

(2001) 

[234] [356] 

Chisholm functional relationship 

𝐶 = 𝐴𝑙𝑞𝑌𝑅𝑅𝑒𝑙𝑜
𝑆  

l =
𝜇𝑙

𝜌𝑙𝜎𝐷
 

Y =
𝜇𝑙𝑗

𝐷
 

𝑅𝑒𝑙, 𝑅𝑒𝑔, 𝐴, 𝑞, 𝑅 and 𝑆 are presented in Table 37 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Cavallini et al. 

(2002) 

[234] [357] 

f𝑙0
2 = (1 − 𝑥)2 + 𝑥2

𝑟𝑙𝑓𝑔0

𝑟𝑔𝑓𝑙0
+ 1.262𝑥0.6978

𝐻

𝑊𝑒𝑔0
0.1458 

𝐻 = (
𝜌𝑙

𝜌𝑔
)

0.3278

 (
𝜇𝑔

𝜇𝑙
)
−1.184

(
1 − 𝜇𝑔

𝜇𝑙
)

3.477

 

𝑊𝑒𝑔𝑜 =
𝐺2𝜙

2 𝐷

𝜌𝑔𝜎
 

separated flow model 

Yu et al. 

(2002) 

[234] [358] 

f𝑙
2 = [18.65 (

𝜌𝑔

𝜌𝑙
)
0.5

(
1 − 𝑥

𝑥
)
𝑅𝑒𝑔

0.1

𝑅𝑒𝑙
0.5]

−1.9

 

separated flow model 

Wilson et al. 

(2003) 

[234] [359] 

f𝑙0
2 = 12.82 (1 − 𝑥)1.8𝑋𝑡𝑡

−1.47 

𝑋𝑡𝑡 = (
1 − 𝑥

𝑥
)
0.9

(
𝜌𝑔

𝜌𝑙
)
0.5

 (
𝜇𝑔

𝜇𝑙
)
0.1

 

horizontal flattened tube,  75 ≤ 𝐺 ≤ 400
𝑘𝑔

𝑚2𝑠
 and 0.1 ≤ 𝑥 ≤ 0.8 

separated flow model 

Lee-Mudawar 

(2005) 

[234] [360] 

Chisholm functional relation 

𝐶 = {
2.16Re𝑙𝑜

0.047We𝑙𝑜
0.6 for vv

1.45Re𝑙𝑜
0.25We𝑙𝑜

0.23 for vt
 

𝑅𝑒𝑙𝑜 =
𝐺2𝜙𝐷

𝜇𝑙
 

𝑊𝑒𝑙𝑜 =
𝐺2𝜙

2 𝐷

𝜌𝑙𝜎
 

micro-channel at high heat flux of 31.6 ≤ 𝑞 (𝑖𝑛 
𝑊

𝑐𝑚2) ≤ 93.8 

separated flow model 

Hwang-Kim 

(2006) 

[234] [361] 

Chisholm functional relation 

𝐶 = 0.227𝑅𝑒𝑙𝑜
0.452𝑋−0.32 𝐿𝑎−0.82 

𝐿𝑎 =

√
𝜎

𝑔(𝜌𝑙 − 𝜌𝑔)

𝐷
 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Awad-

Muzychka 

(2008) 

[234] [362] 

𝜇2𝜙 =
𝜇𝑙[2𝜇𝑙 + 𝜇𝑔 − 2(𝜇𝑙 − 𝜇𝑔)x]

2𝜇𝑙 + 𝜇𝑔 + (𝜇𝑙 − 𝜇𝑔)x
 

𝜇2𝜙 =
𝜇𝑔[2𝜇𝑔 + 𝜇𝑙 − 2(𝜇𝑔 − 𝜇𝑙)(1 − x)]

2𝜇𝑔 + 𝜇𝑙 + (𝜇𝑔 − 𝜇𝑙)(1 − x)
 

homogeneous model 

Shannak 

(2008) 

[234] [363] 

𝑅𝑒2𝜙 =
𝐺2𝜙𝐷 [𝑥2 + (1 − 𝑥)2 𝜌𝑔

𝜌𝑙
]

𝜇g𝑥 + 𝜇l(1 − x)
𝜌𝑔

𝜌𝑙

 

homogeneous model 

Sun-Mishima 

(2009) 

[234] [364] 

Chisholm functional relation 

for viscous flow: 

𝐶 = 26 (1 + 
𝑅𝑒𝑙

1000
) (1 − 𝑒−

0.153
0.8+0.28𝐿𝑎) 

for turbulent flow: 

𝑓𝑙
2 = 1 +

𝐶

𝑋1.19
+

1

𝑋2
 

𝐶 = 1.79 (
𝑅𝑒𝑔

𝑅𝑒𝑙
)
0.4

(
1 − 𝑥

𝑥
)
0.5

 

𝑅𝑒𝑔 =
𝐺2𝜙𝑥𝐷

𝜇𝑔
 and 𝑅𝑒𝑙 =

𝐺2𝜙(1−𝑥)𝐷

𝜇𝑙
 

separated flow model 

Zhang et al. 

(2010) 

[234] [365] 

Chisholm functional relationship for viscous liquid and viscous gas flow 

𝐶 = 21 (1 − 𝑒−
0.674

𝐿𝑎 ) for adiabatic gas–liquid 

𝐶 = 21 (1 − 𝑒−
0.142

𝐿𝑎 ) for adiabatic vapour–liquid 

𝐶 = 21 (1 − 𝑒−
0.358

𝐿𝑎 ) for flow boiling 

separated flow model 

Pamitran et al. 

(2010) 

[234] [366] 

Chisholm functional relationship 

𝐶 = 3 ∙ 10−3 𝑅𝑒2𝜙
1.23𝑊𝑒2𝜙

−0.433 

𝑅𝑒2𝜙 =
𝐺2𝜙𝐷

𝜇2𝜙
 and 𝑊𝑒2𝜙 =

𝐺2𝜙
2 𝐷

𝜌2𝜙𝜎
 

separated flow model 
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TABLE 38. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN STRAIGHT PIPES 

Qiu et al. 

(2015) 

[208] 

𝑓𝑙
2 = 1 +

8.57

𝑋
+

1

𝑋2
 

80 ≤ 𝑞 ≤ 500
𝑘𝑊

𝑚2, 63 ≤ 𝑖𝑛𝑙𝑒𝑡 𝑠𝑢𝑏𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ≤ 285℃ 

0.02 ≤ 𝑖𝑛𝑙𝑒𝑡 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ≤ 0.5
𝑚

𝑠
 and 3.67 ≤ 𝑝 ≤ 103𝑘𝑃𝑎 

separated flow model 

 

4.2.2 Flow in helical and curved pipes 

As for the pressure drop for two-phase flow in helically coiled tubes, there are fewer studies 

compared to the case of a single-phase flow. Scientists during their experimental and 

computational studies [258] investigated the two-phase frictional pressure drop with steam-

water flow boiling, R134a refrigerant flows and air-water flows in helically coiled tubes. 

In the Fig. 62 below the representation of a helical pipe can be seen, where d – pipe diameter, 

D – coil diameter, p – coil pitch, β – pipe angle. 

 

FIG. 62. Representation of helical pipe parameters (adopted from [258]) 

 

4.2.2.1 Kozeki et al. (1970) 

In 1970 M. Kozeki et al. proposed a correlation derived based on the widely used two-phase 

flow pressure drop correlations for straight tubes ( 𝑝 < 3.5 𝑀𝑃𝑎  and 𝑑 ≥ 12 𝑚𝑚 ). They 

concluded that the pressure drop is greater than that for a straight tube and it increases with the 

vapour quality and mass flux [258] [367]. The numerical model based on the Martinelli and 

Nelson prediction for two-phase flow in straight tubes is: 

 𝜙𝑔,𝑡𝑡
2 = 0.895 + (𝑋𝑡𝑡 + 0.076)0.875 + 1.21 ∙ 10−0.334(log𝑋𝑡𝑡+0.668)2 (630) 

 𝜙𝑙,𝑡𝑡 =
𝜙𝑔,𝑡𝑡

𝑋𝑡𝑡
0.875 (631) 

The main experimental parameters for the vertical helical coil test were: 

0.032 < 𝛿 < 0.035 

0.5 < 𝑝 < 2.1 𝑀𝑃𝑎 

151 < 𝑞 < 348 
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161 < 𝐺 < 486 

21.7 𝑚𝑚 𝑂𝐷 (outer pipe diameter) 

628 < 𝐷 < 682 𝑚𝑚 

0 < 𝑥 < 1 

where 𝛿 is the curvature ratio (internal tube diameter 𝑑𝑖/mean coil diameter 𝐷), 𝑞 is the heat 

flux (
𝑘𝑊

𝑚2), 𝐺 is the mass flux (
𝑘𝑔

𝑚2𝑠
), 𝐷 is the helix diameter (𝑚𝑚) and 𝑥 is the steam quality. 

 

4.2.2.2 Ruffell (1974) 

In 1974 A. E. Ruffell recommended a correlation for high system pressures (𝑝 > 3.5 𝑀𝑃𝑎) 

[258] [368] [369]. The final form of the new correlation is obtained considering the whole data 

bank, including the experimental data from Santini et al. (2008) [370] and Zhao et al. (2003) 

[371]: 

 𝜙𝑙
2 = (1 + 𝐹)

𝜌𝑙

𝜌2𝜙
 (632) 

 
 𝐹 = sin

1.16𝐺

1000
[0.875 − 0.314𝑦 −

0.74𝐺

1000
(0.152 − 0.07𝑦) − 𝑥 (

0.155𝐺

1000
+ 0.7 −

0.19𝑦)] [1 − 12(𝑥 − 0.3)(𝑥 − 0.4)(𝑥 − 0.5)(𝑥 − 0.6)] 
(633) 

 𝑦 =
𝐷

100𝑑
 (634) 

The main experimental parameters for the helical coil tests were: 

10.7 < 𝐼𝐷 (inner pipe diameter) < 18.6 𝑚𝑚 

 0.0054 < 𝛿 < 0.16 

6 < 𝑝 < 18 𝑀𝑃𝑎 

41 < 𝑞 < 731 

300 < 𝐺 < 1800 

0 < 𝑥 < 1 

 

4.2.2.3 Unal et al. (1981) 

In 1981 H.C. Unal et al. proposed the following correlation for high system pressures 

(𝑝 > 3.5 𝑀𝑃𝑎) [258] [372]: 

 ∆𝑃𝑓,2𝜙 =
2(1 + 𝑏1𝑏2)𝑓𝑙𝐺

2

𝑑𝜌𝑙
 (635) 

 𝑏1 = 3850𝑥0.01𝑃𝑟−1.515𝑅𝑒𝑙
−0.758 (636) 

 𝑏2 = 1 + 𝑅𝑒𝑙
0.1(3.67 − 3.04𝑝𝑏)

−0.014𝛿−1−2𝛿−1
 (637) 

 𝑝𝑏 =
𝑝

𝑝𝑐𝑟𝑖𝑡
 (638) 

The authors used as single-phase friction factor correlation of Ito (see Eq. (363)): 
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 𝑓𝑙 = 0.304𝑅𝑒−0.25 + 0.029𝛿0.5 (639) 

The main experimental parameters for the vertical helical coil test were: 

18 𝑚𝑚 𝐼 

700 𝑎𝑛𝑑 1500 𝑚𝑚 = 𝐷 

0.0054 < 𝛿 < 0.022 

14.7 < 𝑝 < 20.2 𝑀𝑃𝑎 

41 < 𝑞 < 731 

112 < 𝐺 < 1829 

0.08 < 𝑥 < 1 

 

4.2.2.4 Chen and Zhou (1981) 

In 1981 X.J. Chen and F.D. Zhou presented a correlation for high system pressures  

(𝑝 > 3.5 𝑀𝑃𝑎) [258] [373]: 

 ∆𝑃𝑓,2𝜙 = 𝜉∆𝑃𝑙 (640) 

 

𝜉

= 2.06𝛿0.05𝑅𝑒2𝜙
−0.025 [1 + 𝑉𝐹 (

𝜌𝑔

𝜌𝑙
− 1)]

0.8

[1 + 𝑥 (
𝜌𝑙

𝜌𝑔
− 1)]

0.8

[1

+ 𝑉𝐹 (
𝜇𝑔

𝜇𝑙
− 1)]

0.2

 

(641) 

where VF refers to void fraction. The main experimental parameters for the vertical helical 

coil test were: 

18 𝑚𝑚 𝐼𝐷 

235, 446 𝑎𝑛𝑑 907 𝑚𝑚 = 𝐷 

0.02 < 𝛿 < 0.076 

4.2 < 𝑝 < 22 𝑀𝑃𝑎 

400 < 𝐺 < 2000 

0 < 𝑥 < 1 

 

4.2.2.5 Nariai et al. (1982) 

In 1982 H. Nariai et al. recommended a correlation derived based on the widely used two-phase 

flow pressure drop correlations for straight tubes (𝑝 < 3.5 𝑀𝑃𝑎 and 𝑑 ≥ 12 𝑚𝑚) [258] [374]. 

Pressure drop increases with mass flux and vapour quality: 

 ∆𝑃𝑓,2𝜙 = 𝑅𝑀𝑁∆𝑃𝑙 (642) 

 𝑅𝑀𝑁 = (1 − 𝑥)1.75 𝜙𝑙,𝑡𝑡
2 = 𝜙𝑙

2(𝑃, 𝑥) (643) 

The experimental values for 𝜙𝑙
2 were given in a table as a function of the system pressure 𝑃 

and the vapour quality 𝑥. As for 𝜙𝑔,𝑡𝑡
2 , Kozeki et al. [367] prediction was found to be better: 



234 

 

 𝜙𝑔,𝑡𝑡
2 = 0.895 + (𝑋𝑡𝑡 + 0.076)0.875 + 1.21 ∙ 10−0.334(log𝑋𝑡𝑡+0.668)2 (644) 

 𝜙𝑙,𝑡𝑡 =
𝜙𝑔,𝑡𝑡

𝑋𝑡𝑡
0.875 (645) 

The main experimental parameters for the vertical helical coil test were: 

14.3 𝑎𝑛𝑑 20 𝑚𝑚 𝐼𝐷 

𝐷 = 595 𝑚𝑚 

0.024 < 𝛿 < 0.034 

2 < 𝑝 < 3.5 𝑀𝑃𝑎 

0.7 ∙ 105 < 𝑞 < 1.8 ∙ 105 

150 < 𝐺 < 850 

0.1 < 𝑥 < 0.9 

 

4.2.2.6 Guo et al. (1994) 

In 1994 L.J. Guo published a correlation for large tube diameters (𝑑 ≥ 12 𝑚𝑚) [258] [375]: 

 𝜙𝑙
2 = 1 + (4.25 − 2.55𝑥1.5)𝐺0.34 (646) 

The main experimental parameters for the horizontal helical coil test were: 

20 𝑚𝑚 𝐼𝐷 

240, 480 𝑎𝑛𝑑 960 𝑚𝑚 = 𝐷 

0.021 < 𝛿 < 0.083 

1.5 < 𝑝 < 3 𝑀𝑃𝑎 

150 < 𝐺 < 1400 

0 < 𝑥 < 0.8 

 

4.2.2.7 Bi et al. (1994) 

In 1994 Q.C. Bi et al. recommended the following correlation for small tube and helix diameters 

(𝑑 < 12 𝑚𝑚) [258] [376]: 

 𝜙𝑙
2 = 1 + (

𝜌𝑙

𝜌𝑔
− 1) (𝐶 + 𝑥2) (647) 

 𝐶 = 0.14691𝑥1.3297(1 − 𝑥)0.59884𝛿−1.2864 (648) 

They concluded that coil orientation had no significant effect on the two-phase frictional 

pressure drop. The two-phase frictional pressure drop was not influenced by the conditions of 

the thermodynamic system, i.e. adiabatic or electrically heated tubes. The main experimental 

parameters for both horizontal and vertical helical coil tests were: 

10 𝑎𝑛𝑑 12 𝑚𝑚 𝐼𝐷 

𝐷 = 115 𝑚𝑚 
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0.087 < 𝛿 < 0.104 

4 < 𝑝 < 14 𝑀𝑃𝑎 

0 < 𝑞 < 750 

400 < 𝐺 < 2000 

0 < 𝑥 < 1 

4.2.2.8 Awwad et al. (1995) 

Awwad et al. [377] (in 1995) and Xin et al. [289] (in 1997) studied the air-water two-phase 

flow in horizontal and vertical helical pipes, respectively. Four different inside diameters of 

pipes and two different outside diameters of the cylindrical concrete forms were used for the 

various configurations of the helical pipe [275]. For horizontal helical pipes they concluded that 

the superficial velocities of air or water had a significant influence on the pressure drop 

multiplier, while the helix angle had insignificant effect. As for the pipe and coil diameters, 

they had a certain influence only at low flow rates. For vertical helical pipes at low flow rates 

in small aspect ratios, both the Lockhart–Martinelli multiplier and the flow rates affected the 

two-phase pressure drop. The void fraction was influenced by geometric parameters affecting 

the frictional pressure drop. Based on their experimental data for horizontal helical pipes, 

correlations of the frictional pressure drop multiplier for two-phase flow were proposed as 

follows [258] [369]: 

 𝜙𝑙 = (1 +
𝑥

𝐶𝐹𝑑
𝑛) (1 +

12

𝑋
+

1

𝑋
)

0.5

 (649) 

 𝐹𝑑 = 𝐹𝑟 (
𝑑

𝐷
)

0.1

 (650) 

 
𝐹𝑜𝑟 𝐹𝑑 ≤ 0.3: 𝐶 = 7.79, 𝑛 = 0.576 

𝐹𝑜𝑟 𝐹𝑑 > 0.3: 𝐶 = 13.56, 𝑛 = 1.3 
(651) 

 

4.2.2.9 Xin et al. (1997) 

In 1997 R.C. Xin et al. recommended [275] [289] [369] the following correlation for vertical 

helical pipes: 

 𝜙𝑙 = (1 +
𝑋

𝐶𝐹𝑑
𝑛) (1 +

20

𝑋
+

1

𝑋
)

0.5

 (652) 

 𝐹𝑑 = 𝐹𝑟 (
𝑑

𝐷
)

0.5

(1 + tan𝛽)0.2 (653) 

 
𝐹𝑜𝑟 𝐹𝑑 ≤ 0.1: 𝐶 = 65.45, 𝑛 = 0.6 

𝐹𝑜𝑟 𝐹𝑑 > 0.1: 𝐶 = 434.8, 𝑛 = 1.7 
(654) 

where d=19.1 mm, D=340 mm and 𝛽 = 0.5°. 
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4.2.2.10 Ju et al. (2001) 

In 2001 H. Ju et al. determined the two-phase flow pressure drop in small bending radius helical 

coil-pipe used in an HTR-10 steam generator [258] [275] [284]. Based on the uniform flow 

formula with a correction factor, a formula for frictional pressure drop was proposed: 

 ∆𝑃𝑓,2𝜙 = 𝑓 (
𝐿

𝑑
) (

𝜌𝑣2

2
) [1 + 𝑥 (

𝜌𝑔

𝜌𝑙 − 1
)]Ψ (655) 

 Ψ = (1.29 + 𝐴𝑛𝑥𝑛) [1 + 𝑥 [(
𝜇𝑙

𝜇𝑔
)

0.25

− 1]] (656) 

 𝐴1 = 2.19 𝐴2 = −3.61 𝐴3 = 7.35 𝐴4 = −5.93 (657) 

where: 𝑓  is the friction factor, 𝑣  is the flow velocity, 𝑥  the average steam content, Ψ  the 

unevenness correction factor. It is valid for 2.5 < 𝑃 < 4.5 𝑀𝑃𝑎 and 8 <
𝐷

𝑑
< 9.3. 

The main experimental parameters for the helical coil tests were: 

18 𝑚𝑚 𝑂𝐷 

𝐷 = 112 𝑚𝑚 

𝛿 = 0.161 

𝑝 = 3 𝑀𝑃𝑎 

2500 < 𝑅𝑒 < 23000 

0 < 𝑥 < 1 

 

4.2.2.11 Guo et al. (2001) 

In 2001 L. Guo et al. studied the pressure drops of steam–water two-phase flows in two helical 

coiled tubes with four different helix-axial inclinations. The results showed that the system 

pressure and mass quality had significant effect on the two-phase pressure drop, as well as the 

coil orientation. They recommended a correlation based on the work of Chen for boiling two-

phase flow frictional pressure drop in helical coiled tubes [258] [275] [290] [369]: 

 𝜙𝑙
2 = 𝜓1𝜓 [1 + 𝑥 (

𝜌𝑙

𝜌𝑔
− 1)] (658) 

 𝜓 = 1 +

𝑥(1 − 𝑥) (
1000

𝐺 − 1)
𝜌𝑙

𝜌𝑔

1 + 𝑥 (
𝜌𝑙

𝜌𝑔
− 1)

 for 𝐺 ≤ 1000 (659) 

 𝜓 = 1 +

𝑥(1 − 𝑥) (
1000

𝐺 − 1)
𝜌𝑙

𝜌𝑔

1 + (1 − 𝑥) (
𝜌𝑙

𝜌𝑔
− 1)

 for 𝐺 > 1000 (660) 

 𝜓1 = 142.2 (
𝑃

𝑃𝑐𝑟𝑖𝑡
)
0.62

𝛿1.04 (661) 
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𝛿 =
𝑑

𝐷
 

The main experimental parameters for both horizontal/vertical and inclined helical coil tests 

were: 

10, 11 𝑚𝑚 𝐼𝐷 

𝐷 = 132 𝑎𝑛𝑑 256 𝑚𝑚 

0.043 < 𝛿 < 0.076 

3 < 𝑝 < 3.5 𝑀𝑃𝑎 

0 < 𝑞 < 540 

150 < 𝐺 < 1760 

0.01 < 𝑥 < 1.2 

 

4.2.2.12 Zhao et al. (2003) 

In 2003 L. Zhao et al. recommended [258] [369] [371] a correlation for small tube and helix 

diameters (𝑑 < 12 𝑚𝑚): 

 𝜙𝑙0
2 = 1 + (

𝜌𝑙

𝜌𝑔
− 1) [0.303𝑥1.63(1 − 𝑥)0.885𝑅𝑒𝑙𝑜

0.282 + 𝑥2] (662) 

Frictional pressure drop is a function of the mass flux, vapour quality and the system pressure. 

Heat flux has no effect on the pressure drop. The main experimental parameters for the 

horizontal helical coil tests were: 

9𝑚𝑚 𝐼𝐷 

𝐷 = 292 𝑚𝑚 

𝛿 = 0.031 

0.5 < 𝑝 < 3.5 𝑀𝑃𝑎 

0 < 𝑞 < 900 

236 < 𝐺 < 943 

10000 < 𝑅𝑒 < 80000 

0.1 < 𝑥 < 0.2 

 

4.2.2.13 Cioncolini et al. (2008) 

A. Cioncolini et al. presented in 2008 a correlation for small tube and helix diameters  

(𝑑 < 12 𝑚𝑚) [258][379], where they proposed a correction factor: 

 𝜙𝑙0
2 = [1 +

𝐶

𝑋𝑡𝑡
+

1

𝑋𝑡𝑡
2 ] [1 + 0.0044 (

𝑞

𝐺
)
0.7

] (663) 

They observed a minimal effect of the coil curvature on the frictional pressure drop. It 

corresponds to the Lockhart and Martinelli correlation for straight tubes corrected for heating 
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effects. The main experimental parameters for vertical helical coil tests with saturated flow 

boiling were: 

4.03 𝑎𝑛𝑑 4.98 𝑚𝑚 𝐼𝐷 

130 < 𝐷 < 376 

0.011 < 𝛿 < 0.038 

120 < 𝑝 < 660 𝑘𝑃𝑎 

50 < 𝑞 < 440 

290 < 𝐺 < 690 

10000 < 𝑅𝑒 < 60000 

2 < 𝐹𝑟 < 14 

0 < 𝑥 < 0.9 

 

4.2.2.14 Santini et al. (2008) 

In 2008 L. Santini et al. recommended a correlation for high system pressures (𝑝 > 3.5 𝑀𝑃𝑎) 

[258] [369] [370]: 

 ∆𝑃𝑓,2𝜙 = 𝐾(𝑥)
𝐺1.91𝑣𝑚

𝑑1.2
∆𝑧 (664) 

 𝐾(𝑥) = −0.0373𝑥3 + 0.0387𝑥2 − 0.00479𝑥 + 0.0108 (665) 

The authors concluded that the frictional pressure drop increases with the vapour quality and 

mass flux, while it decreases with the system pressure. The main experimental parameters for 

vertical helical coil tests were: 

12.53 𝑚𝑚 𝐼𝐷 

𝐷 = 1000 𝑚𝑚 

𝛿 = 0.019 

1.1 < 𝑝 < 6.3 𝑀𝑃𝑎 

50 < 𝑞 < 200 

192 < 𝐺 < 824 

0 < 𝑥 < 1 

 

4.2.2.15 Colombo et al. (2015) 

In 2015 M. Colombo et al. proposed a correlation for high system pressures (𝑝 > 3.5 𝑀𝑃𝑎), 

derived from the Lockhart and Martinelli equation for straight tubes [258] [369]: 

 𝜙𝑙
2 = 0.0986𝜙𝐿𝑀

2 𝐷𝑒𝑙
0.19 (

𝜌𝑚

𝜌𝑙
)
−0.40

 (666) 

The main experimental parameters for vertical helical coil tests were: 

9 𝑎𝑛𝑑 12.53 𝑚𝑚 = 𝐼𝐷 

292 𝑎𝑛𝑑 1000 𝑚𝑚 = 𝐷 

0.013 𝑎𝑛𝑑 0.031 = 𝛿 

5 < 𝑝 < 6.5 𝑀𝑃𝑎 
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0 < 𝑞 < 900 

200 < 𝐺 < 800 

0 < 𝑥 < 1 

 

4.2.2.16 Summary of friction factor correlations for two-phase flow in helical and curve pipes 

Table 39 presents the list of all friction factor correlations collected for two-phase flow in 

helical and curve pipes. 

 

TABLE 39. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN HELICAL AND CURVE PIPES 

Kozeki et al. 

(1970) 

[258] [367] 

𝜙𝑔,𝑡𝑡
2 = 0.895 + (𝑋𝑡𝑡 + 0.076)0.875 + 1.21 ∙ 10−0.334(log𝑋𝑡𝑡+0.668)2 

𝜙𝑙,𝑡𝑡 =
𝜙𝑔,𝑡𝑡

𝑋𝑡𝑡
0.875 

0.032 < 𝛿 < 0.035, 0.5 < 𝑃 < 2.1𝑀𝑃𝑎, 151 < 𝑞 < 348, 161 < 𝐺 <
486, 21.7 𝑚𝑚 𝑂𝐷, 628 < 𝐷 < 682 𝑚𝑚, 0 < 𝑥 < 1 

separated flow model 

Ruffell (1974) 

[258] [368] 

[369] 

𝜙𝑙
2 = (1 + 𝐹)

𝜌𝑙

𝜌2𝜙
 

 𝐹 = sin
1.16𝐺

1000
[0.875 − 0.314𝑦 −

0.74𝐺

1000
(0.152 − 0.07𝑦) − 𝑥 (

0.155𝐺

1000
+ 0.7 −

0.19𝑦)] [1 − 12(𝑥 − 0.3)(𝑥 − 0.4)(𝑥 − 0.5)(𝑥 − 0.6)] 

𝑦 =
𝐷

100𝑑
 

10.7 < 𝐼𝐷 < 18.6 𝑚𝑚, 0.0054 < 𝛿 < 0.16, 6 < 𝑃 < 18 𝑀𝑃𝑎, 41 <
𝑞 < 731, 300 < 𝐺 < 1800, 0 < 𝑥 < 1 

separated flow model 

Unal et al. 

(1981) 

[258] [372] 

∆𝑃𝑓,2𝜙 =
2(1 + 𝑏1𝑏2)𝑓𝑙𝐺

2

𝑑𝜌𝑙
 

𝑏1 = 3850𝑥0.01𝑃𝑟−1.515𝑅𝑒𝑙
−0.758 

𝑏2 = 1 + 𝑅𝑒𝑙
0.1(3.67 − 3.04𝑃𝑏)

−0.014𝛿−1−2𝛿−1
 

𝑃𝑏 =
𝑃

𝑃𝑐𝑟𝑖𝑡
 

𝑓𝑙 = 0.304𝑅𝑒−0.25 + 0.029𝛿0.5 

18 𝑚𝑚 𝐼𝐷, 700 & 1500 𝑚𝑚 = 𝐷, 0.0054 < 𝛿 < 0.022, 14.7 < 𝑃 <
20.2 𝑀𝑃𝑎, 41 < 𝑞 < 731, 112 < 𝐺 < 1829, 0.08 < 𝑥 < 1 
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TABLE 39. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN HELICAL AND CURVE PIPES 

Chen and Zhou 

(1981) 

[258] [373] 

∆𝑃𝑓,2𝜙 = 𝜉∆𝑃𝑙 

𝜉 = 2.06𝛿0.05𝑅𝑒2𝜙
−0.025 [1 + 𝑉𝐹 (

𝜌𝑔

𝜌𝑙
− 1)]

0.8

[1 + 𝑥 (
𝜌𝑙

𝜌𝑔
− 1)]

0.8

 

∙ [1 + 𝑉𝐹 (
𝜇𝑔

𝜇𝑙
− 1)]

0.2

 

18 𝑚𝑚 𝐼𝐷, 235, 446, 907 𝑚𝑚 = 𝐷, 0.02 < 𝛿 < 0.076, 4.2 < 𝑃 <
22 𝑀𝑃𝑎, 400 < 𝐺 < 2000, 0 < 𝑥 < 1 

Nariai et al. 

(1982) 

[258] [367] 

[374] 

∆𝑃𝑓,2𝜙 = 𝑅𝑀𝑁∆𝑃𝑙 

𝑅𝑀𝑁 = (1 − 𝑥)1.75 𝜙𝑙,𝑡𝑡
2 = 𝜙𝑙

2(𝑃, 𝑥) 

𝜙𝑔,𝑡𝑡
2 = 0.895 + (𝑋𝑡𝑡 + 0.076)0.875 + 1.21 ∙ 10−0.334(log𝑋𝑡𝑡+0.668)2 

𝜙𝑙,𝑡𝑡 =
𝜙𝑔,𝑡𝑡

𝑋𝑡𝑡
0.875 

14.3, 20 𝑚𝑚 𝐼𝐷, 𝐷 = 595𝑚𝑚, 0.024 < 𝛿 < 0.034, 2 < 𝑃 <
3.5 𝑀𝑃𝑎, 0.7 ∙ 105 < 𝑞 < 1.8 ∙ 105, 150 < 𝐺 < 850, 0.1 < 𝑥 < 0.9 

Guo et al. (1994) 

[258] [375] 

𝜙𝑙
2 = 1 + (4.25 − 2.55𝑥1.5)𝐺0.34 

20 𝑚𝑚 𝐼𝐷, 240, 480, 960 𝑚𝑚 = 𝐷, 0.021 < 𝛿 < 0.083, 1.5 < 𝑃 <
3 𝑀𝑃𝑎, 150 < 𝐺 < 1400, 0 < 𝑥 < 0.8 

Bi et al. (1994) 

[258] [376] 

Chisholm functional relationship 

𝜙𝑙
2 = 1 + (

𝜌𝑙

𝜌𝑔
− 1) (𝐶 + 𝑥2) 

𝐶 = 0.14691𝑥1.3297(1 − 𝑥)0.59884𝛿−1.2864 

10, 12 𝑚𝑚 𝐼𝐷, 𝐷 = 115𝑚𝑚, 0.087 < 𝛿 < 0.104, 4 < 𝑃 < 14𝑀𝑃𝑎, 

0 < 𝑞 < 750, 400 < 𝐺 < 2000, 0 < 𝑥 < 1 

Awwad et al. 

(1995) 

[258] [369] 

[377] 

𝜙𝑙 = (1 +
𝑥

𝐶𝐹𝑑
𝑛) (1 +

12

𝑋
+

1

𝑋
)

0.5

 

𝐹𝑑 = 𝐹𝑟 (
𝑑

𝐷
)

0.1

 

𝐹𝑑 ≤ 0.3: 𝐶 = 7.79, 𝑛 = 0.576 

𝐹𝑑 > 0.3: 𝐶 = 13.56, 𝑛 = 1.3 

horizontal helical pipes 
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TABLE 39. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN HELICAL AND CURVE PIPES 

Xin et al. (1997) 

[275] [289] 

[369] 

𝜙𝑙 = (1 +
𝑋

𝐶𝐹𝑑
𝑛) (1 +

20

𝑋
+

1

𝑋
)

0.5

 

𝐹𝑑 = 𝐹𝑟 (
𝑑

𝐷
)

0.5

(1 + tan𝛽)0.2 

𝐹𝑑 ≤ 0.1: 𝐶 = 65.45, 𝑛 = 0.6 

𝐹𝑑 > 0.1: 𝐶 = 434.8, 𝑛 = 1.7 

d=19.1 mm, D=340 mm and 𝛽 = 0.5° 

vertical helical pipes 

Ju et al. (2001) 

[258] [275] 

[284] 

∆𝑃𝑓,2𝜙 = 𝑓 (
𝐿

𝑑
) (

𝜌𝑣2

2
) [1 + 𝑥 (

𝜌𝑔

𝜌𝑙 − 1
)]Ψ 

Ψ = (1.29 + 𝐴𝑛𝑥𝑛) [1 + 𝑥 [(
𝜇𝑙

𝜇𝑔
)

0.25

− 1]] 

𝐴1 = 2.19 𝐴2 = −3.61 𝐴3 = 7.35 𝐴4 = −5.93 

2.5 < 𝑃 < 4.5 𝑀𝑃𝑎, 8 <
𝐷

𝑑
< 9.3, 18 𝑚𝑚 𝑂𝐷, 𝐷 = 112 𝑚𝑚, 𝛿 =

0.161, 𝑃 = 3 𝑀𝑃𝑎, 2500 < 𝑅𝑒 < 23000, 0 < 𝑥 < 1 

Guo et al. (2001) 

[258] [275] 

[290] [369] 

𝜙𝑙
2 = 𝜓1𝜓 [1 + 𝑥 (

𝜌𝑙

𝜌𝑔
− 1)] 

For 𝐺 ≤ 1000 𝜓 = 1 +
𝑥(1−𝑥)(

1000

𝐺
−1)

𝜌𝑙
𝜌𝑔

1+𝑥(
𝜌𝑙
𝜌𝑔

−1)
 

For 𝐺 > 1000 𝜓 = 1 +
𝑥(1−𝑥)(

1000

𝐺
−1)

𝜌𝑙
𝜌𝑔

1+(1−𝑥)(
𝜌𝑙
𝜌𝑔

−1)
 

𝜓1 = 142.2 (
𝑃

𝑃𝑐𝑟𝑖𝑡
)
0.62

𝛿1.04 

𝛿 =
𝑑

𝐷
 

10, 11 𝑚𝑚 𝐼𝐷, 𝐷 = 132, 256 𝑚𝑚, 0.043 < 𝛿 < 0.076, 3 < 𝑃 <
3.5 𝑀𝑃𝑎, 0 < 𝑞 < 540, 150 < 𝐺 < 1760, 0.01 < 𝑥 < 1.2 

Zhao et al. 

(2003) 

[258] [369] 

[371] 

𝜙𝑙0
2 = 1 + (

𝜌𝑙

𝜌𝑔
− 1) [0.303𝑥1.63(1 − 𝑥)0.885𝑅𝑒𝑙𝑜

0.282 + 𝑥2] 

9𝑚𝑚 𝐼𝐷, 𝐷 = 292 𝑚𝑚, 𝛿 = 0.031, 0.5 < 𝑃 < 3.5 𝑀𝑃𝑎, 0 < 𝑞 <
900, 236 < 𝐺 < 943, 10000 < 𝑅𝑒 < 80000, 0.1 < 𝑥 < 0.2 
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TABLE 39. SUMMARY OF FRICTION FACTOR CORRELATIONS FOR TWO-PHASE 

FLOW IN HELICAL AND CURVE PIPES 

Cioncolini et al. 

(2008) 

[258] [379] 

Chisholm functional relationship 

𝜙𝑙0
2 = [1 +

𝐶

𝑋𝑡𝑡
+

1

𝑋𝑡𝑡
2 ] [1 + 0.0044 (

𝑞

𝐺
)
0.7

] 

4.03, 4.98 𝑚𝑚 𝐼𝐷, 130 < 𝐷 < 376, 0.011 < 𝛿 < 0.038, 120 < 𝑃 <
660 𝑘𝑃𝑎, 50 < 𝑞 < 440, 290 < 𝐺 < 690, 10000 < 𝑅𝑒 < 60000, 

2 < 𝐹𝑟 < 14, 0 < 𝑥 < 0.9 

Santini et al. 

(2008) 

[258] [369] 

[370] 

∆𝑃𝑓,2𝜙 = 𝐾(𝑥)
𝐺1.91𝑣𝑚

𝑑1.2
∆𝑧 

𝐾(𝑥) = −0.0373𝑥3 + 0.0387𝑥2 − 0.00479𝑥 + 0.0108 

12.53 𝑚𝑚 𝐼𝐷, 𝐷 = 1000 𝑚𝑚, 𝛿 = 0.019, 1.1 < 𝑃 < 6.3 𝑀𝑃𝑎, 50 <
𝑞 < 200, 192 < 𝐺 < 824, 0 < 𝑥 < 1 

Colombo et al. 

(2015) 

[258] [369] 

𝜙𝑙
2 = 0.0986𝜙𝐿𝑀

2 𝐷𝑒𝑙
0.19 (

𝜌𝑚

𝜌𝑙
)
−0.40

 

9, 12.53 𝑚𝑚 = 𝐼𝐷, 292, 1000 𝑚𝑚 = 𝐷, 0.013, 0.031 = 𝛿,  

5 < 𝑃 < 6.5 𝑀𝑃𝑎, 0 < 𝑞 < 900, 200 < 𝐺 < 800, 0 < 𝑥 < 1 

 

4.2.3 Flow in rod bundles 

The two-phase pressure loss due to local flow disturbances, such as grid spacers is treated as 

frictional pressure losses [227]. Thus, as in Eq. (520), the corresponding single-phase pressure 

drop is corrected using an appropriate two-phase multiplier to yield the local two-phase pressure 

drop: 

 Δ𝑃2𝜙𝑙𝑜𝑐𝑎𝑙
= 𝐾1𝜙  

ρ𝑙  𝑣𝑙
2

2
 Φ (667) 

where Φ is the two-phase local loss multiplier. 

Figure 63 shows a typical representation of the hexagonal fuel assembly. 

 

 

FIG. 63. Hexagonal fuel assembly 
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4.2.3.1 Kaiser et al. (1988) 

A. Kaiser et al. (1988) correlation [380] was obtained from quasi steady-state sodium boiling 

experiments carried out in an electrically heated 7-pin test section. The two-phase pressure 

multiplier 𝜙, related to the liquid phase, is calculated using the equation: 

 ln 𝜙 = 1.48 − 1.05 𝑙𝑛 √𝑋𝐿𝑀 + 0.09 (ln√𝑋𝐿𝑀)
2
 (668) 

where 𝑋𝐿𝑀 is the Lockhart-Martinelli parameter. This correlation is valid for rod bundles. 

 

4.2.4 Interfacial friction correlations 

4.2.4.1 Wallis (1969) 

A correlation for the interfacial friction factor of thin annular flows in pipes was proposed by 

G.B. Wallis in 1969 [381]. For a ratio of a film thickness to diameter 
𝛿

𝐷
 lower than 0.04 

(corresponding to 𝑥 ≥ 0.8464 ), experiments by Martinelli, Dukler, Sze Foo Chien and 

Charvonia cluster around the relationship: 

 (𝐶𝑓)𝑖
= 0.005 (1 + 300

𝛿

𝐷
) = 0.005(1 + 150(1 − √𝑥)) (669) 

where 𝑥 is the vapour volume fraction. 

Given the high liquid-to-vapour density ratio of sodium (
𝜌𝑙

𝜌𝑣
⁄ ≈ 2000 𝑎𝑡 1 𝑏𝑎𝑟), the annular 

flow regimes covered by this correlation are encountered in most sodium boiling cases. 

However, one should note that it does not take into account the droplet entrainment and 

deposition phenomena that may occur at even higher 𝑥 values. 

Wallis correlation is used to calculate the interfacial friction between liquid and vapour. This 

correlation is based on the assumption that annular flow is the main flow regime when the two 

phases co-exist. One should note that this correlation is valid only for flow in tubes. The use of 

Wallis correlation in a rod bundle overestimates the interfacial friction. 

Wallis correlation permits avoiding discontinuity problems when moving from co-current to 

counter-current flows. Hence, this correlation is more preferred than Lockhart and Martinelli 

interfacial friction correlation, which is available only in co-current flow situations. In SAS4A 

code the two-phase friction factor multiplier used is based on a correlation by Wallis. 
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4.3 FRICTION FACTOR CORRELATIONS USED IN THE SYSTEM CODES 

Below in Table 40 the information is summarized as to what friction factor correlations are 

being used nowadays across the system codes used by experts performing safety analysis of the 

sodium cooled fast reactors. 

TABLE 40. FRICTION FACTOR CORRELATIONS USED IN THE SYSTEM CODES 

CODE 
PIPE 

ROD BUNDLE 
Laminar Transition Turbulent 

SAM Darcy 
Reciprocal 

Interp. 

Blasius-

McAdams 
-- 

RELAP 5 & 7 Darcy 
Reciprocal 

Interp. 

Zigrang-

Sylvester 

Cheng-Todreas 

(1986) and Rehme 

(1973) 

TRACE Churchill (1977) -- 

ANTEO+ -- -- 
Blasius 

(1913) 

Cheng-Todreas 

(1986) and 

Rehme (1973) 

ATHLET Darcy 
Max of lam. 

and turb. 
Colebrook -- 

ATHENA Darcy 
Reciprocal 

Interp. 

Zigrang-

Sylvester 
-- 

CATHARE Darcy 
Max. of lam. 

and turb. 

Blasius 

(1913) 

Pontier-Combe 

(1968) and Rehme 

(1973) 

HYDRA (IBRAE) -- -- -- Zhukov (1986) 

MARS-LMR Darcy 
MARS 

Interp. 

Zigrang-

Sylvester 

Cheng-Todreas 

(1986) 

SAS4A/SAS-SFR Darcy -- 

Blasius 

Moody 

(1947) 

-- 
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5 RECOMMENDATIONS FOR CHOOSING A CORRELATION AND RESEARCH 

GAPS IDENTIFIED 

In the absence of experimental data, simple correlations derived from physical considerations 

should be preferred over complex correlations validated and used in other fields (such as 

two-phase correlations established for other coolants). 

The use of more complex correlations should be justified by validation against experimental 

data. General reviews, like for instance the work performed by Bubelis and Schikorr [305], 

Chen and Todreas [304] and Kottowski-Dumenil et al. [328] for friction factor correlations, can 

help in comparing correlations and making a selection among them. However, in some 

important cases, such as pressure drop prediction, the best available correlations still exhibit a 

high uncertainty (around 10 − 15%). In this case, validation against a dedicated experiment 

(such as a 1: 1  sub-assembly mockup) seems indispensable for further reducing this 

uncertainty. For pressure drop measurements in these mockups, sodium could be replaced by 

other fluids, even water, provided that physical properties at stake (density ratio, surface 

tension, viscosity, etc.) are similar. 

The choice of liquid single-phase heat transfer correlation among those proposed for a circular 

tube has a small impact on a simulation since the exchange in forced convection liquid sodium 

is anyway particularly efficient. Moreover, specific correlations for rod bundle are similar to 

those for a circular tube, so both could give quite similar results. For instance, Borishanskii’s 

correlation for rod bundles gives Nusselt values quite near to that of Skupinski’s correlation: at 

same Peclet number, 𝑁𝑢(𝐵𝑜𝑟𝑖𝑠ℎ𝑎𝑛𝑠𝑘𝑖𝑖) ≈  𝑁𝑢(𝑆𝑘𝑢𝑝𝑖𝑛𝑠𝑘𝑖)  +  1, while minimum value is 

already as big as 4.82. 

For consistency it is recommended to use the turbulent Prandtl number and the heat transfer 

correlation from the same source. 

More specifically, the following issues normally should be taken into account when choosing 

a correlation: 

⎯ Type of fluid: metallic, non-metallic, oils (Prandtl number is discriminator); 

⎯ Internal vs. external flow; 

⎯ Laminar vs. turbulent vs. transition flow or special flow conditions: e.g. slug flow, etc.; 

⎯ Geometry: circular vs. non-circular; bundle; wire wrap, and others; 

⎯ Boundary conditions: uniform wall temperature or uniform heat flux; 

⎯ Entry region vs. fully developed flow; 

⎯ Buoyancy effects; 

⎯ Heated or cooled conditions: e.g. in Dittus-Boelter correlations Eq. (49) exponents of 

Prandtl number are different; 

⎯ General vs. local conditions: boiling, special experiments on wetting surfaces, film 

detachment; 

⎯ Check if additional special conditions of applicability are noted, such as surface conditions, 

etc.; 

⎯ For experimentalist it may be relevant to know with which metal experiments were 

performed and the data obtained in order to arrive at a given correlation (sodium, mercury, 

etc.). This may be a useful information for reproducibility of the results; 

⎯ Also, experimentalist may be interested in a correlation where deviation from actual 

experimental data is explicitly declared; 

⎯ Choose a correlation within the range of its applicability. Avoid extrapolation outside the 

assigned ranges. 
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Apart from all that, important information is available also in the reviewing publications where 

different correlations are discussed and compared. Such reviewing publications are covering 

different topics: general information on SFRs (Tenchine [307]), heat transfer for turbulent flow 

in a pipe (Lee [91] and Pacio et al. [382]), heat transfer in rod bundles (Mikityuk [137]), 

pressure drop in wire-wrapped hexagonal array pin bundles (Bubelis and Schikorr [305] [383] 

and Chen and Todreas [304]), two-phase friction factors in a single channel (Kottowski-

Dumenil et al. [328]), two-phase friction pressure drop and boiling heat transfer coefficient in 

annulus (Qiu et al. [208]), etc. Important information might be found also in the books covering 

heat transfer, fluid mechanics, thermal-hydraulics, etc. of liquid metal fast reactors. 

As an additional source of data nowadays, also data from high-fidelity simulations (e.g. direct 

numerical simulations, DNS) can be considered, especially with respect to heat transfer data. 

Such data is specifically valuable, as it allows a detailed assessment of every location in a liquid 

metal flow, something which is hardly achievable in a physical experiment. Apart from that, if 

well performed, the data is at least as accurate as experimental data. But of course, the restriction 

‘if well performed’ is also valid for physical experiments and is crucial. Some examples of the 

generation of high-fidelity data can be found in Tiselj et al. [384], Bricteux et al. [385], 

Duponcheel et al. [386] and Errico et al. [387]. On the other hand, Shams et al. [388] shows the 

application of such high-fidelity data to create new heat transfer models. Finally, Roelofs et al. 

[389] provides an outlook on new experimental and high-fidelity simulation data to be 

generated within the coming few years. 

It should be realized that over time new experimental data and high-fidelity numerical data will 

be added to the reference database. It is obvious that for all data, the reliability is very important. 

However, very often it is hard to judge on the reliability of the data, while the reviewer cannot 

be aware of all the details of the work, especially if the work has been performed in the far past. 

This makes comparison of data from different sources complicated, if not impossible at all. 

Nevertheless, in this Handbook an attempt was made to collect the most important available 

data and to put forward some recommendations. 

Assessment of the single-phase friction factor for turbulent pipe flow and evaluation of existing 

single-phase friction factor correlations can be found in Fang et al. [233]. As for the two-phase 

friction pressure drop correlations an extended evaluation can be found in Xu et al. [234] [347]. 

As for the experimental studies on the air–water frictional pressure drop characteristics in 

helically coiled tubes an extended review can be found in Fsadni et al. [258]. 

The following items have been identified as conditions of phenomena which should be further 

investigated experimentally: 

• Sodium boiling under reactor accidental conditions (both pool and flow boiling regimes 

and characteristics) 

• Impact of the presence of oxide in sodium on friction and heat transfer 

• Friction under highly transient conditions. In particular, there is the need for information 

on how friction may differ when sodium in a channel is suddenly accelerated compared 

with the use of steady state frictional correlations. Similar for heat transfer. 

• Transient wetting of stainless-steels, Inconel and ferritic steels by sodium. How do the 

wetting phenomena differ with respect to adherence of sodium to the structure, electrical 

continuity/resistance, acoustic effects? How is wetting affected by temperature, oxides, 

dissolved gas, other contaminants? 

• Sodium Jet Dynamics: Liquid Splashing on Solid; Liquid into Pool; Liquid Jets; Jet 

Breakup 
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6 CONCLUSIONS 

The key objective of the Sodium Coolant Handbooks on “Thermal-Hydraulic Correlations” is 

to provide an organized collection of thermal hydraulic correlations, such as heat transfer 

coefficients and friction factors for the typical design geometries utilized in sodium cooled fast 

reactors. The Handbook is one of the outputs of the IAEA NAPRO coordinated research project 

(CRP). More than 400 original publications have been examined and more than 600 

experimental correlations obtained at the liquid metal experimental facilities are presented in 

the Handbook. Approximately half of correlations is used for calculation of the friction factors 

and pressure drops, and another half for the heat transfer coefficients. Different geometries have 

been examined including circular pipes, flat plates, rectangular ducts, concentric annuli, 

hexagonal and squared rod bundles, helical pipes, and others, as well as different flow 

conditions, such as laminar and turbulent flow, natural circulation and forced convection, fuel 

assemblies with smooth and wire-wrapped pins, purified and non-purified sodium, single and 

two-phase flow, etc. 

Since the full assessment of the empirical correlations against experimental data cannot be 

performed in the framework of the NAPRO CRP, each correlation has been briefly presented 

as proposed in the original publication including the range of validity and the uncertainty, when 

available. In addition, heat transfer and pressure drop correlations used in the system codes for 

safety analysis of the sodium cooled fast reactors are introduced in Sections 3.6 and 4.3. As a 

final contribution, Section 5 provides useful information concerning important aspects to 

consider when choosing a correlation and introduces reviewing publications that assess 

different correlations. 

Despite of the fact that thermal-hydraulics correlations for sodium facilities are commonly 

considered as ‘established’, inconsistencies and gaps have been identified by the participants 

of the NAPRO CRP. Several items have been identified as conditions of phenomena which 

should be further investigated experimentally. 

Participants have advised the IAEA on further actions aimed toward the preservation of 

knowledge on thermal hydraulic correlations for sodium facilities and the reactors. Integration 

of the empirical correlations in the online calculation tool would add a new valuable dimension 

to the data presented in the Handbook. 

The exchange of data and information among international partners have demonstrated high 

efficiency and it is anticipated that spirit of collaboration will continue beyond the completion 

of the NAPRO CRP.  
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LIST OF ABBREVIATIONS 

ANL Argonne National Laboratory, USA 

CEA French Alternative Energies and Atomic Energy Commission 

(Commissariat à l'énergie Atomique et aux Énergies 

Alternatives) 

CFD Computational fluid dynamics 

CFX High-performance CFD software by ANSYS company 

CIAE China Institute of Atomic Energy 

CNEA National Atomic Energy Commission, Argentina 

CRP Coordinated research project 

DHX Decay heat exchanger 

DT Developing thermal region 

DTV Developing thermal and velocity region 

ENEA Italian National Agency for New Technologies, Energy and 

Sustainable Economic Development 

EoS Equation of State 

FBR Fast breeder reactor 

HZDR Helmholtz Zentrum Dresden Rossendorf 

IAEA International Atomic Energy Agency 

IBRAE Nuclear Safety Institute, Russia 

IGCAR Indira Gandhi Centre for Atomic Research, India 

IPPE Institute of Physics and Power Engineering -State Science 

Centre of the Russian Federation 

IHX Intermediate heat exchanger 

JAEA Japan Atomic Energy Agency 

KAERI Korea Atomic Energy Research Institute  

KIT Karlsruhe Institute of Technology, Germany 

LBE Lead bismuth eutectic 



274 

 

LIST OF ABBREVIATIONS 

LMFR Liquid metal cooled fast reactor 

LWR Light water reactor 

NAPRO IAEA Coordinated research project on “Sodium properties and 

safe operation of experimental facilities in support of the 

development and deployment of sodium cooled fast reactors” 

NRG Nuclear Research and Consultancy Group, Netherlands  

RCM Research coordination meeting 

SA, S/A Sub-assembly 

SFR Sodium cooled fast reactor 

TWG-FR IAEA technical working group on fast reactors 

WP Work package 
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