IAEA Analytical Quality in Nuclear Applications Series No. 59

Interlaboratory Comparisons 2014–2016: Determination of Radionuclides in Sea Water, Sediment and Fish

INTERLABORATORY COMPARISONS 2014–2016: DETERMINATION OF RADIONUCLIDES IN SEA WATER, SEDIMENT AND FISH

The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN ALBANIA ALGERIA ANGOLA ANTIGUA AND BARBUDA ARGENTINA ARMENIA AUSTRALIA AUSTRIA AZERBAIJAN BAHAMAS BAHRAIN BANGLADESH BARBADOS BELARUS BELGIUM BELIZE BENIN BOLIVIA, PLURINATIONAL STATE OF BOSNIA AND HERZEGOVINA BOTSWANA BRAZIL BRUNEI DARUSSALAM BULGARIA BURKINA FASO BURUNDI CAMBODIA CAMEROON CANADA CENTRAL AFRICAN REPUBLIC CHAD CHILE CHINA COLOMBIA CONGO COSTA RICA CÔTE D'IVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC DEMOCRATIC REPUBLIC OF THE CONGO DENMARK DJIBOUTI DOMINICA DOMINICAN REPUBLIC ECUADOR EGYPT EL SALVADOR ERITREA **ESTONIA** ESWATINI **ETHIOPIA** FUI FINLAND FRANCE GABON GEORGIA

GERMANY GHANA GREECE GRENADA **GUATEMALA GUYANA** HAITI HOLY SEE HONDURAS HUNGARY ICELAND INDIA **INDONESIA** IRAN, ISLAMIC REPUBLIC OF IRAO IRELAND ISRAEL ITALY JAMAICA JAPAN JORDAN **KAZAKHSTAN** KENYA KOREA, REPUBLIC OF **KUWAIT** KYRGYZSTAN LAO PEOPLE'S DEMOCRATIC REPUBLIC LATVIA LEBANON LESOTHO LIBERIA LIBYA LIECHTENSTEIN LITHUANIA LUXEMBOURG MADAGASCAR MALAWI MALAYSIA MALI MALTA MARSHALL ISLANDS MAURITANIA MAURITIUS MEXICO MONACO MONGOLIA MONTENEGRO MOROCCO MOZAMBIQUE MYANMAR NAMIBIA NEPAL NETHERLANDS NEW ZEALAND NICARAGUA NIGER NIGERIA NORTH MACEDONIA NORWAY OMAN

PAKISTAN PALAU PANAMA PAPUA NEW GUINEA PARAGUAY PERU PHILIPPINES POLAND PORTUGAL OATAR REPUBLIC OF MOLDOVA ROMANIA RUSSIAN FEDERATION RWANDA SAINT LUCIA SAINT VINCENT AND THE GRENADINES SAN MARINO SAUDI ARABIA SENEGAL SERBIA **SEYCHELLES** SIERRA LEONE SINGAPORE SLOVAKIA **SLOVENIA** SOUTH AFRICA SPAIN SRI LANKA SUDAN **SWEDEN** SWITZERLAND SYRIAN ARAB REPUBLIC TAJIKISTAN THAILAND TOGO TRINIDAD AND TOBAGO TUNISIA TURKEY TURKMENISTAN UGANDA UKRAINE UNITED ARAB EMIRATES UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND UNITED REPUBLIC OF TANZANIA UNITED STATES OF AMERICA URUGUAY UZBEKISTAN VANUATU VENEZUELA, BOLIVARIAN REPUBLIC OF VIET NAM YEMEN ZAMBIA ZIMBABWE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

IAEA Analytical Quality in Nuclear Applications Series No. 59

INTERLABORATORY COMPARISONS 2014–2016: DETERMINATION OF RADIONUCLIDES IN SEA WATER, SEDIMENT AND FISH

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2019

COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 26007 22529 tel.: +43 1 2600 22417 email: sales.publications@iaea.org www.iaea.org/books

For further information on this publication, please contact:

IAEA Environment Laboratories, Monaco Marine Environmental Studies Laboratory International Atomic Energy Agency 4a Quai Antoine 1er, 98000 Principality of Monaco

INTERLABORATORY COMPARISONS 2014–2016: DETERMINATION OF RADIONUCLIDES IN SEA WATER, SEDIMENT AND FISH IAEA, VIENNA, 2019 IAEA/AQ/59 ISSN 2074–7659

© IAEA, 2019

Printed by the IAEA in Austria April 2019

FOREWORD

The Radiometrics Laboratory of the IAEA Environment Laboratories has been providing quality support products and services for the past 50 years. These include the organization of proficiency tests and interlaboratory comparisons, and the production of certified reference materials, including a wide range of marine sample matrices and radionuclide levels.

As part of these activities, a series of interlaboratory comparisons was organized, at the request of the Nuclear Regulation Authority of Japan, to assist the Government of Japan in its objectives of making the Sea Area Monitoring Action Plan comprehensive, credible and transparent. The objective of these interlaboratory comparisons was to test the performance of participating Japanese laboratories in the analysis of radionuclides in sea water, marine sediment and fish samples, to ensure the high quality of data and to prove the comparability of the results. As part of this series of interlaboratory comparisons, six sampling missions to collect sea water, sediment and fish samples were organized in 2014–2016 in the proximity of the Fukushima Daiichi nuclear power plant.

The IAEA wishes to thank all the participants and laboratories who took part in this series of interlaboratory comparisons. The IAEA is also grateful to the Government of Monaco its support. The IAEA officers responsible for this publication were A.V. Harms, I. Osvath and D. Osborn of the IAEA Environment Laboratories.

EDITORIAL NOTE

This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily reflect those of the IAEA or the governments of its Member States.

Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.

CONTENTS

1. INTRODUCTION
1.1 BACKGROUND 1 1.2. OBJECTIVES 1 1.3. SCOPE 1 1.4. STRUCTURE 5
2. SEAWATER, SEDIMENT AND FISH SAMPLING AND PREPARATION
2.1. SEAWATER 5 2.2. SEDIMENT 9 2.3. FISH 10
3. METHODOLOGY OF RADIONUCLIDE DETERMINATION
3.1. SEAWATER 12 3.2. SEDIMENT 14 3.3. FISH 15
4. RESULTS 17
4.1. GENERAL 17 4.2. SEAWATER 17 4.3. SEDIMENT 22 4.4. FISH 23
5. STATISTICAL EVALUATION OF THE RESULTS
5.1. SEAWATER 25 5.2. SEDIMENT 27 5.3. FISH 28
6. CONCLUSION
REFERENCES
APPENDIX: FIGURES
CONTRIBUTORS TO DRAFTING AND REVIEW

1. INTRODUCTION

1.1 BACKGROUND

With a view to assisting the Government of Japan in its objectives of making the Sea Area Monitoring Plan comprehensive, credible and transparent, the IAEA, through its Environment Laboratories, is helping to ensure the high quality of data and to prove the comparability of the results. A 3-year project "Marine Monitoring: Confidence Building and Data Quality Assurance" (2014 – 2016) was initiated as a follow-up activity to recommendations made on marine radioactivity monitoring in a report issued by the IAEA in 2014 (https://www.iaea.org/sites/default/files/final_report120214.pdf) related to the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station, which reviewed Japan's efforts to plan and implement the decommissioning of the plant. Six interlaboratory comparisons (ILCs) and three proficiency tests (PTs) were organized during this project. The PT results published so far can be accessed on the IAEA web pages¹.

1.2. OBJECTIVES

This publication focuses on ILCs, which are a standard means for laboratories to assess the quality of their measurement results as compared to that of other participating laboratories and identify any potentially needed improvements.

1.3. SCOPE

This publication describes the joint sampling campaigns to collect seawater (Fig 1), sediment and fish samples, the measurement results and the statistical evaluation of the results. In total, ten laboratories participated in at least one of the ILCs: seven from Japan (participating on behalf of the Japanese authorities); the IAEA Environment Laboratories in Monaco; and, for the purpose of additional transparency, one laboratory from Ireland and one from New Zealand, both members of the network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA); see Table 1.

Surface seawater samples were collected during each of the six sampling missions at five sampling stations in the proximity of TEPCO's Fukushima Daiichi Nuclear Power Station. The sampling of marine sediment was done during missions in May 2015 and May 2016 at five sampling stations in the proximity of TEPCO's Fukushima Daiichi Nuclear Power Station. Five batches of fresh fish samples (cod, flounder and mackerel) caught at locations in the vicinity of TEPCO's Fukushima Daiichi Nuclear Power Station were collected during missions in November 2015, while six batches of fresh fish samples (olive flounder, chum salmon, Japanese Spanish mackerel and John Dory) were caught in November 2016. Radionuclides in seawater, sediment and fish were determined by participating laboratories using radioanalytical methods, including liquid scintillation counting (for ³H), gas-flow proportional counting (for ⁹⁰Sr), alpha-ray spectrometry (for ²³⁸Pu and ²³⁹⁺²⁴⁰Pu) and gamma-ray spectrometry (for ¹³⁴Cs and ¹³⁷Cs). The laboratories' results were collected by the IAEA, compared and evaluated with statistical tests. For one of the exercises an independent ALMERA laboratory in Hungary assisted in the collection and assessment of the data. From the statistical analysis it can be concluded that the overwhelming majority of the results are not significantly different from each other (see examples in Figs. 2 – 4 for seawater, sediment and fish samples, respectively).

¹ 2014 and 2015 Proficiency Test reports are accessible at <u>http://www-pub.iaea.org/MTCD/Publications/PDF/IAEA_AQ_43_web.pdf</u> <u>http://www-pub.iaea.org/MTCD/Publications/PDF/AQ-51_web.pdf</u>

Intercomparison	Seawater	Sediment	Fish	Participating laboratories
September 2014	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs	_	_	GSL (³ H) IAEA KANSO (⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs)
November 2014	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs	_	_	GSL (³ H) IAEA KANSO (⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs)
May 2015	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs	¹³⁴ Cs ¹³⁷ Cs ^{239/240} Pu	_	EPA ESR IAEA JCAC
November 2015	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs	_	¹³⁴ Cs ¹³⁷ Cs	GSL (seawater: ³ H) IAEA (seawater and fish) JCAC (seawater and fish) KANSO (seawater: ⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs) JFFIC (fish) MERI (fish)
May 2016	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs	¹³⁴ Cs ¹³⁷ Cs ²³⁸ Pu ^{239/240} Pu	_	GSL (seawater: ³ H) IAEA (seawater and sediment) JCAC (seawater and sediment) KANSO (seawater: ⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs) FP (sediment) TPT (sediment: ¹³⁴ Cs and ¹³⁷ Cs)
November 2016	³ H ⁹⁰ Sr ¹³⁴ Cs ¹³⁷ Cs		¹³⁴ Cs ¹³⁷ Cs	GSL (seawater: ³ H) IAEA (seawater and fish) JCAC (seawater and fish) KANSO (seawater: ⁹⁰ Sr, ¹³⁴ Cs and ¹³⁷ Cs) JFFIC (fish) MERI (fish)

TABLE 1. OVERVIEW OF INTERLABORATORY COMPARISONS

The participating laboratories were:

EPA	Environmental Protection Agency, Ireland
ESR	Institute of Environmental Science and Research, New Zealand
FP	Fukushima Prefecture, Japan
GSL	Geo Science Laboratory, Japan
IAEA	IAEA Environment Laboratories, Monaco
JCAC	Japan Chemical Analysis Center, Japan
JFFIC	Japan Frozen Foods Inspection Corporation, Japan

KANSOKANSO Co., LTD., JapanMERIMarine Ecology Research Institute, JapanTPTTokyo Power Technology, Japan

FIG. 1. Collection of seawater samples for interlaboratory comparison immediately offshore TEPCO's Fukushima Daiichi Nuclear Power Station (November 2014). (Photo: D. Osborn/IAEA)

FIG. 2. Example of results of an interlaboratory comparison exercise organised in May 2015: Good agreement was obtained between activity concentrations of 137 Cs in five seawater samples reported by laboratories in Japan (Japan Chemical Analysis Center - JCAC), Ireland (Environmental Protection Agency – EPA), New Zealand (Institute of Environmental Science and Research – ESR) and the IAEA (for details please refer to extended report).

FIG. 3. Example of results of an interlaboratory comparison exercise organised in May 2015: Good agreement was obtained between massic activities of 137 Cs in two sediment samples reported by laboratories in Japan (Japan Chemical Analysis Center - JCAC), Ireland (Environmental Protection Agency – EPA), New Zealand (Institute of Environmental Science and Research – ESR) and the IAEA (for details please refer to extended report).

FIG. 4. Example of results of an interlaboratory comparison exercise organised in November 2015: Good agreement was obtained between massic activities of ¹³⁷Cs in five fish samples reported by laboratories in Japan (Japan Frozen Foods Inspection Corporation – JFFIC; Japan Chemical Analysis Center – JCAC; Marine Ecology Research Institute – MERI) and the IAEA (for details please refer to extended report).

An analysis of the whole data set demonstrated that 362 out of the 369 statistical tests applied to the data for different radionuclides and samples, i.e. over 98%, were passed with a high level of confidence (99%). Given that departures found are minor, i.e. for 1.9% of the statistical tests applied to the data, it can be said with confidence that the respective laboratories are reporting reliable and comparable results for the tested radionuclides in seawater, sediment and fish samples prepared and analysed according to each laboratory's regularly used methods. Following the six missions organized in 2014 - 2016,

the IAEA can report that Japan's sample collection procedures follow the appropriate methodological standards required to obtain representative samples. The results obtained in ILCs demonstrate a high level of accuracy and competence on the part of the Japanese laboratories involved in the analyses of radionuclides in marine samples for the Sea Area Monitoring programme.

1.4. STRUCTURE

This publication contains a description of sampling of the seawater, sediment and fish and the subsequent sample preparation (Section 2), the methodology of the radionuclide determination (Section 3), the results of the exercise (Section 4), the statistical evaluation of the results (section 5), the conclusion of the exercise (Section 6), an appendix presenting the figures of the exercise.

2. SEAWATER, SEDIMENT AND FISH SAMPLING AND PREPARATION

2.1. SEAWATER

Surface seawater samples were collected during all six sampling missions at five sampling stations (M-101, M-102, M-103, M-104 and T-D1) offshore TEPCO's Fukushima Daiichi Nuclear Power Station. The coordinates of the sampling stations are given in Table 2 and shown in Figure 5.

Sampling station	Latitude (N)	Longitude (E)
M-101 (seawater)	37°25′36″	141°02′36″
M-102 (seawater)	37°25′06″	141°02′36″
M-103 (seawater)	37°26′42″	141°02′48″
M-104 (seawater)	37°24′06″	141°02′48″
T-D1 (seawater and sediment)	37°30′00″	141°04′20″
T-D9 (sediment)	37°20′00″	141°04′20″
F-P04 (sediment)	37°25′27″	141°03′26″
T-S3 (sediment)	37°27′30″	141°04′44″
T-S8 (sediment)	37°23′00″	141°04′44″

TABLE 2. COORDINATES OF THE SAMPLING STATIONS

FIG. 5. Locations of sampling stations offshore TEPCO's Fukushima Daiichi Nuclear Power Station "Reproduced courtesy of Government of Japan".

During the September and November 2014 missions, two surface seawater samples were collected from each sampling location for subsequent analysis for ⁹⁰Sr, ¹³⁴Cs and ¹³⁷Cs at a Japanese laboratory (KANSO) and the IAEA Environment Laboratories in Monaco. Two separate surface seawater samples were collected at the same locations for subsequent analysis for ³H at a Japanese laboratory (GSL) and the IAEA laboratories. Identical and homogeneous samples were collected using the procedures outlined below. The surface seawater was collected in Van-Dorn water samplers, mixed in a 50 L container and subsequently divided into two 20 L samples. This procedure was repeated three times at each sampling station, resulting in two 60 L of seawater samples being collected. Each sample was acidified to pH 1-2 with concentrated HCl. Upon arrival at the laboratory, the 60 L of seawater sample collected from each sampling station was mixed again before analysis. In the case of samples for analysis for ³H, two 2 L surface seawater samples were collected for the determination of tritium at each sampling station. These samples were not acidified.

FIG 6. Collection of seawater samples immediately offshore TEPCO's Fukushima Daiichi Nuclear Power Station. (Photo: M. Rozmaric/IAEA)

During the May 2015, November 2015, May 2016 and November 2016 missions, seawater samples were again collected from each sampling location for subsequent analysis for ⁹⁰Sr, ¹³⁴Cs and ¹³⁷Cs and, separately, for ³H. As more laboratories participated in each of these exercises, a greater number of seawater samples were collected from each sampling location. In both missions, the procedure regarding the collection of 2 L seawater samples for analysis of ³H was identical to the 2014 exercises described above. In the case of samples for analysis for ⁹⁰Sr, ¹³⁴Cs and ¹³⁷Cs, the collection and distribution method was changed however. A 400 L plastic container with four valves was first filled with seawater. 20 L containers were filled, three at a time, from each of the three/four valves (depending on the number of laboratories participating), resulting in a total of nine/twelve 20 L samples from each sampling station. Each sample was acidified to pH 1–2 with concentrated HCl, as for the 2014 missions. Three 20 L samples were provided to each laboratory. The seawater sampling procedure and the distribution matrix, meant to ensure the homogenisation of the samples distributed to the four laboratories participating in the May 2015 exercise, is shown in Table 3, while the distribution matrix distributed to the three laboratories participating in the November 2015, May 2016 and November 2016 exercises is shown in Table 4.

FIG 7. Collection of seawater samples. (Photo: P. Morris/IAEA)

TABLE 3. SAMPLE DISTRIBUTION BETWEEN FOUR LABORATORIES (MAY 2015)

Valve number	1	2	3	4
	1-1	2-1	3-1	4-1
Seawater sample codes	1-2	2-2	3-2	4-2
	1-3	2-3	3-3	4-3
	А	В	С	D
Distribution pattern of the participating	1-1	2-1	3-1	4-1
laboratories coded A, B, C and D	2-2	3-2	4-2	1-2
	3-3	4-3	1-3	2-3

TABLE 4. SAMPLE DISTRIBUTION BETWEEN THREE LABORATORIES (NOV 2015, MAY 2016 AND NOV 2016)

Valve number	1	2	3	4
	1-1	2-1	3-1	
Seawater sample codes	1-2	2-2	3-2	Not used
	1-3	2-3	3-3	
	А	В	С	
Distribution pattern of the participating	1-1	2-1	3-1	
laboratories coded A, B, and C	2-2	3-2	1-2	—
	3-3	1-3	2-3	

FIG 8. Distribution and preparation of transport arrangements for collected seawater samples. (Photo: A. Harms/IAEA)

2.2. SEDIMENT

The sampling of sediment was done during May 2015 and May 2016 offshore TEPCO's Fukushima Daiichi Nuclear Power Station. Sediment samples at stations T-D1 (in 2015), T-D9 (in 2015), F-P04 (in 2016), T-S3 (in 2016) and T-S8 (in 2016) off TEPCO's Fukushima Daiichi Nuclear Power Station were collected using a grab sampler. The coordinates of the sampling stations are given in Table 2. The sediment samples were oven-dried at 105 °C on large stainless steel trays, crushed using stainless steel spatulae and sieved through a 2-mm mesh sieve at the KANSO laboratory. No grinding was required prior to sieving due to the sandy nature of the sediments. The sieved sample was grinded using mortars and pestles, then placed in a plastic bag and mixed thoroughly to ensure homogeneity. An incremental division method was used for sample splitting. Each sample was split into two aliquots using a splitter, one aliquot was archived and the second one was further split until the required sample weight for each laboratory was attained. The sequence of splitting of each sample depended on the total weight of the sieved and grinded sample. The samples were then bottled in 500 mL plastic bottles and their homogeneity was re-checked using gamma-ray spectrometry with high purity germanium (HPGe) detectors. Approximately 350 g of dried sediment from each station was delivered to each participant.

FIG 9. Collection of sediment samples. (Photo: A. Harms/IAEA)

2.3. FISH

In 2015, five batches of fresh fish samples (two batches of cod, two batches of flounder and one batch of mackerel) caught at locations in the vicinity of TEPCO's Fukushima Daiichi Nuclear Power Station were collected from the fish landing port of Onahama on 18 November 2015 (see Table 5). The fresh fish samples were prepared the next day at the Marine Ecology Research Institute (MERI) in Onjuku (Japan) and subsequently analysed for ¹³⁴Cs and ¹³⁷Cs at MERI. After subsequent measurement on 20 November 2015 at the Japan Chemical Analysis Center (JCAC) in Chiba (Japan) and the Japan Frozen Foods Inspection Corporation (JFFIC) in Yokohama (Japan), the fresh fish samples were frozen and shipped to the IAEA Environmental Laboratories in Monaco in early January 2016. After defrosting, the fresh fish samples were measured at the IAEA Environmental Laboratories between 26 and 30 January 2016. All measurements were done by gamma-ray spectrometry with HPGe detectors. The measurement time per sample was 1 hour for MERI, JCAC and JFFIC and between 22 and 47 hours for the IAEA. All massic activities were reported at a reference time of 18 November 2015 0:00 UTC.

FIG 10. Collection of the fish samples. (Photo: P. Morris/IAEA)

In 2016, six batches of fresh fish samples (two batches of olive flounder, two batches of chum salmon, one batch of Japanese Spanish mackerel and one batch of John Dory) caught at locations in the vicinity of TEPCO's Fukushima Daiichi Nuclear Power Station were collected from the fish landing port of Onahama on 16 November 2016 (see Table 5). As before, the fresh fish samples were prepared the next day at MERI and subsequently analysed for ¹³⁴Cs and ¹³⁷Cs. After subsequent measurement on 18 November 2016 at JCAC and JFFIC, the fresh fish samples were frozen and shipped to the IAEA Environmental Laboratories in Monaco in January 2017. After defrosting, the fresh fish samples were measured at the IAEA Environmental Laboratories between 26 January and 2 March 2017. All measurements were done by gamma-ray spectrometry with HPGe detectors. The measurement time per sample was 1 hour for MERI, JCAC and JFFIC and between 20 and 88 hours for the IAEA. All massic activities were reported at a reference time of 16 November 2016 0:00 UTC.

Batch	Latitude (N)	Longitude (E)
15FA0001 cod	36°59'19″	141°28′44″
15FA0002 cod	36°59′19″	141°28′44″
15FA0003 flounder	37°06′16″	141°07′49″
15FA0004 flounder	36°54'42″	141°02′16″
15FA0005 mackerel	37°04′12″	141°16′22″
16FA0001 olive flounder	36°54′56″	140°53′36″
16FA0002 olive flounder	36°53′12″	140°52′07″
16FA0003 chum salmon (male)	37°04′14″	140°58′50″
16FA0004 chum salmon (female)	37°05′16″	140°59′04″
16FA0005 Japanese Spanish mackerel	36°54'22″	140°56′12″
16FA0006 John Dory	36°52'32"	140°47′34″

TABLE 5. COORDINATES OF THE CATCH POSITION

FIG 11. Preparation of the fish samples before measurement. (Photo: P. Morris/IAEA)

3. METHODOLOGY OF RADIONUCLIDE DETERMINATION

3.1. SEAWATER

Radionuclides of interest in seawater were determined by six laboratories participating in one or more inter-laboratory comparison: GSL, KANSO and JCAC, all participating on behalf of the Nuclear Regulation Authority, Japan, and EPA, ESR and IAEA (see Table 1).

3.1.1. GSL methodology for seawater

3.1.1.1. Tritium analysis

Tritium was determined by low-background liquid scintillation counting after distillation and electrolytic enrichment.

3.1.2. KANSO methodology for seawater

3.1.2.1. ⁹⁰Sr analysis

KANSO used an ion exchange resin for pre-concentration of strontium from seawater sample followed by precipitation of carbonates and barium chromate. After reaching of secular equilibrium, ⁹⁰Y was separated using a ferric hydroxide co-precipitation technique and measured by a gas-flow counter (Aloka LBC-472/LBC-4202B).

3.1.2.2. ¹³⁴Cs and ¹³⁷Cs analysis

Chemical separation of caesium by using ammonium phosphomolybdate (AMP) followed by gammaray spectrometry with a HPGe detector was used for ¹³⁴Cs and ¹³⁷Cs determination in seawater.

3.1.3. JCAC methodology for seawater

3.1.3.1. Tritium analysis

JCAC used liquid scintillation counter (Aloka LB-5/LB-7) for measurement of tritium in seawater after distillation, electrolytic enrichment and second distillation.

3.1.3.2. ⁹⁰Sr analysis

For the determination of ⁹⁰Sr, a cation exchange resin column was used for pre-concentration of strontium from seawater sample followed by precipitation of carbonates and additional cation exchange resin column for separation of calcium. ⁹⁰Y was removed by scavenging and measurement was done after reaching of secular equilibrium by low background beta counter (Aloka LBC-4211).

3.1.3.3. ¹³⁴Cs and ¹³⁷Cs analysis

Chemical separation of caesium by using AMP followed by gamma-ray spectrometry with a HPGe detector was used for ¹³⁴Cs and ¹³⁷Cs determination in seawater.

3.1.4. EPA methodology for seawater

3.1.4.1. ¹³⁴Cs and ¹³⁷Cs analysis

At EPA, the previously acidified seawater samples were filtered through 0.45 µm filters and caesium was extracted using Triskem AMP-PAN resin based on a method published by Pike et al. [1]. The AMP-PAN resin, containing ¹³⁴Cs and ¹³⁷Cs, was counted by gamma-ray spectrometry using a high-purity germanium (HPGe) well type detector (Canberra GCW2023).

3.1.5. ESR methodology for seawater

3.1.5.1. ⁹⁰Sr analysis

ESR used a method based on Eichrom Sr resin for the determination of ⁹⁰Sr in seawater.

3.1.5.2. ¹³⁴Cs and ¹³⁷Cs analysis

ESR used the Eichrom potassium nickel ferrocyanate (KNiFC-PAN) resin method for the determination of ¹³⁴Cs and ¹³⁷Cs from 20 L of seawater. The resin containing caesium radioisotopes was counted by gamma-ray spectrometry.

3.1.6. IAEA methodology for seawater

3.1.6.1. Tritium analysis

Tritium was determined by liquid scintillation counting after double vacuum distillation (at 35°C) and electrolytic enrichment followed by a second distillation (under atmospheric pressure). An ultra-low level liquid scintillation counter (Quantulus 1220) was used for the counting of an aliquot of the enriched and distilled sample mixed with Quicksafe 400 scintillation cocktail.

3.1.6.2. ⁹⁰Sr analysis

At the IAEA, liquid-liquid extraction with di-(2-ethylhexyl)phosphoric acid (HDEHP) was used for the separation of yttrium from seawater samples, while caesium was precipitated from the same sample by using ammonium molybdophosphate (AMP). Only for the samples from sampling stations M-101 and M-102 in the September 2014 mission, sequential separation by precipitation of MnO₂ (Pu and Am), AMP (Cs) and oxalate (Sr) was used. The ⁹⁰Sr activity concentration is calculated based on the measurement of ⁹⁰Y (yttrium oxalate source) beta activity using a proportional counter (Risø National Laboratory model GM-25-5, Roskilde, Denmark) with an efficiency of up to 44%.

3.1.6.3. ¹³⁴Cs and ¹³⁷Cs analysis

¹³⁴Cs and ¹³⁷Cs were measured by low-level HPGe gamma-ray spectrometry (EURISYS SYSTEME coaxial HPGe detector model EGC 50-200-R with 47.5 % relative efficiency). The counting time was set to obtain a counting uncertainty of less than 5%.

3.2. SEDIMENT

Radionuclides of interest in sediment samples were determined by four laboratories participating in the May 2015 inter-laboratory comparison: JCAC, participating on behalf of the Nuclear Regulation Authority, Japan, and EPA, ESR and IAEA (see Table 1). Four laboratories participated in the May 2016 inter-laboratory comparison: JCAC, FP, and TPT, participating on behalf of the Nuclear Regulation Authority, Japan, and IAEA (see Table 1).

3.2.1. JCAC methodology for sediment

3.2.1.1. ¹³⁴*Cs and* ¹³⁷*Cs analysis*

JCAC used direct counting by a p-type coaxial HPGe detector with a relative efficiency 31% for the determination of 134 Cs and 137 Cs in sediment.

3.2.1.2. ²³⁸Pu and ^{239/240}Pu analysis

Plutonium isotopes in sediments were determined by alpha-ray spectrometry with a Si detector after leaching, radiochemical separation and purification of plutonium by using an anion exchange resin column followed by electrodeposition from the purified solution.

3.2.2. EPA methodology for sediment

3.2.2.1. ¹³⁴Cs and ¹³⁷Cs analysis

At EPA, ¹³⁴Cs and ¹³⁷Cs in re-homogenised and re-dried sediment samples were counted on a germanium detector (Canberra GC7520/S). Canberra ApexGamma (Genie 2k) software was used for the analysis of the obtained spectra, while coincidence summing and attenuation corrections were applied using the GESPECOR Monte-Carlo software.

3.2.2.2. ^{239/240}Pu analysis

The method for the determination of plutonium radioisotopes used at EPA is based on work by Luisier et al. [2]. This technique utilises Triskem DGA resin in association with TEVA resin for the sequential determination of plutonium and americium radioisotopes in environmental samples. Alpha spectrometry was used for the measurement of ²³⁹⁺²⁴⁰Pu in sediments.

3.2.3. ESR methodology for sediment

3.2.3.1. ¹³⁴Cs and ¹³⁷Cs analysis

ESR counted ¹³⁴Cs and ¹³⁷Cs in sediments in a cylinder geometry by gamma-ray spectrometry.

3.2.3.2. ^{239/240}Pu analysis

An Eichrom method based on the use of TEVA and TRU resins followed by alpha spectrometry was used for the determination of plutonium isotopes.

3.2.4. FP methodology for sediment

3.2.4.1. ¹³⁴Cs and ¹³⁷Cs analysis

FP determined ¹³⁴Cs and ¹³⁷Cs in sediments by gamma-ray spectrometry with a HPGe detector.

3.2.4.2. ^{239/240}Pu analysis

Plutonium isotopes in sediments were determined by alpha-ray spectrometry with a Si detector after leaching, radiochemical separation and purification of plutonium by using an anion exchange resin column followed by electrodeposition from the purified solution.

3.2.5. TPT methodology for sediment

3.2.5.1. ¹³⁴*Cs and* ¹³⁷*Cs analysis*

TPT determined ¹³⁴Cs and ¹³⁷Cs in sediment by gamma-ray spectrometry with a p-type coaxial HPGe detector.

3.2.6. IAEA methodology for sediment

3.2.6.1. ¹³⁴*Cs and* ¹³⁷*Cs analysis*

At the IAEA, 40 g of sediment was sealed in a tin can and ¹³⁴Cs and ¹³⁷Cs were measured by a germanium detector (EURISYS SYSTEME coaxial HPGe detector model EGPC 170-210-R) with cosmic veto shielding and relative efficiency of 170 %.

3.2.6.2. ²³⁸Pu and ^{239/240}Pu analysis

The method for the determination of plutonium radioisotopes in sediments was based on classical digestion followed by ion exchange, electrodeposition and counting by alpha spectrometry. An aliquot of 5 g of sediment sample was ashed and spiked with a 242 Pu tracer. The sample was totally dissolved by using concentrated acids. After Fe(OH)₃ precipitation and plutonium oxidation state adjustment, double ion exchange (DOWEX 1X4) was used for Pu purification. Plutonium was electrodeposited from Na₂SO₄/H₂SO₄ electrolyte solution on stainless steel discs and counted by alpha spectrometry.

3.3. FISH

Radionuclides of interest in fish samples were determined by four laboratories participating in the November 2015 and November 2016 inter-laboratory comparisons: MERI, JCAC and JFFIC, all participating on behalf of the Japan Fisheries Agency, and IAEA (see Table 1).

FIG 12. Measurement of fish samples by gamma-ray spectrometry. (Photo: P. Morris/IAEA)

3.3.1. MERI methodology for fish

MERI used direct counting by p-type coaxial HPGe detectors with relative efficiencies between 28% and 46% for the determination of ¹³⁴Cs and ¹³⁷Cs in fish. The sample mass was 2 kg-wet and each sample was measured for 1 hour.

3.3.2. JCAC methodology for fish

JCAC used direct counting by p-type coaxial HPGe detectors with relative efficiencies between 29% and 33% for the determination of ¹³⁴Cs and ¹³⁷Cs in fish. The sample mass was 2 kg-wet and each sample was measured for 1 hour.

3.3.3. JFFIC methodology for fish

JFFIC used direct counting by p-type coaxial HPGe detectors with relative efficiencies between 22% and 32% for the determination of ¹³⁴Cs and ¹³⁷Cs in fish. The sample mass was 2 kg-wet and each sample was measured for 1 hour.

3.3.4. IAEA methodology for fish

IAEA used direct counting by a coaxial HPGe detector with relative efficiency of 48% for the determination of ¹³⁴Cs and ¹³⁷Cs in fish. The sample mass was 1 kg-wet and the samples were measured between 22 and 47 hours (2015) and 20 and 88 hours (2016). As the IAEA was the final recipient of the fish samples in both exercises, it was possible to measure the fish samples for a longer time period resulting in smaller counting uncertainties.

4. RESULTS

4.1. GENERAL

4.1.1. Uncertainties

Uncertainties quoted in this report are combined standard uncertainties with a coverage factor of k = 1. The numerical result of a measurement is stated in the format xxx ± yyy, where the number following the symbol ± is the numerical value of the combined standard uncertainty and not a confidence interval, unless otherwise indicated (i.e. in Tables 14, 15A and 16).

4.1.2. Reference time

All activity concentrations and massic activities were reported at reference times specific for each of the six sampling missions.

4.2. SEAWATER

Tables 6–8, 9A and 9B contain the results reported by the participating laboratories for the activity concentrations of ³H, ⁹⁰Sr, ¹³⁴Cs and ¹³⁷Cs in the seawater samples. Figures 13 to 36 show the activity concentrations of these radionuclides in the seawater samples.

		IAEA	GSL	JCAC
	M-101	0.17 ± 0.04	0.171 ± 0.016	_
	M-102	0.14 ± 0.03	0.129 ± 0.015	_
Sep 2014	M-103	0.16 ± 0.04	0.101 ± 0.014	_
	M-104	0.15 ± 0.03	0.151 ± 0.016	-
	T-D1	0.10 ± 0.03	0.123 ± 0.015	_
	M-101	0.12 ± 0.04	0.175 ± 0.016	—
	M-102	0.16 ± 0.04	0.114 ± 0.013	—
Nov 2014	M-103	0.12 ± 0.04	0.118 ± 0.014	_
	M-104	0.14 ± 0.04	0.117 ± 0.013	_
	T-D1	0.14 ± 0.04	0.083 ± 0.013	—
	M-101	0.14 ± 0.05	_	0.08 ± 0.02
	M-102	0.08 ± 0.04	-	0.09 ± 0.02
May 2015	M-103	0.07 ± 0.03	-	0.09 ± 0.02
	M-104	0.08 ± 0.04	-	0.08 ± 0.02
	T-D1	0.06 ± 0.03	-	0.08 ± 0.02
	M-101	0.10 ± 0.04	0.093 ± 0.014	0.099 ± 0.021
	M-102	0.09 ± 0.04	0.109 ± 0.014	0.101 ± 0.021
Nov 2015	M-103	0.14 ± 0.03	0.092 ± 0.014	0.083 ± 0.020
	M-104	0.12 ± 0.03	0.110 ± 0.014	0.090 ± 0.021
	T-D1	0.08 ± 0.03	0.093 ± 0.014	0.076 ± 0.020
	M-101	< 0.17	0.075 ± 0.010	0.069 ± 0.019
	M-102	< 0.14	0.090 ± 0.011	0.106 ± 0.019
May 2016	M-103	< 0.13	0.117 ± 0.014	0.148 ± 0.020
	M-104	< 0.13	0.079 ± 0.010	0.072 ± 0.018
	T-D1	< 0.12	0.107 ± 0.013	0.110 ± 0.020
	M-101	0.17 ± 0.04	0.104 ± 0.014	0.112 ± 0.020
	M-102	0.21 ± 0.04	0.147 ± 0.015	0.135 ± 0.021
Nov 2016	M-103	0.12 ± 0.03	0.130 ± 0.015	0.082 ± 0.020
	M-104	0.08 ± 0.03	0.131 ± 0.015	0.094 ± 0.020
	T-D1	0.13 ± 0.03	0.107 ± 0.015	0.104 ± 0.020

TABLE 6. ³H ACTIVITY CONCENTRATIONS (Bq L⁻¹) IN SEAWATER

		IAEA	KANSO	JCAC
	M-101	0.026 ± 0.003	0.0190 ± 0.0011	—
	M-102	0.0110 ± 0.0014	0.0100 ± 0.00007	—
Sep 2014	M-103	0.00125 ± 0.00009	0.00110 ± 0.00020	_
	M-104	0.0080 ± 0.0006	0.0069 ± 0.0006	_
	T-D1	0.00101 ± 0.00008	0.00086 ± 0.00017	—
	M-101	0.0100 ± 0.0005	0.0087 ± 0.0007	—
	M-102	0.00377 ± 0.00020	0.0036 ± 0.0004	—
Nov 2014	M-103	0.00276 ± 0.00015	0.0025 ± 0.0003	—
	M-104	0.00386 ± 0.00020	0.0039 ± 0.0004	—
	T-D1	0.00098 ± 0.00006	0.00110 ± 0.00021	—
	M-101	0.00153 ± 0.00008	_	0.00160 ± 0.00016
	M-102	0.00103 ± 0.00006	_	0.00105 ± 0.00013
May 2015*	M-103	0.00129 ± 0.00007	_	0.00162 ± 0.00017
	M-104	0.00084 ± 0.00005	_	0.00109 ± 0.00014
	T-D1	0.00128 ± 0.00007	-	0.00168 ± 0.00017
	M-101	0.00174 ± 0.00010	0.00150 ± 0.00020	0.00177 ± 0.00017
	M-102	0.0180 ± 0.0009	0.0170 ± 0.0010	0.0174 ± 0.0009
Nov 2015	M-103	0.00161 ± 0.00009	0.00160 ± 0.00020	0.00134 ± 0.00015
	M-104	0.00119 ± 0.00007	0.00120 ± 0.00020	0.00112 ± 0.00014
	T-D1	0.00135 ± 0.00008	0.00110 ± 0.00020	0.00110 ± 0.00014
	M-101	0.00103 ± 0.00007	0.00150 ± 0.00024	0.00103 ± 0.00013
	M-102	0.00166 ± 0.00009	0.0026 ± 0.0003	0.00203 ± 0.00018
May 2016	M-103	0.00178 ± 0.00010	0.0020 ± 0.0003	0.00166 ± 0.00016
	M-104	0.00101 ± 0.00007	0.00120 ± 0.00023	0.00095 ± 0.00013
	T-D1	0.00077 ± 0.00006	0.00110 ± 0.00018	0.00077 ± 0.00011
	M-101	0.00174 ± 0.00010	0.00260 ± 0.00024	0.00199 ± 0.00018
	M-102	0.00219 ± 0.00012	0.00210 ± 0.00021	0.00215 ± 0.00019
Nov 2016	M-103	0.00155 ± 0.00009	0.00120 ± 0.00017	0.00116 ± 0.00013
	M-104	0.00127 ± 0.00007	0.00150 ± 0.00018	0.00092 ± 0.00012
	T-D1	$0.\overline{00112 \pm 0.00007}$	$0.\overline{00094 \pm 0.00015}$	$0.\overline{00101 \pm 0.000}13$

TABLE 7. ⁹⁰ Sr ACTIVITY CONCENTRATIONS (B	$q L^{-1}$) IN SEAWATER
--	------------	---------------

* additional values reported by ESR (in Bq L^{-1}) were < 0.015 (M-101), < 0.014 (M-102), < 0.033 (M-103), < 0.046 (M-104) and < 0.022 (T-D1)

		IAEA	KANSO	ESR	JCAC
	M-101	0.046 ± 0.005	0.040 ± 0.005	_	-
~	M-102	0.037 ± 0.004	0.039 ± 0.005	_	-
Sep	M-103	0.0179 ± 0.0018	0.0160 ± 0.0021	_	-
2014	M-104	0.035 ± 0.004	0.030 ± 0.004	_	-
	T-D1	0.0023 ± 0.0003	0.0023 ± 0.0004	_	-
	M-101	0.0238 ± 0.0021	0.021 ± 0.003	_	-
	M-102	0.0170 ± 0.0016	0.0150 ± 0.0020	_	-
Nov	M-103	0.0111 ± 0.0008	0.0094 ± 0.0013	_	-
2014	M-104	0.0120 ± 0.0009	0.0096 ± 0.0013	_	-
	T-D1	0.0072 ± 0.0006	0.0059 ± 0.0009	_	-
	M-101	0.00227 ± 0.00023	_	0.00196 ± 0.00022	0.0025 ± 0.0003
	M-102	0.0030 ± 0.0003	_	0.00288 ± 0.00018	0.0027 ± 0.0003
May 2015	M-103	0.00195 ± 0.00019	_	0.00174 ± 0.00013	0.0022 ± 0.0003
2013	M-104	0.00246 ± 0.00024	_	0.0025 ± 0.0005	0.0018 ± 0.0003
	T-D1	0.00143 ± 0.00016	_	0.0013 ± 0.0004	0.0015 ± 0.0003
	M-101	0.0066 ± 0.0006	0.0069 ± 0.0003	_	0.0074 ± 0.0005
	M-102	0.0154 ± 0.0015	0.0140 ± 0.0006	_	0.0141 ± 0.0009
Nov 2015	M-103	0.0083 ± 0.0008	0.0093 ± 0.0004	_	0.0111 ± 0.0007
2015	M-104	0.0047 ± 0.0004	0.0051 ± 0.0003	_	0.0052 ± 0.0004
	T-D1	0.0038 ± 0.0004	0.00420 ± 0.00025	_	0.0054 ± 0.0004
	M-101	0.00197 ± 0.00023	0.00170 ± 0.00017	_	0.0026 ± 0.0003
	M-102	0.0029 ± 0.0003	0.00250 ± 0.00020	_	0.0024 ± 0.0004
May 2016	M-103	0.0053 ± 0.0005	0.0053 ± 0.0003	_	0.0050 ± 0.0004
2010	M-104	0.00195 ± 0.00021	0.00170 ± 0.00017	_	0.0021 ± 0.0003
	T-D1	0.00133 ± 0.00014	0.00140 ± 0.00017	_	0.0018 ± 0.0003
	M-101	0.0063 ± 0.0006	0.0064 ± 0.0003	_	0.0079 ± 0.0006
	M-102	0.0111 ± 0.0011	0.00100 ± 0.0004	_	0.00122 ± 0.0008
Nov	M-103	0.0067 ± 0.0007	0.0060 ± 0.0003	_	0.0062 ± 0.0005
2010	M-104	0.0042 ± 0.0004	0.00410 ± 0.00024	_	0.0039 ± 0.0004
	T-D1	0.00164 ± 0.00018	0.00150 ± 0.00017	—	0.0019 ± 0.0003

TABLE 8. ¹³⁴Cs ACTIVITY CONCENTRATIONS (Bq L⁻¹) IN SEAWATER

		IAEA	KANSO	JCAC
	M-101	0.134 ± 0.013	0.120 ± 0.007	—
	M-102	0.113 ± 0.011	0.120 ± 0.006	—
Sep 2014	M-103	0.052 ± 0.005	0.052 ± 0.003	_
	M-104	0.104 ± 0.010	0.094 ± 0.005	—
	T-D1	0.0085 ± 0.0009	0.0070 ± 0.0005	—
	M-101	0.076 ± 0.007	0.070 ± 0.004	—
	M-102	0.052 ± 0.005	0.0470 ± 0.0025	-
Nov 2014	M-103	0.0357 ± 0.0025	0.0350 ± 0.0019	—
	M-104	0.038 ± 0.003	0.0350 ± 0.0018	—
	T-D1	0.0214 ± 0.0016	0.0210 ± 0.0012	—
May 2015			See Table 9B	
	M-101	0.031 ± 0.003	0.0310 ± 0.0010	0.0326 ± 0.0017
	M-102	0.067 ± 0.006	0.0610 ± 0.0020	0.066 ± 0.003
Nov 2015	M-103	0.041 ± 0.004	0.0410 ± 0.0013	0.0472 ± 0.0024
	M-104	0.0219 ± 0.0020	0.0230 ± 0.0008	0.0251 ± 0.0013
	T-D1	0.0187 ± 0.0017	0.0190 ± 0.0007	0.0240 ± 0.0013
	M-101	0.0111 ± 0.0011	0.0100 ± 0.0004	0.0144 ± 0.0008
	M-102	0.0144 ± 0.0014	0.0130 ± 0.0005	0.0152 ± 0.0009
May 2016	M-103	0.028 ± 0.003	0.0290 ± 0.0010	0.0286 ± 0.0015
	M-104	0.0108 ± 0.0011	0.0100 ± 0.0004	0.0116 ± 0.0007
	T-D1	0.0082 ± 0.0008	0.0079 ± 0.0003	0.0086 ± 0.0005
	M-101	0.037 ± 0.004	0.0400 ± 0.0013	0.0458 ± 0.0024
	M-102	0.065 ± 0.006	0.0640 ± 0.0021	0.068 ± 0.004
Nov 2016	M-103	0.038 ± 0.004	0.0360 ± 0.0012	0.0413 ± 0.0021
	M-104	0.026 ± 0.003	0.0250 ± 0.0008	0.0269 ± 0.0014
	T-D1	0.0114 ± 0.0011	0.0110 ± 0.0004	0.0119 ± 0.0007

TABLE 9A. ¹³⁷Cs ACTIVITY CONCENTRATIONS (Bq L⁻¹) IN SEAWATER

TABLE 9B. ¹³⁷Cs ACTIVITY CONCENTRATIONS (Bq L⁻¹) IN SEAWATER (MAY 2015)

	IAEA	JCAC	EPA	ESR	Reference value*
M-101	0.0096 ± 0.0009	0.0092 ± 0.0006	0.0095 ± 0.0005	0.0087 ± 0.0004	0.0092 ± 0.0003
M-102	0.0115 ± 0.0011	0.0114 ± 0.0007	0.0110 ± 0.0005	0.0117 ± 0.0004	0.0114 ± 0.0003
M-103	0.0084 ± 0.0008	0.0084 ± 0.0005	0.0086 ± 0.0004	0.0089 ± 0.0005	0.0086 ± 0.0003
M-104	0.0093 ± 0.0009	0.0081 ± 0.0005	0.0092 ± 0.0004	0.0103 ± 0.0010	0.0091 ± 0.0004
T-D1	0.0063 ± 0.0006	0.0062 ± 0.0004	0.0060 ± 0.0003	0.0060 ± 0.0003	0.00609 ± 0.00017

* The reference value, a power-moderated mean of the combined results, was calculated by a method currently being used by the Consultative Committee for Ionizing Radiation, Section II: Measurement of radionuclides, CCRI(II) [3].

4.3. SEDIMENT

Table 10A contains the results reported by the four participating laboratories (EPA, ESR, IAEA and JCAC) for the massic activities of radionuclides in the May 2015 sediment samples. Table 10B contains the results reported by the four participating laboratories (FP, IAEA, JCAC and TPT) for the massic activities of radionuclides in the May 2016 sediment samples. Figures 37 to 42 show the massic activities of ¹³⁴Cs, ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu in the sediment samples.

		IAEA	EPA	JCAC	ESR	Reference value*
¹³⁴ Cs	T-D1	5.0 ± 0.3	5.20 ± 0.25	6.5 ± 0.5	6.6 ± 0.4	5.8 ± 0.4
	T-D9	7.15 ± 0.20	7.6 ± 0.4	7.1 ± 0.6	6.6 ± 0.3	7.12 ± 0.20
¹³⁷ Cs	T-D1	18.3 ± 1.0	18.9 ± 0.7	27.6 ± 1.6	23.7 ± 1.0	22.0 ± 2.2
	T-D9	25.4 ± 0.5	26.8 ± 0.9	28.0 ± 1.6	23.6 ± 0.9	25.8 ± 0.9
²³⁹⁺²⁴⁰ Pu	T-D1	0.232 ± 0.012	0.32 ± 0.04	0.283 ± 0.016	0.5 ± 0.4	0.27 ± 0.03
	T-D9	0.503 ± 0.022	0.54 ± 0.09	0.490 ± 0.022	0.4 ± 0.4	0.499 ± 0.019

TABLE 10A. RADIONUCLIDE MASSIC ACTIVITIES (Bq kg⁻¹-dry) IN SEDIMENT (MAY 2015)

* The reference value, a power-moderated mean of the combined results, was calculated by a method currently being used by the Consultative Committee for Ionizing Radiation, Section II: Measurement of radionuclides, CCRI(II) [3].

	TABLE 10B. RADIONUCLIDE MASSIC ACTIVITIES (Bq kg ⁻¹ -dry) IN SEDIMENT (MAY 2016)
--	---	--

		IAEA	Fukushima Prefecture	JCAC	Tokyo Power Technology
	F-P04	4.5 ± 0.4	5.7 ± 0.5	5.8 ± 0.5	—
¹³⁴ Cs	T-S3	151 ± 4	_	165 ± 8	147 ± 4
	T-S8	5.84 ± 0.17	_	5.8 ± 0.5	6.1 ± 0.3
	F-P04	25.7 ± 1.7	28.0 ± 1.6	28.9 ± 1.5	_
¹³⁷ Cs	T-S3	776 ± 16	_	851 ± 42	762 ± 22
	T-S8	31.1 ± 0.3	_	29.7 ± 1.6	32.0 ± 1.1
	F-P04	< 0.004	< 0.02	0.0041 ± 0.0014	_
²³⁸ Pu	T-S3	0.009 ± 0.003	_	0.0083 ± 0.0017	_
	T-S8	0.0064 ± 0.0022	_	0.0079 ± 0.0014	_
	F-P04	0.381 ± 0.020	0.43 ± 0.04	0.370 ± 0.015	_
²³⁹⁺²⁴⁰ Pu	T-S3	0.577 ± 0.025	_	0.591 ± 0.020	_
	T-S8	0.536 ± 0.024	_	0.507 ± 0.016	_

4.4. FISH

Tables 11 and 12 contain the results reported by the four participating laboratories (IAEA, JFFIC, JCAC and MERI) for the massic activities of radionuclides in the fish samples. Figures 43 to 46 show the massic activities of ¹³⁴Cs and ¹³⁷Cs in the fish samples.

	IAEA	JFFIC	JCAC	MERI	Reference value*
15FA0001 cod	0.29 ± 0.03	0.27 ± 0.08	0.27 ± 0.15	0.40 ± 0.11	0.30 ± 0.03
15FA0002 cod	0.36 ± 0.03	< 0.6	< 0.6	0.31 ± 0.07	—
15FA0003 flounder	0.76 ± 0.04	0.74 ± 0.16	1.00 ± 0.21	0.88 ± 0.15	0.79 ± 0.05
15FA0004 flounder	0.74 ± 0.03	0.88 ± 0.15	1.02 ± 0.22	0.83 ± 0.11	0.79 ± 0.04
15FA0005 mackerel	0.108 ± 0.017	0.19 ± 0.13	< 0.5	0.16 ± 0.06	—
16FA0001 olive flounder	0.35 ± 0.04	0.67 ± 0.13	0.26 ± 0.15	< 0.6	_
16FA0002 olive flounder	0.64 ± 0.04	0.43 ± 0.12	0.31 ± 0.18	0.51 ± 0.09	0.51 ± 0.07
16FA0003 chum salmon (male)	< 0.07	< 0.4	< 0.6	< 0.5	_
16FA0004 chum salmon (female)	< 0.03	0.18 ± 0.14	0.20 ± 0.11	0.15 ± 0.08	_
16FA0005 Japanese Spanish mackerel	< 0.10	< 0.6	0.19 ± 0.12	< 0.5	_
16FA0006 John Dory	0.21 ± 0.03	0.32 ± 0.10	< 0.5	0.13 ± 0.09	_

TABLE 11. Cs-134 MASSIC ACTIVITIES (Bq kg⁻¹-wet) IN FISH

* The reference value, a power-moderated mean of the combined results, was calculated by a method currently being used by the Consultative Committee for Ionizing Radiation, Section II: Measurement of radionuclides, CCRI(II) [3].

TABLE 12. Cs-137 MASSIC ACTIVITIES (Bq kg⁻¹-wet) IN FISH

	IAEA	JFFIC	JCAC	MERI	Reference value*
15FA0001 cod	1.18 ± 0.04	1.14 ± 0.19	1.45 ± 0.22	1.26 ± 0.20	1.20 ± 0.05
15FA0002 cod	1.51 ± 0.04	1.88 ± 0.25	1.00 ± 0.21	1.39 ± 0.15	1.44 ± 0.17
15FA0003 flounder	3.50 ± 0.07	3.6 ± 0.3	3.6 ± 0.3	3.9 ± 0.3	3.56 ± 0.08
15FA0004 flounder	3.39 ± 0.07	4.1 ± 0.3	3.4 ± 0.3	3.58 ± 0.25	3.57 ± 0.15
15FA0005 mackerel	0.585 ± 0.022	0.59 ± 0.13	0.68 ± 0.17	0.49 ± 0.10	0.58 ± 0.03
16FA0001 olive flounder	1.99 ± 0.07	2.67 ± 0.25	2.1 ± 0.3	2.06 ± 0.23	2.18 ± 0.15
16FA0002 olive flounder	3.34 ± 0.09	4.2 ± 0.4	3.9 ± 0.4	3.38 ± 0.23	3.64 ± 0.21
16FA0003 chum salmon (male)	0.11 ± 0.03	< 0.5	< 0.5	< 0.6	_
16FA0004 chum salmon (female)	0.104 ± 0.019	< 0.6	< 0.5	< 0.4	_
16FA0005 Japanese Spanish mackerel	0.48 ± 0.04	0.50 ± 0.19	0.40 ± 0.14	0.19 ± 0.16	0.43 ± 0.06
16FA0006 John Dory	1.25 ± 0.05	1.47 ± 0.21	1.13 ± 0.20	1.30 ± 0.14	1.27 ± 0.06

* The reference value, a power-moderated mean of the combined results, was calculated by a method currently being used by the Consultative Committee for Ionizing Radiation, Section II: Measurement of radionuclides, CCRI(II) [3].

5. STATISTICAL EVALUATION OF THE RESULTS

For the May 2015 mission (seawater and sediment), the collection of the data was carried out by the Radioanalytical Reference Laboratory of the National Food Chain Safety Office, Hungary, while the data evaluation was done by the IAEA. For all other missions, the data was collected and evaluated by the IAEA.

The statistical evaluation method used for the results depended on the size of the data set. If two or three results were received, one or three zeta tests [4] were performed.

The zeta test was defined as:

$$\zeta_{i,j} = \left| \frac{x_i - x_j}{\sqrt{u_i^2 + u_j^2}} \right| \tag{1}$$

where:

 x_i is the value of laboratory i [Bq L⁻¹] x_j is the value of laboratory j [Bq L⁻¹] u_i is the standard uncertainty (at k = 1) for the value of laboratory i [Bq L⁻¹] u_j is the standard uncertainty (at k = 1) for the value of laboratory j [Bq L⁻¹]

If two results were received, $\zeta_{1,2}$ was calculated, while for three received results $\zeta_{1,2}$, $\zeta_{1,3}$ and $\zeta_{2,3}$ were calculated.

If the value of the zeta test exceeded 2.58, the results were evaluated as being significantly different (at a 99% confidence level).

If the data set contained four results, the statistical evaluation consisted of a method for calculating a comparison reference value as a power-moderated mean of the combined results [3], which is currently being used by the Consultative Committee for Ionizing Radiation, Section II: Measurement of radionuclides, CCRI(II). After calculating a reference value, a relative degree of equivalence (DoE) was calculated for each submitted result and if this relative DoE was significantly different from zero, the corresponding result was evaluated as being discrepant. The relative DoE (%) was calculated according to:

DoE (%) =
$$\frac{x_{\text{lab}} - X_{\text{ref}}}{X_{\text{ref}}} 100$$
 (2)

where: x_{lab} is the individual laboratory result

 $X_{\rm ref}$ is the reference value calculated as the power-moderated mean of the combined results

The standard uncertainty of the relative DoE, u_{DoE} , was calculated according to reference [4]. If the absolute value of the relative DoE exceeded 2.58 times u_{DoE} , the corresponding result was evaluated as being discrepant (at a 99% confidence level), as the relative DoE in this case would be significantly different from zero.

5.1. SEAWATER

Table 13A and 13B contain the zeta scores for the activity concentrations of radionuclides in the seawater samples.

		Sep 2014	Nov 2014	May 2015
	M-101	0.02	1.29	1.17
	M-102	0.28	1.17	0.32
³ H	M-103	1.34	0.03	0.39
	M-104	0.10	0.48	0.10
	T-D1	0.61	1.29	0.55
	M-101	1.97	1.59	0.40
	M-102	0.66	0.38	0.17
⁹⁰ Sr	M-103	0.70	0.70	1.81
	M-104	1.39	0.09	1.68
	T-D1	0.82	0.55	2.16
	M-101	0.86	0.82	0.98 / 0.57 / 1.39
	M-102	0.36	0.78	0.35 / 0.61 / 0.40
¹³⁴ Cs	M-103	0.67	1.10	0.89 / 0.68 / 1.38
	M-104	0.87	1.51	0.05 / 1.71 / 1.17
	T-D1	0.08	1.25	0.25 / 0.33 / 0.44
	M-101	0.91	0.75	
	M-102	0.51	1.03	
¹³⁷ Cs	M-103	0.04	0.23	See Table 14
	M-104	0.84	0.91	
	T-D1	1.55	0.21	

TABLE 13A. RADIONUCLIDES IN SEAWATER; ZETA SCORES

NOTE: Format "x.xx" refers to $\zeta_{1,2}$; format "x.xx / y.yy / z.zz" refers to $\zeta_{1,2}$, $\zeta_{1,3}$ and $\zeta_{2,3}$. Number 1 refers to IAEA, number 2 refers to GSL/KANSO and number 3 refers to JCAC.

		Nov 2015	May 2016	Nov 2016
	M-101	0.17 / 0.03 / 0.22	-/-/0.29	1.73 / 1.42 / 0.33
³ H	M-102	0.45 / 0.24 / 0.32	-/-/0.73	1.63 / 1.82 / 0.46
	M-103	1.45 / 1.59 / 0.38	-/-/1.27	0.31 / 0.90 / 1.91
	M-104	0.30 / 0.82 / 0.79	-/-/0.33	1.44 / 0.39 / 1.50
	T-D1	0.39 / 0.12 / 0.71	-/-/0.13	0.75 / 0.78 / 0.12
	M-101	1.07 / 0.17 / 1.03	1.91 / 0.01 / 1.74	3.35 / 1.18 / 2.06
	M-102	0.70 / 0.44 / 0.30	2.76 / 1.85 / 1.52	0.36 / 0.16 / 0.18
⁹⁰ Sr	M-103	0.06 / 1.57 / 1.04	0.75 / 0.64 / 1.06	1.87 / 2.47 / 0.20
	M-104	0.04 / 0.46 / 0.33	0.78 / 0.47 / 0.97	1.15 / 2.52 / 2.65
	T-D1	1.15 / 1.55 / 0.00	1.71 / 0.05 / 1.56	1.11 / 0.75 / 0.37
	M-101	0.44 / 1.00 / 0.80	0.94 / 1.54 / 2.40	0.20 / 1.92 / 2.33
	M-102	0.88 / 0.75 / 0.10	1.11 / 1.08 / 0.25	0.94 / 0.80 / 2.50
¹³⁴ Cs	M-103	1.09 / 2.61 / 2.26	0.00 / 0.53 / 0.68	0.98 / 0.61 / 0.38
	M-104	0.83 / 0.77 / 0.10	0.93 / 0.50 / 1.21	0.25 / 0.65 / 0.55
	T-D1	0.77 / 2.60 / 2.33	0.32 / 1.40 / 1.13	0.56 / 0.77 / 1.20
	M-101	0.00 / 0.46 / 0.81	0.95 / 2.42 / 4.94	0.65 / 1.89 / 2.12
	M-102	0.95 / 0.20 / 1.19	0.95 / 0.49 / 2.27	0.08 / 0.46 / 0.96
¹³⁷ Cs	M-103	0.00 / 1.33 / 2.27	0.32 / 0.18 / 0.22	0.61 / 0.66 / 2.20
	M-104	0.51 / 1.34 / 1.39	0.69 / 0.62 / 2.09	0.35 / 0.32 / 1.16
	T-D1	0.16 / 2.48 / 3.43	0.35 / 0.36 / 1.06	0.31 / 0.39 / 1.13

TABLE 13B. RADIONUCLIDES IN SEAWATER; ZETA SCORES

NOTE: Format "x.xx" refers to $\zeta_{1,2}$; format "x.xx / y.yy / z.zz" refers to $\zeta_{1,2}$, $\zeta_{1,3}$ and $\zeta_{2,3}$. Number 1 refers to IAEA, number 2 refers to GSL/KANSO and number 3 refers to JCAC.

Table 14 contains the degrees of relative equivalence for the activity concentrations of ¹³⁷Cs in the seawater samples in the May 2015 mission.

		IAEA	EPA	JCAC	ESR	
	M-101	5 ± 23	3 ± 11	0 ± 14	-5 ± 10	
1370	M-102	1 ± 22	-4 ± 10	0 ± 14	3 ± 8	
May 2015	M-103	-2 ± 21	0 ± 10	-3 ± 14	4 ± 13	
	M-104	3 ± 23	1 ± 14	-11 ± 16	13 ± 25	
	T-D1	3 ± 22	-2 ± 11	2 ± 16	-1 ± 9	

TABLE 14. RADIONUCLIDES IN SEAWATER; RELATIVE DEGREE OF EQUIVALENCE (%)

NOTE: The numerical results in this Table are stated in the format $xx \pm yy$, where the number following the symbol \pm is the 99% confidence interval.

5.2. SEDIMENT

Table 15A contains the degrees of relative equivalence for the massic activities of the radionuclides in the sediment samples. Table 15B contains the zeta scores for the massic activities of the radionuclides in the sediment samples.

TABLE	15A.	RADIONUCLIDES	IN	SEDIMENT	(MAY	2015);	RELATIVE	DEGREE	OF
EQUIVA	LENC	CE (%)							

		IAEA	EPA	JCAC	ESR
1340	T-D1	-13 ± 21	-10 ± 20	12 ± 26	14 ± 22
Cs	T-D9	0 ± 8	7 ± 12	0 ± 20	-7 ± 11
1370	T-D1	-17 ± 27	-14 ± 26	25 ± 29	7 ± 27
in Cs	T-D9	-2 ± 10	4 ± 11	9 ± 16	-9 ± 11
239+240 D	T-D1	-15 ± 30	15 ± 39	3 ± 31	82 ± 353
Pu	T-D9	1 ± 11	7 ± 43	-2 ± 11	-14 ± 215

NOTE: The numerical results in this Table are stated in the format $xx \pm yy$, where the number following the symbol \pm is the 99% confidence interval.

		May 2016
	F-P04	1.87 / 1.98 / 0.11
¹³⁴ Cs	T-S3	0.68 / 1.50 / 1.94
	T-S8	0.60 / 0.06 / 0.44
	F-P04	1.00 / 1.42 / 0.41
¹³⁷ Cs	T-S3	0.53 / 1.64 / 1.86
	T-S8	0.82 / 0.89 / 1.24
²³⁸ Pu	F-P04	—
	T-S3	0.35
	T-S8	0.60
²³⁹⁺²⁴⁰ Pu	F-P04	1.10 / 0.44 / 1.40
	T-S3	0.45
	T-S8	1.01

NOTE: Format "x.xx" refers to $\zeta_{1,3}$; format "x.xx / y.yy / z.zz" refers to $\zeta_{1,2}$, $\zeta_{1,3}$ and $\zeta_{2,3}$. Number 1 refers to IAEA, number 2 refers to Fukushima Prefecture/Tokyo Power Technology and number 3 refers to JCAC.

5.3. FISH

Table 16 contains the degrees of relative equivalence for the massic activities of the radionuclides in the fish samples.

		IAEA(1)	JFFIC (2)	JCAC (3)	MERI (4)
¹³⁴ Cs	15FA0001 cod	-3 ± 22	-10 ± 65	-8 ± 122	35 ± 84
	15FA0002 cod	Note 1	DL	DL	Note 1
	15FA0003 flounder	-4 ± 13	-7 ± 49	26 ± 63	12 ± 45
	15FA0004 flounder	-6 ± 13	11 ± 45	30 ± 68	6 ± 33
	15FA0005 mackerel	Note 2	Note 2	DL	Note 2
	16FA0001 olive flounder	Note 3	Note 3	Note 3	DL
	16FA0002 olive flounder	24 ± 35	-16 ± 55	-39 ± 85	-1 ± 46
	16FA0003 chum salmon (male)	DL	DL	DL	DL
	16FA0004 chum salmon (female)	DL	Note 4	Note 4	Note 4
	16FA0005 Japanese Spanish mackerel	DL	DL	-	DL
	16FA0006 John Dory	Note 5	Note 5	DL	Note 5
¹³⁷ Cs	15FA0001 cod	-2 ± 10	-5 ± 38	20 ± 45	5 ± 39
	15FA0002 cod	5 ± 31	31 ± 45	-31 ± 42	-3 ± 36
	15FA0003 flounder	-2 ± 5	1 ± 22	2 ± 23	9 ± 22
	15FA0004 flounder	-5 ± 11	14 ± 20	-4 ± 23	0 ± 17
	15FA0005 mackerel	1 ± 12	2 ± 56	17 ± 73	-15 ± 40
	16FA0001 olive flounder	-9 ± 19	22 ± 29	-3 ± 30	-6 ± 27
	16FA0002 olive flounder	-8 ± 15	16 ± 25	6 ± 25	-7 ± 18
	16FA0003 chum salmon (male)	-	DL	DL	DL
	16FA0004 chum salmon (female)	-	DL	DL	DL
	16FA0005 Japanese Spanish mackerel	13 ± 36	18 ± 108	-6 ± 79	-55 ± 88
	16FA0006 John Dory	-1 ± 10	16 ± 39	-11 ± 38	2 ± 26

TABLE 16. RADIONUCLIDES IN FIS	I: RELATIVE DEGREE	OF EOUIVALENCE (%)
		De leger inder (, v y j

NOTE: The numerical results in this Table are stated in the format $xx \pm yy$, where the number following the symbol \pm is the 99% confidence interval.

Note 1; Value of 0.71 for $\zeta_{1,4}$

Note 2; Values of 0.61, 0.82 and 0.23 for $\zeta_{1,2}$, $\zeta_{1,4}$ and $\zeta_{2,4}$, respectively

Note 3; Values of 2.44, 0.55 and 2.06 for $\zeta_{1,2}$, $\zeta_{1,3}$ and $\zeta_{2,3}$, respectively

Note 4; Values of 0.12, 0.17 and 0.38 for $\zeta_{2,3}$, $\zeta_{2,4}$ and $\zeta_{3,4}$, respectively

Note 5; Values of 1.05, 0.96 and 1.49 for $\zeta_{1,2}$, $\zeta_{1,4}$ and $\zeta_{2,4}$, respectively

DL; As a value less than the detection limit was submitted, no evaluation was performed.

Number 1 refers to IAEA, number 2 refers to JFFIC, number 3 refers to JCAC and number 4 refers to MERI.

6. CONCLUSION

A detailed data analysis was performed on activity concentrations reported for ³H, ⁹⁰Sr, ¹³⁴Cs and ¹³⁷Cs in thirty seawater samples, massic activities reported for ¹³⁴Cs, ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu in five sediment samples and massic activities reported for ¹³⁴Cs and ¹³⁷Cs in eleven fish samples, all collected offshore TEPCO's Fukushima Daiichi Nuclear Power Station between September 2014 and November 2016. The samples were shared between the ten laboratories [EPA (Ireland), ESR (New Zealand), Fukushima Prefecture (Japan), GSL (Japan), IAEA (Monaco), JCAC (Japan), JFFIC (Japan), KANSO (Japan), MERI (Japan) and Tokyo Power Technology (Japan)]. From this analysis it can be concluded that the overwhelming majority of the results are not significantly different from each other. A global analysis of the whole data set demonstrated that 362 out of the 369 statistical tests applied to the data, i.e. over 98%, were passed with a high level of confidence (99%). The only exceptions were four zeta scores that were just marginally higher than the critical limit of 2.58:

 $\zeta = 2.60$ for ¹³⁴Cs in seawater sample T-D1 in Nov 2015 between IAEA and JCAC $\zeta = 2.61$ for ¹³⁴Cs in seawater sample M-103 in Nov 2015 between IAEA and JCAC $\zeta = 2.65$ for ⁹⁰Sr in seawater sample M-104 in Nov 2016 between KANSO and JCAC $\zeta = 2.76$ for ⁹⁰Sr in seawater sample M-102 in May 2016 between IAEA and KANSO

and three zeta scores that were clearly higher than the critical value:

 $\zeta = 3.35$ for ⁹⁰Sr in seawater sample M-101 in Nov 2016 between IAEA and KANSO $\zeta = 3.43$ for ¹³⁷Cs in seawater sample T-D1 in Nov 2015 between KANSO and JCAC $\zeta = 4.94$ for ¹³⁷Cs in seawater sample M-101 in May 2016 between KANSO and JCAC

Despite these minor departures, it can be said with confidence that the laboratories are reporting reliable and comparable results for the tested radionuclides in seawater, sediment and fish samples prepared and analysed according to each laboratory's regularly used methods.

Following the six sampling missions organized in 2014–2016, the IAEA can report that Japan's sample collection procedures follow the appropriate methodological standards required to obtain representative samples. The results obtained in ILCs demonstrate a high level of accuracy and competence on the part of the Japanese laboratories involved in the analyses of radionuclides in marine samples for the Sea Area Monitoring programme.

REFERENCES

- [1] PIKE, S., et al., Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectrometry and inductively coupled mass spectrometry. J. Radioanal. Nucl. Chem. **296** (2013) 369.
- [2] LUISIER, F., ALVARADO, J.A.C., STEINMANN, P., KRACHLER, M., FROIDEVAUX, P., A new method for the determination of plutonium and americium using high pressure microwave digestion and alpha-spectrometry or ICP-SMS, J. Radioanal. Nucl. Chem. 281 (2009) 425.
- [3] POMMÉ, S., KEIGHTLEY, J., Determination of a reference value and its uncertainty through a power-moderated mean, Metrologia **52** (2015) S200.
- [4] INTERNAL ORGANIZATION FOR STANDARDIZATION, Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO 13528:2005, Geneva (2005).

FIG. 13. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 14. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 15. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 16. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 17. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 18. Activity concentrations of ${}^{3}H$ in seawater samples.

FIG. 19. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 20. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 21. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 22. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 23. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 24. Activity concentrations of ⁹⁰Sr in seawater samples.

FIG. 25. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 26. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 27. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 28. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 29. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 30. Activity concentrations of ¹³⁴Cs in seawater samples.

FIG. 31. Activity concentrations of ¹³⁷Cs in seawater samples.

FIG. 32. Activity concentrations of ¹³⁷Cs in seawater samples.

FIG. 33. Activity concentrations of 137 Cs in seawater samples.

FIG. 34. Activity concentrations of ¹³⁷Cs in seawater samples.

FIG. 35. Activity concentrations of ¹³⁷Cs in seawater samples.

FIG. 36. Activity concentrations of ¹³⁷Cs in seawater samples.

FIG. 37. Massic activities of 134 Cs in sediment samples.

FIG. 38. Massic activities of 134 Cs in sediment samples.

FIG. 39. Massic activities of ¹³⁷Cs in sediment samples.

FIG. 40. Massic activities of ¹³⁷Cs in sediment samples.

FIG. 41. Massic activities of ²³⁹⁺²⁴⁰Pu in sediment samples.

FIG. 42. Massic activities of $^{239+240}$ Pu in sediment samples.

FIG. 43. Massic activities of ¹³⁴Cs in fish samples.

FIG. 44. Massic activities of ¹³⁴Cs in fish samples.

FIG. 45. Massic activities of ¹³⁷Cs in fish samples.

FIG. 46. Massic activities of ¹³⁷Cs in fish samples.

CONTRIBUTORS TO DRAFTING AND REVIEW

Harms, A.	International Atomic Energy Agency
Osvath, I.	International Atomic Energy Agency
Osborn, D.	International Atomic Energy Agency
Bartocci,J.	International Atomic Energy Agency
Blinova, O.	International Atomic Energy Agency
Fujak, M.	International Atomic Energy Agency
Le Normand, J.	International Atomic Energy Agency
Levy, I.	International Atomic Energy Agency
Liong Wee Kwong, L.	International Atomic Energy Agency
Mc Ginnity, P.	International Atomic Energy Agency
Morris, P.	International Atomic Energy Agency
Pham, M. K.	International Atomic Energy Agency
Rozmaric, M.	International Atomic Energy Agency
Sam, A.	International Atomic Energy Agency

ORDERING LOCALLY

In the following countries, IAEA priced publications may be purchased from the sources listed below or from major local booksellers.

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

CANADA

Renouf Publishing Co. Ltd

22-1010 Polytek Street, Ottawa, ON K1J 9J1, CANADA Telephone: +1 613 745 2665 • Fax: +1 643 745 7660 Email: order@renoufbooks.com • Web site: www.renoufbooks.com

Bernan / Rowman & Littlefield

15200 NBN Way, Blue Ridge Summit, PA 17214, USA Tel: +1 800 462 6420 • Fax: +1 800 338 4550 Email: orders@rowman.com Web site: www.rowman.com/bernan

CZECH REPUBLIC

Suweco CZ, s.r.o. Sestupná 153/11, 162 00 Prague 6, CZECH REPUBLIC Telephone: +420 242 459 205 • Fax: +420 284 821 646 Email: nakup@suweco.cz • Web site: www.suweco.cz

FRANCE

Form-Edit

5 rue Janssen, PO Box 25, 75921 Paris CEDEX, FRANCE Telephone: +33 1 42 01 49 49 • Fax: +33 1 42 01 90 90 Email: formedit@formedit.fr • Web site: www.form-edit.com

GERMANY

Goethe Buchhandlung Teubig GmbH

Schweitzer Fachinformationen Willstätterstrasse 15, 40549 Düsseldorf, GERMANY Telephone: +49 (0) 211 49 874 015 • Fax: +49 (0) 211 49 874 28 Email: kundenbetreuung.goethe@schweitzer-online.de • Web site: www.goethebuch.de

INDIA

Allied Publishers

1st Floor, Dubash House, 15, J.N. Heredi Marg, Ballard Estate, Mumbai 400001, INDIA Telephone: +91 22 4212 6930/31/69 • Fax: +91 22 2261 7928 Email: alliedpl@vsnl.com • Web site: www.alliedpublishers.com

Bookwell

3/79 Nirankari, Delhi 110009, INDIA Telephone: +91 11 2760 1283/4536 Email: bkwell@nde.vsnl.net.in • Web site: www.bookwellindia.com

ITALY

Libreria Scientifica "AEIOU"

Via Vincenzo Maria Coronelli 6, 20146 Milan, ITALY Telephone: +39 02 48 95 45 52 • Fax: +39 02 48 95 45 48 Email: info@libreriaaeiou.eu • Web site: www.libreriaaeiou.eu

JAPAN

Maruzen-Yushodo Co., Ltd

10-10 Yotsuyasakamachi, Shinjuku-ku, Tokyo 160-0002, JAPAN Telephone: +81 3 4335 9312 • Fax: +81 3 4335 9364 Email: bookimport@maruzen.co.jp • Web site: www.maruzen.co.jp

RUSSIAN FEDERATION

Scientific and Engineering Centre for Nuclear and Radiation Safety

107140, Moscow, Malaya Krasnoselskaya st. 2/8, bld. 5, RUSSIAN FEDERATION Telephone: +7 499 264 00 03 • Fax: +7 499 264 28 59 Email: secnrs@secnrs.ru • Web site: www.secnrs.ru

UNITED STATES OF AMERICA

Bernan / Rowman & Littlefield

15200 NBN Way, Blue Ridge Summit, PA 17214, USA Tel: +1 800 462 6420 • Fax: +1 800 338 4550 Email: orders@rowman.com • Web site: www.rowman.com/bernan

Renouf Publishing Co. Ltd

812 Proctor Avenue, Ogdensburg, NY 13669-2205, USA Telephone: +1 888 551 7470 • Fax: +1 888 551 7471 Email: orders@renoufbooks.com • Web site: www.renoufbooks.com

Orders for both priced and unpriced publications may be addressed directly to:

Marketing and Sales Unit International Atomic Energy Agency Vienna International Centre, PO Box 100, 1400 Vienna, Austria Telephone: +43 1 2600 22529 or 22530 • Fax: +43 1 2600 29302 or +43 1 26007 22529 Email: sales.publications@iaea.org • Web site: www.iaea.org/books

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISSN 2074–7659