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Abstract. A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM)
turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1)
zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear
advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that
preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as
opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy
transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode
excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly
damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this
the dominant saturation mechanism for TEM turbulence.  This accounts for the reduction of turbulence level by
zonal modes, not zonal-flow E×B shearing.

1. Introduction

Zonal flows have been recognized as important in tokamak microturbulence on the basis of
simulation results that show the level of turbulence rising by an order of magnitude when the
coupling to zonal flows is artificially removed [1].  Zonal flows are thus thought to limit
anomalous transport in tokamaks.  Zonal flows are part of the fluctuation spectrum,
originally postulated to form as the spectral condensate of the inverse cascade associated
with the enstrophy-conserving vorticity advection nonlinearity [2].  However, all realistic
models of tokamak microturbulence have advective nonlinearities involving scalars such as
density and pressure.  These nonlinearities produce forward cascades that dominate at large
scales when the scalar evolves independently of the potential [3].  This paper examines how
and why zonal flows are excited under such circumstances, and the properties of that
excitation, using a simple model for trapped electron mode (TEM) turbulence.  Spectral
analysis treating the long wavelength nonlinearities comprehensively with relevant scalar
fluctuations across the spectral compass establishes the mechanism by which zonal are
saturated, their role in saturation of the turbulence and the mechanism by which it occurs, the
role of damped eigenmodes in these processes (like the experimentally observed geodesic
acoustic mode [4]), and the role of wave physics that dominates at long wavelengths.  This
analysis shows that there are strong links to the excitation of anisotropic large-scale
structures in other kinds of turbulence [5]-[6].

2.  Zonal Modes and Wave Anisotropy

Spectral energy transfer excites a significant zonal-mode spectrum feature in TEM
turbulence.  The process arises from TEM wave physics, as reflected in the fact that zonal
modes constitute a global-scale spectrum structure whose anisotropy is determined by the
wavenumber value that makes the wave frequency vanish [7].   This and other aspects of
zonal mode excitation are robust features of the dynamical model [8]:
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In this model n  = ε1/2ne + φ is an effective electron density, ne is the density of trapped
electrons, φ  is the potential, ε1/2 is the trapping fraction, υ is the electron detrapping rate, vD

is the diamagnetic drift velocity, and 
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ˆ α =1+ 3ηe /2.

This paper addresses the collisionless regime, υ <<  vDky, in which the effective density and
potential differ strongly.  Therefore the density advection nonlinearity ∇φ×z⋅∇n is not small
as it is in the collisional regime, but plays a significant role in the dynamics.  This paper also
addresses the long wavelength regime.  There are two crucial features of the long wavelength
regime.  First, for k < √(n/φ)rms, the density advection nonlinearity dominates the spectral
transfer rate (∇φ×z⋅∇∇2φ plays a negligible role) because it has fewer spatial derivatives.
This effect is accentuated by the fact that the deviation of density from the potential in the
collisionless regime makes the density larger than the potential [8]. Second, the linear wave
terms on the RHS of Eqs. (1) and (2) become dominant because they have one fewer spatial
derivative than the density advection nonlinearity. In this regime spectral transfer necessarily
involves the interaction of the density advection nonlinearity and the wave terms.  The wave
terms are fundamentally anisotropic, going as ky. They induce strong anisotropy in spectral
transfer and the fluctuation spectrum.  In wave regimes with inverse transfer it has been
shown that there is a singular layer in wavenumber space associated with the wavenumber
for which the wave frequency vanishes [9].  The wave frequency, which is proportional to
vDky, cannot exceed the nonlinearities when it vanishes as ky→0.  Spectrally, this is a singular
limit that forces a compensating enhancement of spectral density for ky→ 0.  This
enhancement is the zonal mode spectrum [9].

In the collisionless, long wavelength regime, the dominance of density advection has been
shown to produce a forward energy transfer associated with the violation of enstrophy
invariance [3].  With zonal modes residing at long wavelengths, it is not obvious how they
are driven in collisionless plasmas, particularly if unstable modes do not extend to very long
wavelengths.  However, in numerical solutions of Eqs. (1) and (2) zonal modes are observed
to be strongly driven. This is illustrated in Fig. 1, which shows the spectral transfer rate as a
function of kx and ky.  The strong peaks represent absorption into zonal modes.  The transfer
in other parts of the spectrum is weaker.  In this section we show that there is an isotropy of
mode coupling that favors zonal mode excitation.  In the final section we show that wave
anisotropies induce inverse energy transfer.  The anisotropy of coupling essentially
represents an anisotropic spectral basin filled by the inverse transfer.

Fig. 1.  Spectral energy transfer rate as a function of wavenumber.  The strong peaks represent
energy absorbed into the zonal modes by spectral transfer.
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The anisotropy of mode coupling is clearly seen when the model is transformed via the
eigenmode decomposition to obtain nonlinear evolution equations for the system’s projection
onto the basis set of linear eigenmodes [8].  The eigenmode decomposition is the proper way
to deal with the fact that in turbulence with waves, time derivatives are an amplitude-
dependent superposition of all eigenfrequencies, and not generally reducible to the frequency
of the unstable mode, as commonly assumed.  In the eigenmode decomposition Eqs. (1) and
(2) can be written as [8]
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where the subscript j takes on values 1 and 2, corresponding to the unstable and damped
eigenmodes, βj are the amplitudes, ω j are the complex eigenfrequencies, and Rj are the
eigenvectors specified as the ratio of density to potential at wavenumber k.  The
decomposition itself is given by nk = R 1(k)β1(k) + R2(k)β2(k) and φk = β1(k) + β2(k).  The
eigenfrequencies and eigenvectors are obtained from a normal mode analysis of the
linearization of Eqs. (1) and (2).  The eigenfrequencies are given as roots of the dispersion
relation 
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The mode coupling anisotropy that favors zonal modes resides in the factor (ω1–ω2)
-1.  For

υ/vDky<<1, 
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ω1 ≈ vDky (1− ˆ α ε1/2 )/(1+ k2 −ε1/2 )+O (υ ), and 
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ω2 ≈ −iυ /(1− ˆ α ε1/2 ) +O(υ 2/vDky),
from which is it seen that the difference ω1–ω2

 goes as vDky.  As ky→0, this difference drops
by one order to O(υ).  Evaluation of ω1–ω2 for ky→0 requires expansion of ω1 and ω2 in the
limit υ/vDky>1.  Performing the expansion, this coupling factor is given by
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from which it is evident that coupling between zonal modes and non zonal modes is strongly
enhanced over coupling purely between non zonal modes.  Because zonal modes are not
linearly driven, they represent available states in wavenumber space in which energy can
accumulate via this coupling if there is energy available in the coupled modes k' and k-k'.
When there is instability in adjacent parts of the spectrum this happens naturally as explained
in the next section.  If driven modes are removed in wavenumber space, inverse energy
transfer is required.

The dominance of the electron density advection nonlinearity for long wavelengths k <
√(n/φ)rms, means that the anisotropic spectral energy transfer that drives zonal modes resides
primarily in the correlation 〈nφn〉, rather than the correlation 〈φφφ〉.  It is important that
bispectrum observations seeking to verify zonal mode driving experimentally measure 〈nφn〉.
Although the correlation 〈φφφ〉 is a natural choice for flow structures, it is weaker when k <
√(n/φ)rms.

3.  Damped Eigenmode and Nonlinear Zonal Mode Damping

A crucial feature of Eq. (3) is that the damped eigenmode is nonlinearly driven at a rate
identical to the rate of nonlinear absorption of instability energy.  This follows because the
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nonlinearity in the evolution equation of the unstable eigenmode is equal and opposite to the
nonlinearity of the damped eigenmode equation.  As the instability evolves toward saturation
the former must become as large as the linear drive, which goes as iω1β1 and is growing
exponentially in time.  Because it has the same intensity, the nonlinearity of the damped
eigenmode is much larger than the linear damping term, which is decaying exponentially.
The nonlinearity therefore easily overcomes the damping and drives the damped eigenmode
to finite amplitude.  This is demonstrated in Fig. 2, which shows time histories of the
energies of the unstable and damped eigenmodes from the numerical solution of Eq. (3).  The
damped eigenmode decays initially, and then, well before saturation, begins to grow
exponentially.  During its growth phase the evolution of the damped eigenmode is well
described by parametric instability analysis [8].

Fig. 2.  Evolution of the energies in the unstable and damped eigenmodes.

With the excitation of the damped eigenmode the correlation of n and φ at finite amplitude is
not given by the correlation of the linear instability, but by an amplitude-dependent
superposition of the correlations of the instability and the damped eigenmode.  The
correlation of n and φ controls the rate at which energy is released into fluctuations by the
free energy available in the gradients.  Therefore the fluctuation-driving rate is not equal to
the linear growth rate once the system reaches finite amplitude.  The driving rate can be
found from the rate of change of fluctuation energy.  The fluctuation energy is defined as W
= ∑E(k) = ∑[(1+k2–ε1/2)|φk|

2 + ε1/2|nk|
2].  Taking the time derivative of W and substituting

from Eqs. (1) and (2) for the time derivatives of φk and nk, the nonlinear terms vanish upon
summation over k because W is an invariant of the nonlinearity.  What remains is purely
dissipative and represents the rate at which energy is injected into the spectrum or removed.
Performing these operations the rate of change of energy is dW/dt = ∑ 2γk

nl E(k), where
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nl =

kyvD ˆ α ε1/2 Im nk
*φk −υε1/2 (nk −φk ) 2
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2 +ε1/2 nk

2
  . (6)

Although the conservative nonlinear transfer rates do not appear in Eq. (6), and products of
amplitudes appear in both the numerator and denominator, this is an amplitude-dependent, or
nonlinear, growth rate.  When the linearly unstable eigenmode is used to write n in terms of
φ, i.e., nk = R1(k)φk, Eq. (6) reproduces the linear growth rate.  However, if the fluctuations
develop any other relationship between n and φ, as occurs with excitation of the damped
eigenmode, γnl is different from the linear growth rate.  The second term in the numerator of
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the nonlinear growth rate is negative definite, hence instability occurs only if Im〈nk*φk〉 is
positive.  With ky=0 for zonal modes, the term with Im〈nk*φk〉 vanishes, and the nonlinear
growth rate is given by
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−υε1/2 (nk −φk )
2

(1+ kx
2 −ε1/2 )φk

2 +ε1/2 nk
2
ky=0

   
. (7)

It is evident that at finite amplitude zonal modes are either damped or marginally stable,
depending the values of n and φ.  For ky=0, the unstable eigenvector is R1=1, yielding nk=φk,
and making γnl zero.  This recovers the well-known result that zonal modes of the unstable
drift wave are marginally stable. (It should be recalled that n is an effective density.)
However, because the growth rate goes like –|nk–φk|

2, any deviation of the fluctuation
structure from the eigenmode of the linear instability will cause the zonal modes to become
damped.  The excitation of the damped eigenmode is a significant deviation that causes the
zonal modes to be robustly damped.  Figure 3 shows the linear growth rate spectrum of the
linear instability (on the left) and the growth rate at finite amplitude (on the right).  The
crease along ky=0 in the linear spectrum has γnl=0 and represents the marginal stability of
zonal modes on the unstable eigenmode branch.  At finite amplitude the crease widens and
deepens, becoming a significant sink of energy.

Fig. 3.  Growth rate spectrum from Eq. (6).  On the left is the growth rate of the linear instability.
On the right is the growth rate in the saturated state.

Evaluation of Eq. (7) requires the values of |nk|
2, |φk|

2, and 〈nk*φk〉 for the ky = 0 part of the
spectrum.  In the saturated state, a closure theory described in the next section provides the
stationary values of |β1|

2, |β2|
2, and 〈β1*β2〉, including those of zonal wavenumbers.  Inverting

the eigenmode decomposition, nk = R 1(k)β1(k) + R2(k)β2(k) and φk = β1(k) + β2(k), then
provides the needed correlations in the original fields.  The saturation levels scale with the
parameters of the original equations, from which the rate of finite amplitude-induced zonal
mode damping is found to be γk

nl = –υε1/2(1+kx
2) / (1+kx

2–ε1/2).  This damping is as large as
the growth rate, and present in modes that are preferentially driven by spectral transfer.

4.  Saturation of TEM Turbulence

The preferential driving of zonal modes shown in Fig. 1, coupled with the robust nonlinear
damping of zonal modes shown in Fig. 3, makes energy transfer to zonal modes the
dominant saturation mechanism for collisionless TEM turbulence.  This is demonstrated
from measurement of spectral transfer rates in numerical solutions of the TEM equations and
is shown in Fig. 4.  The solid line plots Re(2iω1)|β1|

2, the energy entering the unstable
eigenmode from the linear instability.  The broken line plots energy extracted from the
unstable eigenmode via spectral transfer to the zonal modes.  The near equality indicates that
this transfer saturates the turbulence.  There are other saturation channels, for example
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spectral transfer within the unstable eigenmode to high wavenumber Fourier modes that are
viscously damped.  These channels play a minor role in saturation, unless the transfer to
zonal modes is artificially removed in numerical calculations.  In that situation, the
fluctuation level must rise significantly to make these alternate channels sufficiently strong to
balance the instability.  This is illustrated in Fig. 5, which shows the evolution to steady state
for a numerical solution in which zonal flow coupling is present versus one in which it is not.
When the coupling is suppressed the fluctuation level rises by more than an order of
magnitude.

Fig. 4. Energy rates in the saturated state Fig. 5.  Evolution of TEM turbulence
showing a balance between energy injected for cases in which zonal mode coupling
into the unstable eigenmode and energy is artificially turned off  (broken line)
transferred to zonal modes. and present (solid line).

The energetics of Fig. 4, in which virtually all instability energy is transferred to zonal modes
whose damping is as large as the growth rate, indicates that it is transfer to a sink that
accounts for the lower fluctuation level in TEM when zonal modes are present.  The lower
saturation level is not a result of the shearing produced by zonal flows.

Analytic solution of Eq. (3) agrees with the results of Fig. 4.  The solution requires a closure
theory for the eigenmode energies |β1|

2, |β2|
2, Im〈β1*β2〉, and Re〈β1*β2〉, all of which

contribute to the total fluctuation energy.  Evolution equations for these energies in a self-
consistent EDQNM closure are given in Ref. [8].  The closure equations are solved
asymptotically for υ/kyvD<<1, yielding the scaling of the energies with υ and kyvD.  A
separate asymptotic analysis with υ/kyvD>>1 must be performed for the ky = 0 zonal modes.
These analyses show that the turbulent saturation levels are given by |β1|

2 ~ A 1ky
2vD

2,
Im〈β1*β2〉 ~ Ai ky

2vD
2 (υ/kyvD), |β2|

2 ~ A2 ky
2vD

2 (υ/kyvD)2, and Re〈β1*β2〉 ~ Ar ky
2vD

2 (υ/kyvD)2,
for υ/kyvD<<1.  These levels are set by dominant asymptotic balances with the spectral
transfer terms that mediate the saturation balances.  In the equation for |β1|

2 a single spectral
transfer term balances the growth rate at lowest order.  This term transfers energy to the
damped branch through Im〈β1*β2〉.  There are numerous Kolmogorov-like terms in which
transfer is mediated by the coupling of three modes on the unstable branch.  These terms
carry energy to higher wavenumber, viscously damped Fourier modes on the unstable branch
without coupling to modes of the damped branch.  These terms are all subdominant.  With
the dominant saturation balance carrying energy to the damped branch, and with energy
transfer subject to the anisotropy of Eq. (5), it is evident that the dominant saturation channel
is via transfer to zonal modes of the damped eigenmode.

5.  Inverse Spectral Energy Transfer
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The dominant long wavelength nonlinearity ∇φ×z⋅∇n is known to produce transfer of energy
to small scales [3].  It is thus important to determine how this nonlinearity can drive zonal
modes at large scales.  Even with the simplification of asymptotic analysis, the saturation
balances beyond that of the |β1|

2 equation are complicated.  For example, in the |β2|
2 equation

the dominant balance includes nine separate terms involving different pairwise combinations
of |β 1|

2, |β 2|
2, Im〈β1*β2〉, and Re〈β1*β2〉, and different combinations of wavenumber

dependence on the wavenumbers k, k', and k–k' of an interaction triad.  To simplify the
possibilities, spectral transfer terms are examined for special symmetries that facilitate
inverse transfer.

Consider a rough antisymmetry property wherein spectral transfer terms change sign for
k↔k', without necessarily preserving magnitude [10].  This type of symmetry has been
associated with inverse cascades in other systems.  For example, the more restrictive case of
exact antisymmetry (transfer terms preserve magnitude under k↔k') yields the inverse
cascade of mean squared flux in 2D MHD.  The less restrictive condition of rough
antisymmetry allows for inverse transfer in which the exchange between k and k' is not
conservative, and other non-symmetric interactions are required to maintain energy
conservation. Rough antisymmetry yields transfer that is either forward or inverse,
depending on the sign of the transfer rate.  For inverse energy transfer, the spectral transfer
rate must be negative for k<k'.  Looking at the spectral transfer rates of the dominant
saturation balances described in the previous section, rough antisymmetry does not apply to
the single spectral transfer term of the |β1|

2 balance, but does apply to eight of the nine terms
of the |β2|

2 balance. Writing the |β2|
2 equation as [∂/∂t – 2Imω2] |β2|

2 = –4Re[T222(k,k') +
T122(k,k')], the eight terms entering the dominant saturation balance with rough antisymmetry
are in T222 and the other term is in T122.  Under general conditions T222 is complicated, with
components producing both forward and inverse transfer, depending on spectrum shape.
Inverse transfer dominates for a broad class of physically important spectra.  Consider
decaying spectra such that |β1|

2, |β2|
2, Im〈β1*β2〉, and Re〈β1*β2〉 have the same shape and fall

off faster than k-1.  The spectra generated in numerical solutions of Eq. (3) belong to this
class, as do the spectra of the canonical balance defining the wave-dominated regime [5],
which go as k-2.  A broad transfer range is also assumed, such that energies at k are much
larger than energies at k' for k<k'.  In a wave dominated regime where linear wave
frequencies exceed nonlinear wave frequencies, T222(k,k') is given by
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2ReT222(k,k ' ) =  − (k'×ˆ z ⋅k' )2(1−ε1/2 )υ
vD

2 (1−ε1/2 ˆ α )3
k '
∑

υε1/2( ˆ α −1)(1−ε1/2 )
vDky

2(ky − ky ' )
2(1−ε1/2 ˆ α )2

 

 
 β1' '
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× (ky '−2ky )Im β1 *β2 + (2ky '−ky )Im β1'*β2 '[ ] +  ky ' Im β1'*β2 ' − kyIm β1 *β2[ ]

×
Im β1' '*β2 ' '

ky
3ky '

J1(ky − ky ' )+ J2(ky + ky ' )[ ]
 

 
  , (8)

where a shorthand notation has been adopted in which β1 is understood to be evaluated at k,
β1' at k', β1'' at k–k'; 

€ 

J1 = − 1+ (1/2) ˆ α ε1/2(1+ε1/2 )− 2ε1/2[ ], and 

€ 

J2 = (1/2) ˆ α ε1/2(1−ε1/2 ).  With one

exception, all terms of Eq. (8) explicitly satisfy rough antisymmetry and produce inverse
transfer, i.e., they are negative for k<k', and positive for k>k'.  The constants J1 and J2 come
from a single term.  The J1 piece is roughly antisymmetric.  The J2 piece is roughly
symmetric and negative for all k.  Hence it constitutes a source in β2, fed by unstable β1-
modes.  Consequently, once energy has been transferred to the damped eigenmode from the
unstable eigenmode, its subsequent path in wavenumber space is governed by rough
antisymmetry.
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Equation (8) describes the transfer of energy from a short wavelength mode to a long
wavelength mode, both of which belong to the damped eigenmode spectrum, with the
mediation of a third unstable wave.  The expression holds in a wave-dominated regime.  The
explicit condition for wave-dominated dynamics is a near-resonant condition on the damped
eigenmodes at k and k' and the growing eigenmode at k-k'.  The condition requires iω1(k-k')
>> Δω2(k')+Δω2*(k), where Δω2(k') and Δω2*(k) are nonlinear frequencies induced by mode
coupling.  The closure theory gives an explicit expression for Δω2 that is of order vDky [8].
This represents a significant shift from the linear frequency, which is of order (υ/vDky)

2.  This
prediction has been verified by comparison with direct numerical simulation.   Using the
expression for Δω2(k')+Δω2*(k) from the closure theory, the near resonant condition can be
written,

€ 

vD(ky − ky ' )(1−ε1/2 ˆ α )2

[1+ (k − k ' )2 −ε1/2 ]
 >>  

(k'×ˆ z ⋅q)2 − (k× ˆ z ⋅q)2[ ]β1(q) 2(1+q2 −ε1/2 )
vDqyq

∑
  . (9)

Dimensionally, this condition corresponds to the dominance of the wave frequency over the
nonlinearity in Eq. (3).  The regime in which this condition holds is analogous to the spectral
subrange below the Rhines cutoff in quasigeostrophic turbulence [9] where spectral transfer
is mediated by wave motion that is slow relative to motions of turbulence at small scales.
Analysis of the closure theory expression for Δω2(k')+Δω2*(k) indicates that when Eq. (9) is
not satisfied, the sign of T222 reverses and gives forward transfer.  Near-resonant wave
interactions have been implicated [11] in the inverse energy transfer of rotating [5] and
rotating stratified turbulence [6], where otherwise the transfer is forward.  Attempts to derive
the relevant near-resonant condition have been frustrated by the limitations of the weak
turbulence expansions that have been used in those analyses.  Because the TEM system and
those of rotating and rotating stratified turbulence behave similarly in so many ways [7], the
present analysis and identification of responsible triads may shed light on the inverse transfer
in those problems.

This work demonstrates the crucial role played by the damped eigenmode, and suggests that
the full eigenmode spectrum should be considered in describing the long wavelength range
of the spectrum where zonal modes form.
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