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Abstract. This paper reports on 4-dimensional drift kinetic simulations of the slab branch of the Ion
Temperature Gradient driven turbulence in a cylinder. In the non-linear regime, the system is found to relax
preferentially either via heat transport or via mean sheared flows, depending on the density profile. A strong
density gradient appears to be stabilizing both linearly, by increasing the instability threshold, and non linearly,
by activating sheared flows. This impedes the relaxation of the profiles and sustains a pressure transport barrier.

1. Introduction

It is now recognized that the magnitude of turbulent transport in magnetically confined
plasmas is strongly governed by self generated zonal flows [1]. Such a back reaction could
take the form of a random shearing of turbulent eddies, leading to a decrease of their mean
size, and possibly to a reduced transport [2]. These flows are known to have a linearly
undamped component in collisionless regimes [3]. In this framework, kinetic simulations are
particularly well suited to investigate the mechanisms of their generation, as well as their
impact on the transport.

The present paper investigates the interplay between the density gradient and the activity of
zonal flows, and ultimately their impact on the turbulent transport level. This study is
performed with a 4-dimensional drift-kinetic code for the slab branch of ion temperature
gradient (ITG) driven turbulence. In agreement with previous works, the density gradient is
found to linearly stabilize ITG modes by increasing the threshold. In addition, the simulations
reported here show that a large density gradient is also stabilizing non-linearly, since it
generates strong zonal flows, which tend to quench the turbulent transport.

2. Drift-Kkinetic model for the slab branch of ITG

A drift kinetic model is developed to investigate the slab branch of the ITG driven turbulence.
The instability relies on the resonant interaction between waves and particles, namely parallel
Landau resonances [4]. A periodic cylindrical plasma of radius a and longitudinal length 27 R
is confined by a strong and uniform magnetic field B =B e,. One considers the limit k0, <<
1, so that finite Larmor radius effects are neglected. In such a limit, the phase space reduces to
4-dimensions: the space coordinates (7, 8z) and the parallel velocity v, along z. The electron
response is taken adiabatic, but for equilibrium modes for which it vanishes. Within these
approximations, the system is governed by two equations, the kinetic equation for the
guiding-center ion distribution function f'and the electro-neutrality constraint:

0 +Dplo, f1+v,0.1 =vpy0.09, f=0 (1)
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Here, ¢ denotes the normalized electric potential: ¢ = e® /T), where T) is a constant arbitrary
temperature. Dj represents the so-called Bohm diffusion coefficient Dg = T)) /eB =py vy, with
pPo= mivry/eB the Larmor radius and vy = (T o/m,-)l/ ? the thermal velocity. (@) is the potential
averaged along the parallel direction z. The results presented here remain essentially
unchanged when the average is performed on both periodic directions, namely z and 8. This
should be emphasized in a forthcoming paper. Here, ny corresponds to the equilibrium particle
density profile, while n 7 denotes its radial derivative. Poisson brackets come from the ExXB

advection term: /@, /] = r (o Af — If A @).
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FIG. 1. Linear stability diagramme of the slab ITG model.

Perturbing a maxwellian equilibrium distribution function fo, = ny (27 T, 2 exp(—E/T, eq)> the
linear stability analysis of the system 1-2 gives a threshold. Looking at test functions for the
mode profile of the form &= @ exp/g(r)], the critical temperature gradient Ay = T, 7T, is
governed by the following equation:

Qr° =0, £12,% + 40, (02 —C)} (3)

The diamagnetic frequencies are: .Qn,r* = (kgoy) vr A,r, where the Larmor radius and the
thermal velocity are p; = m;vr/eB and vr= (T, eq/mi)]/ ° The parallel frequency is @, = k;, vy, and
C is defined by C =1+7 + (ko p)° — K(r), with &1r) = p’{(A,+ r" +g)g“+g”}. The stability
diagramme is shown on figure 1. There are two distinct unstable regions, for positive and
negative diamagnetic frequencies £2; . Large density gradients are stabilizing. In the limit of
large density gradients £2,” — oo, the threshold reduces to the usual condition 7 = 2,/ @,
>2. Let us consider the fluid limit @ >> @), of the mode frequency in the small density
gradient case, namely for |4,/47] << (w,/@)’. At leading order, and using the approximation
C = ] +7, the unstable branch is:
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Note that, in the fluid limit, the growth rate increases as the cubic root of the temperature
gradient Ar.

3. Transport barrier vs. iso-thermal regimes

The system eqgs.1-2 is solved numerically on a fixed grid in the phase space for the entire
distribution function using a semi-Lagrangian scheme [5]. Details of the code named
GYSELA can be found elsewhere [6]. Its accuracy is such that the number of particles and the
energy are typically conserved within less than one percent in the non-linear regime. The
initial profiles of density and 7; are essentially hyperbolic tangents, while 7, is constant. The
driving force of the system consists of different densities and ion temperatures at the
boundaries. Since the electrons are taken adiabatic, there is no net particle flux in the system.
As a consequence, the particle density profile ny is constant in time. Conversely, the guiding
center density profile (ng) = (/f dv,) may evolve since it relates to the radial derivative of the
mean poloidal velocity (vg) = Dpad.(@), namely the vorticity: (ng) = ng — (/@) A{rno(ve)},
where @. = eB/m;. The initial condition is such that (ng) = ny.
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FIG. 2. Trajectories at mid radius for an initially flat (squares) or shaped (circles) density profile.
Arrows indicate time evolution. (b) Temperature profiles in the turbulent regime for each case. The
dotted line is the initial T; profile.

Two cases with different initial conditions are compared. The trajectories of the central radial
point of the system are plotted on figure 2a in a ((vy), ;) space. Circles refer to a finite
initial density gradient. Square symbols correspond to the same case with a flat density
profile. The central region is initially unstable in both cases. The flat density case relaxes
towards marginality by decreasing the temperature gradient. The system is first subject to a
transient activity of zonal flows, before they are almost quenched in the final state. A strong
heat outflow at the beginning of the non-linear phase leads to an almost flat 7; profile, with
strong gradients at the edges, as shown on figure 2b. In the other case, a mean sheared flow
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(vg) 1s self generated, leading to a transport barrier on the temperature profile. Such a back
reaction of turbulence generated velocity shear on transport is indeed expected theoretically
[2]. It is also instructive to plot the trajectory followed by the system in the plane (2,6, £2r),
with Q2,6 computed from the guiding-center density profile ng. In this case, the time
evolution of .QnG* mimics that of the velocity shear (vg). Figure 3 shows that, whatever
density gradient, the system moves towards the linearly stable domain. However, the path
which is followed differs significantly, ranging from an almost vertical to a horizontal
displacement, depending on whether ny"=0 or not, respectively.
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FIG. 3. Same as figure 2a in the plane (2,6, 2r ), with 2,6 computed from the guiding-center
density profile ng.

Figure 4 highlights the differences in the potential structure of the two simulations: while
streamer-like convective cells develop when starting from a flat density profile, annular cells,
characteristic of zonal modes, dominate for an initially shaped density profile. The multipolar
radial structure of the velocity shear is reminiscent of the one reported in Particle In Cell
simulations of the toroidal ITG instability [7].

4. Discussion

This section analyses the drastic dependence of zonal flow activity on the density profile. Let
I" be the flux of guiding-centers: I" = —(Dp/r) (ng de). The first moment of the kinetic
equation is such that the velocity shear of the zonal flows is governed by this flux:

o), I

=0

ot ¢
&
In the absence of guiding-center flux 7, there is no source for zonal flows. It is worth noticing
the RHS of eq.5 can also be written in terms of the Reynolds stress tensor /7 = (v, dvg) =

Dy’ L koIm(D" A Dy):

)

w, I = —riz%(ﬂnon) (6)
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For a non-vanishing magnetic shear, like in tokamaks, an additional source/sink for zonal

flows is to be taken into account, driven by geodesic acoustic modes [8].

FIG. 4. Snapshot of the electric potential ¢ (v,6zy) at a given azimuthal position z, in the case where

(a) dny/dr #0 and (b) dny/dr = 0.

Further insight on the link between the density gradient and the generation of zonal flows
requires the explicit expression of the Reynolds stress. We shall consider the quasi-linear
expression of /71in the fluid limit. Let us consider the case of a mode developing close to the
maximum of the temperature gradient, at the radius ). The density gradient is assumed to
remain weak, more precisely [4,/47] << (@,/@)’. The Taylor expansion in x = r—y of the
various profiles is then performed, the subscript "0" referring to the position x=0. These
modes, that are solution of the linearized electro-neutrality eq.2, are gaussians of the form: &
= ¢ exp{—[(x—=x)/AJ?/ 2}. In this case, II is proportional to the imaginary part of x/ A°.
Neglecting the terms in @ (valid for rpdry >> 1), simple expressions of x and A can be
derived. To leading order, and dropping high order derivatives, they read:
3
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Here, the mode frequency @ has been replaced by its expression in the fluid limit, eq.4. The

Reynolds stress then reads:
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IT turns out to be proportional to the density gradient square, namely A,,° = (ny/ng)’. As a
result, the Reynolds stress vanishes if the density profile is flat. This is consistent with the
numerical results discussed previously, where zonal flows are dominating the non-linear
regime only for the shaped density case.
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5. Conclusion

In summary, the system relaxes preferentially either via heat transport or via mean sheared
flows, depending on the density profile. A strong density gradient appears to be stabilizing
both linearly, by increasing the instability threshold, and non linearly, by activating sheared
flows. A quasi-linear analysis in the fluid limit suggests that the latter mechanism could be
due to the proportionality of the Reynolds stress with the gradients of the density profile. Such
a back reaction of density gradients on turbulence provides a means to sustain pressure
transport barriers.
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